
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004 223

Computer-Automated Multiparadigm Modeling in
Control Systems Technology

Pieter J. Mosterman, Member, IEEE, Janos Sztipanovits, Fellow, IEEE, and Sebastian Engell, Member, IEEE

Abstract—The use of model-based technologies has made it im-
perative for the development of a feedback control system to deal
with many different tasks such as: plant modeling in all its va-
riety; model reduction to achieve a complexity or level of abstrac-
tion suitable for the design task at hand; synthesis of control laws
that vary from discrete event reactive control to continuous model
predictive control, their analyses, and testing; design of the im-
plementation; modeling of the computational platform and its op-
erating system; analysis of the implementation effects; software
synthesis for different platforms to facilitate rapid prototyping,
hardware-in-the-loop simulation, etc. Throughout these tasks, dif-
ferent formalisms are used that are very domain specific (e.g., tai-
lored to electrical circuits, multibody systems, reactive control al-
gorithms, communication protocols) and that often need to be cou-
pled, integrated, and transformed (e.g., a block diagram control
law in the continuous domain has to be discretized and then im-
plemented in software). Significant improvements in many aspects
(performance, cost, development time) of the development process
can therefore be achieved by: 1) relating and integrating these dif-
ferent formalisms; 2) automatic derivation of different levels of
modeling abstractions; and 3) rigorous and tailored design of the
different formalisms by capturing the domain (or meta) knowl-
edge. The emerging field of computer automated multiparadigm
modeling (CAMPaM), presented in this paper in the context of con-
trol system design, aims to develop a domain-independent formal
framework that leverages and unifies different activities in each of
these three dimensions.

Index Terms—Computer-aided control system design, control
engineering, design automation, embedded software design, meta-
modeling, model integrated computing, multiparadigm modeling,
systems engineering.

I. INTRODUCTION

CONTROL system development is an inherently multi-
disciplinary activity. Typical stages of this process are:

1) modeling of the (existing or envisioned) plant; 2) model
reduction to generate a model of appropriate complexity;
3) control algorithm design (e.g., inverse dynamics, pole
placement); 4) test of the control algorithm using the original
plant model; 5) implementation design; and 6) realization. Note
the difference between design and development: A controller

Manuscript received April 29, 2002; revised July 8, 2003. Manuscript re-
ceived in final form August 26, 2003. Recommended by Editor M. Bodson. The
work of J. Sztipanovits was supported by NSF ITR Grant CCR-0 225 610.

P. J. Mosterman is with the Real-Time and Simulation Technologies Group,
The MathWorks, Inc., Natick, MA 01760 USA (e-mail: pieter_j_mosterman@
mathworks.com).

J. Sztipanovits is with the Institute for Software Integrated Systems, Van-
derbilt University, Nashville, TN 37203 USA (e-mail: sztipaj@vuse.vanderbilt.
edu).

S. Engell is with the Process Control Laboratory, University of Dortmund,
Dortmund D-44221, Germany (e-mail: s.engell@bci.uni-dortmund.de).

Digital Object Identifier 10.1109/TCST.2004.824280

is initially designed and then re-designed as details of the
realization/implementation are taken into account. This process
of repeatedly modifying the design is the development process.

The complexity of systems and the need for using different
engineering disciplines in the different design stages motivated
the use of the divide et impera, or divide and rule principle.
Application of this principle reduces complexity by means of:
1) abstraction to remove irrelevant detail; 2) partitioning into
subsystems and components (chunks with a complexity that can
be handled without further decomposition); and 3) hierarchy to
organize the system [1].

In this paper the controller design is decomposed in three hi-
erarchical structures: 1) functional hierarchy; 2) implementa-
tion hierarchy; and 3) the realization hierarchy. The functional
hierarchy describes what the system is supposed to do and so
captures system behavior. An implementation is a means of
achieving an end and as such the implementation hierarchy de-
scribes how the intended functionality is achieved. The realiza-
tion is the actual physical system.

Because these hierarchies are closely related and even entan-
gled, an inherent characteristic of system development is the
need for incremental refinement in different but related direc-
tions. In control systems, this requires repeated modifications
of the original control algorithm as it is combined with addi-
tional implementation functionality induced by system integra-
tion and realization needs such as data validation, scaling, sam-
pling rates, and numerical accuracy.

To streamline this iteration process and facilitate analysis and
synthesis, sophisticated modeling approaches are used for each
of the aspects.

• To model the functional aspects of the control algorithm
and its supporting functionality high-level languages
are used such as block diagrams [2], statecharts [3],
communicating sequential processes (CSP) [4], Grafcet
[5], synchronous languages [6], data-flow diagrams,
control-flow diagrams, and discrete event systems speci-
fication (DEVS) [7].

• The controller implementation may be modeled using the
unified modeling language (UML) [8] and the plant im-
plementation with Modelica [9], VHSIC (very high speed
integrated circuit) hardware description language (VHDL)
[10], or bond graphs [11], [12].

• The realization may include physical models that can be,
e.g., scale models, mockups, and prototypes.

Combining these aspects and addressing the inherent hetero-
geneity poses demanding integration requirements on modeling
languages.

1063-6536/04$20.00 © 2004 IEEE

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

224 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

The prolific use of embedded code has another important im-
plication for control system design; today, systems exist with
many interacting embedded controllers at different levels in the
system hierarchy. As a consequence, verification and validation1

(V&V) of the control system has to account for a number of
complicating aspects: 1) within a level in the functional hier-
archy, the parts of the controller are analyzed not only individ-
ually but also in combination; 2) between levels in the func-
tional hierarchy, the V&V process mixes subsystems at different
levels; and 3) across phases in the development cycle, the effects
of selected implementation technologies and design approaches
are taken into account.

This paper aims to introduce these “systems concerns” in con-
troller design. It presents the phases of the design process using
a power window controller as an example and shows that much
of the effort in controller design must be devoted to the function-
ally correct realization of the control algorithms. Given the mul-
titude of formalisms used in the functional design in describing
the implementation of the control algorithms and in representing
the heterogeneous platforms realizing the controller, a compre-
hensive method is required to integrate these representations.

Specifically, customized (maximally constrained) domain-
specific formalisms and their supporting development environ-
ments should be easy to design and adapt. Models in different
formalisms that capture different levels of detail and that view
different aspects of the system, need to be managed. Translation
between them is necessary to allow: comprehensive analyses,
presenting results in different domain-specific views, synthesis
of heterogeneous models, and automated changes in model
abstraction. And, finally, vendor supplied models and different
“best-of-class” tools have to be coupled.

Computer automated multiparadigm modeling (CAMPaM)
tries to achieve this feat by leveraging and combining theory
and methodology in three orthogonal dimensions: 1) support for
multiple formalisms; 2) support for different levels of abstrac-
tion; and 3) support for generating tailored formalisms from a
model of the modeling formalisms, i.e., a meta-model. Though
the actual design process is domain specific, it is possible to
construct such a domain independent formal framework. For the
particular task of control system development, this framework
then includes theory, tools, and methods for addressing the is-
sues of optimal controller design across and between levels of
functionality, implementation, and realization.

This paper presents an overview of some of the issues in-
volved in the design and development of complex systems and
how CAMPaM can be applied. Section II presents an example
system, an electronic window in automobiles, to relate the con-
cepts and notions. Section III generalizes the concepts exem-
plified by the power window system. This introduces the im-
portance of modeling and Section IV gives an overview of its
uses. Section V then distills the requirements for a comprehen-
sive model-based approach to system design and presents the
field of CAMPaM and how it addresses the issues put forward
in the previous section. Finally, in Section VI conclusions of this
overview are drawn.

1In this paper, verify is interpreted as checking domain laws and validate as
checking correctness of execution against the requirements. Verification then
checks whether a model was built correctly, while validation checks whether
the correct model was built.

Fig. 1. Power window mechanics.

II. POWER WINDOW CONTROL SYSTEM

Controller design is inherently a “systems problem.” This
means that the design process includes issues that arise from
partitioning large-scale systems and realizing them with phys-
ical components having a variety of nonfunctional attributes
such as power consumption, fault behavior, and dimensions.

A. Partitioning to Manage Complexity

Consider a power window control system as used in automo-
biles to open and close the windows. The windows are moved
by motors that are controlled by up and down commands gener-
ated by the driver and the passengers pressing switches. These
switches are typically located elsewhere in the vehicle and con-
nect to the window control module via a controller area net-
work (CAN) [13]-based communication bus. To efficiently de-
sign the window control mechanism, it can be partitioned into
four subsystems: 1) the embedded controller; 2) signal condi-
tioning hardware; 3) the electrical actuator; and 4) the lift mech-
anism.

The electrical actuator is typically a motor of the dc type, and
is not decomposed any further in the controller design process,
i.e., it is considered a primitive component. Similarly, the lift
mechanism, shown in Fig. 1, at this level is typically consid-
ered as a primitive component by the control design engineer.
An essential part of the system requirements is the ability to ac-
commodate an obstacle between the window and its frame.

In contrast to the dc motor and lift mechanism, the embedded
controller subsystem is a compound object. It consists of a hard-
ware part and software part that are separate but closely related.

The power window control system is part of a larger CAN bus
connected automobile electronics system that also controls, e.g.,
the opening and closing of a sun roof and moving the headlights
up and down. So, it is a subsystem itself and interacts with the
window control switches. These, again, are subsystems that can
be decomposed into the switch hardware, signal conditioning
hardware in the form of a voltage divider to transform the battery

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

MOSTERMAN et al.: COMPUTER-AUTOMATED MULTIPARADIGM MODELING 225

TABLE I
POWER WINDOW REQUIREMENTS

Fig. 2. Discrete event model of window control.

voltage to within the 0–5 [V] input range of the analog to digital
(AD) converter and the micro-controller that communicates the
commands to the CAN bus.

B. Development Cycle

It is first stepped through the development of the power
window system and the effects of the different stages on
the functional aspect, i.e., the design of the behavior of the
controller, are pointed out.

1) Initial Specification: The requirements that are the basis
for the design are typically written down in natural language,
possibly annotated with graphics. These requirements often are
not very rigorous, and, consequently, contain inconsistencies
and ambiguities. For the power window control system, the re-
quirements pertinent to the discussion that follows are stated in
Table I.

2) Discrete Event Behavior: An initial design may focus on
the discrete event control aspects of the requirements. The stat-
echart [3] formalism is intuitive and efficient for capturing the
reactive behavior. Fig. 2 shows a statechart in Stateflow® [14]
that captures the transitions between neutral, up, and down; the
precedence of driver commands over the passenger commands;
the automatic and manual up and down modes; and the pri-
ority of an emergency state over the safe state. This is achieved
by a hierarchical structuring of state transition diagrams. At
the top level, function, there is an emergencyDown state and a

Fig. 3. Hybrid model of window control.

safe state. The safe state is decomposed into a driverNeutral
state, a driverUp state, and a driverDown state. The latter two
are decomposed in three other states each, that implement the
auto-up and auto-down behavior. A similar structure is found
for the passengerUp and passengerDown states that are part of
the driverNeutral state, i.e., when the driver does not issue a
command, the passenger may assume control. The driver and
passenger commands are coded as arrays with entry 1 repre-
senting the neutral command (i.e., no control signal is issued),
entry 2 the window up command, and entry 3 the window down
command. The endstop and obstacle events correspond to the
window reaching the top or bottom of the frame and the window
reaching an obstacle, respectively.

When an event occurs that deactivates a state that is de-
composed into child states, this state is departed irrespective
of the active child state. When a state with child states is
entered without explicitly modeling which of the child states is
activated, the one with the initial transition (depicted by a solid
circle connected to an arrow) is activated. The mathematical
model of these hierarchical state transition diagrams is the
finite state machine formalism (see, e.g., [15]) extended by
hierarchy and parallellism.

3) Temporal Behavior: Once the discrete event control
has been designed and validated against the respective re-
quirements, the temporal requirements have to be analyzed.
The controller is realized by means of a microprocessor that
runs at a 10 [ms] sampling rate. Since the discrete event
controller is connected to a plant (the lift mechanism), which is
modeled as continuous dynamics, the controller and the plant
constitute a hybrid dynamic system [16]–[19]. The Simulink®

[2] model of the hybrid dynamic system is shown in Fig. 3.
This is a block diagram typically used in control engineering
which on a semantic level executes as a set of differential
equations. The block indicates continuous integration,
showing that the plant is modeled as a second order system of
differential equations. The triangular shaped blocks represent
multiplications with a constant (50 for the gain block and
10 for the friction block). Other blocks are constant sources
(square with a numeric value), inequality relations (square with
the operator), a block to select the maximum of two inputs

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

226 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

Fig. 4. System integration requires interface functionality.

(square with max), a switch block to select one of two inputs
(the up signal conversion and down signal conversion blocks),
a table to map two inputs onto an array with three elements
(the driver neutral, up, down map, and the passenger neutral,
up, down map blocks), a multiplexing block that takes two
inputs and moves them into a two dimensional signal (thick
solid vertical bar), and, finally, the statechart control as shown
in Fig. 2 (the block named control). The controller is triggered
by a pulse with 10 [ms] period. In this setup, the endstop and
obstacle events are generated from the plant model based on
the frame top (40 [cm]) and bottom (0 [cm]) and the position
of the obstacle (30 [cm]).

The safety requirement is that the window has to be rolled
down 10 [cm] when an obstacle is detected. Given that the con-
troller runs at a 10 [ms] sampling rate, simulation shows that the
window is rolled down 10 [cm] by a timed transition from the
emergencyDown state that is activated after 1 [s], or 100 clock
ticks of 10 [ms], thus satisfying the requirement.

4) Effects of System Integration on the Functional De-
sign: When integrating the discrete event controller with the
rest of the power window control system, additional considera-
tions are required to ensure that the actual driver and passenger
commands are consistent with the assumptions on which the
state model was based. For example, if for whatever reason the
CAN bus communicates both up and down commands from,
e.g., the driver, only one may be executed. This may cause an
anomalous situation to arise that needs to be prevented. So,
additional functionality is required to make sure that only one of
the three possible commands (up, down, neutral) is issued by the
driver and the passenger. This adds control logic to the controller
that will default to the down command in such a situation.

Fig. 4 shows how the original discrete event controller is
embedded in the extended functionality. The detect obstacle
endstop data analysis process infers the presence of an obstacle
or whether the top or bottom of the window frame is reached. In
this design stage, this may be based on a position thresholding
scheme, i.e., if the window position reaches 40 [cm], it is at the
top of the frame, the bottom is at 0 [cm] and the object can be
positioned anywhere in between.

In addition, the original control is extended by a parallel state-
chart with the actuation control functionality, as shown in Fig. 5.
For example, when the state transition diagram in Fig. 2 is in ei-
ther the driverUp or passengerUp state, the state transition dia-
gram in Fig. 5 moves into the moveUp state. This state transition

Fig. 5. Additional actuation functionality.

Fig. 6. Power effects in the mechanical domain.

diagram has two purposes: First, it translates the system state
into an output command (moveUp and moveDown) and second
it ensures that after a given time-out (here 1000 ticks, or 10 [s])
the system resets to its neutral state, e.g., when the detection of
the frame top or bottom fails and the dc motor is not turned off
appropriately.

5) Refinements of the Implementation: After a first integra-
tion pass, a more detailed plant model can be designed by the
plant design engineers and coupled to the control subsystem.
High level modeling languages such as bond graphs [11], Mod-
elica [9], The MathWorks blocksets [20], [21], VHDL-AMS
[22], and Adams [23] allow intuitive and quick modeling of the
electrical circuitry and the window mechanism. Fig. 6 shows
a multibody model of the window mechanism using the Sim-
Mechanics. The difference between the angular velocity, , as
generated by the dc motor and the angular velocity of the worm
gear generates a torque modeled by the torsional damper con-
stant, . This torque rotates the worm of the worm gear that
causes the main gear that models the main rod of the lift mech-
anism to rotate. The two parts of the worm gear are kept in place
by the door body that may rotate around the vertical axis mod-
eled by a revolute joint. The main gear connects to the window
body through a sliding and rotating joint, rotate & slide. The
window itself may move up and down with respect to ground by

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

MOSTERMAN et al.: COMPUTER-AUTOMATED MULTIPARADIGM MODELING 227

Fig. 7. Power window control system simulation.

means of a prismatic joint. Kinetic and dynamic variables are
obtained by “measurement” and “actuation” blocks. The model
includes viscous friction as a function of the window position.
This friction is very much vehicle dependent and changes over
time. Note that this model, though it applies a formalism dif-
ferent from the block diagrams shown earlier, also executes as
a system of differential equations.

The mapping onto an implementation architecture reveals
that the obstacle and endstop detection logic of the controller
subsystem has to be modified to use the armature current as
drawn by the dc motor that moves the window, instead of the
window position (simply because the latter is not a measured
quantity in the actual system). This affects the control algorithm
profoundly, since the control logic that detects an obstacle and
the endstops cannot be position based.

Simulation of the combined discrete event control and the
continuous plant behavior is the basis for devising a control al-
gorithm that obeys the 100 [N] force limit. Here, a straightfor-
ward thresholding scheme is applied, where the current thresh-
olds are synthesized from simulation.2

Fig. 7(a) shows the window position over a 4 [s] timespan
when the driver initially commands it to move up. At 30 [cm]
an obstacle is detected because the armature current, shown in
Fig. 7(b), exceeds the 1.7 [A] threshold. Fig. 7(c) shows how
little margin is available in terms of current deviation for dif-
ferentiating between the normal operation and 100 [N] force
limit [shown in Fig. 7(d)]. Upon detection of the obstacle, the
window is automatically lowered by 10 [cm]. The negative force
to reverse window movement does exceed 100 [N] in magni-
tude but since this force is negative, it does not violate the force
requirement.

The necessity to use the armature current measurement
complicates the control algorithm design. Simulation studies

2In the spirit of this paper, the complexity does not originate from the control
algorithm so much, rather it is brought about by the increasingly detailed func-
tionality of the plant as well as the controller implementation. It should be clear
that the model-based approach does lend itself perfectly to handle these effects
for much more complex control algorithms as well.

Fig. 8. Data acquisition effects in the power domain.

Fig. 9. Fixed-point data acquisition computations.

showed that the magnitude of the current transients when
starting to move the window (or reversing its direction) tend
to be of the order of 10 [A]. This is much higher than the
maximum current allowed to prevent a force of more than 100
[N] on an obstacle, which is of the magnitude of 1.7 [A]. An
extensive and sophisticated control algorithm that robustly
satisfies the requirements can be designed given the available
models (e.g., a learning feedforward neural net approach may
be applied [24]). However, it would be beyond the scope of this
paper to discuss this in detail. Here it suffices to implement a
statechart-based control module to delay the 1.7 [A] threshold
detection till the current transients have died out. Simulation
shows this to be the case 1 [s] after the moveUp command has
been issued which corresponds to 100 clock ticks in this state-
chart control module. The shortcoming of this implementation
is that an obstacle cannot be detected within one second after
initiating the up command. Note that the moveUp command has
to be included as an additional input to the detection module,
while a more sophisticated control algorithm would affect the
core algorithm more profoundly.

6) Data Acquisition Functionality: Further implementation
aspects are included by modeling the effects of AD conversion
(time discretization, conversion delay, amplitude quantization)
and signal conditioning. For example, to measure the armature
current, a small resistance is included in the voltage source line
across which the voltage is measured. In general, to increase the
measurement range, a shunt resistor may have to be included.
Based on the resistance values, the current can be computed.
The controller design repeatedly goes through such phases of
extensive testing and validation against the requirements, which
may lead to additional refinements and modifications.

In addition to making the plant model more realistic, the con-
troller model is brought closer to an implementation in much
the same way. To improve the computation performance of the
implementation, typically fixed-point computations are applied.
This means that for the power window, several floating-point
operations need to be transformed to fixed-point. Furthermore,
the AD signal has to be scaled to correctly compute the armature
current and its absolute value is used in the control (see Fig. 9).

The implementation decisions again affect the control algo-
rithm performance. In this particular case, when transforming
the floating-point computations to fixed-point, it was deter-
mined that 8 bits would not provide sufficient resolution given
the range of the armature current (approximately [A]) to

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

228 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

Fig. 10. Control design across levels in the design hierarchy.

be able to implement a control sufficiently sensitive to obey the
100 [N] force constraint. Instead, a 16 bit implementation had
to be chosen.

7) Summary: Once all implementation effects that may af-
fect the satisfaction of the requirements are accounted for, the
controller code can be automatically generated from the con-
troller model. This results in a faithful representation of the
modeled behavior. Sophisticated compiler technology generates
controller code more efficiently than its manually coded coun-
terpart. This code itself can even be more efficient if linear time
(or at least quadratic) synthesis algorithms exist because their
systematic optimization of the code scales well.

In general, a control system contains many such control al-
gorithms that are functionally connected. As discussed, there
is control for data validation, actuation time out, and delayed
obstacle detection. In addition, the power window system may
use pulse width modulation (PWM) to control the angular ve-
locity of the dc motor, the setpoint of which is then generated by
the discrete event control of the power window module, but also
there is a control module that takes the switch voltages and trans-
lates these into up, down, and neutral commands. Furthermore,
other distributed controllers that use the CAN communication
bus may affect the performance of the window control system.
To coherently analyze such systems and rule out inconsisten-
cies in the combined behavior requires not only combining the
different models and formalisms used, but also abstracting to a
level of detail that is amenable to analysis. CAMPaM aims at
providing tools and methods to support such a coherent control
system analysis.

III. CONTROL SYSTEM DEVELOPMENT PROCESS

The development process as sketched for the power window
control exemplifies the general process of control system de-
velopment, typically structured along two dimensions: 1) the
system functionality is considered at increasing levels of detail
and 2) at each level in the hierarchy, the system description is
partitioned into subsystems [1].

Graphically, this can be depicted by a triangle where the
system requirements are given at the top and these are refined
through several levels of specification (see Fig. 10). It is im-
portant to note that the triangular representation includes actual
extensions of functionality by nonessential and implementation
parts. So, the design process is not simply a refinement hierarchy
in the sense that it merely refines and presents more detail

Fig. 11. Levels in the functional hierarchy.

of the higher level processes. In terms of the power window
control system, the data validation functionality, data acquisition
functionality (e.g., filtering and scaling), but also the fixed-point
functionality (quantization and overflow) are added as nonessen-
tial and implementation artifacts, while the functional behavior
is detailed by specifying how exactly the obstacle detection
takes place (in this case by current thresholding).

In contrast to the traditional waterfall approach, system de-
velopment does not progress monotonically toward increasing
levels of detail, e.g., [25]. Instead, an inherent characteristic of
the structure of the development process as shown in Fig. 10 is
the need for iterations as more functional detail becomes known.
These iterations make the overall design cost difficult to contain.
Especially iterations that span several design levels can become
expensive. For the power window, the initial endstop detection
design based on the availability of the window position had to
be revised because of cost saving reasons that only allow the dc
motor armature current to be measured.

These design hierarchies exist both for the system function-
ality and implementation. In Figs. 11 and 12, parts of the func-
tionality and implementation hierarchies of the power window
system are illustrated, respectively. In Fig. 11 a structured anal-
ysis (SA) method [26], [27] is used to functionally capture the
operation of the plant with sensors and actuators included. At
the first level in Fig. 11(a), it is captured how a command from
the controller has to be transformed into a control signal for the
actuator that bridges the electrical and mechanical domain to
lift the window. One level down, in Fig. 11(b) the functionality
to generate the control of the actuator is captured as a process
that makes the controller command analog, amplifies it, and then
delivers it to the actuator, while monitoring the requested cur-
rent by means of a voltage drop. The functionality to generate a
voltage that relates to the current drawn is shown in Fig. 11(c).
It first smoothes the signal and then makes it low impedance so
it can be connected to the analog to digital conversion.

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

MOSTERMAN et al.: COMPUTER-AUTOMATED MULTIPARADIGM MODELING 229

(a)

(b)

(c)

Fig. 12. Levels in the implementation hierarchy. (a) Plant. (b) Electronics.
(c) Condition.

Fig. 13. The V process of system development.

In Fig. 12 part of the implementation hierarchy is shown.
Fig. 12(a) shows electronics is used to drive a dc motor that
powers the lift mechanism to move the window up and down.
The electronics part of this is detailed in Fig. 12(b) which shows
that the up and down commands are amplified by an H-bridge,
the output of which is conditioned and sent to an AD converter.
The signal conditioning is shown at the next level, Fig. 12(c). It
smoothes the signal with a low-pass filter and decouples it by
means of an operational amplifier so it is of low impedance and
can be used as input to an AD converter.

Note that the AD conversion that is functionally part of
the measurement process in the implementation resides on a
phyCORE printed circuit board [28] that is populated with
the MPC555 controller. Also note that the functionality in
Fig. 11(b) is represented by a Simulink model in Fig. 8 that can
be executed to quickly test the specifications.

The progress from system design to realization can be por-
trayed as a V-type activity [29] (see Fig. 13). Going down along
the left branch, the system is specified at increasing levels of de-
tail, both functionally as well as in terms of its implementation.

Moving up along the other branch, the realization is created as it
starts at the component level and proceeds to integrate increas-
ingly comprehensive subsystems.

The system integration may again reveal discrepancies be-
tween (subsystem) requirements and realization, which may re-
sult in even more costly iterations between the branches of the
V. For the power window control design, such an iteration would
result from the fixed-point implementation if hardware testing
was chosen over a model-based approach since an eight-bit pro-
cessor would have to be programmed and connected to find
out that it does not provide sufficient resolution to adhere to
the 100 [N] maximum force. To avoid these iterations as much
as possible, sufficiently detailed implementation models are de-
sired that support rapid prototyping, hardware-in-the-loop sim-
ulation, software-in-the-loop simulation, and code deployment
to allow early validation of subsystem design.

IV. MODELING AS A KEY ELEMENT OF CONTROL

SYSTEM TECHNOLOGY

The richness of the control tasks in large systems implies the
need for richness and expressiveness in modeling technology.
In fact, modeling is an inseparable part of control technology.
This section reviews the requirements for modeling technology
introduced by the systems approach to controller design.

A. Modeling as Part of Control Technology

Because an increasing number of realization effects can be
captured in implementation models nowadays, the required it-
erations between the functional, implementation and realization
hierarchies are significantly reduced.

The use of high-level modeling languages simplifies (in sim-
pler domains even removes) the hard task for control engineers
to produce dynamic models in terms of differential equations or
state diagrams. Software engineers, however, use different for-
malisms and notions than control design engineers. These dif-
ferences have to be reconciled at a systems level which allows a
more systematic approach to modeling that is less error prone
and applicable without the need to “manually” translate do-
main-specific representations to more abstract mathematical no-
tations of difference or differential equations or finite automata
(e.g., a schematic of an electronics circuit such as in SPICE [30]
or a multibody topology in SimMechanics [20]).

Over time, many different formalisms have been developed
that address problems in specific fields. To support controller
design, it is crucial to develop modeling languages for both the
controller and the plant that are closely related to the appli-
cation domain. This allows the design to use precise models
and in return yields high-quality control. In addition, if pos-
sible, the formalism should be designed such that it facilitates
computer aided analysis and synthesis. For example, Petri net
models allow for static deadlock analysis [31], [32] and state-
chart models can be coupled with verification tools.

Models of the same subsystem or component may be
completely different, depending on the aspect of interest. For
example, fault detection and isolation may only be interested
in approximate propagation times of failures [33], whereas
hardware-in-the-loop simulation would require real-time

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

230 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

numerical data generation (e.g., [34]). Yet links exist between
the different models, and control design at a system level needs
to account for these different views and levels of abstraction.
The varying levels of detail and different perspectives that
are modeled with these languages need to be related as well
and the consistency among the modeling aspects needs to be
automatically maintained.

B. Model-Based Design Technology

Model-based design technologies in controller design use
models as the primary interface for moving design toward
realization. While modeling itself is evidently the most impor-
tant area in model-based design, three important model-based
technologies are: 1) code generation; 2) simulation; and 3)
test-vector generation.

Model-based code generation allows the high-level modeling
of control laws and computation platforms and transforms them
into embedded code via a form of model transformation. It is an
enabling technology for safe, dynamic system reconfiguration
as changes to the embedded code are made at the model level by
a reconfiguration controller and not at the software level, which
is much more error prone. Because of their more intuitive and
comprehensive nature, high-level modeling languages allow the
human designer to work with much more complex problems
that what was previously possible. In addition, if control code
can be automatically generated, rapid control prototyping [35]
is facilitated to quickly study the behavior of the core control
algorithm when embedded in a realistic environment [36].

Numerical simulation is still the only analysis technology
capable of handling the complexity that arises from modern
modeling approaches, mainly because verification techniques
do not yet scale up to this level of detail (particularly with
mixed continuous and discrete time behaviors [17]–[19]). It is
an important enabler for controller design and can be the basis
for using sophisticated search techniques to obtain robustness
against parameter variations in multiple objective parameter
synthesis (MOPS) [37] where parameter is to be interpreted in
a broad sense, e.g., the control algorithm structure.

Even though certified compilers may cover a large part of the
system validation effort and move it to earlier stages, system
testing will always be required, especially for safety critical sys-
tems. Using model-based approaches, test vector generation can
be automated to a large extent [14].

C. Additional Challenges

Considering the system as a whole, or at least comprehensive
parts of it, in controller design results in additional challenges
and opportunities. Two areas are discussed here: 1) reconfig-
urable control and 2) interlevel optimization.

1) Reconfigurable Controllers: The use of embedded con-
trollers facilitates radical changes of the control algorithms on
the fly. New, flexible hardware architectures even allow hard-
ware reconfiguration during operation [38]–[40]. These new op-
portunites are all based on the extended use of modeling in the
design process. Not only the plant and controller dynamics are
modeled, but their modalities, the related configurations, the uti-

lized resources, the architecture of the resources, and all of their
interdependencies.

2) Interlevel Optimization in Control Design: When consid-
ering control at a systems level, it becomes critical to analyze
and verify the correctness of the low-level control loops scat-
tered throughout the system in combination with and across
component and subsystem boundaries. A system-level control
design perspective takes these level crossing effects into account
and avoids overdesign by considering the coupled systems in
combination with one another.

Note that, though modularization inherently leads to some de-
gree of overdesign and performance degradation, partitioning
into subsystems and components with well-defined interfaces is
an indispensible means in system design to structure the process
and support modification and exchange of subsystems, espe-
cially in the initial design stages.

Another interesting example for level crossing design is syn-
thesis of controllers under constraints introduced by the effects
of realization resources [41].

V. COMPUTER AUTOMATED MULTIPARADIGM MODELING

The general discussion in Section IV indicates the need for a
model-based framework to manage the complexity of the con-
trol system development. A set of requirements for this frame-
work is distilled first, after which it is discussed how CAMPaM
addresses these.

A. Requirements

The extended interpretation and use of modeling leads to the
following requirements in modeling technology.

1) Use of different, domain-specific modeling languages
(computer aided design data, dynamics models, imple-
mentation technology model) needs to be coupled and
related (including legacy models).

2) Translation between modeling formalisms is necessary to
perform comprehensive analyses, to present results in dif-
ferent domain-specific views, and for synthesis of hetero-
geneous models.

3) Models provided by (at least) first tier vendors have to
be connected to each other and to the in-house designed
models, at least to the point where they function in a
cosimulation setup.

4) Automated changes in model abstraction must be sup-
ported. This refers to model reduction (e.g., [42]) as much
as augmentation (e.g., [43]) and also includes controller
order reduction.

5) Customized domain-specific formalisms and their sup-
porting development environments should be designed
and adapted with little effort to support the evolutionary
process of formalism changes.

6) Domain-specific constraints (e.g., the fan-out of digital
logic) need to be included as inherent to the formalism.

7) Tools that are best-of-class with respect to specific
analyses in the control design process have to be inte-
grated so that they can operate on the same models.

8) Models that capture different levels of detail and view dif-
ferent aspects of the same subsystem need to be managed.

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

MOSTERMAN et al.: COMPUTER-AUTOMATED MULTIPARADIGM MODELING 231

B. Three Dimensions of CAMPaM

The emerging field of CAMPaM aims to develop a formal
framework that leverages and unifies different activities in
each of the following three dimensions: 1) support for multiple
formalisms; 2) support for multiple levels of abstraction; and
3) meta modeling [44]. In this sense, a modeling paradigm
consists of a set of formalisms, several levels of abstraction
addressed by the different formalisms, domain constraints, and
formal interrelationships between the formalisms, abstractions,
and constraints.

1) Support for Multiple Formalisms: A domain-specific
modeling language is a five-tuple of concrete syntax ,
abstract syntax , semantic domain and semantic and
syntactic mappings (MS and MC, respectively) [45]:

. The concrete syntax defines the specific
(textual or graphical) notation used to express models, which
may be graphical, textual, or mixed. The abstract syntax
defines the concepts, relationships, and integrity constraints
available in the language. Thus, the abstract syntax determines
all the (syntactically) correct “sentences” (in this case: models)
that can be built.3 The semantic domain is usually defined by
means of some mathematical formalism in terms of which the
meaning of the models is explained. The mapping
assigns syntactic constructs (graphical, textual, or both) to the
elements of the abstract syntax. The semantic
mapping relates syntactic concepts to those of the semantic
domain.

A domain-specific formalism is effective, because it de-
scribes the domain models most precisely and most intuitively.
Requirements 1 and 2 are concerned with the combining and
relating of formalisms, which can be implemented at three
distinct levels.

• The most basic level is the numerical level. Here, models
in different formalisms are combined by producing data
for each of them in a unified representation, i.e., an exe-
cution trace.

• One level up, data structures may be exchanged between
formalisms. This requires each of the formalisms to pro-
duce and consume data in a commonly understood format.
This approach is taken, e.g., by Ptolemy [46], where data
tokens are exchanged that can have a complex structure.

• At the highest level, models in one formalism can be trans-
lated into a representation using another formalism. For
example, causally augmented bond graphs can be trans-
formed into ordinary differential equations [11] and trans-
lations between different DEVS dialects [47] may be per-
formed under closedness conditions.

As translations between the different formalisms become
available, a formalism transformation graph canbe designed with
a partial ordering much like a type lattice in software [48]. This
graph allows decisions about which translation path to take to
combine different formalisms. Domains where this activity takes
place are, e.g., in cosimulation, modeling and simulation tools (to
arrive at the common differential equations executable format),
and multi-agent applications. This addresses Requirement 3.

3It is important to note that the abstract syntax includes semantic elements
as well. The integrity constraints, which define well-formedness rules for the
models, are frequently called “static semantics.”

2) Different Levels of Abstraction: Orthogonal to the
multiformalism dimension is the level of detail of the model.
A model is designed to solve a particular problem and as
such, there is not one unique model. Different levels of control
design in the system hierarchy require models with a different
degree of complexity (e.g., [42]). Requirement 4 is addressed
by formal methods for abstraction and refinement, e.g., using
quotient spaces to produce bisimulations of control systems at
different levels of detail [49]. Especially in discrete systems,
abstraction, and refinement are key factors for success [50].
Further approaches, e.g., power-based [51], are investigated.

Along with model reduction, model augmentation is impor-
tant as well [52]. There has been work done in automatically
finding the desired level of detail of (bond graph) models that
are composed into a larger system of which behavior with a pre-
scribed bandwidth is to be investigated [43].

3) Meta-Modeling: The quick generation and evolution
of modeling environments (Requirement 5) demands that the
modeling formalisms are modeled as well. Formal models of
domain-specific formalisms (called meta-models) enable the
construction of meta-programmable tool environments that can
be turned into a domain-specific environment by means of the
meta-models [53], [54].

The specification of the abstract syntax of domain-specific
modeling languages requires a meta-language that can express
concepts, relationships, and integrity constraints. In model-inte-
grated computing (MIC) [45], UML [8] class diagrams and the
object constraint language (OCL) are used as meta-language.
The semantic domain and semantic mapping defines the se-
mantics of a modeling language. The role of semantics is to
describe the meaning of models in precise, usually mathemat-
ical terms. Naturally, models might have different interesting
properties, therefore, a modeling language might have a mul-
titude of semantic mappings associated with it. For example,
structural and behavioral semantics are frequently used inter-
pretations of modeling languages. The structural semantics of
a modeling language describes the meaning of the models in
terms of the composition of possible model instances: structural
semantics is frequently called instance semantics. Accordingly,
the semantic domain for structural semantics is defined by some
form of set-relational mathematics. The behavioral semantics
describes the evolution of the state of the modeled artifact along
some time model. Hence, behavioral semantics is formally mod-
eled by mathematical structures representing some form of dy-
namics, such as hybrid dynamic systems [16]–[19].

There are two frequently used methods for specifying se-
mantics: 1) the meta-modeling approach and 2) the transla-
tional approach. In the meta-modeling approach, the semantics
is defined by a meta-language that already has a well-defined
semantics. For example, the UML/OCL meta-language that can
be used for defining the abstract syntax of a modeling language
has a structural semantics: it describes the possible component
structure of valid, syntactically correct domain models. The se-
mantics of this meta-language can be represented by means of
a formal language, which enables the precise definition of sets
and relations on sets. By providing the formal semantics for
UML class diagrams and OCL, say, in [55], the meta-model
of domain-specific languages specifies not only their abstract

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

232 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

syntax, but their structural semantics as well, which addresses
Requirement 6.

The translational approach specifies semantics via specifying
the mapping between a modeling language and another mod-
eling language with well-defined semantics.

The recent UML effort relies heavily on (so-called ‘loose’
[56]) meta-models. Other work applies these notions to
software architectures [57]. More specific control system
technological efforts are the generic modeling environment
(GME) [58] and the domain modeling environment (DoME)
[53], projects to quickly instantiate formalisms and even entire
(real-time capable) tools [59], [60]. In control systems design,
meta-models can be used to express and validate domain
constraints (e.g., conservation of energy or deadlock freeness).
This allows the use of formal methods to be applied to a much
smaller model (the meta-model) instead of an entire component
model, subsystem model, or even a complete system model,
thereby avoiding tractability pitfalls. The verified meta-charac-
teristics help restrict the design space and add to the validity of
the models based on the particular formalism.

Using meta-modeling for formalism and tool design has sev-
eral benefits. Besides the support for quickly instantiating tools
and formalisms, it allows to conveniently migrate the formalism
or tool along with the user requirements. In addition, an explicit
meta-model of formalisms makes it easier to synthesize these
together.

C. The Cross-Product Space

Developments in each of the branches of the V in Fig. 13 are
important in the overall structure of multiparadigm modeling.
One of the interesting problems is to transcend the application
domains and to find independent frameworks to support each of
the individual branches. In addition, there is a lot to be gained
from leveraging the individual results by combining them across
the multiparadigm modeling dimensions.

The case data interchange format (CDIF) [61], for example,
uses meta models of data formats to facilitate data exchange be-
tween formalisms. The meta data allows tools to import data that
is not understood in all its facets, but of which it has some knowl-
edge at a meta level, which satisfies Requirement 7. At present,
graph transformations are one of the most important technolo-
gies to translate between formalisms and the production rules for
the translation are typically specified at the meta level [62].

Another important application that addresses Requirement 8
by cutting across all three dimensions is the combined use of for-
malisms in system modeling. This comes in four incarnations:
1) multiple views allow embedding different aspects of a model;
2) combining different formalisms to interact with each other;
3) heterogeneous refinement where more detail of a process is
represented in a different formalism; and 4) layering of system
models through different levels of the implementation process
[63]. This is the most comprehensive use of computer automated
multiparadigm modeling and applies very much to the control
design at a system level.

Tools, techniques, methods, and applications of these multi-
paradigm modeling notions in the field of control system tech-
nology are the topic of this special issue that contains state of
the art presentations. Details on the theory and methodology can
be found elsewhere [44].

VI. CONCLUSION

The design of large control systems centers around the “core
control algorithms.” These are control algorithms as designed
from the initial specifications and may range from being of a
discrete event reactive nature to nonlinear model predictive con-
trol (e.g., [64], [65]).

In general, the bulk of the engineering effort in control system
design deals with taking the core algorithm to a realization. This
is especially true for embedded control systems because of the
effects of embedded technologies on implementation and per-
formance (think of fixed-point resolution, scheduling effects,
analog-to-digital conversion delays, etc.). The difficulties are
further exacerbated by the increasing use of heterogeneous im-
plementation platforms (using digital signal processors, appli-
cation specific integrated circuits, field programmable gate ar-
rays, etc.).

To provide automated support for control system design, the
implementation effects have to be modeled in much detail. This
requires high-level modeling languages with well-defined for-
malisms (both semantics and syntax) for the functional, imple-
mentation, and realization aspects of the design process.

In addition, safety and performance requirements mandate
analysis of the interaction of the different core control algo-
rithms and their embedding data analysis functionality at var-
ious levels of detail. This necessitates a comprehensive analysis
of behavior that involves various subsystems simultaneously.
These subsystems may be at different levels of detail and even in
different stages of the design process, i.e., subsystems in their
implementation phase may be mixed with those in their early
functional specification stages.

To facilitate this need, modeling formalisms tailored to
a particular domain need to be quickly designed and easily
evolved as the needs of the design engineers change. These
formalisms should include domain-specific constraints to make
the designed models inherently better. Models in different
formalisms need to be coupled and related. This can occur at
the model level, data level, and numerical level (cosimulation)
and allows the use of tools with analysis capabilities best
suited to the problem at hand. In addition, models have to be
translated between different formalisms and different levels of
abstraction, and the use of different views on different aspects
of the system needs to be supported.

These requirements span three dimensions: 1) support for
multiformalism modeling; 2) translation between different
levels of abstraction; and 3) meta-modeling, i.e., modeling
the modeling formalism. Computer automated multiparadigm
modeling strives for further results in each of these dimensions
in order to make them domain independent and leverage their
individual merits in the cross product space.

ACKNOWLEDGMENT

The authors would like to acknowledge the suggestions of
and discussions with many people, in particular, G. Grübel,
M. Mestchian, and H. Vangheluwe. They would also like to
thank D. Hull and S. Prabhu for their help with the realization
of the power window system.

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

MOSTERMAN et al.: COMPUTER-AUTOMATED MULTIPARADIGM MODELING 233

REFERENCES

[1] K. Wijbrans, “Twente Hierarchical Embedded Systems Implementation
by Simulation: A Structured Method for Controller Realization,” Ph.D.
dissertation, Univ. Twente, Enschede, The Netherlands, 1993.

[2] Using Simulink. Natick, MA: The MathWorks, Inc., Simulink, Jan.
2002.

[3] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Programming, vol. 8, pp. 231–274, 1987.

[4] C. Hoare, “Communicating sequential processes,” Commun. ACM, vol.
21, no. 8, pp. 666–677, Aug. 1978.

[5] Petri Nets & Grafcet, 1992.
[6] N. Halbwachs, “Synchronous programming of reactive systems,

a tutorial and commented bibliography,” in Proc. 10th Int. Conf.
Computer-Aided Verification (CAV’98). Vancouver, BC, June 1998, pp.
1–16. LNCS 1427.

[7] B. P. Zeigler, Object-Oriented Simulation with Hierarchical, Modular
Models: Intelligent Agents and Endomorphic Systems. San Diego, CA:
Academic, 1990.

[8] OMG Unified Modeling Language Specification (1999, June). [Online].
Available: http://www.omg.org/

[9] M. M. Tiller, Introduction to Physical Modeling with Modelica.
Boston, MA: Kluwer, 2001.

[10] IEEE Standard 1076.1-1999 (1999, Mar.). [Online]. Available:
http://www.vhdl.org

[11] D. Karnopp, D. Margolis, and R. Rosenberg, Systems Dynamics: A Uni-
fied Approach, 2nd ed. New York: Wiley, 1990.

[12] H. M. Paynter, Analysis and Design of Engineering Systems. Cam-
bridge, MA: MIT Press, 1961.

[13] R. Bosch, “CAN Specification,”, Stuttgart, Germany, Tech. Rep., 1991.
[14] Stateflow User’s Guide. Natick, MA: The MathWorks, Inc., 2002.
[15] Z. Kohavi, Switching and Finite Automata Theory. New York: Mc-

Graw-Hill, 1978.
[16] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework

for hybrid control: Model and optimal control theory,” IEEE Trans. Au-
tomat. Contr., vol. 43, pp. 31–45, Jan. 1998.

[17] M. D. D. Benedetto and A. L. Sangiovanni-Vincentelli, Eds., Hybrid
Systems: Computation and Control. ser. Lecture Notes Comput. Sci.:
Springer-Verlag, Mar. 2001, vol. 2034.

[18] N. Lynch and B. Krogh, Eds., Hybrid Systems: Computation and
Control. ser. Lecture Notes Comput. Sci.. Berlin, Germany: Springer-
Verlag, Mar. 2000, vol. 1790.

[19] F. W. Vaandrager and J. H. van Schuppen, Hybrid Systems: Computa-
tion and Control, ser. Lecture Notes Comput. Sci.. Berlin, Germany:
Springer-Verlag, Mar. 1999, vol. 1569.

[20] SimMechanics User’s Guide. Natick, MA: The MathWorks, Inc.,
2002.

[21] SimPowerSystems User’s Guide. Natick, MA: The MathWorks, Inc.,
2002.

[22] E. Christen, “The VHDL 1076.1 language for mixed-signal design,”
Elect. Eng. Times, vol. , 1997.

[23] User Manual. Ann Arbor, MI: Mech. Dynam., 2002. Automat.
Dynam. Anal. Mech. Syst. (ADAMS).

[24] B. J. de Kruif and T. J. A. de Vries, “On using a support vector ma-
chine in learning feed-forward control,” in Proc. 2001 IEEE/ASME Int.
Conf. Advanced Intelligent Mechatronics, Como, Italy, July 2001, pp.
272–277.

[25] S.-T. Levi and A. K. Agrawala, Real Time Systems Design. New York:
McGraw-Hill, 1990.

[26] D. J. Hatley and I. Pirbhai, Strategies for Real-Time Systems Specifica-
tion. New York: Dorset House, 1988.

[27] P. T. Ward and S. J. Mellor, Structured Development for Real-Time Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall, 1985.

[28] phyCORE-MPC555, Mainz, Germany: PHYTEC Meßtechnik GmbH,
2000.

[29] K. D. Müller-Glaser, G. Frick, E. Sax, and M. Kühl, “Multiparadigm
modeling in embedded systems design,” IEEE Trans. Contr. Syst.
Technol., 2003.

[30] SPICE User’s Guide. Berkeley, CA: SPICE, EECS Dept., Univ. Cal-
ifornia, 2002.

[31] T. Murata, “Petri nets: Properties, analysis, and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[32] P. H. Starke, Analyze von Petri-Netz-Modellen. Stuttgart, Germany:
B.G. Teubner, 1990.

[33] A. Misra, “Sensor-Based Diagnosis of Dynamical Systems,” Ph.D. dis-
sertation, Vanderbilt Univ., Nashville, TN, 1994.

[34] M. Otter, C. Schlegel, and H. Elmqvist, “Modeling and realtime simula-
tion of an automatic gearbox using modelica,” in Proc. ESS’97, Passau,
Germany, Oct. 1997, pp. 115–121.

[35] R. Otterbach, T. Pöhlmann, A. Rökgauer, and J. Vater, “DS1103 PPC
Controller Board—Rapid Prototyping with Combined RISC and DSP
Power for Motion Control,” dSPACE GmbH, Paderborn, Germany,
Tech. Rep., May 1998.

[36] J. Sztipanovits, G. Karsai, and T. Bapty, “Self-adaptive software for
signal processing,” Commun. ACM, vol. 41, no. 5, pp. 55–68, May
1998.

[37] H.-D. Joos, “A methodology for multi-objective design assessment and
flight control synthesis tuning,” Aerosp. Sci. Technol., vol. 3, no. 3, pp.
161–176, 1999.

[38] S. Kumar, D. Bhatt, S. Vestal, B. Wren, J. Shackleton, H. Shirley, R.
Bhatt, J. Golusky, M. Vojta, J. Fischer, S. Crago, B. Schott, R. Parker, and
G. Gardner, “ADAPTERS,” in Proc. 2nd Annu. Military and Aerospace
Applications of Programmable Devices and Technologies Conf., Laurel,
MD, Sept. 1999.

[39] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, and S. Asaad, “Model-In-
tegrated Tools for the Design of Dynamically Reconfigurable Systems,”
Vanderbilt Univ., Nashville, TN, Tech. Rep. ISIS-99-01, 2000.

[40] H. Garcia, A. Ray, and R. Edwards, “A reconfigurable hybrid system and
its application to power plant control,” IEEE Trans. Contr. Syst. Technol.,
vol. 3, no. 2, June 1995.

[41] L. Palopoli, C. Pinello, A. S. Vincentelli, L. Elghaougi, and A. Bicchi,
“Synthesis of robust control systems under resource constraints,” in Lec-
ture Notes in Computer Science, Hybrid Systems: Computation and Con-
trol, C. Tomlin and M. Greenstreet, Eds. Berlin, Germany: Springer-
Verlag, Mar. 2002, pp. 337–350.

[42] H. Mann, “A versatile modeling and simulation tool for mechatronics
control system development,” Proc. 1996 IEEE Symp. Computer Aided
Control System Design, pp. 524–529, 1996.

[43] J. B. Ferris and J. L. Stein, “Development of proper models of hybrid sys-
tems: A bond graph formulation,” in Proc. 1995 Int. Conf. Bond Graph
Modeling and Simulation (ICBGM’95), vol. 27, F. E. Cellier and J. J.
Granda, Eds., Jan. 1995, pp. 43–48.

[44] P. J. Mosterman and H. Vangheluwe, Eds., Special Issue on Computer
Automated Multi-Paradigm Modeling, ser. ACM Trans. Modeling
Comput. Simulat., 2003, vol. 12.

[45] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proc. IEEE, vol. 91, no. 1, pp.
145–164, Jan. 2003.

[46] J. Davis II, R. Galicia, M. Goel, C. Hylands, E. A. Lee, J. Liu, X.
Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y.
Xiong, Ptolemy II—Heterogeneous Concurrent Modeling and Design in
Java. Berkeley, CA: Dept. Elect. Eng. Comput. Sci., Univ. California,
1999. version 0.1.1.

[47] F. J. Barros, “Modeling formalisms for dynamic structure systems,”
ACM Trans. Modeling Comput. Simulat., vol. 7, no. 4, pp. 501–515,
1997.

[48] H. Vangheluwe, “DEVS as a common denominator for multi-formalism
hybrid system modeling,” in Proc. IEEE Int. Symp. Computer Aided
Control System Design, Anchorage, AK, Sept. 2000, pp. 129–134.

[49] G. J. Pappas, G. Lafferriere, and S. Sastry, “Hierarchically Consis-
tent Control Systems,” Univ. California, Berkeley, CA, Tech. Rep.
UCB/ERL M98/16, 1998.

[50] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Proc. Int. Conf. Computer-Aided Ver-
ification (CAV’97), Chicago, IL, July 2000, pp. 154–169.

[51] W. Minten, S. Vranckx, B. D. Moor, and J. Vandewalle, “Bondlab, a
MATLAB based GUI for bond graph modeling,” J. A—Special Issue
Computer Aided Control System Design, vol. 38, no. 3, pp. 11–15,
1997.

[52] J. van Dijk, “On the Role of Bond Graph Causality in Modeling
Mechatronic Systems,” Ph.D. dissertation, Univ. Twente, Enschede,
The Netherlands, 1994.

[53] E. Engstrom and J. Krueger, “A meta-modeler’s job is never done:
Building and evolving domain-specific tools with DOME,” in Proc.
IEEE Int. Symp. Computer Aided Control System Design, Anchorage,
AK, Sept. 2000, pp. 83–88.

[54] G. Karsai, G. Nordstrom, A. Ledeczi, and J. Sztipanovits, “Specifying
graphical modeling systems using constraint-based metamodels,”
in Proc. IEEE Int. Symp. Computer Aided Control System Design,
Anchorage, AK, Sept. 2000, pp. 89–94.

[55] J. Davis and J. Woodcock, Using Z: Specification, Refinement, and
Proof, ser. Int. Ser. Comput. Sci.. Englewood Cliffs, NJ: Prentice-Hall,
1996.

[56] C. Atkinson, “Metamodeling for distributed object environments,”
in Proc. 1st Int. Enterprise Distributed Object Computing Workshop
(EDOC’97), Brisbane, Australia, 1997, pp. 90–101.

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

234 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

[57] D. Garlan, R. T. Monroe, and D. Wile, “Acme: An architecture de-
scription interchange language,” in Proc. CASCON’97, Toronto, ON,
Canada, Nov. 1997, pp. 169–183.

[58] A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M. Maroti, “On
meta-model composition,” in Proc. IEEE Int. Conf. Control Applica-
tions, Mexico City, Mexico, Sept. 2001.

[59] M. A. P. Remelhe, S. Engell, M. Otter, A. Deparade, and P. J. Mosterman,
“An environment for the integrated modeling of systems with complex
continuous and discrete dynamics,” in Modeling, Analysis, and Design
of Hybrid Systems, S. Engell, G. Frehse, and E. Schnieder, Eds. Berlin,
Germany: Springer-Verlag, 2002, vol. 279, pp. 83–105. Lecture Notes
Inform. Sci..

[60] J. Sztipanovits, G. Karsai, C. Biegl, T. Bapty, A. Ledeczi, and A.
Misra, “MULTIGRAPH: An architecture for model-integrated com-
puting,” in Proc. Int. Conf. Engineering of Complex Computer Systems
(ICECCS’95), Ft. Lauderdale, FL, Nov. 1995, pp. 361–368.

[61] J. Ernst, “Data interoperability between CACSD and CASE tools using
the CDIF family of standards,” in Proc. 1996 Int. Symp. Computer Aided
Control System Design, Dearborn, MI, Sept. 1996, pp. 346–351.

[62] L. Baresi and M. Pezzè, “On formalizing UML with high-level petri
nets,” in Concurrent Object-Oriented Programming and Petri Nets, F.
D. Cindio and G. Agha, Eds. Berlin, Germany: Springer-Verlag, 1999,
pp. 271–300.

[63] S. Vestal, Software Architecture Workshop. Minneapolis, MN: Honey-
well Technol. Library, July 1994.

[64] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory
and Design. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[65] A. Bemporad, P. Borodani, and M. Mannelli, “Hybrid control of an auto-
motive robotized gearbox for reduction of consumptions and emissions,”
in Hybrid Systems: Computation and Control, O. Maler and A. Pnueli,
Eds. Berlin, Germany: Springer-Verlag, 2003, pp. 81–96.

Pieter J. Mosterman (M’95) received the Ph.D.
degree in electrical and computer engineering from
Vanderbilt University, Nashville, TN, and the M.Sc.
degree in electrical engineering from the University
of Twente, The Netherlands, in 1991 and 1997,
respectively.

He is a Senior Research Scientist in Real-Time
and Modeling and Simulation Technologies, The
MathWorks, Inc., Natick, MA. Previously, he held
a research position at the German Aerospace Center
(DLR) in Oberpfaffenhofen. He is Associate Editor

of the International Journal of Applied Intelligence and was guest editor of
a special CAMPaM issue of ACM Transactions on Modeling and Computer
Simulation. His primary research interests are in hybrid dynamic systems and
computer automated multiparadigm modeling (CAMPaM), with principal
applications in embedded control systems, training systems, and fault detection,
isolation, and reconfiguration. He cochaired the 14th International Workshop
on Principles of Diagnosis. He is the Mechatronics Editor of SIMULATION,
Transactions of the SCS.

Dr. Mosterman is an Associate Editor of the IEEE TRANSACTIONS ON

CONTROL SYSTEMS TECHNOLOGY. He designed several modeling and and sim-
ulation enviroments, such as the Electronics Laboratory Simulator (nominated
for The Computerworld Smithsonian Award). He received the Institution of
Mechanical Engineers Donald Julius Groen Prize for his paper on HYBRSIM.

Janos Sztipanovits (M’86–SM’90–F’01) graduated
from the Technical University of Budapest in 1970
and received the degree of “Candidate of Technical
Sciences” from the Hungarian Academy of Sciences,
Hungary, in 1980 and the distinguished Doctor de-
gree (Golden Ring of the Republic) in 1982 from the
same university.

He is currently the E. Bronson Ingram Distin-
guished Professor of Engineering in the Electrical
Engineering and Computer Science Department,
Vanderbilt University, Nashville, TN. He is Founding

Director of the Institute for Software Integrated Systems (ISIS), Nashville, TN.
Between 1999 and 2001, he worked as Program Manager and Acting Deputy
Director of DARPA Information Technology Office. He has published over
150 papers and is the coauthor of two books. During the past two decades, he
has conducted research on model-integrated computing, structurally adaptive
systems, and embedded software and systems.

Sebastian Engell (M’85) received the Dipl.-Ing.
degree in electrical engineering from the Ruhr-Uni-
versität Bochum, Bochum, Germany, in 1978, and
the Dr.-Ing. degree from the University of Duisburg,
Duisberg, Germany, in 1981. In 1987, the University
of Duisburg granted him the venia legendi in
automatic control.

From 1981 to 1984 and 1985 to 1986, he was a
Senior Researcher in the Automatic Control Group,
Mechanical Engineering Department, University of
Duisburg. From 1984 to 1985, he spent a year at

McGill University, Montréal, Canada. In 1986, he joined the Fraunhofer-In-
stitut IITB, Karlsruhe, Germany, where he led projects on industrial control
and production scheduling. Since 1990 he is Professor of Process Control
in the Department of Biochemical and Chemical Engineering, University of
Dortmund, Germany. From 1996 to 1999, he served as the Chairman of the
Department of Chemical Engineering. Since 2002, he is a Vice-Rector of the
University of Dortmund, Dortmund, Germany. He was associate editor of the
European Journal of Control from 1995 to 2000. He is currently Associate
Editor of the Journal of Process Control and of Mathematical and Computer
Modeling of Dynamic Systems. His areas of research are modeling and control
of chemical processes, hybrid systems, and scheduling in the process industries.

Dr. Engell was Co-Editor of the IEEE TRANSACTIONS ON CONTROL SYSTEMS

TECHNOLOGY from 1992 to 2000. He received a Joseph von Fraunhofer Prize
in 1991.

Authorized licensed use limited to: MINCYT. Downloaded on September 26,2023 at 19:21:50 UTC from IEEE Xplore. Restrictions apply.

