

IEC 61131-3: a standard programming resource

IEC 61131-3 is the first real endeavor to standardize

programming languages for industrial automation. With its

worldwide support, it is independent of any single

company.

IEC 61131-3 is the third part of the IEC 61131 family, and

is a specification of the syntax and semantics of a unified

suite of programming languages, including the overall

software model and a structuring language.

It consists of:

 Part 1: General Overview

 Part 2 Equipment Requirements & Tests

 Part 3 Programming Languages

 Part 4 User Guidelines

 Part 5 Communications

 Part 6 Functional Safety

 Part 7 Fuzzy Control Programming

 Part 8 Application Guidelines

 Part 9 Communication Interface

Another elegant view is by splitting the standard in two

parts (see figure 1):

1. Common Elements

2. Programming Languages

Common Elements
Data Typing

Within the common elements, the data types are defined.

Data typing prevents errors in an early stage. It is used to

define the type of any parameter used. This avoids for

instance dividing a Date by an Integer.

Common datatypes are Boolean, Integer, Real and Byte

and Word, but also Date, Time_of_Day and String. Based

on these, one can define own personal data types, known

as derived data types. In this way one can define an analog

input channel as data type, and re-use this over an over

again.

Variables

Variables are only assigned to explicit hardware addresses

(e.g. input and outputs) in configurations, resources or

programs. In this way a high level of hardware

independency is created, supporting the reusability of the

software.

The scopes of the variables are normally limited to the

organization unit in which they are declared, e.g. local.

This means that their names can be reused in other parts

without any conflict, eliminating another source of errors.

If the variables should have global scope, they have to be

declared as such. Parameters can be assigned an initial

value at start up and cold restart, in order to have the right

setting.

Configuration, Resources and Tasks

To understand these better, let us look at the software

model, as defined in the standard (see below).

At the highest level, the entire system required to solve a

particular control problem can be formulated as a

Configuration, including the arrangement of the hardware,

memory addresses for I/O channels and system

capabilities.

Within a configuration one can define one or more

Resources. One can look at a resource as a processing

facility that is able to execute IEC programs.

Within a resource, one or more Tasks can be defined.

Tasks control the execution of a set of programs and/or

function blocks. These can either be executed periodically

or upon the occurrence of a specified trigger, such as the

change of a variable.

Programs are built from a number of different software

elements written in any of the IEC defined languages.

Typically, a program consists of a network of Functions

(like ADD(ition), SINus and COSinus) and Function

Blocks, which are able to exchange data. Function and

Function Blocks are the basic building blocks, containing a

datastructure and an algorithm.

Function Blocks contain data as well as the algorithm, so

they can keep track of the past. They have a well-defined

interface and hidden internals, like an IC or black box. In

this way they give a clear separation between different

levels of programmers, or maintenance people.

A temperature control loop, or PID, is an excellent

example of a Function Block. Once defined, it can be used

over and over again, in the same program, different

programs, or even different projects. This makes them

highly re-usable.

Function Blocks can be written in any of the IEC

languages, and in most cases even in “C” or C++. In this

way they can be defined by the user.

Access path

Execution

control path

FBTask

Program Program

FB FB

Task

Program

Task

Program

FB FB

Task

Resource Resource

Configuration

Function

Block

The IEC 61131-3 Standard

Common Elements

Programming Languages

A conventional PLC contains one resource, running one

task, controlling one program, running in a closed loop.

IEC 61131-3 adds much to this, making it open to the

future. A future that already includes multi-processing and

event driven programs.

IEC 61131-3 is suitable for a broad range of applications,

without having to learn additional programming

languages.

Program Organization Units

Within IEC 61131-3, the Programs, Function Blocks and

Functions are called Program Organization Units, POUs.

Functions

IEC has defined standard functions and user defined

functions. Standard functions are for instance ADD(ition),

ABS (absolute), SQRT, SINus and COSinus. User defined

functions, once defined, can be used over and over again.

Function Blocks, FBs

Function Blocks are the equivalent to Integrated Circuits,

ICs, representing a specialized control function. They

contain data as well as the algorithm, so they can keep

track of the past (which is one of the differences w.r.t.

Functions). They have a well-defined interface and hidden

internals, like an IC or black box. In this way they give a

clear separation between different levels of programmers,

or maintenance people.

A temperature control loop, or PID, is an excellent

example of a Function Block. Once defined, it can be used

over and over again, in the same program, different

programs, or even different projects. This makes them

highly re-usable.

Function Blocks can be written in any of the IEC

languages, and in most cases even in “C”. It this way they

can be defined by the user. Derived Function Blocks are

based on the standard defined FBs, but also completely

new, customized FBs are possible within the standard: it

just provides the framework.

The interfaces of functions and function blocks are

described in the same way:

FUNCTION_BLOCK Example

VAR_INPUT:

 X : BOOL;

 Y : BOOL;
END_VAR

VAR_OUTPUT

 Z : BOOL;
END_VAR

 (* statements of functionblock body *)

END_FUNCTION_BLOCK

The declarations above describe the interface to a function

block with two Boolean input parameters and one Boolean

output parameter.

Programs

With the above-mentioned basic building blocks, one can

say that a program is a network of Functions and Function

Blocks. A program can be written in any of the defined

programming languages.

Sequential Function Chart, SFC

SFC describes graphically the sequential behavior of a

control program. With this it structures the internal

organization of a program, and helps to decompose a

control problem into manageable parts, while maintaining

the overview.

SFC consists of Steps, linked with Action Blocks and

Transitions. Each step represents a particular state of the

systems. A transition is associated with a condition, which,

when true, causes the step before the transition to be

deactivated, and the next step to be activated. Steps are

linked to action blocks, performing a certain control

action. Each element can be programmed in any of the IEC

languages, including SFC itself.

One can use alternative sequences and parallel sequences,

such as commonly required in batch applications.

Because of its general structure, SFC provides also a

communication tool, combining people of different

backgrounds, departments or countries.

Programming Languages
Within the standard four programming languages are

defined. This means that their syntax and semantics have

been defined, leaving no room for dialects. Once you have

learned them, you can use a wide variety of systems based

on this standard. The languages consist of two textual and

two graphical versions:

Textual:

 Instruction List, IL

 Structured Text, ST

Graphical:

 Ladder Diagram, LD

 Function Block Diagram, FBD

In the above figure, all four languages describe the same

simple program part.

Step 1 N FILL

Step 3

Step 2 S Empty

Transition 1

Transition 2

Instruction List (IL) Structured Text (ST)

Ladder Diagram
(LD)

LD A

ANDN B

ST C
C:= A AND NOT B

 A B C

-| |--|/|----------------()

AND

A C

B

Function Block Diagram
(FBD)

The choice of programming language is dependent on:

 the programmers’ background

 the problem at hand

 the level of describing the problem

 the structure of the control system

 the interface to other people / departments

Ladder Diagram has its roots in the USA. It is based on

the graphical presentation of Relay Ladder Logic.

Instruction List is its European counterpart. As textual

language, it resembles assembler.

Function Block Diagram is very common to the process

industry. It expresses the behavior of functions, function

blocks and programs as a set of interconnected graphical

blocks. It looks at a system in terms of the flow of signals

between processing elements.

Structured Text is a very powerful high-level language

with its roots in Ada, Pascal and “C”. It contains all the

essential elements of a modern programming language,

including selection branches (IF-THEN-ELSE and CASE

OF) and iteration loops (FOR, WHILE and REPEAT).

These elements can also be nested.

It can be used excellently for the definition of complex

function blocks, which can be used within any of the other

languages.

Program example in ST:

 I:=25;
 WHILE J<5 DO
 Z:= F(I+J);
 END_WHILE

 IF B_1 THEN
 %QW100:= INT_TO_BCD(Display)
 ENDIF

 CASE TW OF
 1,5: TEMP := TEMP_1;
 2: TEMP := 40;
 4: TEMP := FTMP(TEMP_2);
 ELSE
 TEMP := 0;
 B_ERROR :=1;
 END_CASE

Top-down vs. bottom-up

Also, the standard allows two ways of developing your

program: top down and bottom up. Either you specify your

whole application and divide it into sub parts, declare your

variables, and so on. Or you start programming your

application at the bottom, for instance via derived

functions and function blocks. Whichever you choose, the

development environment will help you through the whole

process.

Implementations

The overall requirements of IEC 61131-3 are not easy to

fulfill. For that reason, the standard allows partial

implementations in various aspects. This covers the

number of supported languages, functions and function

blocks. This leaves freedom at the supplier side, but a user

should be well aware of it during his selection process.

Also, a new release can have a dramatically higher level of

implementation.

Many current IEC programming environments offer

everything you expect from modern environments: mouse

operation, pull down menus, graphical programming

screens, support for multiple windows, built in hypertext

functions, and verification during design. Please be aware

that this is not specified within the standard itself: it is one

of the parts where suppliers can differentiate.

The 3
rd

 edition and Object Oriented features

With the release of the 3
rd

 edition in 2013, object oriented

features were added to the specification. With this, classes,

method, interfaces and namespaces became part of the

specification, as well as namespaces, all linking it to a new

generation of software programmers, as well as to other

software tools.

Conclusion

The technical implications of the IEC 61131-3 standard are

high, leaving enough room for growth and differentiation.

IEC 61131-3 impacted the whole industrial control

industry: not only the conventional PLC market, but also

the motion control market, distributed systems and

softlogic / PC based control systems, including PACs. And

the areas are still growing, including safety,

communication and exchange.

Having a standard over such a broad application area,

brings numerous benefits for users / programmers. The

benefits for adopting this standard are various, depending

on the application areas. Just to name a few for the

mindset:

 reduced waste of human resources, in training,

debugging, maintenance and consultancy;

 creating a focus to problem solving via a high level of

software reusability;

 reduced misunderstanding and errors;

 programming techniques usable in a broad

environment: general industrial control;

 combining different components from different

programs, projects, locations, companies and/or

countries.
Common Elements

Programming Languages

Top Down

Bottom Up

PLCopen enhancements of the Standard

PLCopen creates efficiency in industrial automation through

the harmonization and integration of logic, motion, and

safety, combined with communication and exchange.

The created efficiency is in the development of the

application software, the life-cycle cost of the equipment, the

training of operating and maintenance personnel as well as

of the software engineers.

As vendor- and product-independent worldwide association,

PLCopen is depending on its income through its membership

fees. For this, PLCopen supports a multi-level membership,

ranging from suppliers to educational institutes. PLCopen

strongly supports the user community. For this it created

additional membership categories.

Technical results

The Technical Committees, TCs, with representatives of

PLCopen members, work on specific items.

Within TC1 - Standards, PLCopen collects proposals from

its members for the IEC 65B WG7 working group, develops

a joint position, and distributes related information. This was

specifically focused to the second edition of the standard,

released in 2003, and now to the third edition, which was

released in 2013.

TC2 - Functions defines common libraries of Function

(Blocks) for specific application areas. Examples are the

library definitions of Function Blocks for Motion Control.

This standardization integrates motion control with industrial

control. As such, it provides a common look-and-feel

towards the users: programmers, as well as installation and

maintenance people. With multiple implementations of this

library, reusability of software and scaling of the control

system is much easier, even across different architectures

and / or controller brands.

Certification & Conformity testing

TC3 - Certification defines a certification system for IEC

61131-3 PSEs, Program Support Environments

(development environments). Each PSE can be tested to

show that it complies with a PLCopen specified subset of the

IEC 61131-3 standard. For this, several levels are defined

with Conformity Level, CL as the highest level.

In addition Reusability Level, RL, is dedicated to making

the programming units functions and function blocks

reusable on a different PSE in the same programming

language.

Historically there exists an entry level called Base Level, to

show commitment to the standard.

The compliance test procedure and the accreditation

procedure for test laboratories have been established.

Independent test laboratories have been accredited and an

increasing number of products have been certified. For a

complete list please refer to the website www.PLCopen.org .

TC4 - Communications works on the relation between

communication and programming languages. A working

item is the mapping of the IEC 61131-3 software model to

the OPC UA information model, leading to a standard way

how OPC UA server-based controllers expose data

structures and function blocks to OPC UA clients like HMIs.

This work resulted in the specification OPC UA Information

Model for IEC 61131-3.

From the beginning it was clear that integrating the OPC UA

server in the controller was only the first step. So the

working groups initiated the next step by adding the OPC

UA client functionality in the controller by defining a set of

Function Blocks for IEC61131-3. This specification was

released in 2014 with an update in 2016.

TC5 - Safe Software prepares recommendations for

applying the IEC 61131-3 standard to safety related

applications, esp. focused to machines, and the new safety

standards IEC 61508 and 61511 as well as IEC 62061. In

addition, it provides guidelines for the user to use safety

aspects within their applications, supported by their

development environments, as well as library definitions of

Function Blocks for Safety applications.

TC6 - XML worked on the specification of XML schemes

for all languages, as well as full projects. This specification

provides the basis for exchange, as well as coupling to other

software tools, including higher-level development tools,

simulation tools, documentation tools, and verification tools.

The PLCopen XML specification will become an integral

part of the IEC 61131 specifications. The international

standard IEC 61131-10 is expected to be published in 2018.

Promotional Events

An important task of PLCopen is to inform users /

programmers about the benefits of standardized industrial

control programming. This is done via:

 the PLCopen website: www.PLCopen.org

 publication of a free electronic newsletter

 publications in the press

 participation at conferences and shows

The Promotional Committees PC1, PC3 PC4, PC5 and

PC6 support these activities.

PC2 - Common training has defined a common basis for

training. This includes certification. In this way, certified

training centres for training on IEC 61131-3 can be easily

identified.

Although there are guidelines for many programming

languages, these are nearly non-existent for the important

area of industrial control, e.g. IEC 61131-3 and its PLCopen

extensions. Therefore PLCopen initiated the development of

Software Construction Guidelines.

Benefits of Membership

A membership of PLCopen has many benefits for users,

vendors, and institutes. By joining PLCopen, one makes a

clear statement about commitment to open architectures. In

addition, one can participate in the committees, and as such

have upfront information as well as influence on the work

done, and use the PLCopen logos.

The annual contribution depends on voting and non-voting

rights, the number of relevant employees active, and the

nature of the organization. The different types are:

 Companies: commercial organizations active in the IC

 Users: focused to the application and usage of IC

 System Integrators / Re-sellers: added value is not in the

IC or its programming environment

 Non-profit organizations

 Educational institutes

For more information, please check www.PLCopen.org.

http://www.plcopen.org/
http://www.plcopen.org/
http://www.plcopen.org/

