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Longitud de una curva

Problema: determine la longitud de la curva dada por una funcién
y = f(x) con derivada continua en el intervalo [a, b].

y= f(z)
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Longitud de una curva

Longitud de curva
Sea y = f(x) una funcién tal que f’ es continua en [a, b]. Entonces la
longitud de la curva y = f(x) desde el punto (a,f(a)) al punto (b, f(b))

€s:

L= /ab,/1+(f/(x))2dx
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Longitud de una curva

Longitud de curva

Sea y = f(x) una funcién tal que f’ es continua en [a, b]. Entonces la
longitud de la curva y = f(x) desde el punto (a,f(a)) al punto (b, f(b))

€s:
L= /b,/1+(f/(x))2dx

La deduccidon de esta expresion se hara al final del cuatrimestre.
Ejemplos:

@ Determine la longitud de la curva y = mx + d, para x € [a, b].
Interpretar el resultado.

@ Encuentre la longitud de

x3 1
— 4+ = 1.4].
y = 12+ x € [1,4]
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Longitud de curva para x = g(y)

Longitud de curva

Sea x = g(y) una funcién tal que g’ es continua en [c, d]. Entonces la
longitud de la curva x = g(y) desde el punto (c, g(c)) al punto (d, g(d))

| L= / i+ @)y

Una de las ventajas de la expresién anterior, es que a veces la curva

y = f(x) puede no verificar las condiciones de continuidad de f’ pero al
despejar x y obtener x = g(y), se tiene que g si verifica las condiciones
para calcular la longitud de curva en términos de y.

Ejemplo: determine la longitud de y = (x/2)%/3, x € [0,2].
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Funciones inversas
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Nocidn de funcién inversa

Para poder definir la funcidn inversa de f, necesitamos evitar que la
funcién f asigne el mismo valor a dos elementos distintos del dominio.
Asi, introduciremos las funciones inyectivas:

Definicién de funcién inyectiva

Una funcién f : D — R es inyectiva en D si:

fF(x) # f(y)

siempre que x € D, y € D, y ademds x # y.
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Prueba de la recta horizontal para funciones inyectivas

Observar la grafica de f : R — R, f(x) = x3. Es una funcién inyectiva.

1 3

Toda recta horizontal corta en a lo sumo un punto a la grafica de una
funcién inyectiva.
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Prueba de la recta horizontal para funciones inyectivas

Existe una recta horizontal que corta a la grafica en dos puntos. Luego,
y = x? (con dominio R) no es inyectiva. Sin embargo, al modificar el
dominio podemos construir una funcién inyectiva.
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Prueba de la recta horizontal para funciones inyectivas

La funcién f : [0, +0c) — [0,00), f(x) = x? es inyectiva:
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Nocidn de funcién inversa

A continuacidn, introduciremos la nocién de funcién inversa:

Definicion de funcién inversa

Sea f : D — R una funcién inyectiva en D, donde R es la imagen o rango
de f. La funcién inversa f ! : R — D se define por:

f~X(y) = x si y solo si f(x) =y

para todo y € R.

Observar que:

FHfFx)=x y f(fx))=x

Ejemplo: determine la funcién inversa de y = %x +1,ydey=x% x>0.

Pablo D. Ochoa (Facultad de Ingenieria) Anilisis Matematico | Mayo, 2025



Ejemplo: determinaremos la funcién inversa de f : [0,00) — R,

f(x) = x2. A partir de la grafica de f, sabemos que es inyectiva y que el
rango de la funcién es [0, 00). La funcién inversa f 1 : [0,00) — [0,00) y
para calcular £~1(x) procedemos como sigue:

@ primero despejamos x en la expresién de f(x):

y:xzjx:ﬁ.

@ dado que generalmente expresamos a las funciones con variable
independiente x, intercambiamos los simbolos de x e y en la ecuacién

anterior:
y =Vx.

o Asi:
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Veremos graficamente cémo determinar la funcién inversa y cémo se
relacionan las graficas de fy f~1:

1-primero hacemos el grafico de f y trazamos la recta y = x con un trazo
tenue:
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2-tomamos un punto de la grafica de f y trazamos un segmento
perpendicular a la recta y = x que tenga como un extremo el punto

elegido y el otro extremo en la recta y = x:
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3-prolongamos el segmento del item anterior en direccién perpendicular a
la recta y = x hasta cubrir una longitud igual al segmento original:
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4-realizamos el procedimiento anterior varias veces, resaltando (en este
caso con rojo) los extremos de los segmentos construidos:

-2
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5-La gréfica de f~1 es la curva que conecta a todos los puntos construidos

(puntos rojos).

Observar que la grafica de la funcién inversa es simétrica con respecto la
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recta y = x.
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Derivacidn de funciones inversas

Recordar que:
f1(f(x)) = x.

Si f y f~1 son derivables, entonces la regla de la cadena implica:
(FH(F(x) - f'(x) = 1.
Luego si y = f(x) y f'(x) # 0 entonces:

Ly = 1

Recordando que x = f~!(y) obtenemos la férmula:
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Ejemplos: determinar la derivada de la funcién inversa de
f:(0,00) — (0,00), f(x) = x2.
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Ejemplos: determinar la derivada de la funcién inversa de
f:(0,00) — (0,00), f(x) = x2.
Solucidn: observar primero que f'(x) = 2x # 0 para x € (0,00). Recordar
que F~1(y) = VY- Luego:
1 1
fY(y) = = .
CI =550 " 2
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Observacién: la funcién inversa y su derivada suelen denotarse usando a x
como variable independiente. Asi, la férmula anterior para la derivada se
puede escribir:
1

Y (x) = ——.

RN GO
En la clase siguiente utilizaremos la férmula anterior para obtener la
derivada de varias funciones inversas (funciones trigonométricas,
exponenciales, hiperbdlicas, etc.)
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Estudio de funciones trascendentes
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Excepto por las funciones trigonométricas, hasta ahora hemos analizado
funciones algebraicas, es decir, funciones que se obtienen por suma,
resta, divisién, multiplicacién o extraccién de raices de polinomios.

Ahora comenzaremos con el estudio de funciones no algebraicas o también
llamadas trascendentes.

Ejemplos de funciones no algebraicas son las funciones: trigonométricas,
logaritmicas, exponenciales y otras funciones como las hiperbdlicas.

La siguiente figura ilustra una funcién trascendente (funcién coseno
hiperbdlico):
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Definicién del Logaritmo natural
Definimos la funcién logaritmo natural In : (0,00) — R como

1
In(x) = / ?dt, para x > 0.
1

Observar que para x mayor a 1 se tiene:
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Ademas:
11
In(1) = / —dt =0,
1 t

si x € (0,1) entonces:

ysi x > 1:
*1
In(x) = / —dt > 0.
1 t
Ademas, por el Teorema Fundamental del Célculo:
1
In'(x) ==, (x>0
V() = (x> 0)

por ende In es una funcién creciente pero es céncava hacia abajo pues:

1
In”(X) = Y < 0.
X
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Logaritmos

1 y = In(z)
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El logaritmo puede extenderse a valores de x negativos poniendo valores

absolutos: »
1
MUXD::/‘ Lat.
1 t

Por el Teorema Fundamental del Calculo:

1
In'(|x]) = =, para cada x # 0.
X
Asi: )
/Xw_mmn+c

Definicion: el nimero e se define como:
In(e) = 1.

Ejemplos: calcule [ tan(x)dx, [ sec(x)dx, [ cotan(x)dx, [ cosec(x)dx.
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Vamos a calcular:

/tan(x) dx.

/tan(x) dx = / zzzg; dx

y hacemos la sustitucién:

Primero escribimos:

u = cos(x), du= —sen(x) dx.
Reemplazando:
1
/tan(x) dx = — / L= —In(jul) + € = ~In(| cos(x)) + C.
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