Análisis Matemático I Clase 9: Aplicaciones de la derivada. Extremos locales. Teorema del valor medio y consecuencias. Funciones crecientes y decrecientes.

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Abril, 2025

Objetivo de las próximas clases

En las próximas clases, vamos a aplicar las teorías de límites y de derivación para realizar trazados de curvas y = f(x) con precisión. **Límites:** hemos visto que se aplican para detectar:

- puntos de continuidad de la función,
 - asíntotas verticales, horizontales y oblicuas,
 - discontinuidades de la función.

Derivadas: veremos que se aplican para:

- ullet determinar dónde la función f alcanza sus valores máximos y mínimos.
- detectar intervalos donde la función crece y donde decrece.
- ullet estudiar la curvatura 'hacia arriba' o 'hacia abajo' de la gráfica de f.
- determinar dónde se presenta un cambio de curvatura (punto de inflexión)

Extremos relativos o locales

Extremos locales o relativos

Sea $f: D \to \mathbb{R}$. Decimos que f tiene un **máximo local o relativo** en el punto $c \in D$ si existe un intervalo abierto (c - r, c + r) tal que:

$$f(x) \leq f(c)$$

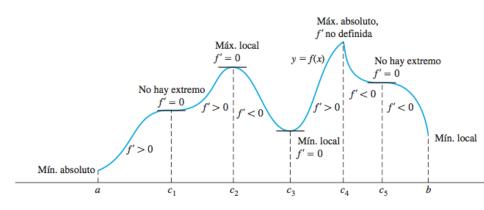
para todo $x \in D \cap (c-r,c+r)$. De forma similar, decimos que f tiene un **mínimo local o relativo** en el punto $c \in D$ si existe un intervalo abierto (c-r,c+r) centrado en c tal que:

$$f(x) \geq f(c)$$

para todo $x \in D \cap (c - r, c + r)$.

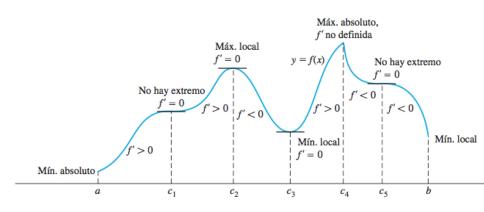
¿Cómo determinar extremos relativos?

Observar el siguiente gráfico:



¿Cómo determinar extremos relativos?

Observar el siguiente gráfico:



Observación: En este curso no consideraremos en detalle extremos absolutos, sólo locales, dar una idea de qué son. Explicar que los extremos absolutos son siempre locales.

¿Cómo determinar extremos en funciones continuas?

Candidatos a ser puntos donde f tiene un extremo relativo:

- Puntos x donde f'(x) = 0.
- Puntos donde f' no existe.
- Puntos que no son interiores al dominio de f (generalmente, serán los extremos del dominio de f).

¿Cómo determinar extremos en funciones continuas?

Candidatos a ser puntos donde f tiene un extremo relativo:

- Puntos x donde f'(x) = 0.
- Puntos donde f' no existe.
- Puntos que no son interiores al dominio de f (generalmente, serán los extremos del dominio de f).

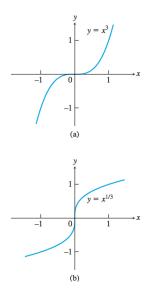
Punto Crítico

Sea $f:(a,b)\to\mathbb{R}$. Decimos que $c\in(a,b)$ es un punto crítico de f si f'(c)=0 o si f'(c) no existe.

Así, los candidatos en donde la función tiene extremos son los puntos críticos y los puntos que no son interiores al dominio.

A continuación, discutiremos más sobre extremos locales e iniciaremos el camino para encontrarlos. Esto será terminado la próxima clase.

No en todos los puntos críticos hay extremos



Teorema del Valor Medio

El siguiente teorema es fundamental para el análisis de funciones a través del uso de la derivada. Lo encontraremos en distintos temas en el curso.

Teorema del Valor Medio

Sea f una función continua en [a,b] y derivable en (a,b). Entonces, existe c en (a,b) tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

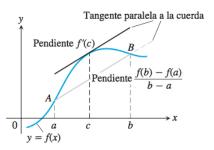
Teorema del Valor Medio

El siguiente teorema es fundamental para el análisis de funciones a través del uso de la derivada. Lo encontraremos en distintos temas en el curso.

Teorema del Valor Medio

Sea f una función continua en [a, b] y derivable en (a, b). Entonces, existe c en (a, b) tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



Teorema del Valor Medio



Así, el Teorema del Valor Medio dice que, bajo hipótesis adecuadas, la tasa de cambio promedio de una función en un intervalo es igual a la tasa de cambio instantánea de la función en algún punto interior del intervalo

Teorema

Sea f una función continua en [a, b] y derivable en (a, b) tal que:

$$f'(x) = 0$$

para todo x en (a, b). Entonces f es una función constante en [a, b].

Teorema

Sea f una función continua en [a,b] y derivable en (a,b) tal que:

$$f'(x) = 0$$

para todo x en (a, b). Entonces f es una función constante en [a, b].

Demostración: sean $x, y \in [a, b]$, $x \neq y$. Vamos a probar que f(x) = f(y). Supongamos sin pérdida de generalidad que x < y. Entonces, como f satisface las hipótesis del teorema del valor medio en [x, y], existe $c \in (x, y)$ tal que:

$$f(y) - f(x) = f'(c)(y - x).$$

Como f'=0 en (a,b) y $c\in(a,b)$, se tiene f'(c)=0.

Teorema

Si f y g son funciones continuas en [a, b] y derivables en (a, b) tales que:

$$f'(x) = g'(x)$$

para toda x de (a, b), entonces existe una constante C tal que:

$$f(x) = g(x) + C$$
 para toda $x \in [a, b]$.

Teorema

Si f y g son funciones continuas en [a,b] y derivables en (a,b) tales que:

$$f'(x) = g'(x)$$

para toda x de (a, b), entonces existe una constante C tal que:

$$f(x) = g(x) + C$$
 para toda $x \in [a, b]$.

Demostración: sea h(x) = f(x) - g(x). Entonces h es continua en el intervalo [a, b] (pues es una diferencia de funciones continuas) y h es derivable en (a, b) (ya que es una diferencia de funciones derivables).

Además, como por hipótesis f'(x) = g'(x) para todo $x \in (a, b)$, se obtiene:

$$h'(x) = f'(x) - g'(x) = 0$$

para todo $x \in (a, b)$. Por la primera consecuencia del teorema del valor medio, se tiene que h es una función constante en [a, b]. Por lo tanto, existe una constante C tal que:

$$h(x) = C$$

para todo $x \in [a, b]$. Recordando que h(x) = f(x) - g(x), se llega a :

$$f(x) = g(x) + C$$

para toda x en [a, b].

Funciones crecientes y decrecientes

Vamos a considerar funciones crecientes o decrecientes con desigualdades estrictas:

• Decimos que f es creciente en D si:

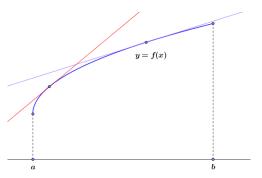
para todo x y y en D tales que: x < y.

• Decimos que f es decreciente en D si:

para todo x y y en D tales que: x < y.

Funciones crecientes y decrecientes

La función de la siguiente figura es creciente en [a, b]:



Observar que si trazamos las rectas tangentes en cada punto de la gráfica de y=f(x) para $x\in(a,b)$ se tiene que las pendientes de dichas rectas son positivas. Es decir, f'(x)>0 para todo $x\in(a,b)$. Basado en esta observación, se da ahora un criterio para determinar dónde crece o decrece una función derivable en términos del signo de f'.

Funciones crecientes y decrecientes

Prueba de la derivada primera para funciones crecientes o decrecientes

Sea f una función continua en [a, b] y derivable en (a, b). Entonces:

- Si f'(x) > 0 para todo x en (a, b), entonces f es creciente en [a, b].
- Si f'(x) < 0 para todo x en (a, b), entonces f es decreciente en [a, b].

Observación: el teorema anterior se ejemplificará en la próxima clase.

Demostración de la prueba de la derivada primera para funciones crecientes y decrecientes

Demostración: vamos a probar el primer ítem. El segundo queda como ejercicio para el estudiante. Supongamos que f'(x) > 0 para todo $x \in (a, b)$. Sean $x, y \in [a, b]$ tales que:

$$x < y$$
.

Entonces f satisface las hipótesis del teorema del valor medio en [x, y] y por ende existe $c \in (x, y)$ tal que:

$$f(y) - f(x) = f'(c)(y - x).$$

Como por hipótesis f'(c) > 0 y además y - x > 0, obtenemos que:

$$f(y) - f(x) = f'(c)(y - x) > 0$$

y entonces:

$$f(y) > f(x),$$

lo cual prueba que la función f es creciente en [a, b].

Ejercicios del TP2: sólo turno mañana

Ejercicio 5 c)

Determine la pendiente de la gráfica de la función en el punto dado utlizando la definición de pendiente como límite. Determine también una ecuación para la recta tangente a la gráfica en ese punto. Finalmente, grafique f y la recta tangente.

c)
$$f(x) = \frac{x}{x-2}$$

Ejercicios del TP2: sólo turno mañana

Ejercicio 5 c)

Determine la pendiente de la gráfica de la función en el punto dado utilizando la definición de pendiente como límite. Determine también una ecuación para la recta tangente a la gráfica en ese punto. Finalmente, grafique f y la recta tangente.

c)
$$f(x) = \frac{x}{x-2}$$

Ejercicio 6 a)

¿En qué puntos las gráficas de las funciones indicadas tienen tangentes horizontales?

a)
$$f(x) = x^2 + 4x - 1$$

Ejercicios del TP2: sólo turno mañana

Ejercicio 7 b)

Calcule la derivada de las siguientes funciones y determine el valor de las derivadas indicadas en cada caso.

b)
$$g(x) = \frac{1-x}{2x}$$
 $g'(-1); g'(\sqrt{2})$