
Methods, Inheritance, and Interfaces

As Additional Elements in Automation Programming

BERNHARD WERNER

©
B

R
A

N
D

X
P

IC
T

U
R

E
S

I
ndustrial automation is faced with several challenges today. The complex-

ity of applications is ever increasing as is the number of variants available.

Development cycle times are decreasing, and more and more tasks are

assigned to the controller software, which plays a more than crucial role.

Object-oriented programming (OOP) in languages like Cþþ or Java is

commonplace in desktop application development and an integral part of

university education today. It has proved to be absolutely unbeatable when

it comes to elegantly handling complex software-development tasks and producing

flexible, reusable software components. OOP has clearly reduced the development

time of new software and simplified the solution of complex software tasks.

Industrial programmable logic controllers (PLCs), however, are still mostly

programmed in the languages of the International Electrotechnical Commission

(IEC) 61131-3 standard. To meet the challenges of modern industrial automation, it

is therefore only logical to add OOP to the upcoming third edition of the standard.

At the moment, an IEC 61131-3 maintenance group is discussing a working draft

of this next edition. This draft contains a proposal for object-oriented extensions

Digital Object Identifier 10.1109/MIE.2009.934795

36 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009 1932-4529/09/$26.00&2009IEEE

gabri
Resaltado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

to be added to the IEC 61131-3. This

article refers to this proposal. It is,

however, a fact that the standardiza-

tion in regards to OOP is still at an

early stage, and it is quite possible that

this article may differ from the final

edition of the IEC standard.

New Language Elements
The IEC 61131-3 already contains a

simple class concept, the function

block. A function block has an inter-

nal state, a routine manipulating this

state, and may be instantiated several

times. All IEC 61131-3 programmers

are familiar with these concepts.

Thus, the extension of the existing

function block by object-oriented fea-

tures is a natural way of introducing

object orientation to the IEC 61131-3.

The features proposed in the cur-

rent working draft are

1) methods

2) inheritance

3) interface abstraction.

With these new language ele-

ments, the working draft covers all

common elements of OOP languages

such as classes, objects, methods,

inheritance, and polymorphism.

Methods

A traditional function block contains

only one routine for manipulating the

function block’s internal state, al-

though there may be very different

tasks to perform on this state, e.g., ini-

tialization, error handling, or cyclic

execution. The only way to control

this routine is by assigning specific

values to the inputs of the function

block when calling this routine.

An object-oriented approach would

separate the code for the different

tasks to separate methods of the func-

tion block.

The following example shows a

direct comparison of the two concepts:

1) Start the pump

Pump1(start :¼ TRUE, Direction

:¼ Forward, Reset :¼ FALSE);

(*classical approach*)

Pump1.Start(Direction :¼ Forward);

(*object-oriented approach*)

2) Reset the pump

Pump1(start :¼ FALSE, Reset :¼
TRUE); (*classical approach*)

Pump1.Reset(); (*object-oriented

approach*).

There are several advantages of

object-oriented approach:

n Structuring: The classical imple-

mentation must contain all func-

tionality in one body, whereas

the object-oriented approach al-

lows for the separation of code

for different tasks.

n Readability: The name of the meth-

od clearly shows what the pump

is meant to do, whereas in the

classic approach, the assignment

of inputs determines the usage.

Language Feature: Methods

Methods, as defined in the current

working draft, may be seen as a func-

tion declared inside a function block

with result type, parameters, and

local variables. As is the case within

functions, these local variables will

not keep their state from one call of

the method to the next. Methods

have an implicit access to the varia-

bles of the function block. In addition

to traditional object-oriented meth-

ods, IEC 61131-3 methods may con-

tribute to the internal state instances.

This allows the implementation of

EDGE-detection inputs or state

machines [sequential function chart

(SFC)] within a method.

Thus, all languages of the stan-

dard can be used for the implementa-

tion of methods [although in the

following code samples, the imple-

mentation language is always struc-

tured text (ST)].

Language Feature:

Access Specifiers

For fine-grained access on methods,

the proposal defines the following

access specifiers:

n Public: Access without any

restriction

n Private: Access is restricted to

the function block

n Protected: Access is restricted to the

function block and its derivations

n Internal: Special access in combi-

nation with namespaces (also a

proposal for the third edition,

which cannot be discussed in

this article).

Inheritance

In classical IEC 61131-3 program-

ming, variants of a function block

are constructed by copying the func-

tion block and changing its implemen-

tation. There is no way of reusing

common parts of the code. Obvi-

ously, this approach has a lot of dis-

advantages for code maintenance.

In OOP, a new function block may

be constructed by inheritance. This

means that the new function block

inherits all variables and methods of

the old function block. It may define

additional variables and methods,

and it may override the methods of

its parent.

Language Feature: Extends

EXTENDS in a function block makes it

the subclass of another function block.

Interfaces

Language Feature: Interface

For the declaration of abstract super-

classes, the interface construct is

introduced. An interface is similar to

a function block, with subordinate

method prototypes. The difference is

that the interface does not have vari-

ables nor an implementation part,

and its method prototypes in turn do

not have local variables nor an

Object-oriented programming in languages like

C++ or Java is commonplace in desktop

application development and an integral part of

university education today.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 37

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Rectángulo

gabri
Resaltado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

implementation. If a function block is

derived from an interface, it must

contain concrete methods (with

implementation) for all method pro-

totypes defined by the interface.

The introduction of interfaces

avoids the problems that arise with

multiple inheritance. A function block

may be derived from one other func-

tion block (and not more) but from an

arbitrary number of interfaces.

Language Feature: Implements

The keyword IMPLEMENTS in a

function block makes it the subclass

of one or more interfaces. An IMPLE-

MENTS declaration requires the

function block to have at least all

the methods that the named interfa-

ces have (with the same parameter

and result types). The new thing is

that in the function block the meth-

ods must also have an implementa-

tion part!

Language Feature: Reference

Semantics for Interface Types

Like a function block name, the name

of an interface can be used as a type

name in the declaration of variables.

These declarations have reference

semantics. This means, this declara-

tion does not provide a new object

but only a new reference to a function

block instance declared elsewhere

(initially NULL). This instance must

be of a function block type imple-

menting the interface. The assign-

ment of a function block instance to

an interface variable makes that

variable refer to the function block

instance. Thus, the same interface

variable can refer to different instan-

ces of different function block types

(polymorphism).

Note that a function block in-

stance may be assigned to any inter-

face variable of interface types it is

derived from.

Example
The following example illustrates one

possible usage of the new language

elements. It contains a mixture of the

IEC 61131-3 languages ST (similar to

PASCAL) and function block diagram

(a graphical language).

The application is a simplified

building application that could, for

example, be used to control the light-

ing system of rooms in an office build-

ing. The application mainly consists

of rooms with so-called daytime and

nighttime modes and a room control

that controls these modes. The room

control is to handle any function

block with a daytime/nighttime mode;

therefore, we define an abstract inter-

face for these kind of function blocks

(Figure 1).

The room-control function block

(Figure 2) can now handle a variable

of type ROOM.

This function block is a common

function block with one body and no

methods. Note that the room-control

function block can be called with any

function block implementing the

ROOM interface.

Now, we need function blocks

that implement the interface (Fig-

ure 3). The following code fragment

contains two such function blocks,

the second being inherited from the

first one.

Now we have all parts of our tiny

building application, and we can

bring them together in a small test

program (Figure 4).

INTERFACE ROOM

METHOD DAYTIME : VOID

END_METHOD

METHOD NIGHTTIME : VOID

END_METHOD

END_INTERFACE

FIGURE 1 –Abstract interface for rooms.

FUNCTION_BLOCK ROOM_CTRL

VAR_INPUT

RM : ROOM;

END_VAR

VAR_EXTERNAL

DAYTIME : TOD; // global time definition

END_VAR

IF (RM = NULL) THEN // always test on valid reference!

RETURN;

END_IF

IF DAYTIME >= TOD#20:15 OR DAYTIME <= TOD#6:00 THEN

RM.NIGHTTIME();

ELSE

RM.DAYTIME();

END_IF

END_FUNCTION_BLOCK

FIGURE 2 – Implementation of room control.

An object-oriented approach would separate the

code for the different tasks to separate methods

of the function block.

38 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado

gabri
Subrayado

The crucial point in this example

is the usage of polymorphism. One

variable of an interface type can be

assigned variables of different types

at runtime. This offers enormous new

opportunities for the design of auto-

mation applications. Had this pro-

gram been written in a conventional

way without using OOP, it would

have been necessary either to define

a control function block for every

room or to include the control code

into every different type of room. In

both cases, we would have to dupli-

cate the code.

Conclusions
Even the small example shown earlier

clearly demonstrates the strong

advantages of OOPs:

n better-structured program code

with separation of concerns and

information hiding

n flexible extensibility by new

types of objects (e.g., software

representations of new types of

drives)

n reuse of code for defining special-

ized subclasses (inheritance)

n reuse of code operating on differ-

ent implementations of an inter-

face (polymorphism).

Biography
Bernhard Werner received his

master’s degree in computer sci-

ence (Diplominformatiker) at the

Technical University of Munich in

1996. He joined 3S-Smart Software

Solution as a software developer

and specialized in the field of com-

piler technologies. He was directly

involved in the development of CoD-

eSys V3. CoDeSys V3 is the first PLC

programming system with object-

oriented language features. Further-

more, he is a member of the German

working group of the Deutsche Kom-

mission Elektrotechnik Elektroni

Informationstechnikim DIN und VDE

(DKE) and of the maintenance team

of the IEC (IEC 65B/Working Group

7/Maintenance Team 3). Both groups

are currently working on the new

draft of the IEC 61131-3.

END_PROGRAM

PROGRAM TEST

VAR

MyRoom1 : LIGHTROOM;

MyRoom2 : LIGHTROOM;

MyRoomCtrl : ROOM_CTRL;

END_VAR

 room control with two different types of rooms!

RM

ROOM_CTRL

MyRoomCtrl

MyRoom1

RM

ROOM_CTRL

MyRoomCtrl

MyRoom2

FIGURE 4 – Simple building application.

FUNCTION_BLOCK LIGHTROOM IMPLEMENTS ROOM

VAR

LIGHT : BOOL;

END_VAR

PUBLIC METHOD DAYTIME : VOID

LIGHT := FALSE;

END_METHOD

PUBLIC METHOD NIGHTTIME : VOID

LIGHT := TRUE;

END_METHOD

END_FUNCTION_BLOCK

FUNCTION_BLOCK LIGHT2ROOM EXTENDS LIGHTROOM

VAR

LIGHT2 : BOOL;

END_VAR

PUBLIC METHOD DAYTIME : VOID

SUPER.DAYTIME (); // call of parent implementation

LIGHT2 := FALSE;

END_METHOD

PUBLIC METHOD NIGHTTIME : VOID

SUPER.NIGHTTIME (); // call of parent implementation

LIGHT2 := TRUE;

END_METHOD

END_FUNCTION_BLOCK

FIGURE 3 – Example of interface implementation.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 39

gabri
Resaltado

gabri
Subrayado

gabri
Resaltado

gabri
Resaltado

gabri
Resaltado

gabri
Rectángulo

gabri
Resaltado

gabri
Subrayado

gabri
Subrayado
Current Edition 3.0 (2013)

gabri
Resaltado

gabri
Resaltado

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

