
PLCopen
®

for efficiency in automation

 Total number of pages: 127

Technical Paper

PLCopen Promotional Committee Training

As part of the

Software Construction Guidelines initiative

Sub Committee

Coding Guidelines

PLCopen Document, Version 1.0, Official Release

DISCLAIMER OF WARANTIES

The name ‘PLCopen®’ is a registered trade mark and together with the PLCopen logos owned by

the association PLCopen.

This document is provided on an ‘as is’ basis and may be subject to future additions, modifications,

or corrections. PLCopen hereby disclaims all warranties of any kind, express or implied, including

any warranty of merchantability or fitness for a particular purpose, for this moment. In no event

will PLCopen be responsible for any loss or damage arising out or resulting from any defect, error

or omission in this document or from anyone’s use of or reliance on this document.

Copyright © 2016 by PLCopen. All rights reserved.

Date: April 20, 2016

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 2/127

The following paper is an official PLCopen document:

Coding Guidelines

It summarises the results of the PLCopen workgroup Software Construction Guidelines Task Force

Coding Guidelines, containing contributions of all its members.

The present specification was written thanks to the members of this Task Force:

Person Company

Andreas Weichelt Phoenix Contact

Barry Butcher Omron

Bernhard Jany Siemens

Bernhard Werner 3S / Codesys

Bert van der Linden ATS International

Boris Waldeck Phoenix Contact

Carina Schlicker HS Augsburg

Christoph Berger HS Augsburg

Denis Chalon Itris

Edward Nicolson Yaskawa

Eric Pierrel Itris

Geert Vanstraelen Macq

Hans-Peter Otto privat

Hendrik Simon RWTH Aachen

Hiroshi Yoshida Omron

Kevin Hull Yaskawa

Matthias Kremberg Phoenix Contact

Peter Erning ABB

René Heijma Omron

Rolf Hänisch Fraunhofer FOKUS

Sebastian Biallas RWTH Aachen

Wolfgang Zeller HS Augsburg

Eelco van der Wal PLCopen

Change Status List:

Version Date Change/ comment

V 0.1 March 24, 2015 Initial Document as result of work in the original wiki site

V 0.2 June 5, 2015 As result of the webmeeting on June 1 based on the feedback

V 0.3 July 1, 2015 As a result of the webmeeting and last feedback in

V 0.99 July 23, 2015 Version to be published to the open community as Release for

Comments till Oct. 23, 2015

V 0.99A Jan. 17, 2015 As a result of the Face to face meeting in Frankfurt, including

decisions on all feedback items

V 0.99B Jan. 20, 2016 As result of the final feedback and editorial issues

V 1.0 April 20, 2016 Official published version

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 3/127

Table of Contents

1. INTRODUCTION .. 9

2. HOW-TO USE THIS DOCUMENT .. 10

2.1. METHODOLOGY USED TO BUILD THIS DOCUMENT .. 11

2.2. DOCUMENT STRUCTURE ... 12

2.3. RULES DESCRIPTION FORMAT ... 13

2.4. REFERENCES... 15

3. NAMING RULES .. 16

3.1. ADDITIONAL RULES FOR VARIABLES ONLY .. 16

3.1.1. Avoid physical addresses... 16

3.1.2. Define type prefixes for Variables (if used) ... 17

3.2. TASKS, PROGRAMS, FUNCTIONS BLOCKS, FUNCTIONS, VARIABLES, UDTS AND

NAMESPACES ... 20

3.2.1. Define the names to avoid ... 20

3.2.2. Define the use of case (capitals).. 22

3.2.3. Local names shall not shadow global names .. 25

3.2.4. Define an acceptable name length .. 27

3.2.5. Define naming rules for namespaces .. 29

3.2.6. Define the acceptable character set .. 31

3.2.7. Different element types should not bear the same name ... 32

3.2.8. Define name prefixes for user defined types ... 33

4. COMMENT RULES.. 35

4.1. COMMENTS SHALL DESCRIBE THE INTENTION OF THE CODE ... 36

4.2. ALL ELEMENTS SHALL BE COMMENTED .. 38

4.3. AVOID NESTED COMMENTS .. 39

4.4. COMMENTS MAY NOT INCLUDE CODE ... 40

4.5. USE SINGLE LINE COMMENTS .. 41

4.6. DEFINE COMMENTS LANGUAGE .. 43

5. CODING PRACTICE ... 44

5.1. ACCESS TO A MEMBER SHALL BE BY NAME ... 44

5.2. ALL CODE SHALL BE USED IN THE APPLICATION ... 45

5.3. ALL VARIABLES SHALL BE INITIALIZED BEFORE BEING USED .. 47

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 4/127

5.4. DIRECT ADDRESSING SHOULD NOT OVERLAP .. 51

5.5. APPLICATIONS SHALL BE WELL DESIGNED .. 53

5.6. AVOID EXTERNAL VARIABLES IN FUNCTIONS, FUNCTION BLOCKS AND CLASSES 54

5.7. ERROR INFORMATION SHALL BE TESTED... 56

5.8. FLOATING POINT COMPARISON SHALL NOT BE EQUALITY OR INEQUALITY 58

5.9. TIME AND PHYSICAL MEASURES COMPARISON SHALL NOT BE EQUALITY OR INEQUALITY .. 59

5.10. LIMIT THE COMPLEXITY OF POU CODE ... 60

5.11. AVOID MULTIPLE WRITES FROM MULTIPLE TASKS ... 63

5.12. MANAGE SYNCHRONIZATION AMONG TASKS .. 65

5.13. PHYSICAL OUTPUTS SHALL BE WRITTEN ONCE PER PLC CYCLE 68

5.14. POUS SHALL NOT CALL THEMSELVES DIRECTLY OR INDIRECTLY 69

5.15. POUS SHALL HAVE A SINGLE POINT OF EXIT ... 71

5.16. READ A VARIABLE WRITTEN BY ANOTHER TASK ONLY ONCE PER CYCLE 72

5.17. TASKS SHALL ONLY CALL PROGRAM POUS AND NOT FUNCTION BLOCKS 74

5.18. USAGE OF PARAMETERS SHALL MATCH THEIR DECLARATION MODE 75

5.19. USE OF GLOBAL VARIABLES SHALL BE LIMITED .. 77

5.20. USAGE OF JUMP AND RETURN SHOULD BE AVOIDED ... 81

5.21. FUNCTION BLOCK INSTANCES SHOULD BE CALLED ONLY ONCE 84

5.22. USE VAR_TEMP FOR TEMPORARY VARIABLE DECLARATION .. 86

5.23. SELECT APPROPRIATE DATA TYPE ... 88

5.24. DEFINE MAXIMUM NUMBER OF INPUT/OUTPUT/IN-OUT VARIABLES OF A POU 91

5.25. DO NOT DECLARE VARIABLES THAT ARE NOT USED .. 94

5.26. DATA TYPES CONVERSION SHOULD BE EXPLICIT ... 95

5.27. A GLOBAL VARIABLE MAY BE WRITTEN ONLY BY ONE PROGRAM 97

5.28. AVOID DEPRECATED FEATURES ... 98

6. LANGUAGES .. 99

6.1. DEFINE INDENTATION ... 99

6.2. FUNCTION BLOCK DIAGRAM FBD ... 100

6.2.1. Avoid assignments of intermediate results within networks .. 100

6.2.2. Define maximum complexity of single network ... 101

6.3. LADDER (LD) ... 102

6.3.1. A coil should not be followed by a contact .. 102

6.3.2. Define maximum rung complexity ... 103

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 5/127

6.4. SEQUENTIAL FUNCTION CHART (SFC) ... 104

6.4.1. Closing divergent paths ... 104

6.4.2. Do not program an SFC action block in SFC ... 106

6.4.3. Define maximum complexity ... 107

6.5. STRUCTURED TEXT (ST) .. 108

6.5.1. Define General formatting rules ... 108

6.5.2. Usage of Continue and Exit instruction should be avoided .. 110

6.5.3. Define the maximum line length .. 112

6.5.4. Loop variables should not be modified inside a FOR loop ... 113

6.5.5. FOR loop variable usage should not be used outside the FOR loop 115

6.5.6. Passing parameters should be clear ... 117

6.5.7. Use parenthesis to explicitly express operation precedence ... 119

6.5.8. Define the use of tabs .. 120

6.5.9. Each IF instruction should have an ELSE clause ... 121

7. VENDOR SPECIFIC IEC 61131-3 EXTENSIONS ... 122

7.1. DYNAMIC MEMORY ALLOCATION SHALL NOT BE USED ... 122

7.2. POINTER ARITHMETIC SHALL NOT BE USED ... 123

7.3. SOME COMPARATOR INSTRUCTIONS SHALL NOT BE USED FOR POINTER OR REFERENCE

MANIPULATION .. 124

8. ANNEX 1 – OVERVIEW OF THE RULES VIA THEIR PRIORITIES 126

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 6/127

Another way of looking to the rules is via their classification and number, as shown hereunder:

Rule # Chapter Name Page

3.

Naming Rules

16

3.1.

Additional rules for Variables only

16

N1 3.1.1. Avoid physical addresses 16

N2 3.1.2. Define type prefixes for Variables (if used) 17

3.2.

Tasks, Programs, Functions Blocks, Functions, Variables,

UDTs and namespaces

20

N3 3.2.1. Define the names to avoid 20

N4 3.2.2. Define the use of case (capitals) 22

N5 3.2.3. Local names shall not shadow global names 25

N6 3.2.4. Define an acceptable name length 27

N7 3.2.5. Define naming rules for namespaces 29

N8 3.2.6. Define the acceptable character set 31

N9 3.2.7. Different element types should not bear the same name 32

N10 3.2.8. Define name prefixes for user defined types 33

4.

Comment Rules

35

C1 4.1. Comments shall describe the intention of the code 36

C2 4.2. All elements shall be commented 38

C3 4.3. Avoid nested comments 39

C4 4.4. Comments may not include code 40

C5 4.5. Use single line comments 41

C6 4.6. Define comments language 43

5

Coding Practice

44

CP1 5.1. Access to a member shall be by name 44

CP2 5.2. All code shall be used in the application 45

CP3 5.3. All variables shall be initialized before being used 47

CP4 5.4. Direct addressing should not overlap 51

CP5 5.5. Applications shall be well designed 53

CP6 5.6. Avoid external variables in functions, function blocks and

classes

54

CP7 5.7. Error information shall be tested 56

CP8 5.8. Floating point comparison shall not be equality or

inequality

58

CP28 5.9 Time and physical measures comparison shall not be

equality or inequality

59

CP9 5.10. Limit the complexity of POU code 60

CP10 5.11. Avoid multiple writes from multiple tasks 63

CP11 5.12. Manage synchronization among tasks 65

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 7/127

CP12 5.13. Physical outputs shall be written once per PLC cycle 68

CP13 5.14. POUs shall not call themselves directly or indirectly 69

CP14 5.15. POUs shall have a single point of exit 71

CP15 5.16. Read a variable written by another task only once per

cycle

72

CP16 5.17 Tasks shall only call program POUs and not Function

Blocks

74

CP17 5.18. Usage of parameters shall match their declaration mode 75

CP18 5.19. Use of global variables shall be limited 77

CP19 5.20. Usage of jump and return should be avoided 81

CP20 5.21. Function block instances should be called only once 84

CP21 5.22. Use VAR_TEMP for temporary variable declaration 86

CP22 5.23. Select appropriate data type 88

CP23 5.24. Define maximum number of input/output/in-out variables

of a POU

91

CP24 5.25. Do not declare variables that are not used 94

CP25 5.26. Data types conversion should be explicit 95

CP26 5.27. A global variable may be written only by one PROGRAM 97

CP27 5.28. Avoid deprecated features 98

6.

Languages

99

L1 6.1. Define indentation 99

6.2.

Function Block Diagram FBD

100

L2 6.2.1. Avoid assignments of intermediate results within

networks

100

L3 6.2.2. Define maximum complexity of single network 101

6.3.

Ladder (LD)

102

L5 6.3.1. A coil should not be followed by a contact 102

L6 6.3.2. Define maximum rung complexity 103

6.4.

Sequential function chart (SFC)

104

L7 6.4.1. Closing divergent paths 104

L8 6.4.2. Do not program an SFC action block in SFC 106

L9 6.4.3. Define maximum complexity 107

6.5.

Structured text (ST)

108

L4 6.5.1. Define general formatting rules 102

L10 6.5.2. Usage of Continue and Exit instruction should be avoided 110

L11 6.5.3. Define the maximum line length 112

L22 6.5.4. Loop variables should not be modified inside a FOR loop 113

L13 6.5.4. FOR loop variable usage should not be used outside the

FOR loop

115

L14 6.5.5. Passing parameters should be clear 117

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 8/127

L15 6.5.6. Use parenthesis to explicitly express operation precedence 119

L16 6.5.7. Define the use of tabs 120

L17 6.5.8. Each IF instruction should have an ELSE clause 121

7.

Vendor Specific IEC 61131-3 Extensions

122

E1 7.1. Dynamic memory allocation shall not be used 122

E2 7.2. Pointer arithmetic shall not be used 123

E3 7.3. Some comparator instructions shall not be used for

pointers or reference manipulation

124

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 9/127

1. Introduction

Although there are coding guidelines for many programming languages, these are nearly non-

existent for the important area of industrial control, e.g. IEC 61131-3 and its PLCopen extensions.

Nevertheless, the software in the industrial environments becomes more and more important, the

software projects become larger, and the costs of errors increase. Software nowadays absorbs half

of the initial project costs and between 40 and 80% deals with maintenance over the life cycle costs

of the software.

In order to deal with the complexity of larger programs one needs modern software development

processes supporting a structured approach. Also, we need to increase the efficiency in coding via

re-use of pre-defined functionalities and to help to better understand the program over the life cycle.

With the above message PLCopen invited interested parties to join the working group of Software

Construction Guidelines. The kick-off meeting resulted in several working groups for the different

areas of interest, including their working packages (targets):

 Coding Guidelines

 Software quality issues and software consistency

 Creating PLCopen compliant Function Blocks

 Structuring and decomposition via SFC (do’s & don’ts)

 Guidance for documentation in software programs

 Library usage

 Software development process

The key topic of the new PLCopen Software Construction Guidelines working group is the

definition of Rules, Coding Patterns and Guidance and how to use them in Industrial Automation.

These rules will be published as technical documents, as well as possibly on websites and software

tools, and marketed by PLCopen.

The results of the working group should be based on the IEC 61131-3 1
st
 and 2

nd
 edition standard

but should be easily extensible to the 3
rd

 edition which was released in February 2013.

The aim of the subgroup Coding Guidelines is to define a set of rules and to provide a PLCopen

proposal how these rules can be used. Nowadays large automation companies have their own rules

but many mid-size companies or IEC 61131-3 beginners are very interested in using PLCopen

guidelines. Such guidelines will have a great impact in expanding IEC 61131-3 further in the world.

The rules will be very useful to train users and can be a good basis for universities to help them

teach IEC 61131-3 programming more efficiently.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 10/127

2. How-to use this document

The IEC 61131-3 standardizes programming languages and techniques, a major step forward in the

PLC technology. These languages and techniques can contribute to the quality of the controller

application. However IEC 61131-3 does not describe how a programmer can increase the quality of

the application program. The IEC 61131-8 gives some guidance, but does not extend to the need of

software quality. This technical paper fills in this gap.

This document is designed for PLC programmers who want to increase the product quality of their

application program. It's not about process quality; this is the subject of other technical papers. This

document consists of a set of rules that a programmer can use during coding and code reviews.

Therefore, the technical paper contains no design rules. The set is certainly not complete, but

significant enough to give the product quality a boost. The programmer or its organization can add

or remove rules from the set.

The working group recommends the programmers take the following steps:

1. List the quality needs of the stakeholders and the maturity of the organization. Bring the

quality in line with the organization.

2. Analyze the type of application.

3. Add other available rules to the set of rules from the technical paper.

4. Tailor the set of rules for the application based on the information from the previous steps,

create a sub-set of rules.

5. Use the sub-set of rules when coding or reviewing the PLC program.

Ad 1.

The purpose of this technical paper is to increase the quality of software. This requires an

organization with certain abilities or maturity, see for instance the Capability Maturity Model for

software.

Ad 2.

The IEC 61131-3 standard specifies different languages, but if any are not used, then those

language’s rules can be ignored.

Ad 3.

Besides this document, there are other sources that describe quality rules. Think of company

standards or general standards. Larger companies have already gained experiences and these

experiences recorded in their own standard. Research the available rules. There are also overall

software quality standards, such as McCall, etc. These standards are generally not directly

applicable to PLC programs, hence this technical paper.

Ad 4.

Once the programmer has collected all the rules, then a selection can be made to create a sub-set of

rules that will be applicable to the application. Of course, the sub-set may be the full set of rules.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 11/127

2.1. Methodology used to build this document

The rules listed here are the combination of common rules used in computer science, rules

developed by companies that are part of the working group and rules created by the workgroup

based on their experience of PLC development. The documents used here are:

 IEC61131-3

 Misra-C

 JSF++

 Codesys on-line help

See 2.4 References for more details.

A first list has been issued in a spreadsheet, each rule on a row. The row number is the current

identifier used in this document. Then for each row a page on a working wiki was created on which

the workgroup was working during one year and a half.

The content of this document is the concatenation of all those individual rules which have been

discussed during the working sessions.

The rules are written with the 3
rd

 edition of the IEC 61131-3 standard in mind. Many rules can be

equally applied to other editions or even outside the IEC 61131-3 scope.

The working group wants to get feedbacks from users about this initiative. In the future, the content

of this document is subject to evolution both by rewriting some rules, giving more meaningful

examples or adding some new rules. So feel free to contact info <at> PLCopen.org for giving your

feedback.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 12/127

2.2. Document structure

The rules defined in this document have been classified in the following categories:

- Naming: how to name the PLC program elements. Some constraints for the naming and

proposal for naming schemes;

- Comment rules: rules about the best way to comment your code so it is easy to read,

understand and maintain;

- Coding practice: this section contains rules that are related to coding;

- Language: rules specific to one of the IEC61131 languages;

- Vendor Specific IEC61131 Extension: some rules specific to extensions of the IEC 61131

standard which are not available on all PLC vendors.

To enhance clarity, the chapters are initially organized in order of priorities, highest first. Each

paragraph starts with 1. Later additions, irrespective of priorities, are done at the end.

Identifiers per rule contain a prefix for easy reference. The abbreviations are CP for Coding

Practice; N for Naming, C for Comment, L for Language, and E for Extension. Each chapter starts

with rule 1, like CP1. Future additions are done at the end.

An annex at the end of this document presents other ways to view the rules, based on priority.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 13/127

2.3. Rules description format

Each rule in the document uses the same template. This section describes the different fields and

gives the different possible values. A rules description looks like the following example:

Identifier: rule XX

Importance: high

Targeted languages: All

References:

 Misra-C_2004 rule 3.5

Description: When referencing user defined…

Guideline: Access to a member by offset …

Reasoning: Referencing by offset is difficult to read, understand …

Exceptions: None

Example:

Don't:

STRUCT example

 X : DINT;

…

Do:

instance.Z[1] := 'E';

Comments: none

- Identifier: Required - used to refer to a given rule easily. The current identifier has no

semantic, it is just a number.

- Importance: Required - high, medium, low – this shows the interpretation of the group of

the effect it has on the quality of the application software (high, medium or low)

- Targeted language: Required - some rules are only valid for some languages of the

IEC61131. Either it is all languages, or the languages where the rule can be applied are

listed.

- References: Required - when rules was found or inspired by a third party document, the

reference is given in this field

- Description: Required - this is a longer description of the rule to get clear context

- Guidelines: Required - this is a help for the developer to explain how to work around the

rule violation.

- Reasoning: Required - this gives reasons why this rule is a good idea.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 14/127

- Exceptions: Optional - sometimes it is possible not to follow a rule for good reasons in a

given case. This field lists the good reasons not to follow the rule.

- Example: Optional - the goal of the example is to help understand the reasoning of the rule

and the guidelines to work around the violation with an explanatory example.

o Don’t – the don’t part of the example uses red color to highlight bad coding practice

o Do – the Do part of the example uses green color.

- Comments: Optional - this field is used to complete the rule description. It may be used to

link with other rules or other subjects which may be out of the scope of this document.

Only fields Exceptions, Example and Comments are optional.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 15/127

2.4. References

The following standards and committees are referenced from this site.

IEC 61131-3

NAME: IEC 6-1131-3 edition 2 and 3

TITLE: Programmable controllers - Part 3: Programming languages

LOCATION: International Electrotechnical Commission

WEBSITE: http://www.iec.ch/index.htm

IEC 61131-8

NAME: IEC 6-1131-8 edition 1 (and in future edition 3)

TITLE: Programmable controllers - Part 8: Guidelines for the application and implementation

of programming languages

LOCATION: International Electrotechnical Commission

WEBSITE: http://www.iec.ch/index.htm

JSF++ coding standard

NAME: JSF++ coding standard

TITLE: JSF Air Vehicle - C++ Coding Standards (Revision C)

DOCUMENT: 2RDU00001 Rev C. December 2005

WEBSITE: http://www.jsf.mil/downloads/down_documentation.htm

MISRA-C

NAME: Motor Industry Software Reliability Association C

TITLE: Guidelines for the Use of the C Language in Vehicle Based Software

EDITION: 2005

WEBSITE: http://www.misra.org.uk/

Codesys On-line help

EDITION: 2015

Website: http://store.codesys.com/codesys-static-analysis.html

http://store.codesys.com/codesys-static-analysis.html

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 16/127

3. Naming Rules

3.1. Additional rules for Variables only

3.1.1. Avoid physical addresses

Identifier: Rule N1

Importance: High

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC 61131-3 6.5.5

 IEC 61131-8 3.11.2

Description: Use of hardcoded, system dependent physical addresses shall be avoided

Guideline: Using physical addresses in programs is forbidden - always define a Variable.

Reasoning: Using physical addresses makes code less portable. To use a program on a different

manufacturer, or even a different instance on the same manufacturer requires it to be edited. It also

makes programs less readable as without a symbol table for reference it can be difficult to know

what each address is used for. Later system changes are also more error prone as some access to the

physical addresses may be skipped or overlooked.

Exceptions: In some communication protocols a physical addressing is needed to assign variables

to a physical location for the order in the communication structure.

Example, use case: none

Comments: It is recommended that the VAR_ACCESS method always be used when accessing

variables in remote programmable controllers because it is then possible to use meaningful names

for variables. There is always the likelihood that I/O physical addresses will be changed if the

remote programmable controller program is modified. It may be convenient to fix VAR_ACCESS

names for a number of different programmable controller programs.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 17/127

3.1.2. Define type prefixes for Variables (if used)

Identifier: Rule N2

Importance: Low

Targeted languages: All

References:

 Wikipedia Hungarian Notation

Description: You can define any scheme used to prefix name variables. These prefixes can include

variable attributes like:

 Data Type (Boolean, Numeric, String etc)

 Scope (global, local, parameter)

 Control (input, output)

 System variable

 Zone (e.g. infeed, part 1, part 2, outfeed etc)

Guideline: If you use prefixes, document your notation. One option is to use Hungarian Notation

for distinguishing data types. Choose one or many notation(s) in the examples below and use it

consistently.

Warning, the same prefix may be used in different notations. In this case, you should use compound

prefixes.

Reasoning: Using the variable's name to also communicate other attributes can improve readability

and help reduce programming mistakes. For example, knowing the size of the datatype or whether

signed or unsigned can be important in the selection of instructions. Knowing a variable is Global

can suggest external influence, or caution about undesirable side effects when writing. Writing to

an "Input" signal by mistake will have no effect, and is not always shown as an error, for example if

intermediate variables are mapped.

Also as programs get bigger and bigger, there is a tendency to group related variables (for example

InfeedSpeed, InfeedAlarm, InfeedStatus). This grouping fails if groups are used inconsistently (for

example Infeed_Speed, In_Feed_Alarm, ifStatus, inFault etc) so the common 'zone' names could be

defined. This is especially true for large, multi-developer teams.

However, adding too many prefixes can create complexity and long variable names. The most

useful (and most commonly used) is a prefix for the data type.

Exceptions: Attributes can be omitted if the Programming Support Environment clearly shows

them by other means, for instance by hovering over it.

Example, use case:

Examples of a Hungarian Notation implementation coupled to the datatypes as defined in the 3rd

edition of the IEC 61131-3 are:

 Data Type Prefix

 BOOL x

 SINT si

 INT i

http://en.wikipedia.org/wiki/Hungarian_notation

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 18/127

 DINT di

 LINT li

 USINT usi

 UINT ui

 UDINT udi

 ULINT uli

 REAL r

 LREAL lr

 TIME tim

 LTIME ltim

 DATE dt

 LDATE ldt

 TIME_OF_DAY / TOD tod

 LTIME_OF_DAY / TOD ltod

 DATE_AND_TIME / DT dt

 LDATE_AND_TIME / DT ldt

 STRING str

 WSTRING wstr

 CHAR c

 WCHAR wc

 BYTE by

 WORD w

 DWORD dw

 LWORD lw

PLCopen Safety (as last character of the prefix)

All SAFE Datatypes prefix

end with:
 s

Example: SAFEBOOL prefix is: xs

Note: safety related tools will already differentiate between safe and non-safe datatypes, like with a

color. So the usage of this character may not be necessary.

Cf. Table 11 of the 3rd edition of IEC 61131-3.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 19/127

 ENUM e

 NAMED e

 SUBRANGE sb

 ARRAY a

 STRUCT st

 Type STRUCT ts

 Reference ref

 FUNCTION BLOCK fb

 PROGRAM prg

 CLASS cls

Note: ENUM and NAMED are proposed to use the same prefix.

For arrays, the datatypes does not have to be included.

As alternative, all user derived datatypes can be shown with one prefix: udt, no matter if it is an

ENUM, NAMED or any other.

Examples of Scope prefix

 Scope Prefix

 Global scope g

 Local scope l

 POU Parameter p

 Temporary Variable tmp

Examples of Control prefix

 Control Prefix

 Input (read only) i

 Output (read/write) o

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 20/127

3.2. Tasks, Programs, Functions Blocks, Functions, Variables, UDTs and

namespaces

3.2.1. Define the names to avoid

Identifier: Rule N3

Importance: High

Targeted languages: All

References:

 IEC 61131-3 6.1.3

 MISRA-C_2004 20.1

Description: You shall define the words to avoid in object names

Guideline:

 IEC data types and standard library object names must be avoided

 IEC Structured Text keywords must be avoided

 Reserved words (for your platform) must be avoided

 Avoid uncommon abbreviations (or specify them clearly)

 Avoid meaningless names like: Info, Data, Temp, Str, Buf.

Reasoning: In many cases the keywords and reserved words must be avoided as they create build /

compiler errors. Even in cases where it is permitted by the compiler (e.g. due to scope) it should be

avoided as it can cause confusion and poor maintainability. If you intend your code to be portable

across different platforms then you should avoid the Reserved Words from ALL platforms.

Truncating words and Three Letter Abbreviations can be misleading and confusing. If necessary,

define a list of acceptable abbreviations (like Max, Min, Temp, IP, OP etc) and abbreviations

common to your industry.

Exceptions:

Example, use case:

Comments: None

Keywords / reserved word list of IEC 61131-3 Ed.3 starting with a letter:

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 21/127

ABS

ABSTRACT

ACOS

ACTION

ADD

AND

ARRAY

ASIN

AT

ATAN

ATAN2

BOOL

BY

BYTE

CASE

CHAR

CLASS

CONCAT

CONFIGURATION

CONSTANT

CONTINUE

COS

CTD

CTU

CTUD

DATE

DATE_AND_TIME

DELETE

DINT

DIV

DO

DT

DWORD

ELSE

ELSIF

END_ACTION

END_CASE

END_CLASS

END_CONFIGURATION

END_FOR

END_FUNCTION

END_FUNCTION_BLOCK

END_IF

END_INTERFACE

END_METHOD

END_NAMESPACE

END_PROGRAM

END_REPEAT

END_RESOURCE

END_STEP

END_STRUCT

END_TRANSITION

END_TYPE

END_VAR

END_WHILE

EQ

EXIT

EXP

EXPT

EXTENDS

F_EDGE

F_TRIG

FALSE

FINAL

FIND

FOR

FROM

FUNCTION

FUNCTION_BLOCK

GE

GT

IF

IMPLEMENTS

INITIAL_STEP

INSERT

INT

INTERFACE

INTERNAL

INTERVAL

LD

LDATE

LDATE_AND_TIME

LDT

LE

LEFT

LEN

LIMIT

LINT

LN

LOG

LREAL

LT

LTIME

LTIME_OF_DAY

LTOD

LWORD

MAX

METHOD

MID

MIN

MOD

MOVE

MUL

MUX

NAMESPACE

NE

NON_RETAIN

NOT

NULL

OF

ON

OR

OVERLAP

OVERRIDE

PRIORITY

PRIVATE

PROGRAM

PROTECTED

PUBLIC

R_EDGE

R_TRIG

READ_ONLY

READ_WRITE

REAL

REF

REF_TO

REPEAT

REPLACE

RESOURCE

RETAIN

RETURN

RIGHT

ROL

ROR

RS

SEL

SHL

SHR

SIN

SINGLE

SINT

SQRT

SR

STEP

STRING

STRING#

STRUCT

SUB

SUPER

T

TAN

TASK

THEN

THIS

THIS

TIME

TIME_OF_DAY

TO

TOD

TOF

TON

TP

TRANSITION

TRUE

TRUNC

TYPE

UDINT

UINT

ULINT

UNTIL

USING

USINT

VAR

VAR_ACCESS

VAR_CONFIG

VAR_EXTERNAL

VAR_GLOBAL

VAR_IN_OUT

VAR_INPUT

VAR_OUTPUT

VAR_TEMP

WCHAR

WHILE

WITH

WORD

WSTRING

XOR

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 22/127

3.2.2. Define the use of case (capitals)

Identifier: Rule N4

Importance: High

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC 6-1131-3 6.1.2

 MISRA-C_2004 1.4

 GNU 5.4

 Java section 9

 Wikipedia CamelCase

Description: The use of capital letters in object names shall be clear and consistent across the

project. Options are (not limited to):

 alllowercase

 underscore_separated (also known as lower_snake_case)

 lowerCamelCase

 UpperCamelCase (also known as PascalForm)

 ALLUPPERCASE or CAPITALIZED

 UPPER_SNAKE_CASE

 OTHER_style

Guideline:

Use the same capitalization for every object instance, even if the tool/compiler doesn't mandate it.

The following guidelines are proposed:

 Use UPPER_SNAKE_CASE for CONSTANTS and user defined datatypes and keywords

(like BOOL, FOR, TYPE and END_TYPE).

 Use UpperCamelCase for all other multi-word items

Reasoning: Case is not always significant to the tool or compiler but for readability purpose it

should be consistent. Since in the IEC 61131-3 standard all identifiers are case insensitive it does

not affect the portability.

CamelCase keeps long names readable while being shorter and quicker to type than using

underscores. Use "UPPER_SNAKE_CASE" format to separate capitalized words with underscores

like used for keywords. These guidelines are also similar to external standards likely to be used for

third party code or libraries.

Exceptions: When using prefixes for Variables (see Rule 14) the UpperCamelCase changes to

lowerCamelCase.

Example, use case:

Don't:

STARTMOTOR(); //Don't use all capitals as it confuses with constants.

startmotor(); //Don't use the same case as it is difficult to read

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 23/127

Do:

StartMotor(); //UpperCamelCase makes it quick to read

Don’t:

Declaration of a structured data type (IEC 61131-3 6.4.4.6.1 Structured data type))
TYPE

 ANALOG_SIGNAL_RANGE:

 (BIPOLAR_10V,

 UNIPOLAR_10V);

 ANALOG_DATA: INT (-4095 .. 4095);

 ANALOG_CHANNEL_CONFIGURATION:

 STRUCT

 RANGE: ANALOG_SIGNAL_RANGE;

 MIN_SCALE: ANALOG_DATA;

 MAX_SCALE: ANALOG_DATA;

 END_STRUCT;

END_TYPE

Do:

TYPE

 ANALOG_SIGNAL_RANGE:

 (Bipolar10Volt,

 Unipolar10Volt);

 ANALOG_DATA: INT (-4095 ... 4095);

 ANALOG_CHANNEL_CONFIGURATION:

 STRUCT

 Range: ANALOG_SIGNAL_RANGE;

 MinScale: ANALOG_DATA;

 MaxScale: ANALOG_DATA;

 END_STRUCT;

END_TYPE

Do:

Naming example from PLCopen Motion Control
Over the years the suite of Motion Control specifications was defined within PLCopen. Consistency

in the naming conventions was realized after 2010.

Function Blocks: Prefix MC_, and capitalize first letter of each word, and no hyphenation between

words. Example: MC_MoveAbsolute

Enum elements: prefix to name is mc, and each word starts with a capital letter. So

mcNameName2. Example mcPositive, mcBlendingLow.

Data types and Structures: Prefix MC_ (except AXIS_REF), capitalized and underscore between

groups of words. Example: AXIS_REF; MC_BUFFER_MODE, MC_TP_REF, MC_INPUT_REF.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 24/127

Inputs and outputs: No prefix. Each word start with a capital letter. No hyphen between words.

Examples: Busy, CommandAborted, Master, BufferMode

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 25/127

3.2.3. Local names shall not shadow global names

Identifier: Rule N5

Importance: High

Targeted languages: All

References:

 IEC 61131-3 6.9.1

 MISRA-C_2004

 JSF++ 135

Description: The elements Tasks, Programs, Functions Blocks, Functions, Variables and UDTs

shall not re-use the same global name, especially not within the same scope/namespace. A local

element shall not shadow the global elements. (With shadowing, a local element has the same name

as a global element; however the local scope cannot access the global element)

Guideline: Do not use identical names for any tasks programs, functions and function blocks,

variables, user defined types, and name spaces. Using prefixes to name your programming elements

may help (see rule N2 3.1.2 Define type prefixes for Variables (if used)).

Reasoning: Using the same name for different objects would make code difficult to read. Even if

compilation is possible, errors in readability can introduce program mistakes.

Also such code cannot be guaranteed portability either. Even within different namespaces such

confusion is best avoided.

Exceptions: none

Example:

Don't:

VAR_GLOBAL

 MyCalculation: REAL; // Global Variable Declaration

END_VAR

FUNCTION_BLOCK MyFirstCalculation // Global Type Declaration
VAR
 MyCalculation: REAL; // Local variable declaration

 // any access in the FB accesses this variable
END_VAR

MyCalculation := 1.1; // scope is within this FB

...
END_FUNCTION_BLOCK

FUNCTION_BLOCK MySimilarCalculation // 1) Declared in the global namespace.

 VAR_EXTERNAL
 MyCalculation : REAL;

 END_VAR

MyCalculation := 1.1; // same line of code but different access:

 // to the global variable defined at start
END_FUNCTION_BLOCK

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 26/127

Do: Use a different name for the global variable

VAR_GLOBAL
 GlobalCalculationResult: REAL; // Global Variable Declaration

END_VAR

.....

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 27/127

3.2.4. Define an acceptable name length

Identifier: Rule N6

Importance: Medium

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC61131-3 6.1.2

 JSF++ AV Rule 46

 MISRA Rule 5.1

 GNU 5.4

 Java Section 9

Description: All named elements should have a mnemonics of an acceptable length. This relates to

Tasks, POUs, Functions and Function Blocks and Variables.

Guideline:

 Min. length proposal: 8 characters, or 3 characters for local names.

 Max. length proposal: 25 characters

 On the average: keep the maximum to 15 characters

 Don't use abbreviations, unless required to shorten the name and the abbreviations are

expected to be well known.

 Avoid names that are very similar or different only in case. For example, avoid using the

names like variable and variables.

Reasoning: When all elements have a mnemonic in a given length range, maintenance is easier and

it is easier to understand content. The minimum size is used to ensure that mnemonic are

meaningful. Maximum length is used to ensure that a reader will be able to differentiate quickly

two elements and some Programming Support Environment truncate the longest names.

Exceptions: It is not required for some elements of limited scope (e.g. Internal Variables):

 loop indexes: as their usage is limited to a given loop and it is common usage to use very

short name

 structure members: the structure member name is always used with the instance name so it

may be meaningful even when being short.

Example, use case

Don't:

FUNCTION Go : BOOL; ...

// too short

FUNCTION aaa: INT; ...

// meaningless name

FUNCTION ReadAndScaleTheTemperatureInput: REAL; ... //Too long

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 28/127

Do:

FUNCTION StartFeeding: BOOL; // Name explains function

FUNCTION ReadTemperature: REAL; // Name explains function

Don't:

VAR

 Go : BOOL; // too short

 aaa: INT; // meaningless name

 MaximumTemperatureForTheThermocoupleInput: REAL; //Too long

END_VAR;

Do:

VAR

 i: INT; // FOR loop counters and indexes only

 MaxTCTemperature: REAL; // Only use clear abbreviations (TC -=

Thermocouple)

END_VAR;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 29/127

3.2.5. Define naming rules for namespaces

Identifier: Rule N7

Importance: Medium

Targeted languages: All

References:

 IEC61131-3, 6.9

Description: Naming rule for namespace and declaration rule for new namespace should be

clarified.

Guideline:

 Each namespace should be written in casing manner called "UpperCamelCase".

 On declaring POUs and data types, at least one namespace should be declared in the global

namespace. No elements except standard types of IEC 61131-3 should be declared directly

in the global namespace.

 The first level namespace just below global namespace should be started with the word

which represents the organization/company who is responsible for the specification of the

content of the namespaces below it.

 Regarding sub-namespaces below the namespace of company/organization, each

company/organization should define its own semantic naming rule. Such sub-namespace

names may consist of sub-committee name, functional category, product name, etc...

Reasoning:

 Standard functions/function blocks of IEC 61131-3 are in the global namespace whose

name is empty. The global namespace is applied for each namespace without USING

directive by default. Thus declaring elements directly in the global namespace increases the

risk of conflict when a short name used in any namespace shadows the same name in

another namespace.

 POU/data type library may be distributed across vendors/organizations. In order to avoid

naming conflict, non-standard POUs/data types need to be declared in the namespace whose

name is as unique as possible according to the name of vendors/organizations.

Exceptions: This rule can be only followed in Programming Support Environment that supports

namespace feature. Applications or library which are to be used only within the specific

organization where naming can be fully controlled.

Example, use case:

Don't: Types declared directly in the global namespace
FUNCTION_BLOCK MyCalculation // 1) Declared in the global namespace.
 ...
END_FUNCTION_BLOCK

NAMESPACE SomeCompany.XseriesCPU
 FUNCTION_BLOCK MyCalculation // 2) The same name is used also.

 ...

 END_FUNCTION_BLOCK

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 30/127

 PROGRAM MainProgram

 VAR MyCal : MyCalculation;

 // Usage of short type name above becomes ambiguous.

 // Need to write "SomeCompany.XseriesCPU.MyCalcuration" for 2).

 // No means to explicitly refer to 1).

 END_PROGRAM

END_NAMESPACE

Do: Nothing is directly declared in the global namespace. All namespaces start with organization name.
NAMESPACE SomeCompany.XseriesCPU
 USING PLCopen.Motion;
 USING PLCopen.Safety;

 PROGRAM MainProgram

 USING OMAC.OPW.PackML3;
 ...

 END_PROGRAM

 PROGRAM CommProgram

 USING IEC_61131_5;
 ...
 END_PROGRAM

END_NAMESPACE

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 31/127

3.2.6. Define the acceptable character set

Identifier: Rule N8

Importance: Medium

Targeted languages: All

References:

 IEC61131-3 6.1.2

 JSF++ AV Rule 9

 MISRA Rule 3.2

Description: The character set should be explicitly defined.

Guideline: The mnemonics should use a subset from the character set:

 Identifiers should not start with a digit character

 Only alphanumeric and underscore characters should be used in mnemonics. Accents should

not be used.

 Identifiers should use characters from ASCII 7 bits.

Reasoning: Using special characters may generate some problems of portability to future

Programming Support Environment version and/or to other platforms. It also reduces the

readability in an international context. Finally, the restriction to only alphanumerical characters

ensures a better distinction between variable names.

Exceptions: Comments can use character sets from the native languages. Also if the scope of usage

of the program is known (like China) then the usage of the national character set can be applied to

identifiers.

Examples:

Don't:
départ := true; // Lines of code
depart := false; //Using the special character 'é', leads to a

confusion between mnemonics.

Do:
Depart := True; // No accent in the variable name
 // Autorise le départ du wagonnet // Accent in the

comment-

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 32/127

3.2.7. Different element types should not bear the same name

Identifier: Rule N9

Importance: Medium

Targeted languages: All

References:

 IEC 6-1131-3 6.9.1

 MISRA-C_2004

 JSF++ 135

Description: The elements types Tasks, Programs, Functions Blocks, Functions, Variables and

User Defined Types should not share the same name in the same scope.

Guideline: Do not use identical names for any tasks programs, functions and function blocks,

variables, UDTs and name spaces.

Reasoning: Using the same name for different object types would make code difficult to read.

Even if compilation is possible, errors in readability can introduce program mistakes.

Exceptions: none

Example:

Don't:

VAR_GLOBAL

 MyCalculation: REAL; // Global Variable Declaration

END_VAR

FUNCTION_BLOCK MyCalculation // Global Type Declaration with same name

VAR_IN_OUT
 MyCalculation : REAL; // Input variable declaration

 // any access in the FB accesses this variable
END_VAR

MyCalculation := 1.1; // scope is also external to this FB

...
END_FUNCTION_BLOCK

PROGRAM MyCalculation // Declared in the global namespace.

 VAR

 MyCalculation : MyCalculation;
 END_VAR

... // Note: it is not possible to access the global variable

 // from here due to shadowing
END_PROGRAM

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 33/127

3.2.8. Define name prefixes for user defined types

Identifier: Rule N10

Importance: Low

Targeted languages: All

References: none

Description: You can define any scheme used to prefix names for user defined types. These

prefixes can include attributes like:

 Type (Function, Function Block, Structure, Array, etc.)

 Domain (e.g. MC for Motion Control, SF for Safety, etc)

Guideline: If you use prefixes, document your notation. Choose one or many notation(s) in the

examples below and use it consistently.

The proposal is to use capitals for the prefixes for user defined type names.

Warning, the same prefix may be used in different notations. In this case, you should use compound

prefixes.

Reasoning: Using the type name to also communicate other attributes can improve readability and

help reduce programming mistakes.

Exceptions: Attributes can be omitted if the Programming Support Environment clearly shows

them by other means, for instance by hovering over it.

Example, use case:

Cf. Table 11 of the 3rd edition of IEC 61131-3.

 ENUM E

 NAMED E

 SUBRANGE SB

 ARRAY A

 STRUCT ST

 Reference REF

 FUNCTION FU

 FUNCTION BLOCK FB

 PROGRAM PRG

 CLASS CLS

 INTERFACE I

Note: ENUM and NAMED are proposed to use the same prefix.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 34/127

For arrays, the datatypes does not have to be included.

As alternative, all user derived datatypes can be shown with one prefix: UDT, no matter if it is an

ENUM, NAMED or any other.

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 35/127

4. Comment Rules

This chapter is related to commenting the program and the application so that it is easier to read,

understand and modify. The following guidelines are good practices about writing good comments.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 36/127

4.1. Comments shall describe the intention of the code

Identifier: Rule C1

Importance: High

Targeted languages: All

References:

 JSF++ 130

Description: All code shall be explained by a comment, although that doesn't necessarily mean 1

line of comment per code. Comments shall describe the intention of the code.

Guideline: Review code to ensure it is explained by a comment, either:

 At the end of the code line

 Separate comment, immediately prior to the code

 Block comment and the start of a sub section of code (e.g. whole IF THEN ELSE block)

 Function/Function Block comment, if the code is small enough to be wholly explained by

the comment

 Program comment, if the code is small enough to be wholly explained by the comment

Reasoning: Good programming practice dictates that well written code with well-chosen variable

names should be self-documenting. Commenting every rung or line is therefore not always

necessary, unless it is complex or potentially ambiguous.

You can divide comments into five categories (McConnell 1993, p. 463):

1. Repeat of the code,

2. Explanation of the code,

3. Marker in the code,

4. Summary of the code

5. Description of the code's intent.

What are good comments? Comments that describe the intentions of the programmer. Where do

you draw the line? The boundary is at the transition from Intention (what, or function) to Extension

(how, program code). The Extension (Program Code) is coded in a formal language, such as IL, ST,

LD, FBD or SFC and the Intention is written in an informal language, such as English or Chinese.

One of the qualities of an informal language is that it is likely to inconsistent interpretations.

Furthermore programmers are not always informal language experts. So one merely describes the

intentions in the shape of block comments (Marker or Summary) or routine commentary. In

exceptional cases, a programmer may explain a program part.

For example it may be clear to comment several statements in each branch of a conditional IF-

THEN statement with a single comment. If the branches are small, and the logic clear enough then

it may be clear with a single comment prior to the whole conditional block. You can even argue

that code in a small Program/Function/Function Block can be explained by a single comment. All

the code should be explained by a comment at some scope. The comments should describe the

intention of the code.

However there should be no code that performs tasks other than those that the comments state.

Exceptions: Any use of 'magic numbers' or physical addresses should always be commented

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 37/127

Example:

Don't: Do:

Code blocks with no comments:

IF IsValid(TCInput) THEN

 Temperature := TCInput *

 TCScale + TCOffset;

ELSE

 TCBadQuality := TRUE;

END_IF;

Comments that add no value over the code:

IF IsValid(TCInput) THEN

 // TCInput is valid

 Temperature := TCInput *

 TCScale + TCOffset;

ELSE

 // TCInput is not valid

 CBadQuality := TRUE;

END_IF;

Branch comments should add value:

IF IsValid(TCInput) THEN

 // Scaling of the

 //Temperature

 Temperature := TCInput *

 TCScale + TCOffset;

ELSE

 // Some error reading the

 // temperature value

 TCBadQuality := TRUE;

END_IF;

Whole block explained well by a single

comment:

// Check for a new maximum

// temperature reading

MaxReading := nReadings[0];

FOR index:=1 TO 10 DO

 IF nReadings[Index] > MaxReading

 THEN

 MaxReading := nReadings[Index];

 END_IF;

END_FOR;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 38/127

4.2. All elements shall be commented

Identifier: Rule C2

Importance: High

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 JSF++ 132, 134

Description: All POU (Program, Function Block and Function), Task, User-Defined Types,

Resource and Variable elements shall be explained by a comment.

Guideline: Include clear comments for all elements, including Tasks, Programs, Function Blocks,

Functions, User Defined Types, Variables and Resources.

Reasoning: Clear comments communicate the intention of each element, and aid readability and

improve understanding of the program.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 39/127

4.3. Avoid nested comments

Identifier: Rule C3

Importance: Low

Targeted languages: All

References:

 MISRA-C_2004 section 2.3

Description: Nesting of multiline comments must be avoided

Guideline: In the released versions of programs there should be no nested comments, even if it's

possible during development and debug phases.

Reasoning: Editing of nested comments is a common source of accidently mismatching comment

delimiters and unintentionally commenting out code. This editing error can be missed by the

compiler if valid code can still be compiled.

As a general principle Code in comment should not be used for version control or configuration

management purposes; proper tools should be used for that.

Exceptions: None

Example:

Don't:

(* Any comment with the end marker has been forgotten

Critical_section_that_must_be_executed_which_is_found_in_the

comment();

(* <- The start marker comment is commented because the end marker

of the previous comment has been forgotten *)

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 40/127

4.4. Comments may not include code

Identifier: Rule C4

Importance: Low

Targeted languages: Structured Text

References:

 MISRA-c_2004 2.4

 JSF++ 127

Description: Valid code statements may not be commented out and left in programs

Guideline: In the released versions of programs there should be no code in comments, even if it's

possible during development and debug phases.

Reasoning: Editing multi-line Comments is a common source of accidently commenting out code.

This editing error can be missed by the compiler if valid code can still be compiled. Equally, code

that is not required and is commented out can easily be accidently reinstated.

While commenting out a few lines of code is commonplace in the debugging and commissioning

phase it should not be used for released software: if the code is not used it should be deleted, or if it

needs to be disabled another construct should be used e.g. removing Program from a Task or a "IF

0 THEN" construct.

As a general principle Code in comments should not be used for version control or configuration

management purposes; proper tools should be used for that.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 41/127

4.5. Use single line comments

Identifier: Rule C5

Importance: Low

Targeted languages: Structured Text

References:

 IEC 6-1131-3 6.1.5

 MISRA-c_2004 2.2

Description: Define the type of Comment definition character to be used

Guideline: Use single line comments, i.e. //

Reasoning: Although multiple commenting styles are available, for consistency and portability you

should define which style to use. Multi-line comments can be problematic and be the cause of

accidental commenting in or out of code depending on the way the workbench manages the nested

comment. Also not all Programming Support Environment support IEC 3rd Edition. Commenting

out some code containing only '//' style comments avoids the errors of nested comments.

Exceptions: During testing and debugging phases, multi-line comments can be used to exclude

portion of codes. Single line comments with // should not be used for this purpose.

Example:

Don't:

(* Multiline comments can be dangerous because matching close

comment can be deleted by accident.

b:=a; // commented out code can be activated by accident

// or active code after this block accidentally commented out.

*)

(* (* NESTED COMMENTS *) *)

Do:

<statement>; // End of line comment

// Block Comment

// <the following block...>

// <...>

<statement>;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 42/127

Comments: For existing code with (*, one can use the /* to exclude portions of code to

differentiate, if the system allows this.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 43/127

4.6. Define comments language

Identifier: Rule C6

Importance: Low

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References: None

Description: You may define which spoken language your comments may be written in. This

applies to code comments in both ST and Ladder, plus any other comments like Variable

comments, Project comments, Task comments, source control comments etc.

Guideline: Use English only for all comments

Reasoning: Understanding and maintaining the comments improves readability, reduces mistakes

and therefore development costs. For all developers, current and future, to understand the

comments, a common language should be chosen. This includes teams with members of

international members and also multi-site teams. Any common language is sufficient, but English is

the most widely spoken language internationally.

It may be desirable to have the comments duplicated in more than 1 language, especially where the

languages are completely different alphabets e.g. English and Chinese. This can be done manually

although some tools already have facilities to do this. You should still consider which language is

mandatory, and ensure your code review process checks for untranslated comments.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 44/127

5. Coding Practice

5.1. Access to a member shall be by name

Identifier: Rule CP1

Importance: High

Targeted languages: All

References:

 Misra-C_2004 rule 3.5

Description: When referencing user defined types like structures in the code, the references shall

be done using the member name and not using an offset between the beginning of the structure and

the position of the member in memory.

Guideline: Access to a member by offset should be avoided.

Reasoning: Referencing by offset is difficult to read, understand and maintain. If for some reason

one another member is inserted before, then all offsets of the following members have to be

recalculated. Moreover it relies on memory implementation (like big endian vs. little endian) and

especially, the offset of a given structure depends on the PLC type: the alignment rules are not

always the same.

Exceptions: None

Example:

Don't:

STRUCT EXAMPLE_STRUCT

 X : DINT

 Y : BOOL;

 Z : STRING[40];

END_STRUCT;

VAR

instance : EXAMPLE_STRUCT AT %MW500;

END_VAR

// Write the first character of Z:

%MW504 := 'E';

Do:

instance.Z[1] := 'E';

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 45/127

5.2. All code shall be used in the application

Identifier: Rule CP2

Importance: High

Targeted languages: All

References:

 Codesys SA0001, SA0031

 Itris Automation Square I3

 Misra C 14.1

 JSF++ Rule 186

Description: Dead code is not allowed

Guideline: All parts of the application code should be reachable under certain conditions so that

they are not dead code.

Reasoning: Dead code affects the readability and maintainability of the program and can be a

symptom of a functional problem. Different kinds of dead code exists:

 Unreferenced functions :

o re-use of an already existing application to create a new application slightly different

o developer mistake forgetting to call part of the application during development

o part of the code used in a specific environment : testing, simulation of missing

hardware

 Code not reachable unconditionally - techniques used by developer to bypass part of the

code :

o due to unconditional go to followed by code without called label

o condition always false or true

Exceptions: A dead code with a nice comment delimiting and explaining correctly the reason why

the code was bypassed may be used. In such case, the code section should be small enough so that a

developer sees as evidence that it is dead code.

Example:

Do:
...

//

// The following section handles the optional device FOO.

// It is bypassed for application THIS_PARTICULAR_APPLICATION

because

// this device is not loaded for this application

IF FALSE THEN

 // unreachable code

 ...

END_IF;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 46/127

// End of bypassed section for THIS_PARTICULAR_APPLICATION

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 47/127

5.3. All variables shall be initialized before being used

Identifier: Rule CP3

Importance: High

Targeted languages: All

References:

 IEC 61131-3 3rd Ed. section 6.5.1 and 6.5.6

 IEC 6-1131-8 Section 3.1.1

 JSF++ - rule 142

Description: A variable shall be initialized before being read by another part of the code, whatever

the cycle: cold start, warm start, first cycle, normal cycle.

Guideline:

 According to IEC 61131-3 all variables have default initial values. If the programming

system does not support this feature (for example for ARRAYs), the user has to initialize

the variables explicitly in the user program.

 Using an initialization at the variable declaration is good but the behavior may be different

depending if it is a cold start or a warm one

 Using code to explicitly initialize variable is a maintainable and readable way

 When creating User Defined Types specify a good Default Initial Value. Any variables

created of this type will not need to be explicitly defined.

Reasoning: Reading uninitialized variables in your code gives undetermined behavior to the code.

Exceptions:

 If the PLC initializes explicitly variables to 0, and if this variable should be initialized to 0,

it is not required to explicitly initialize the variables to zero. However this can affect

portability of the code.

 Variables that have RETAIN attribute will automatically have their values initialized to

their retained upon power reset.

 Variables that are linked to physical inputs do not need to be initialized.

Example:

Do:
PROGRAM Initialization

VAR

 NumOfRetries: INT:= 3; // direct initialisation

 Enable: BOOL:= TRUE; // direct initialisation

 ConfTimerPreselection : TIME := T#5s;

 StateLastPosition : INT;

 SpeedAverage : REAL;

END_VAR;

 StateLastPosition := 50;

 SpeedAverage := 0.0;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 48/127

...

END_PROGRAM

IEC 61131-3 also allows the user to specify default initial values for user-defined types. For

instance, consider a type declared by:

TYPE TempLimit : REAL:= 250.0; END_TYPE

Any declared variable of this new type TempLimit is initialized with the default value of 250.0

instead of 0.0 as would be the normal case for all REAL data. Thus, in the following declaration,

the variable BoilerMaxTemperature is initialized to 250.0, while the variable PipeMaxTemperature

is initialized to 0.0. If the value of zero is not a reasonable maximum temperature for the pipeline,

its correct value has to be set before the first usage of the variable. Forgetting this will cause

problems. In the present example, the maximum temperature for the boiler is initialized with a

proper default initial value. There is no need for a set-up before the first usage, which greatly

simplifies a programmable controller program and increases software reliability.

VAR_GLOBAL

BoilerMaxTemperature: TempLimit;
PipeMaxTemperature: REAL;

END_VAR

Comments: More examples of defining default initial values for user-defined types:

 Initialization of enumerated data types, e.g.:
TYPE ANALOG_SIGNAL_RANGE :

 (BIPOLAR_10V, (* -10 to +10 VDC *)

 UNIPOLAR_10V, (* 0 to +10 VDC *)

 UNIPOLAR_1_5V, (* + 1 to + 5 VDC *)

 UNIPOLAR_0_5V, (* 0 to + 5 VDC *)

 UNIPOLAR_4_20_MA, (* + 4 to +20 mADC *)

 UNIPOLAR_0_20_MA (* 0 to +20 mADC *)

) := UNIPOLAR_1_5V ;

END_TYPE

 Initialization of subrange data types, e.g.:
TYPE ANALOG_DATA : INT (-4095..4095) := 0 ; END_TYPE

 Initialization of array data types, e.g.:
TYPE ANALOG_16_INPUT_DATA :

 ARRAY [1..16] OF ANALOG_DATA := [8(-4095), 8(4095)] ;

END_TYPE

 Initialization of structured data type elements, e.g.:
TYPE ANALOG_CHANNEL_CONFIGURATION :

 STRUCT

 RANGE : ANALOG_SIGNAL_RANGE ;

 MIN_SCALE : ANALOG_DATA := -4095 ;

 MAX_SCALE : ANALOG_DATA := 4095 ;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 49/127

 END_STRUCT ;

END_TYPE

 Initialization of derived structured data types, e.g.:
TYPE ANALOG_CHANNEL_CONFIG :

 ANALOG_CHANNEL_CONFIGURATION

 := (MIN_SCALE := 0, MAX_SCALE := 4000);

END_TYPE

IEC 61131-3 provides following three layered initialization feature.

User should explicitly specify initial values by these embedded initialization feature, or user's

application program.

1) Default initial value for user-defined type

User can specify own default initial values for user-defined types.

If no initial value is specified for the user-defined type, default initial value is succeeded from its

base elementary data type. Default initial value for elementary data types have been specified in

IEC 61131-3 (See Table 10).

As for examples, see above.

2) Initial value assignment to internal variables (instance) in POU type declaration

If no initial value is specified to the variable, default initial value of the data type is applied.

- Initialization of elementary data type variable

- Initialization of user-defined data type variable

- Initialization of array type variable

- Initialization of structured data type variable

- Initialization of FUNCTION_BLOCK type variable (Only input/output and PUBLIC

variables can be initialized)

- Initialization of CLASS type variable (Only PUBLIC variables can be initialized)

As for example, please see feature tables of IEC 61131-3 Ed.3.

All of Table 14, No.2 of Table 41, No.2 of 49

3) Instance specific initial value or location assignment with VAR_CONFIG construct in

CONFIGURATION

(See No.11a, 11b of Table 62 of IEC 61131-3)

This initial value declaration overwrites 1) and 2) above.

 CONFIGURATION Cell_1

 VAR_GLOBAL
 Gvar1 : INT:= 5;
 Gvar2 : INT:= 0;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 50/127

 END_VAR

 RESOURCE Station1 ON ProcessorType201

 TASK FastPeriodic (INTERVAL := t#1ms, PRIORITY:=2)
 TASK SlowPeriodic (INTERVAL := t#15ms, PRIORITY:=4)
 PROGRAM ProgInst1 WITH FastPeriodic

 : MyProgramA (Input1 := GVar1, Output1 => Gvar2)
 PROGRAM ProgInst2 WITH SlowPeriodic

 : MyProgramA (Input1 := GVar2, Output1 => Gvar1)
 END_RESOURCE

 RESOURCE Station2 ON ProcessorType201

 TASK FastPeriodic (INTERVAL := t#1ms, PRIORITY:=2)
 PROGRAM ProgInst1 WITH FastPeriodic : MyProgramB

 END_RESOURCE

 // Instance specific initialization or location assignment
 VAR_CONFIG

 Station1.ProgInst1.COUNT : INT:= 1;
 Station1.ProgInst2.TIME1 : TON:= (PT:= T#2.5s);
 // initialization of function block instance

 Station2.ProgInst1.FbInst1.FbInst2.FbInst3.Count : INT:= 100;
 Station2.ProgInst1.FbInst1.C2 AT %QB25 : BYTE;// I/O assignment

 END_VAR

 END_CONFIGURATION

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 51/127

5.4. Direct addressing should not overlap

Identifier: Rule CP4

Importance: High

Targeted languages: All

References:

 Itris Coding Standard - S8

 Codesys SA0028

 Misra-C 18.2, 18.3

Description: When assigning a memory location to an object, developer shall take care that the

memory is not already assigned for another usage.

Guideline:

Overlap of variables addresses should be avoided

Reasoning: As most of PLC program are designed with a data flow from inputs to outputs, re-using

the same memory location for different purpose may not be detected during program testing and

commissioning. May be the first variable is written and the read during the first program's part and

the second variable at the same location is also written and the read during another part of the

program. Unfortunately some sparse condition may occur where one of the two variables won't be

written and then the read will access the wrong variable value. It will be a problem very difficult to

cope with.

Exceptions: STRUCT OVERLAP types are designed to overlap. On some platforms bit

addressable and value addressable types are designed to overlap.

Example:

Don't: in the following example, two variables overlap at %MW451. Most of the time, everything

goes well because of program data flow, the memory cell is firstly used by temp, and then by level.

By when VeryRareCondition is true, level is not written and then the level value used in the test is

in fact part of temp variable.

// Wrong example

Temperature : INT AT %MW451;

... else where in the database definition

Level: REAL AT %MW450;

Temperature := %IW56;

IF Temperature > 56 THEN

 StartFans;

END_IF;

// The second part of the code related to the other variable

IF NOT VeryRarecondition THEN

 Level := %IW34;

END_IF;

IF Level < LevelThreshold THEN

 // In the case of VeryRareCondition, the CriticalFunction will be

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 52/127

 // called with a wrong level value as it is a temperature.

 DoCriticalFunction(Level);

END_IF;

// Right example

Temperature : INT AT %MW444;

... else where in the database definition

Level: REAL AT %MW450;

 // the direct addresses do not overlap

Temperature := %IW56;

IF Temperature > 56 THEN

 StartFans;

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 53/127

5.5. Applications shall be well designed

Identifier: Rule CP5

Importance: High

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC 61131-8 Section 3.3

Description: All applications shall be well designed, ideally before development phase is started.

The design principles shall include object oriented principles like modularization and

encapsulation.

Guideline:

 Applications must be well designed

 Make use of Arrays (where supported) to aggregate related variables of the same data type

 Make use of Structures (where supported) to aggregate related variables of different data

types

 Make use of Classes where supported or Functions and Function Blocks to reduce

complexity of large areas into smaller parts

 Make use of Classes where supported, or Functions and Function Blocks to reuse common

code

 Make use of PRIVATE variables in Classes where supported, or Function Block internal

variables to encapsulate data

 Design separate programs to use the best language for the job: Ladder, Structured Text,

Sequential Function Chart or Function Block Diagram (where supported)

Reasoning: Well-designed applications reduce the total cost of development by making a project

objective clearly understandable, and communicating the plan to avoid mistakes, redevelopment,

and bugs found at the testing and maintenance stages. Modularizing the design allows each small

part to be considered, designed, and even successfully programmed in isolation. The qualities of

Classes and Function Blocks are related to object oriented programming (OOP). The function block

type is similar to a class, which defines the data structure and computational method within the

body of the function block. Individual objects are represented by the private data areas of the

individual function block instances. This data can only be modified from outside the function block

body in a controlled manner. This enforces the software engineering principles of encapsulation and

information hiding, a key element of OOP.

Exceptions: none

Example: none

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 54/127

5.6. Avoid external variables in functions, function blocks and classes

Identifier: Rule CP6

Importance: High

Targeted languages: All

References:

 JSF++ AV Rule 207

 IEC61131-3 - 2.5.1

Description: The use of external variables referencing global variables in functions, function

blocks and classes shall be avoided. This means do not use VAR_EXTERNAL inside the definition

of a function or function block.

Guideline:
Functions, Function Blocks and Classes should not use external variables.

A good alternative to using external references to global variables can be to extend the parameter

list, and pass the variables needed for access.

Reasoning:

Good design principles allow Function, Function Blocks and Class POUs to be easily reused. The

inner workings are sometimes unknown to the user, and even unexposed. Using any external

reference detracts from or prevents reusing the POU. For example if a function accesses 10 external

references, then when you copy the function to a new project you must also copy the accompanying

global variable definitions including the code affecting these variables.

Function Blocks and Classes also have 'instances' with their own data. Directly using external

references can make it impossible to have multiple instances.

Encapsulation of data can minimize integration testing and remove functional testing for pre-tested

POUs as the known behavior cannot really change. However using data in external references

means the functionality now depends on that external data so requires full retesting to ensure no

issues have been introduced.

Also, using external references increases the chance of different POUs performing multiple writes

to the same variable. This is related to rule CP26 "A global variable may be written only by one

POU" and rule CP15 "Read a variable written by another task only once per cycle" so

avoiding externals can also avoid these accidental uses, which can be very difficult to find and

debug.

In addition, the code gets more complex, and the need for using and external variable can be a

signal that the program is not coherent and refactoring is necessary.

Finally, such a practice can introduce side-effects, like a function returning different results with the

same inputs, which makes it hard to verify correct operation. There should be a very good and well

documented reason for any such usage of external data.

Exceptions: Accessing system-defined variables or VAR_GLOBAL CONSTANT may require the

use of external references

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 55/127

Example:

Don't:

FUNCTION CommandMotor

VAR_INPUT

 Enable : BOOL;

 Default: BOOL;

END_VAR;

VAR_OUTPUT

 Command : BOOL;

END_VAR;

VAR_EXTERNAL

 ModeAuto : BOOL;

END_VAR;

 Command := Enable AND NOT Default AND ModeAuto;

END_FUNCTION;

Do:

FUNCTION CommandMotor

VAR_INPUT

 Enable : BOOL;

 Default: BOOL;

 ModeAuto : BOOL; //Here the variable is passed as a parameter

END_VAR;

VAR_OUTPUT

 Command : BOOL;

END_VAR;

 Command := Enable AND NOT Default AND ModeAuto;

END_FUNCTION;

Comments: This rule also applies to PROGRAM POUs when the programming systems support

this. PROGRAM is a reusable POU type which can have input/output/in/out parameters. See Table

47 No.2, Table 62 No.89 of IEC 61131-3.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 56/127

5.7. Error information shall be tested

Identifier: Rule CP7

Importance: High

Targeted languages: All

References:

 Misra C 16.10

 JSF++ Rule 115

Description: When available, error information returned by a function shall be tested and error

condition shall be properly handled.

Guideline: After a call to a function returning error information, the returned error information

should be tested and eventually the behavior of the process should be changed in case of error.

Reasoning: an undetected error can have bad consequences on the continuation of the process. A

detected and handled error shows as well that the developer has understood the consequences of

errors in the called routine. Without such error handling, either developer forgot an error case or

consequences of this error have no real impact.

Exceptions: None

Example:

Don’t:

 +----------+

 | Instance |

 Cond -|En Eno |-

 Eff1 -|P1 Out |- Result

 Eff2 -|P2 xError |-

 -|P2 iError |-

 | |

 +----------+

 +---------+

 | ADD |

 |---------| En Eno |-

 Result -| i1 Out |- CriticalThreshold

 10000 -| i2 |

 +---------+

In this case the result is used directly without checking the error information and then the

CriticalThreshold is changed even if there was an error raised by Instance call.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 57/127

Do:

 +----------+

 | Instance |

 Cond -|En Eno |-

 Eff1 -|P1 Out |- Result

 Eff2 -|P2 xError |- xError

 -|P2 iError |- iError

 | |

 +----------+

 +---------+

 | xError | ADD |

 |---| |---| En Eno |-

 | Result -| i1 Out |- CriticalThreshold

 10000 -| i2 |

 +---------+

In this case, the error information generated by the Instance call is effectively used and then the

CriticalThreshold is not changed.

Comments: None.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 58/127

5.8. Floating point comparison shall not be equality or inequality

Identifier: Rule CP8

Importance: High

Targeted languages: All

References:

 Codesys SA0054

 Misra C 13.3

 JSF++ Rule 202

Description: Using equality or inequality operators to detect threshold with floating point variable

is prohibited.

Guideline: comparison between floating point variables must use only the following operators:

strict less than (<), less than or equal (<=), strict greater than (>), greater than or equal (>=).

Reasoning: The equality operator requires a strict equality between operands. When using floating

point number, this equality is almost never and the inequality is almost always.

Exceptions: Compare to 0.0

Example:

Many numbers cannot be represented exactly in floating point notation: - number 0.1 is represented

by a binary value that corresponds to decimal 0.100000001490116119384765625 in 24bits single

precision.

Moreover, when using floating point numbers, mathematical operations might produce roundiing

errors (for example, small differences between large numbers).

Don't:

IF TEMP - OLD_Temp = 0.1 THEN
 // execution of this branch is sensitive to rounding errors

END_IF;

Do:
IF TEMP - OLD_TEMP < 0.1 THEN

 // executed code

END_IF;

or

IF REAL_TO_INT((TEMP - OLD_TEMP) * 100) = 10 THEN

 // executed code

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 59/127

5.9. Time and physical measures comparison shall not be equality or

inequality

Identifier: Rule CP28

Importance: High

Targeted languages: All

References: None

Description: Using equality or inequality operators to detect threshold with time information or

physical measure even in Integer format is prohibited.

Guideline: Comparison between time information or physical measures must use only the

following operators: strict less than (<), less than or equal (<=), strict greater than (>), greater than

or equal (>=).

Reasoning: The equality operator requires a strict equality between operands. When using time

information or physical measure, this equality may not be met and the inequality is almost always

met.

Exceptions: None

Example:

Don't:

IF Distance – InitialPosition = 12 THEN
 // execution of this branch is sensitive to missing measured

 // values

END_IF;

IF T5.Et = T#10s then

 // Stop the process

END_IF;

Do:
IF Distance – InitialPosition - 12 < ERROR_MARGIN THEN

 // executed code

END_IF;

or

IF T5.Et - T#10s < T#100MS THEN

 // executed code

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 60/127

5.10. Limit the complexity of POU code

Identifier: Rule CP9

Importance: High

Targeted languages: All

References:

Description: There are different possibilities to measure the complexity of code. It is still very

common, just to count the lines of code per POU, or the number of statements per POU. Other

metrics like McCabe-metric, Elshof-metric, and Prater-metric can be found in the literature. Every

metric has advantages and disadvantages; therefore we do not propose one single metric or a set of

metrics.

Some of the metrics are only applicable for textual languages (McCabe, Prater), whereas other

metrics are applicable for any kind of code (Elshof).

It is recommended to measure the complexity of code and to set upper limits for the complexity.

Guideline: If the code of a POU exceeds some complexity level, the code should be split up into

several POUs.

Reasoning: Complex code is difficult to maintain and a source of errors.

Exceptions: None

Example:

Don't:

The following Function block CHARCURVE has

 Number of Statements 18

 McCabe complexity of 12

 Prater complexity of 3,89

 Halstead complexity of 44,9

 Elshof complexity of 0,14 (the lower the number, the more complex is the function).

FUNCTION_BLOCK CHARCURVE

VAR_INPUT

 IN:INT;

 N:BYTE;

END_VAR

VAR_IN_OUT

 P:ARRAY[0..10] OF POINT;

END_VAR

VAR_OUTPUT

 OUT:INT;

 ERR: BYTE;

END_VAR

VAR

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 61/127

 I:INT;

END_VAR

IF N > 1 AND N < 12 THEN

 ERR:=0;

 IF IN<P[0].X THEN

 ERR:=2;

 OUT:=DINT_TO_INT(P[0].Y);

 ELSIF IN>P[N-1].X THEN

 ERR:=2;

 OUT:=DINT_TO_INT(P[N-1].Y);

 ELSE

 FOR I:=1 TO N-1 DO

 IF P[I-1].X>=P[I].X THEN

 ERR:=1;

 EXIT;

 END_IF;

 IF IN<=P[I].X THEN

 EXIT;

 END_IF

 END_FOR;

 IF ERR=0 THEN

 OUT:=DINT_TO_INT(P[I].Y-(P[I].X-IN)*(P[I].Y-P[I-

1].Y)/(P[I].X-P[I-1].X));

 ELSE

 OUT:=0;

 END_IF;

 END_IF

ELSE

 ERR:=4;

END_IF;

Do:

The changed function block with one (private) help method CalculateOut is far less complex:

 Number of Statements 12

 McCabe complexity of 8

 Prater complexity of 2,25

 Halstead complexity of 19,9

 Elshof complexity of 0,32

OUT:=0;

ERR:=0;

iIndexFound := -1;

FOR I := 1 TO N-1 DO

 IF iIndexFound < 0 AND ERR = 0 THEN

 IF P[I-1].X >= P[I].X THEN

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 62/127

 ERR := 1;

 ELSIF IN <= P[I].X THEN

 iIndexFound := i;

 END_IF

 END_IF

END_FOR;

IF ERR = 0 THEN

 OUT := CalculateOut (P[iIndexFound], P[iIndexFound -1]);

ELSE

 OUT := 0;

END_IF;

Comments:

Literature references:

 Thomas J. McCabe: "A Complexity Measure" in: IEEE Transactions on Software

Engineering, Vol 2, 1976.

 Prater, R. E.: "An axiomatic theory of software complexity metrics", in Computer Journal,

Vol. 27, 1984

 Halstead, M.: "Elements of Software Science", Elsevier North-Holland, Amsterdam, 1977

 Elshof, J.: "An Analysis of Commercial PL/I Programs", IEEE Transactions on Software

Engineering, Vol. 2, 1976

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 63/127

5.11. Avoid multiple writes from multiple tasks

Identifier: Rule CP10

Importance: High

Targeted languages: All

References:

 Itris Automation Square S2

 Codesys SA0006

Description: Any writing to a variable from multiple tasks shall be avoided. A variable shall be

written in one task only.

Guideline: When sharing variables among tasks you must avoid writing to a variable from more

than one task. When using communication variables between two tasks, it is important to decide

which task writes which variables so that a given variable is not written from the two different

tasks.

Reasoning: The task exception is triggered by some timing constraints and relative priorities of the

running tasks. On systems that implement multitasking in a 'preemptive' nature, or true parallel

processing, one task may be interrupted by a higher priority task. In such a case, concurrent writing

access to the same variable leads to non-deterministic behavior. The non-deterministic behavior has

two consequences:

 Information loss

 Data inconsistency

Exceptions:

 Carefully design and peer review your code with skilled engineers to ensure non-

deterministic behavior cannot occur

 With a centralized error monitoring system every task is allowed to set the error flag, but no

one should reset the flag.

 Use vendor specific functions, like mutex or semaphore, to manage multiple write

operations on the shared resource

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 64/127

Example:

Don't:

Imagine any simple case where a programmer has created a 'LoopCounter' Global Variable for

general use throughout their Main program. Now imagine a second developer has copied and

pasted a block to a priority program, that happens to run in a different task:

VAR_GLOBAL

 LoopCounter;

END_VAR

Main Program:

...

FOR LoopCounter := 0 TO 10 DO

 IF ValveWarning[LoopCounter] == TRUE THEN

 ProcessWarning := TRUE;

 END_IF;

END FOR;

Priority Program:

...

MaxReading := Reading[0];

FOR LoopCounter := 1 TO 100 DO

 IF Reading[LoopCounter] > MaxReading THEN

 MaxReading := Reading[LoopCounter];

 END_IF;

END FOR;

During execution of the main program, while inside the FOR loop the Priority Program may start to

execute at any time (while the LoopCounter may be any value from 0 to 10). At the end of the

Priority Program the global variable "LoopCounter" is left with the value of 100 when execution

returns to the Main Program but the FOR loop now ends at the next iteration without completing

the rest of the iterations. There is also potential for the code to execute now on the wrong element

or even worse attempt access data beyond the bounds of the array.

Do:

In the above example, we can solve the problem by avoiding the multiple writes to LoopCounter by

creating 2 program variables with local scope. For clarity these should be defined with different

names.

Comments: For more information about synchronizing the execution of tasks see Manage

synchronization among tasks (Rule CP11), page 64.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 65/127

5.12. Manage synchronization among tasks

Identifier: Rule CP11

Importance: High

Targeted languages: All

References:

Description: Where tasks share data they shall be managed to avoid synchronization issues.

Guideline:

 Avoid interaction between tasks

or

 Use vendor-specific feature to manage synchronization among tasks

In the case that synchronized data passing is necessary among PROGRAMs which can be assigned

with different TASKs, following have to be done.

 1) The PROGRAM should access to the global variables via

 A) VAR_EXTERNAL, or

 B) VAR_IN_OUT and assignment declaration to/from global variables

 in PROGRAM instance declaration in RESOURCE declaration.

 2) In addition, some vendor-specific system-defined function or function block should be used

which controls system's task scheduling and make specified code block be executed exclusively

among other tasks.

Reasoning:

Considering multitasking behavior with synchronization is intrinsically difficult even if the PLC

vendors support some feature for it. Pseudo parallel processing by cyclic execution of synchronized

process is the key feature of PLC architecture which can overcome undetermined timing-dependent

behavior of asynchronous multitasking control system. Thus basically data passing among

PROGRAMs which need synchronization is better to be avoided.

If such synchronization is necessary from logic point of view, some code blocks within the body

have to be exclusively executed among tasks. As IEC 61131-3 does not specify such a feature as

standard, each vendor provides their own specific feature like tryLock(), Lock() of C++ / C# / Java.

Exceptions: Some vendors may provide completely different inter-task synchronization feature.

Example:

In the example below the 2 programs running in different tasks.

Do:

// This is an example where:

// 1) A) VAR_EXTERNAL and

// 2) Vendor specific system-defined function "Lock()","Unlock()" are used.

//Acquisition function called with the high frequency task

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 66/127

PROGRAM Fast_Acquisition

 VAR_EXTERNAL

 ClearSubTotalCount : BOOL; // This is actually used as input

 SubTotalCount : INT; // This is actually used as output

 END_VAR

 VAR_INPUT

 SignalInput : BOOL; // input signal to count rising-edge

 END_VAR

 VAR

 Old_ClearSubTotalCount : BOOL := FALSE;

 END_VAR

 //---- Beginning of the Body ----

 Vendor.Lock(LockResId := 0); // Start of atomic process for exclusive

execution

 IF ClearSubTotalCount AND NOT Old_ClearSubTotalCount THEN

 SubTotalCount := 0 ;

 END_IF;

 Old_ClearSubTotalCount := ClearSubTotalCount;

 ClearSubTotalCount := FALSE;

 IF SignalInput AND NOT Old_SignalInput THEN

 SubTotalCount := SubTotalCount + 1 ;

 END_IF;

 Old_SignalInput := SignalInput ;

 Vendor.Unlock(LockResId := 0); // End of atomic process for exclusive

execution

END_PROGRAM

// Acquisition with main task (100ms)

PROGRAM Main_Acquisition

 VAR_EXTERNAL

 SubTotalCount : INT; // This is used as input actually.

 ClearSubTotalCount : BOOL; // This is used as output actually.

 END_VAR

 VAR

 GrandTotalCount : INT;

 END_VAR

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 67/127

 //---- Beggingin of the Body ----

 Vendor.Lock(LockResId := 0); // Start of atomic process for exclusive

execution

 GrandTotalCount := GrandTotalCount + SubTotalCount;

 ClearSubTotalCount := TRUE;

 Vendor.Unlock(LockResId := 0); // End of atomic process for exclusive

execution

END_PROGRAM

CONFIGURATION CELL_1

 VAR_GLOBAL

 SubTotalCount : INT;

 ClearSubTotalCount: BOOL;

 END_VAR

 RESOURCE STATION_1 ON PROCESSOR_TYPE_1

 TASK SLOW_1(INTERVAL := t#200ms, PRIORITY := 2) ;

 TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;

 PROGRAM MainAquisitionInst WITH SLOW_1 : Main_Acquisition();

 PROGRAM FastAcquisitionInst WITH FAST_1 : Fast_Acquisition(SignalInput

:= %I1.1);

 END_RESOURCE

END_CONFIGURATION

Comments:

This rule is only for PLC system of "Preemptive scheduling" implementation (See IEC 61131-3,

Table 63, No.5b).

Some vendor provides similar system-defined functions.

It may be possible to avoid the need for synchronization. In the case that multiple PROGRAM

instances all need to exchange data synchronously from the logic point of view, such PROGRAMs

should be changed into FUNCTION_BLOCK and one PROGRAM should be added instead to call

the FUNCTION_BLOCK instances synchronously.

As using vendor-specific "lock" feature temporarily blocks switching execution to the task with

higher priority. It can make periodic task not to be in time for the specified period.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 68/127

5.13. Physical outputs shall be written once per PLC cycle

Identifier: Rule CP12

Importance: High

Targeted languages: All

References:

 Codesys SA0004

 Itris Automation Square S4

Description: The physical outputs shall be written only once per PLC cycle.

Guideline: The physical output elaboration shall be done in one line of code or one rung.

Reasoning: 1. Undeterministic behavior when outputs are written more than once per PLC cycle. 2.

Maintainability – it is difficult when a physical output elaboration is spread along the application. It

is a good practice to prepare all variables participating to physical output elaboration and then at the

end of the cycle, calculate and write the value for the physical outputs.

Exceptions: Clear and explicit requirements, like specific security architecture may overcome this

rule. Sometimes it is necessary to write the output from more than one location, but then it should

be done with caution.

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 69/127

5.14. POUs shall not call themselves directly or indirectly

Identifier: Rule CP13

Importance: High

Targeted languages: All

References:

 Misra C 16.2

 JSF++ Rule 119

 IEC 61131-8 Section 3.5.4

Description: Recursion shall not be used in an application

Guideline: A recursive algorithm should be replaced by an iterative algorithm.

Reasoning: Recursive algorithms normally consume stack space for each call so deep recursion can

cause system failure, even if unplanned. Support for recursive calls of POU is vender-specific so

using it also makes the program less portable

Exceptions: None

Example:

Don’t:

The following function is using recursion to calculate the value of factorial (the factorial of N is the

product of N
th

 first

FUNCTION Factorial : INT

VAR_INPUT

 X : INT;

END_VAR

 IF X > 1 THEN

 Factoriale := Factorial(X – 1) * X;

 ELSE

 Factorial := X;

 END_IF;

END_FUNCTION;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 70/127

Do:

In this implementation, the recursion was removed and replaced by an iteration using FOR

FUNCTION Factorial : INT

VAR_INPUT

 X : INT;

END_VAR

VAR_LOCAL

 Acc : INT;

END_VAR

 FOR I IN 1..X DO

 Acc := Acc * X;

 END_FOR;

 Factorial := Acc;

END_FUNCTION;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 71/127

5.15. POUs shall have a single point of exit

Identifier: Rule CP14

Importance: High

Targeted languages: All

References:

 Codesys SA0090

 Itris Automation Square I6

 Misra C 14.7

 JSF++ Rule 113

 IEC 61508-7 C.2.9

Description: RETURN instruction shall be avoided to exit from POUs. RETURN instruction shall

be used only to explicitly return the value of a function.

Guideline: POU structure should be changed to avoid the usage of RETURN instruction before the

end of the code. If programming language is Structured Text, conditional instructions should be

used for the other languages, use a label at the end of the POU and use JUMP instruction to jump to

this last label.

Reasoning: Testability, Readability and maintainability are good reasons to do that. In case of

debugging, it is possible to add some code just before returning the POU and we got this

information in all cases.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 72/127

5.16. Read a variable written by another task only once per cycle

Identifier: Rule CP15

Importance: High

Targeted languages: All

References: None

Description: In one task, multiple reading of a variable written by another task shall be avoided.

The other task is able to be executed at any time between the two readings and so the two read

values may be different. The program may behave in a non-deterministic way.

Guideline: To avoid this situation, in a task that reads a variable written to in another task, that

variable should be copied into a local variable which is then exclusively used. This will ensure that

the value won't unexpectedly change and so make program execution more predictable.

This copy could be done automatically by a programming support environment supporting the

following features from IEC 61131-3,

Table 47, No.2a "Declaration of inputs of a program"

Table 47, No.2b "Declaration of outputs of a program "

Table 62, No.8b "Connection of GLOBAL variables to PROGRAM inputs"

Table 62, No.9b "Connection of PROGRAM outputs to GLOBAL variables"

When the declaration of program POU input/output variables, the global variables are copied to the

input variables of the program before execution, and output variables are copied to the global

variables after the execution. The value of input variables is never overwritten during the execution

of the program in that cycle. Also output variables are never reflected to the global variables until

the cycle execution of the program finishes.

Reasoning: In a program successive reading of a variable declared externally should be consistent.

However, in the case of a variable written to by another task, this other task can be executed

between two reads due to task switching.

Before running the process, the PLC is sampling the process inputs by copying the input values at a

given time into an image memory. This is for the same reason: having constant input during a

process execution.

Exceptions: None

Example:

Don't:

In this example every time an error flag is raised, an error code is also raised to identify which part

of the process is in error. The MachineError flag is generated from a high priority task that can

preempt the main program at every time.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 73/127

Main Program:

….

Priority Program:

If execution of the main program is interrupted after rung 27, but before rung 30, the Priority

Program may start to execute overwriting global variable "ErrorID". When execution returns to

the Main Program the remaining rungs are evaluated, with the possibility that none of the

"ProcessnError" bits are set.

This is a situation the developer of Main Program will not have realistically catered for.

Do:

The solution consists in reading MachineError and ErrorId only once and copying their value in a

variable image. Then it ensures that ProcessnError will be consistent. The case where no

ProcessnError is flagged when MachineError is flagged is not possible anymore.

If the Programming Support Environment allows it, the input/output of the POU program should be

explicitly declared. Then the system takes care of this copy automatically.

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 74/127

5.17. Tasks shall only call program POUs and not Function Blocks

Identifier: Rule CP16

Importance: High

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC 61131-8 Sections 3.5.4 and 3.12.6

 IEC 61131-3 Section 2.7.2

Description: IEC Tasks shall not be configured to call Functions or Function Blocks directly. They

shall only be configured to call program POUs.

Guideline: Tasks shall call program POUs only. Direct association of tasks to such function blocks

should be avoided.

Reasoning: This is recommended to avoid ambiguity in determining the execution control of

indirectly referenced function block instances. The association of tasks with function block

instances and its effects on data concurrency are described in 2.7.2 of IEC 61131-3. The

programmer should be aware of the fact that use of this feature may produce data consistency errors

during program run time. The guidelines provided by the IEC 61131-3 implementer should be

consulted to determine the mechanisms provided to assure data consistency. Since these

mechanisms are implementation dependent, programs using this feature may not be portable

between different IEC 61131-3 compliant systems

Exceptions: None

Example:

Don't: (example from Figure 20 of IEC61131-3. FB1 and FB2 should not be assigned directly to

TASKs)

RESOURCE STATION_1 ON PROCESSOR_TYPE_1

 VAR_GLOBAL z1: BYTE; END_VAR

 TASK SLOW_1(INTERVAL := t#20ms, PRIORITY := 2) ;

 TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;

 PROGRAM P1 WITH SLOW_1 :

 F(x1 := %IX1.1) ;

 PROGRAM P2 : G(OUT1 => w,

 FB1 WITH SLOW_1,

 FB2 WITH FAST_1) ;

END_RESOURCE

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 75/127

5.18. Usage of parameters shall match their declaration mode

Identifier: Rule CP17

Importance: High

Targeted languages: All

References:

 Codesys SA0009

 Itris Automation square E2

 IEC 61131-8 Section 3.2.2

Description: The parameters declared as input shall be read, the parameters declared as output

shall be written and the parameters declared as in/out shall be read and written.

Guideline: The mode of a parameter (input, output or input/output) should reflect the usage of the

parameter in the corresponding POU. The following rules apply:

 Each input parameter should be read at least once in the POU code

 Each input parameter should not be written in the POU code

 Each output parameter should be written at least once in the POU code

 Each input/output parameter should be either read or written in the POU code

Reasoning: Not using the parameters declared in the POU interface is a loss of time for the

developers and for the machine performance. Using the parameter in the wrong way may lead to

side effects when the Programming Support Environment doesn't limit the usage.

Exceptions: None

Example, use case:

Comments:

It is illegal to attempt to pass an output from a Function to an In-Out parameter of a Function

Block:

 ACC1

 +---+ +-------+

 X1---| * | | ACCUM |

 X2---| |---|A-----A|---ACC

 +---+ | |

 X3-----------|X |

 +-------+

ILLEGAL USAGE:

In-out A is not a variable

or function block name

It is illegal use to attempt to pass a literal to an In-out parameter:

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 76/127

 ACC1

 +-------+

 | ACCUM |

 2.0---|A-----A|---2.0

 | |

 ---|X |

 +-------+

ILLEGAL USAGE:

In-out A is not a variable

or function block name

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 77/127

5.19. Use of global variables shall be limited

Identifier: Rule CP18

Importance: High

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 Misra C 8.7

 JSF++ AV Rule 207

 Codesys SA0121

Description: A global variable is required to exchange data with an entity outside the program or in

another task. It is good practice to declare local variables whenever it is possible.

Guideline:

The use of global variables should be limited in preference for local variables. In the following

case, the use of global variable is justified:

 Exchanging data among PROGRAM instances whether in the same TASK or in different

TASKS

 Exchanging data with the System: accessing system-defined variable to use execution

environment specific feature, such as CurrentTime, ErrorStatus, etc.

 Exchanging data with external devices (physical I/O, communication variables,..)

Reasoning:

Usage of global variables within a POU impairs its ability to be reused. In some development

environments the use of an EXTERNAL declaration is not required, which serves to hide the

dependency of a POU on external data.This rule improves the testability, maintainability,

reusability of applications.

Exceptions: System-defined variables are the only authorized global variables, but there is no need

to declare them.

Example:

Don't:

RESOURCE Station1 ON ProcesserTypeA

 VAR_GLOBAL

 MainProgDone: BOOL := TRUE;

 InitDone: BOOL := FALSE;

 InitError: BOOL := FALS;

 CurrentTime : TIME;

 CPUErrorStatus : ErrorStats;

 END_VAR

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 78/127

 TASK FastTask(INTERVAL := t#1ms, PRIORITY := 1);

 TASK SlowTask(INTERVAL := t#10ms, PRIORITY := 15);

 PROGRAM ProgInst1 WITH FastTask : Program1;

 PROGRAM ProgInst2 WITH FastTask : Program2;

 PROGRAM ProgInst3 WITH SlowTask : Program3;

 PROGRAM ProgComm WITH SlowTask : CommProg;

END_RESOURCE

Note:

In this "Don't" example, each PROGRAM does not declare input/output variables and accesses

global variables via external variables. To know the data flow among PROGRAM instances, the

logic of each PROGRAM body need to be examined.

Do:

RESOURCE Station1 ON ProcessorTypeA

 VAR_GLOBAL

 //-- 1) Variables for inter-PROGRAM communication

 MainProgDone: BOOL := TRUE;

 InitDone: BOOL := FALSE;

 InitError: BOOL := FALSE;

 //-- 2) System-defined variables to be accessed via VAR_EXTERNAL

 CurrentTime : TIME;

 CPUErrorStatus : ErrorStats;

 //-- 3) Variables exchanged between tasks

 HighSpeedCounter : DINT;

 //-- 4) I/O and communication variables

 HSPulse : BOOL AS %I4.5;

 END_VAR

 TASK FastTask(INTERVAL := t#1ms, PRIORITY := 1);

 TASK SlowTask(INTERVAL := t#10ms, PRIORITY := 15);

 PROGRAM ProgInst1 WITH FastTask

 : Program1(Execute := MainProgDone,

 HighSpeedCounter := HighSpeedCounter,

 Done => InitDone,

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 79/127

 Error => InitError); //Global variable assignment

 PROGRAM ProgInst2 WITH FastTask

 : Program2(Execute := InitDone,

 Pulse := HSPulse,

 Counter => HighSpeedCounter,

 Done => MainProgDone); // Global variables

 // assignment

 PROGRAM ProgInst3 WITH SlowTask

 : Program3(Execute := InitError); // Global variables

 // assignment

 PROGRAM ProgComm WITH SlowTask : CommProg;

END_RESOURCE

Note:

Program instance declaration above explicitly represents data flow among PROGRAM instances

shown below. (This diagram is NOT a formal graphical representation of IEC 61131-3)

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 80/127

Comments:

The rules below also relate to the usage of global variables:

1. Rule 5.27 A global variable may be written only by one PROGRAM

2. Rule 5.11 Avoid multiple writes from multiple tasks.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 81/127

5.20. Usage of Jump and Return should be avoided

Identifier: Rule CP19

Importance: Medium

Targeted languages: Ladder, Function Block Diagram

References:

 Misra C 14.5

 JSF++ Rules 189, 190

Description: The branching instructions Jump and Return should be avoided in Ladder and

Function Block Diagram. This also includes any implementation specific branching instructions.

Guideline:

 Unconditional branching instructions Jump and Return shall not be used

 Conditional branching shall not jump backwards

Reasoning: Maintaining and debugging code containing sequence breaking instructions like Jump

and Return is harder. Jumping over code to disable it leaves the dead code liable to future execution

if the jump is accidentally removed. Jumping backwards can cause irregular scan times, and even

cause tight loops that affect the main control function. The construct of EN/ENO can be used for

conditional execution in LD and FBD.

Exceptions: Small jumps backwards are sometimes necessary to implement loops or iterations.

Extreme caution must be used to ensure that infinite loops cannot occur. It is recommended to

switch to Structured Text for these conditional transitions and use IF..THEN..ELSE, CASE,

FOR..WHILE.., REPEAT..UNTIL.

Example:

 Don't: Do:

+----->>LABELA

| a b c d |

+---| |---| |---+---()---()---+

| | e |

| +---()---------+

LABELA:

| |

This code is 'commented out' by skipping over,

but still reserves program space and can too

easily be accidently reinstated, without compile

error, if the rung with the Jump is accidently

deleted.

Release code should have all unneeded code

deleted and removed.

| flg | | flg w x |

+---|/|---| |-------------(S)---+

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 82/127

+---| |---->>J26 |

| w x |

+---| |---------+---------(S)---+

| |

J26:

| flg

+---|/|---->>J27 |

| y z |

+---| |---------+---------(S)---+

| |

J27:

| |

| |

| flg y z |

+---| |---| |-------------(S)---+

| |

Conditional code can be controlled with Boolean

logic

IF NOT flg AND w THEN

 z := TRUE;

ELSIF flg AND y THEN

 x := TRUE;

END_IF;

Conditional code can better be expressed in ST,

especially more complex and nested structures

| +-----+ |

+----------| MOVE|--------------|

| 0 --| |-- ctr |

| | | |

| +-----+ |

LOOP1:

| +-----+ |

+----------| MOVE|--------------|

| y[ctr] --| |-- x[ctr] |

| | | |

| +-----+ |

| +-----+ |

+-------| Add |-----------------+

| ctr --| |-- ctr |

| 1 -| | |

| +-----+ |

| +-----+ |

FOR ctr := 0 to 10 DO

 x[ctr] := y[ctr];

END_FOR;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 83/127

+-------| <= |------>>LOOP1

| ctr --| | |

| 10 -| | |

| +-----+ |

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 84/127

5.21. Function block instances should be called only once

Identifier: Rule CP20

Importance: Medium

Targeted languages: All

References:

 IEC 61131-8 Sections 3.3.3 and 3.7

 Itris Automation Square I6

Description: Each instance of a function block should be called only once per PLC cycle.

Guideline: For each variable instantiating a function block, the function block code should be

called no more than once per PLC cycle. The call may be conditional.

Reasoning: With a single invocation rule there is typically one place, and only one place, where the

input variable of a function block will be assigned a value (unless IEC feature "Separate assignment

of input" is employed), which increases the reliability and maintainability of the software.

 Development by copy, paste and modify is error prone, especially with code involving

function blocks where it is possible to forget to change the instance, resulting in problems

that may be hard to diagnose.

 Moreover depending on function block architecture, calling the same function block twice

may change the global behavior. In general, it may be possible to invoke a single instance of

a function block several times (“multiple assignment”) within a POU. However, depending

on the programmable controller implementation, this possibility may be restricted to a

single invocation of each function block instance within a POU. A POU that uses multiple

invocations of a single function block instance may be non-portable to such

implementations.

A Function Block that does access any physical I/O should be called only one time within a PLC

cycle.

A simple guideline would be to call a function block instance only once in the same PLC cycle.

Although in practice there can be reasons to call a function blocks more than once in the same cycle

(see exceptions hereunder). Check the documentation of the function block if this is possible.

Exceptions: There can be many cases where it is actually wise, efficient or necessary to invoke the

same instance multiple times. This can be acceptable for the experienced developer with sufficient

code review and program analysis. Examples of some exceptions are:

 A Counter FB that could be counting up many cases during the same PLC cycle.

 As function blocks only have one body, it is possible to simulate different methods using an

additional parameter. In this case the same instance of a function block could be called once

per simulated 'method' in a PLC cycle

 When using the non-formal invocation it is common to omit any unrequired parameters. It is

likely to invoke the instance in multiple places with different parameter lists and these

multiple invocations might occur in the same PLC cycle. Care should be taken that the

formal invocation of a function block has been used at least once, or that initial parameter

values are meaningful

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 85/127

 Motion Function Blocks instances are sometimes called multiple times per PLC scan, for

example when Blending between steps or using "BufferMode" to stack up consecutive

commands.

Example:

Don't: calling twice a raising edge function block: the second call doesn't see any more the rising

edge it-self.

FUNCTION_BLOCK Rising_Edge

VAR_INPUT

 S : BOOL;
END_VAR;
VAR

 Old_State : BOOL;
END_VAR;

Old_State := Old_State XOR S;
END_FUNCTION_BLOCK;

VAR
 InputDetectionForDashboardButtonA: Rising_Edge;
 InputDetectionForDashboardButtonB: Rising_Edge;

END VAR;

InputDetectionForDashboardButtonA(InputFilterA);

...

// The second call of the same FB

InputDetectionForDashboardButtonA(InputFilterB);

// Information about the rising edge found previously is lost here
// In fact this is a COPY/PASTE error: the parameters were changed

// but not the instance.

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 86/127

5.22. Use VAR_TEMP for temporary variable declaration

Identifier: Rule CP21

Importance: Medium

Targeted languages: All languages

References:

 IEC61131-3 (ed3) 6.5.2.1

 IEC61131-3 (ed3) 7.3.3.4.2

Description:

The standard says:

 VAR

The variables declared in the VAR ... END_VAR section persist from one call of the

program or function block instance to another.

Within functions the variables declared in this section do not persist from one call of the

function to another.

 VAR_TEMP

Within program organization units, variables can be declared in a

VAR_TEMP...END_VAR section.

For functions and methods, the keywords VAR and VAR_TEMP are equivalent.

These variables are allocated and initialized with a type specific default value at each call,

and do not persist between calls.

Guideline: Use the VAR_TEMP construct to declare temporary variables, for example in FOR

loop control. For FBs use VAR_TEMP. Temporary variables are created and initialized upon each

invocation of the FB, and cannot be accessed outside of the body.

Reasoning: For Functions and Methods VAR and VAR_TEMP are the same but not for Function

Blocks. Therefore it is always better to use VAR_TEMP for temporary variables.

Exceptions: none

Example:

Don't:

// In the above example

VAR

 values: ARRAY[1..10] OF REAL;

 index: INT;

END_VAR

Do:

FUNCTION_BLOCK Lifo

VAR_OUTPUT

 currentValue: REAL;

END_VAR

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 87/127

VAR_INPUT

 newValue: REAL;

END_VAR

VAR

 values: ARRAY[1..10] OF REAL;

END_VAR

VAR_TEMP

 index: INT;

END_VAR

 currentValue := values[1];

 FOR index := 1 TO 10 DO

 values[i] := values[i + 1];

 END_FOR

 values[10] := newValue;

END_FUNCTION_BLOCK

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 88/127

5.23. Select Appropriate Data Type

Identifier: Rule CP22

Importance: Medium

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC 61131-8 Section 3.1

Description: The data type selected for a variable should be appropriate to the data it is intended to

store. It should be appropriate to the range of values and operations to be performed on the variable.

Guideline: Choose the correct data type appropriate to the range of values and operations to be

performed.

 Use the smallest length necessary to store the range of values

 Do not use signed data types for unsigned data

 Use enumerations where possible

 Use subranges where appropriate

 Group collected data of same type into arrays

 Group collected data of different types into structures

 Do not use the same datatype throughout the program, just to prevent the need for explicit

conversions. Use the appropriate ones

Reasoning:

 A correctly data typed variable helps describe its function, making its use somewhat self-

explanatory

 "Strongly typed" code, where data type conversions must be explicitly made helps avoid

coding mistakes and oversights where some conversion behavior may not be as assumed,

and may be missed by commissioning and testing phases

 Compilers are able to use the data type to check assignments and instructions use, to ensure

operations are as the developer expects

 Smaller data types typically use less memory, so allow for more variables or larger

programs

 Using unsigned data types where appropriate prevents any negative value being assigned

accidently, and having to write code, and test the code, to deal with these eventualities.

 The use of enumerated and subrange types make a program even more readable and can

contribute to program reliability by helping to avoid the use of unintended values of

variables as well as by explicitly expressing the intended semantics of the values of

enumerated variables

Exceptions: When sharing data with third party devices the data type may be externally mandated

as a sub-optimal data type.

Example:

 If a variable can only hold the values 0 or 1, and is only to be operated on by Boolean

operations, then the elementary type BOOL should be chosen;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 89/127

 If a programmable controller program has to count something and the counts are expected to

be in the range from 0 to 1000, a variable of type SINT or USINT cannot be used, since

their value ranges only extend from -128 to +127 for SINT and from 0 to 255 for USINT. A

reasonable data type for this purpose would be UINT. This has a sufficient value range and

the usage of an unsigned integer type also makes it clear that negative values are not

expected

 Any code that uses a CASE statement should strongly consider if the expression variable

should be an enumerated type, testing against the semantic value rather than numeric value

 An enumerated data type restricts the values of variables of the type to a user-defined set of

identifiers. As an example consider
TYPE Color : (Red, Yellow, Green);
END_TYPE

...
VAR_GLOBAL brickColor : Color; END_VAR

Here a new type Color is defined. It may only have three values - Red, Green, or Yellow.

IEC 61131-3 does not define numerical values to which these enumerated values may

correspond. There also is no conversion function to and from enumerated types to integral

types. The values only have to be distinct and reproducible. An assignment of a value to the

variable brickColor is possible only if one of the defined color values is used. All other

values are flagged as errors

Another enumerated data types example:
TYPE ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ;

END_TYPE

Even though there are only 2 values, using enumeration make the code easier to read and

also extend.

 Subrange data types can limit the range of permissible values, e.g.:
TYPE ANALOG_DATA : INT (-4095..4095) ; END_TYPE

 Array data types group data of the same data type, e.g.:
TYPE ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG_DATA ;

END_TYPE

 Structured data types group data of the different data types e.g.:
TYPE

 ANALOG_CHANNEL_CONFIGURATION :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA ;

 MAX_SCALE : ANALOG_DATA ;
 END_STRUCT ;
 ANALOG_16_INPUT_CONFIGURATION :

 STRUCT
 SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
 FILTER_PARAMETER : SINT (0..99) ;

 CHANNEL : ARRAY [1..16] OF

ANALOG_CHANNEL_CONFIGURATION ;

 END_STRUCT ;

END_TYPE

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 90/127

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 91/127

5.24. Define maximum number of input/output/in-out variables of a POU

Identifier: Rule CP23

Importance: Medium

Targeted languages: all

References:

 JSF++ - AV Rule 110

Description: Define a maximum number of input/output/in-out variables of a POU. The number of

input variables, output variables, and in-out variables should be within a limited set by your

organization.

Guideline: A limit can be around 10.

If more input/output/in-out variables are necessary, consider to reduce the number of pins

(input/output/in-out variables) of POUs by the following method.

1. Introduce UDTs (user-defined structured data type) to group some input/output/in-out

variables.

2. If some input/in-out variables are a kind of configuration parameter which does not need to

be changed on every cyclic call of the FB,

A) Change them into internal variables, and give them necessary initial values by using

VAR_CONFIG struct.

 or

B) Change them into internal variables with PUBLIC or INTERNAL access specifier, and

give them necessary value before calling the FB.

 Note: internal variable with access specifier is a newly added feature of IEC 61131-3 Ed.3.

Reasoning: Using FB with too many pins breaks readability.

Exceptions:

 POUs which are to be used only in ST language.

 POUs which are to be used only in the vendor-specific PSE which supports some feature to

hide specified pins of specified POU in graphical language editor.

Example:

Don't: Function block with too many pins

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 92/127

(* Graphical representation of FB declaration *)
 +----------------------+

 | MyFunctionBlock |
 DINT--|Cfg_Param1--Cfg_Param1|--DINT
 DWORD--|Cfg_Param2--Cfg_Param2|--DWORD
 BOOL--|Cfg_Param3--Cfg_Param3|--BOOL

 INT--|Cfg_Param4--Cfg_Param4|--INT
STRING[32]--|Cfg_Param5--Cfg_Param5|--STRING[32]
 BOOL--|Cfg_Param6 Output1|--BOOL

 DINT--|Cfg_Param7 Output2|--BOOL
 BOOL--|Cfg_Param8 Output3|--BOOL
 BOOL--|Cfg_Param9 Output4|--BOOL
 BOOL--|Enable Output5|--BOOL

 INT--|Input2 Output6|--DINT
 INT--|Input3 Output7|--BOOL
 BOOL--|Input4 Output8|--BOOL

 BOOL--|Input5 Output9|--BOOL
 INT--|Input6 Output10|--BOOL
 BOOL--|Input7 Output11|--BOOL
 BOOL--|Input8 Output12|--DINT

 INT--|Input9 Output12|--BOOL
 BOOL--|Input10 Output14|--BOOL
 BOOL--|Input11 Output15|--BOOL

 INT--|Input12 Output16|--BOOL
 BOOL--|Input13 Output17|--BOOL
 BOOL--|Input14 Output18|--DINT
 INT--|Input15 Error|--BOOL

 BOOL--|Input16 ErrorID|--DWORD
 BOOL--|Input17 |
 INT--|Input18 |
 +----------------------+

Do:

(* Graphical representation of FB declaration *)

 +-------------------------+
 | MyFunctionBlock |

 BOOL--|Enable CylinderOut1|--DT_CylinderOut
 INT--|Input2 CylinderOut2|--DT_CylinderOut

 INT--|Input3 CylinderOut3|--DT_CylinderOut
 ARRAY[1..5] OF DT_EncoderInput--|EncoderInputs Error|--BOOL
 | ErrorID|--DWORD

 +-------------------------+

(* Textual declaration of FB *)

FUNCTION_BLOCK MyFunctionBlock
 VAR_INPUT
 Enable : BOOL;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 93/127

 Input2 : INT;
 Input3 : INT;

 EncoderInputs : ARRAY[1..5] OF DT_EncoderInput
 END_VAR
 VAR_OUTPUT
 CylinderOut1 : DT_CylinderOut;

 CylinderOut2 : DT_CylinderOut;
 CylinderOut3 : DT_CylinderOut;
 Error : BOOL;

 ErrorID : DWORD;
 VAR PUBLIC
 ConfigParams : DT_MyFBConfiguration //Static configuration

parameter.

 // This variable is not shown as pin but can be written
 // separately before calling the FB instance.
 END_VAR

END_FUNCTION_BLOCK
TYPE
 DT_MyFBConfiguration : STRUCT
 Param1 : DINT;

 Param2 : DWORD ;
 Param3 : BOOL;
 Param4 : INT;

 Param5 : STRING[32];
 Param6 : BOOL;
 Param7 : DINT;
 Param8 : BOOL;

 Param9 : BOOL;
 END_STRUCT
 DT_EncoderInput : STRUCT
 IsReverse : BOOL := FALSE;

 Reset : BOOL := FALSE;
 Count : INT := 0;
 END_STRUCT

 DT_CylinderOut : STRUCT
 Solenoid1 : BOOL;
 Solenoid2 : BOOL;
 Solenoid3 : BOOL;

 Solenoid4 : BOOL;
 PilotLamp : BOOL;
 DumpParam : DINT;

 END_STRUCT
END_TYPE

Comments: none

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 94/127

5.25. Do not declare variables that are not used

Identifier: Rule CP24

Importance: Medium

Targeted languages: All

References:

 Codesys SA0011, SA0033

 Itris Automation Square S7

Description: Each declared variable should be used in the code

Guideline: All declared variable in an application should be read or written elsewhere in the code.

Reasoning: When development starts from an pre-existing project, removing unused declarations is

not always the priority, so unused variables may be part of the final application. Such an application

may be more difficult to understand and maintain, and will also lose some performance from a

memory point of view.

Exceptions: Variables explicitly identified as spare variables can be defined. In such a case a

variable identified as a spare should not be used elsewhere in the code. Those variables are used for

keeping spare memory free for future usage and for allowing on line modifications (impossible to

declare while the program is running, so variables are declared in advance).

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 95/127

5.26. Data types conversion should be explicit

Identifier: Rule CP25

Importance: Medium

Targeted languages: All

References:

 Codesys SA0019

 Misra C 10.3

 IEC 61131-3 section 6.6.1.6 and Table 11

Description: Data types conversion should be done explicitly by the developer and not added by

the compiler

Guideline: When writing code that converts between types, the developers shall use explicit casts

and not rely on the compiler’s type inference capabilities.

Reasoning: The data type conversions are responsible for loss of range, loss of precision or loss of

signedness. The compiler doesn't care about the loss occurring when doing the conversion between

two data types. The conversion shall be explicitly done by the developer so that the correct

questions get their answers.

It is good practice to keep as long as possible the initial data type format and convert it to

something else before sending the information outside the code: SCADA formatting, other

equipment communication.

Exceptions: Implicit datatype conversions can be used when there is no loss of value or precision

(see table 11 of IEC 61131-3 3
rd

 edition)

Example:

Don't:

VAR

 I : INT := 10;

 J : REAL := 0.55;

END_VAR;

I := I * J;

// If it compiles (compiler not compliant to IEC61131 Ed.3rd)

// Result can be either 0 or 5 depending on the way the compiler

// is interfering types

Do either:

I := I * REAL_TO_INT(J);

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 96/127

or:

I := REAL_TO_INT(INT_TO_REAL(I) * J);

Note that the result can differ between the 2 cases. Also if there is no explicit typecast the user does

not know which solution is chosen by the compiler.

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 97/127

5.27. A global variable may be written only by one PROGRAM

Identifier: Rule CP26

Importance: Low

Targeted languages: All

References:

 Itris Automation Square : S2

Description: A global variable may be written only by one PROGRAM

Guideline: When a global variable is assigned, this assignment should be in one PROGRAM only.

Each PROGRAM is in charge of assigning some of the global application variables.

Reasoning: The data flow is easier to understand and read and so the debug and the maintenance

are more efficient.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 98/127

5.28. Avoid deprecated features

Identifier: Rule CP27

Importance: Low

Targeted languages: Ladder, Structured Text, Sequential Function Chart, Function Block Diagram

References:

 IEC 61131-8 Section 3.12

 IEC 61131-3 3
rd

 edition

Description: Avoid writing code using deprecated or obsolete Data Types, Functions, Function

Blocks, System variables etc. Also you may avoid using programming practices which are replaced

by improved methods.

Guideline: Avoid all deprecated and obsolete functions and practices, including:

 BCD Data types and instructions

 IEC 61131-3 Second Edition the standard Functions and Function Blocks that have been

superseded by IEC 61131-3 Third Edition

 Use of JUMP instruction, where conditional statements are implemented

 Use of multiple Function Blocks processing the same data, where Classes with multiple

Methods are provided

 Unnecessary use of global variables. Instead use Local variables and encapsulate data,

where possible. In particular, the writing of global variables from more than one program

location should be avoided. It is recommended that global variables should be used (if at all)

only for supplying values of “global” interest to other program organization units.

 The direct association of tasks with function block instances

Reasoning: The effects of programming technique on software quality should be considered when

choosing among the options made available in IEC 61131-3. The latest programming practices to

achieve higher software quality are recommended. Also features that are currently deprecated are

likely to become obsolete in future versions and not be supported, which can force unplanned

rewriting. Excessive use of global variables contradicts the principles of encapsulation and hiding

discussed in IEC 61131-8 section 2.4.2.1 and can greatly reduce software reliability, maintainability

and reusability.

Exceptions:

 When connecting to legacy devices which only support the deprecated features.

 When using third party libraries or code that makes use of deprecated features.

Examples: In IEC61131-3 Ed.3rd, the following features are marked as deprecated and should not

be used anymore:

 Octal literals 8#377

 Use of directly represented variables in the body of POUs and methods.

 Standard function "TRUNC"

 Indicator-variable of Action Block of SFC

 Instruction list (IL)

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 99/127

6. Languages

6.1. Define indentation

Identifier: Rule L1

Importance: Low

Targeted languages: Structured Text, Instruction List, textual variable declaration

References:

 JSF++ 44

Description: You may define your use of indentation, and use consistently throughout the project.

Guideline: Use 4 spaces for indentation level.

Reasoning: Indenting code aids readability, particularly for conditional and loop statements. Small

indents (e.g. 1-2 spaces) are not always clear. Large indents (e.g. 8 spaces) can mean that nested

statements create code too wide for the screen.

Exceptions: none

Example, use case:

Don't: the nested IF instruction should be at the same indentation than Sort call:
IF sizeListToSort < 0 THEN

 Sort (numberElements := sizeListToSort,

 direction := 2,

 idEse := idEse,

 Ese := Ese,

 status => statusTemp);

 IF NOT statusTemp THEN // Indentation is not correct here

 status := statusTemp;

 END_IF;

END_IF;

Do:

// Initialisation

IF Dem_froid OR Rep_chaud OR Prem_cycle THEN

 Cmd_vanne_remplissage.Temps_ma := 15;

 Cmd_vanne_vidange.Temps_ma := 15;

 Local := true;

ELSE

 // Grafcet

 init_graph := false;

END_IF;

Comments: See also 6.6.7 Define use of tabs, page 120.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 100/127

6.2. Function Block Diagram FBD

6.2.1. Avoid assignments of intermediate results within networks

Identifier: Rule L2

Importance: Medium

Targeted languages: Function Block Diagram

References: None

Description: Avoid assignments of intermediate results within networks

Guideline: In Function Block Diagram networks one should avoid the assignment of variables

between blocks.

Reasoning: Side effects in the networks are difficult to see if this construct is used.

Exceptions: None

Example:

Don't

Do:

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 101/127

6.2.2. Define maximum complexity of single network

Identifier: Rule L3

Importance: Medium

Targeted languages: Function Block Diagram

References: None

Description: Define the maximum complexity permissible for a network, for example by limiting

the number of elements

Guideline: Function Block Diagram networks should be kept to a maximum of 32 elements

(Functions, Function Blocks) per network.

Reasoning: Complex algorithms reduce readability and increase the likelihood of mis-

understanding and mistakes. When a diagram grows, it cannot be shown on a single screen

(although dependent on screen size and zoom factor). Large diagrams containing too many

elements suggest a need to split into more diagrams or sub diagrams, each with a distinct action.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 102/127

6.3. Ladder (LD)

6.3.1. A coil should not be followed by a contact

Identifier: Rule L5

Importance: Medium

Targeted languages: Ladder

References:

 MISRA C: 13.4

Description: A coil should not be followed by a contact.

Guideline: Instead of directly using a coil one should insert a second rung. See the ‘Do’ example

below.

Reasoning: Readability

Exceptions: None

Example:

Don't: IEC 61131-3 section 8.2.5 shows a contact after a coil: "in the rung shown below, the

values of the Boolean output a is always TRUE, while the value of outputs c,d and e upon

completion of an evaluation of the rung is equal to the value of the input b."

Problem: the assignment of 'a' by the coil is unexpected here, and can be overseen.

| a b c d |

+--()--| |--+--()---()--+

| | e |

| +-----()-----+

| |

Do: Use an extra network for the assignment to variable 'a'.

| TRUE a |

+--| |---()--+

| |

| a b c |
|--| |--| |--+--()--+

| | d |

| +--()--+

| | e |

| +--()--+

| |

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 103/127

6.3.2. Define maximum rung complexity

Identifier: Rule L6

Importance: Medium

Targeted languages: Ladder

References: none

Description: Define the maximum complexity permissible for a rung, for example by limiting the

number of ladder elements

Guideline: Ladder rungs should be kept to a maximum of 32 ladder elements (contacts, coils,

Functions, Function Blocks) per rung.

Reasoning: Complex algorithms reduce readability and increase the likelihood of mis-

understanding and mistakes. When the program grows, the rung cannot be shown on a single screen

(although dependent on screen size and zoom factor). Large rungs may contain many sequential

elements, or many parallel elements, or often both. When the rung is too large it should be split into

more rungs or Functions/Function Blocks, each with a distinct action.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 104/127

6.4. Sequential function Chart (SFC)

6.4.1. Closing divergent paths

Identifier: Rule L7

Importance: High

Targeted languages: Sequential Function Chart

References:

 IEC 61131-3 Figure 18a

Description: Simultaneous divergent paths shall be closed correctly.

Guideline: The opening and closing of simultaneous divergent branches should be done correctly.

If other divergences are used inside the parallel branches, they should be closed with simultaneous

convergence before the end of parallel branches.

Reasoning: It can be unclear if parallel paths start executing steps outside the divergent region and

may cause unexpected behavior like token proliferation.

Exceptions: None

Example:

Don't:

Example from IEC61131-3 Figure 18a. Consider Steps B and C are active, then transitions t3, t5

and t7 occur. Step B is still active but should execution also pass through E and F to Step A, which

is outside the divergent path? It is unclear and can be implementation dependent.

 +---------+

| |

| +=====+

| || A ||

| +=====+

| |

| + t1

| |

| ===+====+====+===

| | |

| +-----+ +-----+

| | B | | C |

| +-----+ +-----+

| | |

| | *--------+

| | | |

| | + t2 + t3

| | | |

| | +---+ +---+

| | | D | | E |

| | +---+ +---+

| | | |

| ===+====+====+=== |

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 105/127

| | |

| + t4 + t5

| | |

| +---+ +---+

| | F | | G |

| +---+ +---+

| | |

| + t6 + t7

| | |

+----------+-------------+

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 106/127

6.4.2. Do not program an SFC action block in SFC

Identifier: Rule L8

Importance: Medium

Targeted languages: Sequential Function Chart

References:

 Link to SFC subgroup

Description: When adding actions to an SFC state, it is possible to select the action programming

language. Don't choose the SFC language to program such an action.

Guideline: Use only ST, FBD or LD in an action block. If you need to have a state diagram in SFC

inside your action block, encapsulate this state machine in a separate FB which is then called in the

action block itself.

Reasoning: Programming an action block detail in SFC (sometimes called “nested SFC”) can

become complex and difficult to look through. The lower/inner SFC execution behavior is not

specified by the IEC61131-3 standard. Then depending on programming software, it may not be

executed in every task cycle but only when its related action in the higher/outer SFC is active.

Therefore it is difficult or impossible in the lower/inner SFC to react.

Exceptions: none

Example: none

Comments: Most PLC programming software doesn't allow developer to select the SFC language

to implement an SFC action. This feature was supported in the 2nd edition of the IEC 61131-3

standard, however it is removed in the 3rd edition.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 107/127

6.4.3. Define maximum complexity

Identifier: Rule L9

Importance: Medium

Targeted languages: Sequential Function Chart

References: None

Description: Define the maximum complexity permissible for a diagram, for example by limiting

the number of elements to 32.

Guideline: Sequential Function Charts should be kept to a user defined maximum steps per chart.

Reasoning: Complex algorithms reduce readability, and increase likelihood of misunderstanding

and mistakes. There also comes a time when the whole chart cannot be shown on a single screen

(although dependent on screen size and zoom factor). Large charts containing too many elements

should be split into 2 or more sub-charts, each with a distinct action.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 108/127

6.5. Structured Text (ST)

6.5.1. Define General formatting rules

Identifier: Rule L4

Importance: Low

Targeted languages: Structured Text

References: none

Description: Define general formatting rules and use them coherently in the program.

Guideline:

Section A:

 Put a single space character around infix operators (like + and *) and assignment except

when used in formal parameter lists.

 For non-keyword unary operators put no space between operand and operator but put a

space on the other side.

 No space after opening '(' or before closing parenthesis ')'

 One space before '(' and one after ')' in expressions

 No space before '(' and after ')' in calls

 No space before semi-colon ';'

 No space before colon ':' . One space after

 No white-space characters at the end of a line.

 Always place a space after a comma ',' that does not end a line.

 In an array there is no space before and after the brackets []

Section B:

 When multiple parameters are put on multiple lines they should start in the same column.

 When line length is not exceeded put THEN/DO etc. on the same line as IF/WHILE

 When an expression needs to be put on multiple lines start the following lines with the

operator.

Section C:

 Use AND and not '&'

 Use TRUE and FALSE not 0 and 1 for Boolean values.

Reasoning: Coherent formatting makes it easier to read a program. There is no OR equivalence to

“&” for AND. In the first edition of the standard keywords where in upper-case

Exceptions: None

Example:

Don't:

if pump.temperature>=90&pump.running

then

 pump.speedmode:= slow ;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 109/127

end_if ;

Do:

IF (Pump.Temperature >= 90) AND Pump.Running THEN

 Pump.SpeedMode := SLOW;

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 110/127

6.5.2. Usage of Continue and Exit instruction should be avoided

Identifier: Rule L10

Importance: Medium

Targeted languages: Structured Text

References:

 Misra C 14.5

 JSF++ Rules 189, 190

Description: Execution branching instructions CONTINUE and EXIT should not be used in

Structured Text. This also includes any implementation specific instructions like GOTO or JUMP

Guideline: Most execution branching instructions can be replaced with structured instruction like

conditional instructions (IF THEN ELSE or CASE) or loop instructions (WHILE, FOR, REPEAT).

Reasoning: Maintaining and debugging code containing sequence breaking instructions like

CONTINUE and EXIT is more difficult to understand. Replacing those instructions with more

structured instructions makes the code more readable and maintainable.

Exceptions: There are instances where the use of EXIT can enhance clarity and/or performance,

though these are rare and so caution should always be exercised in their use. In FOR loops it can be

necessary to use additional exit conditions. For CONTINUE this can be applicable to avoid deeply

nested IF statements.

Examples:

Rather than using CONTINUE within a loop to skip code execution, use a conditional block to

execute it only when needed, for example:

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 111/127

Don't: Do:

// Count number of elements in error

Count:= 0;

FOR index:= 1 TO 20 DO

 IF NOT bError[index] THEN

 // Not in error so skip to next element

 CONTINUE;

 END_IF;

 Count:= Count + 1;

END_FOR;

// Count number of elements in error

Count:= 0;

FOR index:= 1 TO 20 DO

 IF bError[index] THEN

 // Another element in error

 Count:= Count + 1;

 END_IF;

END_FOR;

FOR loops using EXIT can iterate less times than expected. Rewrite the loop to expect an early

exit:

Don't: Do:

J:= 101;

FOR index := 1 TO 100 DO

 IF WORDS[index] = 'KEY' THEN

 J:= index;

 EXIT;

 END_IF;

END_FOR;

index:= 1;

WHILE index <= 100 AND WORDS[index] <>

'KEY' DO

 index:= index+1;

END_WHILE;

J:=index;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 112/127

6.5.3. Define the maximum line length

Identifier: Rule L11

Importance: Medium

Targeted languages: Structured Text

References:

 JSF++ 41

Description: You should define the maximum line length

Guideline: Use a maximum line length for ST of 80 characters

Reasoning: Although some tools and compilers can support very long line lengths, it proves very

difficult to read. It either requires lots of panning and scrolling (which loses the context and

indentation level) or zooming, which can make the text too small to read. Also, any deep nesting is

an indication to break down the design of your code using other POUs.

For maximum portability and readability, define your maximum line length as a value no greater

than 80.

Exceptions:

Don't:

translatePwr (power := maxEse, powerFactor := 10.0, mode := mode,

const := const, clusterVoltage := clusterVoltage, current =>

maxCurrentEse);

Do:

translatePwr (power := maxEse,

 powerFactor := 10.0,

 mode := mode,

 const := const,

 clusterVoltage := clusterVoltage,

 current => maxCurrentEse);

Example, use case: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 113/127

6.5.4. Loop variables should not be modified inside a FOR loop

Identifier: Rule L12

Importance: Medium

Targeted languages: ST

References:

 IEC61131-3 (ed3) 7.3.3.4.2

 JSF++ AV Rule 188

 MISRA Rule 13.6

 CoDeSYS SA0072: Invalid use of counter variable

Description: The standard states "The control variable, initial value, and final value should be

expressions of the same integer type and shall not be altered by any of the repeated statements."

Guideline: Modifying loop variables inside a FOR loop is forbidden

Reasoning: The FOR statement is used if the number of iterations can be determined in advance;

otherwise, the WHILE or REPEAT constructs are used. Modifying during execution can cause

unexpected behavior, including infinite loops, and can be difficult to debug and maintain.

Exceptions: None

Example:

Don't:

// This loop is not fine

j:= 11;

FOR i := 0 TO 10 BY 2 DO

 IF WORDS[i] = 'Key' THEN

 j := i ;

 i := 10; // The loop variable should not be written here

 END_IF;

END_FOR;

Do:

// This loop is fine

i:= 0;

WHILE i <= 10 AND WORDS[i] <> 'KEY' DO

 i := i + 2;

END_WHILE;

j := i;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 114/127

Comments: After the execution of the loop the value of the control variable is implementation

specific.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 115/127

6.5.5. FOR loop variable usage should not be used outside the FOR loop

Identifier: Rule L13

Importance: Medium

Targeted languages: ST

References:

 IEC61131-3 (ed3) 7.3.3.4.2

 JSF++ Av Rule 136

Description: The IEC 61131-3 standard states: "The value of the control variable after completion

of the FOR loop is Implementer specific."

Guideline: Don't use the control variable outside the FOR loop, otherwise, the WHILE or REPEAT

constructs can be used.

Reasoning: Since the value of the control variable outside the loop is implementation depended

using it would make the code non portable.

Exceptions: None

Example:

Don't:

FOR i := 0 TO 100 BY 2 DO

 IF Words[i] = 'Key' THEN

 EXIT;

 END_IF;

END_FOR;

IF i <= 100 THEN // value of i is not defined here

 Words[i + 1] := value;

END_IF;

Do:

// This loop is fine

KeyAtIndex := 101;

FOR i := 0 TO 100 BY 2 DO

 IF Words[i] = 'Key' THEN

 KeyAtIndex := i;

 END_IF;

END_FOR;

IF KeyAtIndex <= 100 THEN

 Words[KeyAtIndex + 1] := Value;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 116/127

END_IF;

Alternatively, a WHILE loop can be used:

i:= 0;

WHILE i <= 100 AND WORDS[i] <> 'KEY' DO

 i := i + 2;

END_WHILE;

IF i <= 100 THEN

 Words[i + 1] := Value;

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 117/127

6.5.6. Passing parameters should be clear

Identifier: Rule L14

Importance: Medium

Targeted languages: Structured Text

References:

 IEC 61131-3 Section 2.5.1.1

 IEC 61131-8 Section 3.2.3

 IEC 61508 C.2.9

 JSF++ 58

Description: Passing parameters in ST to Functions and Function Block invocations and method

calls should be clear: which parameters are which, and whether they are input or output.

Guideline:

 For "Standard" IEC Functions and Function Blocks use the non-formal invocation type

 For User Defined Functions and Function Blocks use the IEC formal invocation type to

name each argument, and use := and => operators to highlight input or output usage and sort

into Inputs, Outputs and In-Out parameters

 When parameters have to be omitted or the quantity of parameters is large then use the

formal invocation type with each parameter written on a separate line. Each line should

have a comment describing the argument and its usage (not to be confused with the generic

parameter comment in the FB definition).

Reasoning: Using meaningful parameter names makes the code unambiguous. Using the := and =>

operators also forces developers to consider which variable they expect to get overwritten. However

to avoid long lines, and aid readability multiple lines are sometimes needed.

All the Standard IEC Functions (like Numerical and Arithmetic Functions) should be portable and

recognizable, so IEC 61131 Section 2.5.1.1 recommends the non-formal invocation type is used.

Exceptions: None

Example:

Don't:

// Avoid the non-formal invocation type for custom FBs and long

invocations

A := MyFunction(Bee, 5);

MC_Home(Axis:=var0, Execute:=var1, Done=>var2, Busy=>var3,

CommandAborted=>var4, Error=>var5, ErrorID=>var6);

Do:

// Use formal argument list: MyFunction will not modify Bee

A := MyFunction(In:=Bee, Max:=5);

MC_Home(Axis:=ShuttleAxis, // Home the shuttle axis
 Execute:=DoHome, // at the timing DoHome
 Done=>HomeDone, // shuttle at home position

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 118/127

 Busy=>ShuttleMoving, // shuttle is currently homing

 CommandAborted=>HomeAborted, // shuttle homing aborted

 Error=>HomeError, // error during operation

 ErrorID=>HomeErrorID); // error code if error flag set

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 119/127

6.5.7. Use parenthesis to explicitly express operation precedence

Identifier: Rule L15

Importance: Medium

Targeted languages: Structured Text

References:

 Misra C 12.1

 JSF++ Rule 213

Description: When using operators with a similar precedence, use parenthesis to disambiguate.

Guideline: In a structured text expression using operators AND/OR/= or +/-, use parenthesis to

specify explicitly the order of evaluation.

Reasoning: The precedence of operators may change between implementations. When a developer

looks at an ambiguous expression, time may be lost due to assumptions about precedence.

Exceptions: None

Example:

Don't:

IF A AND B OR C AND D THEN

 ...

END_IF;

Do:

IF (A AND B) OR (C AND D) THEN

 ...

END_IF;

or

IF A AND (B OR C) AND D THEN

 ...

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 120/127

6.5.8. Define the use of tabs

Identifier: Rule L16

Importance: Low

Targeted languages: Structured Text

References:

 JSF++ 43

Description: You may define your use of tab characters and use consistently throughout the

project.

Guideline: Use of tab character (ASCII code 9) should be avoided, and Programming Support

Environment set to replace tabs with spaces

Reasoning: The visual interpretation of a tab character varies wildly. It can be interpreted as 8

spaces, or 4 spaces, or undefined spaces until the next tab stop. Therefore for maximum portability,

it is recommended to not use tab characters.

Usage of tabs should be done consistently throughout the code and consistently with the

Programming Support Environment behavior.

Exceptions: None

Example, use case: None

Comments: Depending on the Programming Support Environment, this may not be the same as

using the tab Key on the keyboard. If possible, you should define the Programming Support

Environment to replace use spaces for the tab key.

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 121/127

6.5.9. Each IF instruction should have an ELSE clause

Identifier: Rule L17

Importance: Low, High in critical software

Targeted languages: Structured Text

References:

 Codesys SA0075

 Itris Automation Square S12

 Misra C 14.10

 JSF++ Rule 192

Description: For every IF instruction in the code, an ELSE clause should be present.

Guideline: For each IF instruction in the structured text, the developer should add an ELSE clause

to ensure that all cases are managed.

Reasoning: It is defensive programming. The developer should always take into account what will

happen if the condition is False. This rule should be a requirement for safety critical software.

Exceptions: Development of non-safety critical software

Example, use case:

Don't:

IF some_condition THEN

 // some code

 ...

END_IF;

Do:

IF some_condition THEN

 // some code

 ...

ELSE

 // Nothing needs to happen in this case ! (Deliberate choice)

 ;

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 122/127

7. Vendor Specific IEC 61131-3 Extensions

7.1. Dynamic memory allocation shall not be used

Identifier: Rule E1

Importance: High

Targeted languages: All

References:

 =>Misra C 20.4

Description: The application shall not rely on dynamic allocation feature supplied by a PLC nor

implement its own memory allocation mechanism.

Guideline: Dynamic allocation is forbidden.

Reasoning: Dynamic memory allocation has undefined, undocumented, implementation defined

behavior. It may lead to memory leaks, data inconsistency, memory exhaustion, non-deterministic

behavior.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 123/127

7.2. Pointer arithmetic shall not be used

Identifier: Rule E2

Importance: High

Targeted languages: ST, IL

References:

 IEC61131-3: not allowed:

no "pointers" defined in 2nd and 3rd edition of IEC 61131-3,

in 3rd edition "reference" defined, only with comparison with NULL and assignment

operations, see Table 12)

 MISRA C 17,1

Description: The only allowed operators for manipulating pointers are equality and inequality.

Developer shall not use pointer arithmetic to calculate a position in a memory to access further

data.

Guideline: Should be limited and used only for array access

Reasoning: Pointer arithmetic is implementation dependent and understanding such code requires a

thorough understanding of PLC’s internals. This practice was only acceptable due to the lack of

high level abstractions like structure, function blocks and arrays, but now these are available, they

should be used instead of pointer arithmetic. Moreover, as mentioned in rule N1, developers should

not use physical addresses for manipulating data.

Exceptions: None

Example: None

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 124/127

7.3. Some comparator instructions shall not be used for pointer or

reference manipulation

Identifier: Rule E3

Importance: High

Targeted languages: All

References:

 Codesys SA0061

 Misra-C 17.3

Description: <=, >=, < and > operators shall not be used on pointers or references. Only equality

and differences operators are allowed. If the order is required, then developer shall use an explicit

array so that the relative positioning of variables is known.

Guideline: Pointer equality and inequality are allowed - all other comparison operators are

forbidden

Reasoning: This rule is related to others rules relative to variable mapping in memory. The test

relies on knowledge of memory organization of the PLC. It is either undocumented or susceptible

to change and it is difficult to maintain.

Exceptions: None

Example:

Don't:

// Wrong example

VAR

 x: POINTER;

 y: POINTER;

END_VAR

...

IF X^ < Y^ AND X < Y THEN -- the comparison X and Y is not allowed

 TEMP := X^:

 X^ := Y^;

 Y^ := TEMP;

END_IF;

Do:
// Good example - the usage of array is more explicit and relies

// on wide used arrays

VAR

 Values : ARRAY [1..50] OF INT;

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 125/127

 IndexX : INT;

 IndexY : INT;

END_VAR

IF Values[IndexX] < Values[IndexY] AND IndexX < IndexY THEN

 TEMP := Values[IndexX];

 Values[IndexX] := Values[IndexY];

 Values[IndexY] := Temp;

END_IF;

Comments: None

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 126/127

8. Annex 1 – overview of the rules via their priorities

Priority Rule # Chapter Name Page

High N1 3.1.1. Avoid physical addresses 16

High N3 3.2.1. Define the names to avoid 20

High N4 3.2.2. Define the use of case (capitals) 22

High N5 3.2.3. Local names shall not shadow global names 25

High C1 4.1. Comments shall describe the intention of the code 36

High C2 4.2. All elements shall be commented 38

High CP1 5.1. Access to a member shall be by name 44

High CP2 5.2. All code shall be used in the application 45

High CP3 5.3. All variables shall be initialized before being used 47

High CP4 5.4. Direct addressing should not overlap 51

High CP5 5.5. Applications shall be well designed 53

High CP6 5.6. Avoid external variables in functions, function blocks and

classes

54

High CP7 5.7. Error information shall be tested 56

High CP8 5.8. Floating point comparison shall not be equality or

inequality

58

High CP28 5.9 Time and physical measures comparison shall not be

equality or inequality

59

High CP9 5.10. Limit the complexity of POU-code 60

High CP10 5.11. Avoid multiple writes from multiple tasks 63

High CP11 5.12. Manage synchronization among tasks 65

High CP12 5.13. Physical outputs shall be written once per PLC cycle 68

High CP13 5.14. POUs shall not call themselves directly or indirectly 69

High CP14 5.15. POUs shall have a single point of exit 71

High CP15 5.16. Read a variable written by another task only once per cycle 72

High CP16 5.17 Tasks shall only call program POUs and not Function

Blocks

74

High CP17 5.18. Usage of parameters shall match their declaration mode 75

High CP18 5.19. Use of global variables shall be limited 77

High L7 6.5.1. Closing divergent paths 106

High E1 7.1. Dynamic memory allocation shall not be used 122

High E2 7.2. Pointer arithmetic shall not be used 123

High E3 7.3. Some comparator instructions shall not be used for

pointers or reference manipulation

124

Medium N6 3.2.4. Define an acceptable name length 27

Medium N7 3.2.5. Define naming rules for namespaces 29

Medium N8 3.2.6. Define the acceptable character set 31

Medium N9 3.2.7. Different element types should not bear the same name 32

Medium CP19 5.20. Usage of jump and return should be avoided 81

Medium CP20 5.21. Function block instances should be called only once 84

PLCopen
®

for efficiency in automation

PLCopen PC2 Training Software Construction Guidelines © PLCopen (2016)

Coding Guidelines V.1.0 April 20, 2016 page 127/127

Medium CP21 5.22. Use VAR_TEMP for temporary variable declaration 86

Medium CP22 5.23. Select appropriate data type 88

Medium CP23 5.24. Define maximum number of input/output/in-out variables

of a POU

91

Medium CP24 5.25. Do not declare variables that are not used 94

Medium CP25 5.26. Data types conversion shall be explicit 95

Medium L2 6.2.1. Avoid assignments of intermediate results within networks 100

Medium L3 6.2.2. Define maximum complexity of single network 101

Medium L5 6.4.1. A coil should not be followed by a contact 102

Medium L6 6.4.2. Define maximum rung complexity 103

Medium L8 6.5.2. Do not program an SFC action block in SFC 106

Medium L9 6.5.3. Define maximum complexity 107

Medium L10 6.6.1. Usage of Continue and Exit instruction should be avoided 110

Medium L11 6.6.2. Define the maximum line length 112

Medium L22 6.6.3. Loop variables should not be modified inside a FOR loop 113

Medium L13 6.6.4. FOR loop variable usage should not be used outside the

FOR loop

115

Medium L14 6.6.5. Passing parameters should be clear 117

Medium L15 6.6.6. Use parenthesis to explicitly express operation precedence 119

Low N2 3.1.2. Define type prefixes for Variables (if used) 17

Low N10 3.2.8. Define name prefixes for user defined types 33

Low C3 4.3. Avoid nested comments 39

Low C4 4.4. Comments may not include code 40

Low C5 4.5. Use single line comments 41

Low C6 4.6. Define comments language 43

Low CP26 5.27. A global variable may be written only by one PROGRAM 97

Low CP27 5.28. Avoid deprecated features 98

Low L1 6.1. Define indentation 99

Low L4 6.3. Define general formatting rules 102

Low L16 6.6.7. Define the use of tabs 120

Low L17 6.6.8. Each IF instruction should have an ELSE clause 121

	1. Introduction
	2. How-to use this document
	2.1. Methodology used to build this document
	2.2. Document structure
	2.3. Rules description format
	2.4. References

	3. Naming Rules
	3.1. Additional rules for Variables only
	3.1.1. Avoid physical addresses
	3.1.2. Define type prefixes for Variables (if used)

	3.2. Tasks, Programs, Functions Blocks, Functions, Variables, UDTs and namespaces
	3.2.1. Define the names to avoid
	3.2.2. Define the use of case (capitals)
	3.2.3. Local names shall not shadow global names
	3.2.4. Define an acceptable name length
	3.2.5. Define naming rules for namespaces
	3.2.6. Define the acceptable character set
	3.2.7. Different element types should not bear the same name
	3.2.8. Define name prefixes for user defined types

	4. Comment Rules
	4.1. Comments shall describe the intention of the code
	4.2. All elements shall be commented
	4.3. Avoid nested comments
	4.4. Comments may not include code
	4.5. Use single line comments
	4.6. Define comments language

	5. Coding Practice
	5.1. Access to a member shall be by name
	5.2. All code shall be used in the application
	5.3. All variables shall be initialized before being used
	5.4. Direct addressing should not overlap
	5.5. Applications shall be well designed
	5.6. Avoid external variables in functions, function blocks and classes
	5.7. Error information shall be tested
	5.8. Floating point comparison shall not be equality or inequality
	5.9. Time and physical measures comparison shall not be equality or inequality
	5.10. Limit the complexity of POU code
	5.11. Avoid multiple writes from multiple tasks
	5.12. Manage synchronization among tasks
	5.13. Physical outputs shall be written once per PLC cycle
	5.14. POUs shall not call themselves directly or indirectly
	5.15. POUs shall have a single point of exit
	5.16. Read a variable written by another task only once per cycle
	5.17. Tasks shall only call program POUs and not Function Blocks
	5.18. Usage of parameters shall match their declaration mode
	5.19. Use of global variables shall be limited
	5.20. Usage of Jump and Return should be avoided
	5.21. Function block instances should be called only once
	5.22. Use VAR_TEMP for temporary variable declaration
	5.23. Select Appropriate Data Type
	5.24. Define maximum number of input/output/in-out variables of a POU
	5.25. Do not declare variables that are not used
	5.26. Data types conversion should be explicit
	5.27. A global variable may be written only by one PROGRAM
	5.28. Avoid deprecated features

	6. Languages
	6.1. Define indentation
	6.2. Function Block Diagram FBD
	6.2.1. Avoid assignments of intermediate results within networks
	6.2.2. Define maximum complexity of single network

	6.3. Ladder (LD)
	6.3.1. A coil should not be followed by a contact
	6.3.2. Define maximum rung complexity

	6.4. Sequential function Chart (SFC)
	6.4.1. Closing divergent paths
	6.4.2. Do not program an SFC action block in SFC
	6.4.3. Define maximum complexity

	6.5. Structured Text (ST)
	6.5.1. Define General formatting rules
	6.5.2. Usage of Continue and Exit instruction should be avoided
	6.5.3. Define the maximum line length
	6.5.4. Loop variables should not be modified inside a FOR loop
	6.5.5. FOR loop variable usage should not be used outside the FOR loop
	6.5.6. Passing parameters should be clear
	6.5.7. Use parenthesis to explicitly express operation precedence
	6.5.8. Define the use of tabs
	6.5.9. Each IF instruction should have an ELSE clause

	7. Vendor Specific IEC 61131-3 Extensions
	7.1. Dynamic memory allocation shall not be used
	7.2. Pointer arithmetic shall not be used
	7.3. Some comparator instructions shall not be used for pointer or reference manipulation

	8. Annex 1 – overview of the rules via their priorities

