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Universidad Nacional de Cuyo.

Mayo, 2025
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Longitud de una curva

Problema: determine la longitud de la curva dada por una función
y = f (x) con derivada continua en el intervalo [a, b].
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Longitud de una curva

Longitud de curva

Sea y = f (x) una función tal que f ′ es continua en [a, b]. Entonces la
longitud de la curva y = f (x) desde el punto (a, f (a)) al punto (b, f (b))
es:

L =

� b

a

√
1 + (f ′(x))2dx

La deducción de esta expresión se hará al final del cuatrimestre.
Ejemplos:

Determine la longitud de la curva y = mx + d , para x ∈ [a, b].
Interpretar el resultado.

Encuentre la longitud de

y =
x3

12
+

1

x
, x ∈ [1, 4].
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Longitud de curva para x = g(y)

Longitud de curva

Sea x = g(y) una función tal que g ′ es continua en [c , d ]. Entonces la
longitud de la curva x = g(y) desde el punto (c , g(c)) al punto (d , g(d))
es:

L =

� d

c

√
1 + (g ′(y))2dy

Una de las ventajas de la expresión anterior, es que a veces la curva
y = f (x) puede no verificar las condiciones de continuidad de f ′ pero al
despejar x y obtener x = g(y), se tiene que g śı verifica las condiciones
para calcular la longitud de curva en términos de y .
Ejemplo: determine la longitud de y = (x/2)2/3, x ∈ [0, 2].
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Funciones inversas
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Noción de función inversa

Para poder definir la función inversa de f , necesitamos evitar que la
función f asigne el mismo valor a dos elementos distintos del dominio.
Aśı, introduciremos las funciones inyectivas:

Definición de función inyectiva

Una función f : D → R es inyectiva en D si:

f (x) ̸= f (y)

siempre que x ∈ D, y ∈ D, y además x ̸= y .
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Prueba de la recta horizontal para funciones inyectivas

Observar la gráfica de f : R → R, f (x) = x3. Es una función inyectiva.

Toda recta horizontal corta en a lo sumo un punto a la gráfica de una
función inyectiva.
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Prueba de la recta horizontal para funciones inyectivas

Existe una recta horizontal que corta a la gráfica en dos puntos. Luego,
y = x2 (con dominio R) no es inyectiva. Sin embargo, al modificar el
dominio podemos construir una función inyectiva.
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Prueba de la recta horizontal para funciones inyectivas

La función f : [0,+∞) → [0,∞), f (x) = x2 es inyectiva:
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Noción de función inversa

A continuación, introduciremos la noción de función inversa:

Definición de función inversa

Sea f : D → R una función inyectiva en D, donde R es la imagen o rango
de f . La función inversa f −1 : R → D se define por:

f −1(y) = x si y solo si f (x) = y

para todo y ∈ R.

Observar que:

f −1(f (x)) = x y f (f −1(x)) = x .

Ejemplo: determine la función inversa de y = 1
2x + 1, y de y = x2, x ≥ 0.
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Ejemplo: determinaremos la función inversa de f : [0,∞) → R,
f (x) = x2. A partir de la gráfica de f , sabemos que es inyectiva y que el
rango de la función es [0,∞). La función inversa f −1 : [0,∞) → [0,∞) y
para calcular f −1(x) procedemos como sigue:

primero despejamos x en la expresión de f (x):

y = x2 ⇒ x =
√
y .

dado que generalmente expresamos a las funciones con variable
independiente x , intercambiamos los śımbolos de x e y en la ecuación
anterior:

y =
√
x .

Aśı:
f −1(x) =

√
x .
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Veremos gráficamente cómo determinar la función inversa y cómo se
relacionan las gráficas de f y f −1:
1-primero hacemos el gráfico de f y trazamos la recta y = x con un trazo
tenue:
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2-tomamos un punto de la gráfica de f y trazamos un segmento
perpendicular a la recta y = x que tenga como un extremo el punto
elegido y el otro extremo en la recta y = x :
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3-prolongamos el segmento del ı́tem anterior en dirección perpendicular a
la recta y = x hasta cubrir una longitud igual al segmento original:
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4-realizamos el procedimiento anterior varias veces, resaltando (en este
caso con rojo) los extremos de los segmentos construidos:
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5-La gráfica de f −1 es la curva que conecta a todos los puntos construidos
(puntos rojos).

Observar que la gráfica de la función inversa es simétrica con respecto la
recta y = x .
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Derivación de funciones inversas

Recordar que:
f −1(f (x)) = x .

Si f y f −1 son derivables, entonces la regla de la cadena implica:

(f −1)′(f (x)) · f ′(x) = 1.

Luego si y = f (x) y f ′(x) ̸= 0 entonces:

(f −1)′(y) =
1

f ′(x)
.

Recordando que x = f −1(y) obtenemos la fórmula:

(f −1)′(y) =
1

f ′(f −1(y))
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Ejemplos: determinar la derivada de la función inversa de
f : (0,∞) → (0,∞), f (x) = x2.

Solución: observar primero que f ′(x) = 2x ̸= 0 para x ∈ (0,∞). Recordar
que f −1(y) =

√
y . Luego:

(f −1)′(y) =
1

f ′(f −1(y))
=

1

2
√
y
.
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Observación: la función inversa y su derivada suelen denotarse usando a x
como variable independiente. Aśı, la fórmula anterior para la derivada se
puede escribir:

(f −1)′(x) =
1

f ′(f −1(x))
.

En la clase siguiente utilizaremos la fórmula anterior para obtener la
derivada de varias funciones inversas (funciones trigonométricas,
exponenciales, hiperbólicas, etc.)
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Estudio de funciones trascendentes
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Excepto por las funciones trigonométricas, hasta ahora hemos analizado
funciones algebraicas, es decir, funciones que se obtienen por suma,
resta, división, multiplicación o extracción de ráıces de polinomios.
Ahora comenzaremos con el estudio de funciones no algebraicas o también
llamadas trascendentes.
Ejemplos de funciones no algebraicas son las funciones: trigonométricas,
logaŕıtmicas, exponenciales y otras funciones como las hiperbólicas.
La siguiente figura ilustra una función trascendente (función coseno
hiperbólico):
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Logaritmos

Definición del Logaritmo natural

Definimos la función logaritmo natural ln : (0,∞) → R como

ln(x) =

� x

1

1

t
dt, para x > 0.

Observar que para x mayor a 1 se tiene:
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Logaritmos

Además:

ln(1) =

� 1

1

1

t
dt = 0,

si x ∈ (0, 1) entonces:

ln(x) =

� x

1

1

t
dt = −

� 1

x

1

t
dt < 0

y si x > 1:

ln(x) =

� x

1

1

t
dt > 0.

Además, por el Teorema Fundamental del Cálculo:

ln′(x) =
1

x
, (x > 0)

por ende ln es una función creciente pero es cóncava hacia abajo pues:

ln′′(x) = − 1

x2
< 0.
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Logaritmos
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Logaritmos

El logaritmo puede extenderse a valores de x negativos poniendo valores
absolutos:

ln(|x |) =
� |x |

1

1

t
dt.

Por el Teorema Fundamental del Cálculo:

ln′(|x |) = 1

x
, para cada x ̸= 0.

Aśı: �
1

x
dx = ln(|x |) + C .

Definición: el número e se define como:

ln(e) = 1.

Ejemplos: calcule
�
tan(x)dx ,

�
sec(x)dx ,

�
cotan(x)dx ,

�
cosec(x)dx .
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Vamos a calcular: �
tan(x) dx .

Primero escribimos:
�

tan(x) dx =

�
sen(x)

cos(x)
dx

y hacemos la sustitución:

u = cos(x), du = −sen(x) dx .

Reemplazando:

�
tan(x) dx = −

�
1

u
du = − ln(|u|) + C = − ln(| cos(x)|) + C .
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