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Una Guía enfocada en el desarrollo de Competencias1

Hasta hace algún tiempo, la gran discusión en la enseñanza de las ingenierías estaba
centrada en

Competencias Sí versus Competencias No.

Sin embargo, a partir de la aprobación de la Propuesta de Estándares de Segunda Ge-
neración para la Acreditación de las Carreras de Ingeniería por el Consejo Federal de
Decanos de ingeniería (CONFEDI) en 2018, las grandes discusiones deben enfocarse en
cómo adecuar e implementar los Planes de Estudio de las distintas carreras de Ingeniería
al nuevo contexto.

Uno de los pilares fundamentales del nuevo proceso de enseñanza es el siguiente:

La Formacón por Competencias no es un destino, es un Camino.

Es decir, la Formación por Competencias consiste en una mejora continua del Proceso de
Enseñanza, en busca de la excelencia. Para enfatizar este aspecto, tomamos a continuación
la de�nición de Ingeniería como profesión realizada por el CONFEDI:

Ingeniería es la profesión en la que el conocimiento de las ciencias matemáticas y natu-
rales adquiridas mediante el estudio, la experiencia y la práctica, se emplea con buen juicio
a �n de desarrollar modos en que se puedan utilizar, de manera óptima, materiales, co-
nocimiento, y las fuerzas de la naturaleza en bene�cio de la humanidad, en el contexto de
condiciones éticas, físicas, económicas, ambientales, humanas, políticas, legales, históricas
y culturales.

La Práctica de la Ingeniería comprende el estudio de factibilidad técnico-económica, in-
vestigación, desarrollo e innovación, diseño, proyecto, modelación, construcción, pruebas,
optimización, evaluación, gerenciamiento, dirección y operación de todo tipo de compo-
nentes, equipos, máquinas, instalaciones, edi�cios, obras civiles, sistemas y procesos. Las
cuestiones relativas a la seguridad y la preservación del medio ambiente constituyen as-
pectos fundamentales que la práctica de la ingeniería debe observar.

La de�nición de Ingeniería y Práctica de la Ingeniería brindan la descripción conceptual
de las características del graduado y constituyen la base para el análisis de las cuestiones
atinentes a su formación. Esto lleva a la necesidad de proponer un currículo con un

1El marco conceptual de esta sección ha sido extraído del material del curso de posgrado `Formación por
competencias, aprendizaje centrado en el estudiante y estándares de acreditación de segunda generación
para Ingeniería', cuyos autores son V. Kowalski, D. Morano, I. Erck, S. Cirimelo y H. Enríquez'.
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balance equilibrado de competencias y conocimientos académicos, cientí�cos, tecnológicos
y de gestión, con formación humanística.

Los graduados de carreras de ingeniería deben tener una adecuada formación general,
que les permita adquirir los nuevos conocimientos y herramientas derivados del avance
de la ciencia y tecnología. Además, deberán completar y actualizar permanentemente su
formación a lo largo de la vida laboral, en el marco informal o en el formal a través del
postgrado. (Libro Rojo, CONFEDI, 2018).

Así, la Universidad cuando forma profesionales lo hace buscando que éstos puedan re-
solver los problemas de la sociedad que se encuentran dentro de su campo de actuación.
Entonces ser Competente como profesional tiene que tener como norte resolver Problemas
Profesionales, o Situaciones Profesionales, si se lo quiere poner en términos de la de�nición
de Competencia de CONFEDI que citamos a continuación:

Competencia: es la capacidad de articular e�cazmente un conjunto
de esquemas (estructuras mentales) y valores, permitiendo movili-
zar (poner a disposición) distintos saberes, en un determinado con-
texto con el �n de resolver situaciones profesionales (CONFEDI,
2006).

A modo de síntesis, la de�nición de Competencia dada por el CONFEDI, y también por
diversos autores, presentan las siguientes características:

⋄ El �n último está en la resolución de problemas profesionales;

⋄ Los problemas de índole profesional implican situaciones complejas con un contexto
especí�co;

⋄ La competencia adquirida se demuestra a través de la actuación, movilización y
articulación de saberes y tiene un carácter �nalizado;

⋄ Poseer una competencia implica los ámbitos cognitivo, motriz, social, político y
actitudinal;

⋄ La competencia debe ser evaluable, directa o indirectamente, y de forma gradual;

⋄ En la formación del ingeniero, debe haber situaciones de ingración programadas.
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Como se mencionó anteriormente, una de las facetas de la Competencia es la de movilizar
y articular saberes para resolver un determinado problema. Así, ser competente signi�ca,
entre otras cosas, movilizar recursos, y para ello debe haber una razón para hacerlo. Los
saberes y recursos se movilizan porque hay una necesidad, un problema o situación que
necesita ser resuelta. Entonces, la competencia se demuestra a través de la actuación, y
es por ello que tiene un carácter �nalizado.

En la cátedra de Análisis Matemático I proponemos contribuir a las competencias que
el estudiante de Ingeniería debe desarrollar, siguiendo los lineamientos planteados ante-
riormente. Entre las competencias, genéricas y especí�cas, detalladas en el Libro Rojo del
CONFEDI a las que contribuye la presente Guía de Situaciones y el proceso de evaluación
asociado, mencionamos:

Competencias genéricas:

⋄ Identi�car, formular y resolver problemas de ingeniería.
⋄ Utilizar de manera efectiva técnicas y herramientas de apli-
cación en ingeniería.

⋄ Desempeñarse de manera efectiva en equipos de trabajo.
⋄ Comunicarse con efectividad.
⋄ Aprender de forma continua y autónoma.

Competencias especí�cas de las carreras de Ingeniería Ci-

vil, Industrial y Petróleo:

⋄ Medir, calcular y representar obras construidas y por cons-
truirse.

⋄ Plani�car, diseñar, calcular y proyectar obras e instalaciones
para almacenamiento, captación, tratamiento y distribución
de sólidos, líquidos y gases.

⋄ Diseñar, proyectar, calcular, modelar y plani�car las ope-
raciones y procesos de producción, distribución y comerciali-
zación de productos.

⋄ Diseñar, proyectar, calcular, modelar y plani�car las insta-
laciones requeridas para la producción, distribución y comer-
cialización de productos.

⋄ Diseñar, gestionar, optimizar, controlar y mantener las ope-
raciones requeridas para la producción, distribución y comer-
cialización de productos.
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Competencias especí�cas de las carreras de Ingeniería Ci-

vil, Industrial y Petróleo:

⋄ Identi�car, formular y resolver problemas relacionados a
la exploración y explotación de yacimientos de petróleo y gas
analizando alternativas y concibiendo soluciones tecnológica-
mente adecuadas utilizando diseños experimentales, modelos
matemáticos y/o cálculos.

⋄ Diseñar, calcular y proyectar instalaciones de tratamiento,
transporte, almacenaje de petróleo y gas aplicando principios
de cálculo, diseño y simulaciones para valorar y optimizar con
sentido crítico e innovador, con responsabilidad profesional,
compromiso social y ética.

⋄ Estimar y evaluar recursos y reservas de hidrocarburos para
su certi�cación utilizando software y datos.

El objetivo de la Guía es presentar problemas o situaciones signi�cativas para el estu-
diante, con el �n de que movilice y articule saberes y recursos estudiados durante el
cuatrimestre en la asignatura. La premisa fundamental es la siguiente:

Solamente se determinará si alguien es competente una vez que
haya actuado.

La visión que compartimos en la cátedra es que los saberes (en sus distintas facetas de
Ser, Hacer y Conocer) constituyen recursos o herramientas, los cuales tiene un valor re-
ducido si el futuro profesional, hoy estudiante, no logra articularlos y movilizarlos para
resolver situaciones complejas. Así, se busca contribuir a que el estudiante ponga en prác-
tica una combinación apropiada de recursos (conocimientos, saberes hacer, habilidades,
razonamientos, comportamientos, etc.) para iniciar su camino hacia un futuro profesional
competente.

La presente Guía constituye una instancia programada que necesariamente involucra la
integración de recursos. Sin embargo, debe tenerse en cuenta que por el lugar inicial que
ocupa la asignatura en el trayecto de las carreras, las situaciones de integración planteadas
en la Guía son versiones simpli�cas de problemas ingenieriles que pueden presentarse en
el ámbito profesional. Finalizamos recordamos la siguiente máxima de la Ingeniería:

Ingeniería es Verbo.
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Situación 1: Apuesto a que, a largo plazo, pierdes

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Derivadas y Análisis de Grá�cas

⋄ Extremos

Introducción

En un juego de apuestas como máquinas que simulan una ruleta francesa, las tenencias
del jugador y de la banca (de la máquina) se pueden modelar como caminos aleatorios. Al
menos en este contexto, un camino aleatorio se puede de�nir como una sucesión de sumas
parciales donde la sucesión generadora es un número aleatorio que puede ser negativo
(gana el jugador) o positivo (gana la banca).

La tenencia de la banca luego de n rondas es:

Bn = B0 +
n∑

k=1

ak,

y la del jugador correspondiente es:

Jn = J0 +
n∑

k=1

−ak,
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Figura 1: Simulaciones de juegos de 100 máquinas.

donde J0 es la tenencia inicial del jugador y B0 la tenencia inicial de la banca. Estos
modelos son válidos siempre y cuando no haya quebrado ni el jugador (Jn > 0) ni la
banca (Bn > 0).

Planteo

Supongamos que se trata de una ruleta con números del 1 al 36, más el 0; y apuestas
de 1 unidad. El jugador puede apostar por cualquier número positivo. Si sale el número
elegido por el jugador, la banca le paga 36 veces, es decir ak = −35. Si sale cualquier otro
número, el jugador pierde lo que había apostado, es decir ak = 1. La probabilidad de que
gane el jugador es:

PJ =
1

36 + 1
,

y la de que gane la banca es:

PB =
36

36 + 1
.

Suponga que usted trabaja para el dueño de 100 máquinas, las cuales tienen un día de
trabajo típico como el de la �gura.

En función de J0 y B0, se puede saber cuándo empiezan a quebrar los jugadores y cuándo
empiezan a quebrar las bancas. Hay tres formas de saber esto:

1. empíricamente: se hacen apuestas con jugadores y dinero real y se registran Jn y
Bn;
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2. computacionalmente: se hacen simulaciones por computadora (las curvas rojas y
azules de la �gura fueron generadas así); o

3. analíticamente: se utiliza Análisis Matemático I y nociones de Probabilidad y Esta-
dística para construir funciones que envuelven a la mayoría de los casos (como las
curvas grises en la �gura).

Enunciado

Suponga que en su trabajo le piden dejar de utilizar las formas 1 y 2 porque cuestan
mucho dinero. Usted debe construir funciones que envuelvan la mayoría de los casos
analíticamente. Para ello puede usar las siguientes de�niciones y propiedades.

De�niciones

1. Variable aleatoria: En probabilidad y estadística, es una función que asigna un
valor, usualmente numérico, al resultado de un experimento aleatorio. Por ejemplo,
los posibles resultados de apostar una unidad en la ruleta: 35 o -1 (variable aleatoria
discreta); o un número real, por ejemplo la temperatura máxima medida a lo largo
del día en una ciudad concreta (variable aleatoria continua).

2. Esperanza: Es el valor medio de una variable aleatoria. En el caso de una variable
aleatoria discreta X (que puede tomar uno de un conjunto �nito de m valores
posibles x1, x2, ..., xm), es:

E(X) =
m∑
i=1

xiP (X = xi),

donde P (X = xi) es la probabilidad de que X = xi. En nuestro caso nos dará una
idea de cuánto gana en promedio la banca por cada ronda, en el largo plazo.

3. Varianza: Es una medida de la dispersión de la variable aleatoria alrededor de su
media y se calcula como:

σ2(X) = E
(
(X − E(X))2

)
=

m∑
i=1

(xi − E(X))2 P (X = xi).

En nuestro caso nos dará una idea de cuánto es el riesgo que corre la banca de
perder, en el corto plazo.

Propiedades

1. La esperanza de una constante es la misma constante:

E(B0) = B0
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2. La esperanza es aditiva:

E(Bn) = E(Bn−1) + E(Bn −Bn−1)

3. La varianza de una constante es nula:

σ2(B0) = 0

4. La varianza es aditiva:

σ2(Bn) = σ2(Bn−1) + σ2(Bn −Bn−1)

5. La esperanza de los ingresos a la banca es igual para todas las rondas:

E(ak) = 1 · PB − 35 · PJ

6. La varianza de los ingresos a la banca es igual a la de los ingresos del jugador y son
iguales para todas las rondas:

σ2(ak) = σ2(−ak) = E
(
(ak − E(ak))

2)
σ2(ak) = σ2(−ak) =

(
−35− 1

37

)2

PJ +

(
1− 1

37

)2

PB

7. La desviación estándar es la raíz cuadra de la varianza:

σ(Bn) =
√
σ2(Bn)

A partir de estas propiedades, se pueden construir las siguientes funciones que envuelven
la mayoría de los casos:

fl(n) = E(Bn)− 3σ(Bn),

y
fu(n) = E(Bn) + 3σ(Bn).

Actividades

1. a) Halle una expresión para las funciones fl(n) y fu(n). Luego encuentre funciones
continuas y derivables (para todo x ≥ 0) flc y fuc, tales que flc(x) = fl(n) y
fuc(x) = fu(n) para todo n ∈ N.

b) Indique la ordenada al origen de cada una e interprete su signi�cado en este
problema.

c) Calcule los extremos y los intervalos de crecimiento de ambas funciones.

d) Esboce una grá�ca para fl(n) y fu(n) y compare con la �gura 1 (a).

2. a) ¾A cuánto se podría bajar B0 aún garantizando que la mayoría de las bancas
no quiebren antes de 1000 rondas?

b) ¾Luego de cuántas rondas el riesgo de quiebra de la banca es máximo?

c) ¾Cuál es la mínima tenencia inicial de la banca que garantiza que no quiebre
casi ninguna máquina?
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Situación 2: Concentración de desinfectantes

Figura 2: Elemento químico Bromo

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Tasas de cambio

⋄ Derivadas

⋄ Cambio exponencial

⋄ Integrales de�nidas

El bromo (Br) y sus compuestos se usan como agentes desinfectantes en piscinas y en
depósitos de agua potable. Los compuestos del bromo son más seguros que los conformados
por cloro por la persistencia residual de estos últimos.

En disoluciones acuosas, el bromo molecular (Br2) reacciona con el ácido fórmico. A
medida que progresa la reacción, la concentración de bromo (denotada por [Br]) disminuye
rápidamente y su color se desvanece. La medición de la variación de la concentración del
bromo, desde un tiempo inicial t0 hasta un tiempo �nal tf , permite determinar la rapidez
promedio de la reacción durante ese intervalo:

rapidez promedio de la reacción Br2-ácido fórmico = − [Br2]f − [Br2]0
tf − t0

. (1)

Utilizando un espectrofotómetro, se puede determinar la concentración del bromo mole-
cular en función del tiempo. La concentración se mide en cantidad de moles.2

La siguiente tabla muestra algunas mediciones de la concentración de bromo molecular
en una disolución acuosa para distintos momentos:

2El mol es la unidad con que se mide la cantidad de sustancia y es una magnitud física fundamental
en el Sistema Internacional de Unidades. Dada cualquier sustancia y considerando un tipo de entidades
elementales que la componen (que pueden ser átomos, molécular, iones, etc.), un mol de sustancia equivale
a 6, 022 × 1023 de esas entidades elementales. Este número se conoce como el número de Avogadro.
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Tiempo t (s) [Br2] (en moles)

0 0,012
50 0,0101
100 0,00846
150 0,0071
200 0,00596
250 0,005
300 0,0042
350 0,00353
400 0,00296

Tabla 1: Valores de la concentración [Br2] para distintos momentos

Para responder las siguientes consignas utilice los datos suministrados en la Tabla 1.

1. Eligiendo escalas apropiadas, represente grá�camente la concentración [Br2] en fun-
ción del tiempo t.

2. Calcule la rapidez promedio (1) en los intervalos de tiempo [0, 50], [100, 200] y
[0, 400].

3. En base a las respuestas anteriores, indique si la rapidez promedio de la reacción
entre Br2 y ácido fórmico es constante para cualesquiera de los intervalos de tiempo
de la Tabla 1.

A continuación va a determinar qué tipo de variación o cambio presenta la concentración
[Br2] como función del tiempo. Para ello deberá responder algunas preguntas teniendo en
cuenta la relación (1) y la información suministrada en la siguiente tabla:

Tiempo (s) [Br2] (mol) Rapidez instantánea de la reacción (mol/s) k =
rapidez
[Br2]

(1/s)

0 0,012 4,20 × 10−5

50 0,0101 3,52 × 10−5

100 0,00846 2,96 × 10−5

150 0,0071 2,49 × 10−5

200 0,00596 2,09 × 10−5

250 0,005 1,75 × 10−5

300 0,0042 1,48 × 10−5

350 0,00353 1,23 × 10−5

400 0,00296 1,04 × 10−5

Tabla 2. Valores de rapidez instantánea para la reacción Br2-ácido fórmico.

4. Calcule la constante k para cada intervalo de tiempo. A partir de estos valores de
k, ¾qué conclusión puede sacar acerca de la relación entre la rapidez de la reacción
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y [Br2]?

5. En términos de derivadas, ¾qué expresión obtiene cuando hace:

tf → t0

en el lado derecho de (1)?

6. De la información obtenida en los dos ítem anteriores, deduzca la relación:

−d[Br2]
dt

= k[Br2] (2)

El lado izquierdo de (2) (con el signo negativo incluido) se denomina rapidez de la
reacción.

7. En base al inciso anterior, ¾la concentración [Br2] presenta un cambio exponencial
con respecto al tiempo? Justi�que su respuesta.

8. Divida ambos miembros de (2) por [Br2], e intégrelos con respecto al tiempo en el
intervalo [0, t] para obtener una expresión de [Br2] como función de t. Considere que
para t = 0, la concentración del bromo molecular es un cierto valor inicial [Br2]0.

9. ¾Qué sucede con la concentración de bromo molecular a largo plazo?

10. En el análisis de reacciones químicas, un criterio para identi�car si una reacción es
de primer orden (es decir, la rapidez de la reacción es directamente proporcional a la
concentración del reactivo) es representar el logaritmo natural de la concentración
con respecto al tiempo. Observar que a partir de (2), sabemos que la reacción bromo
molecular-ácido fórmico es una reacción de primer orden. Utilice la expresión de
[Br2] obtenida en el inciso 8 para representar ln[Br2] como función de t. ¾Qué curva
obtiene? ¾Cuál es la pendiente de la curva? En general, ¾qué tipo de curva espera
obtener cuando represente el logaritmo de la concentración con respecto al tiempo
en reacciones de primer orden?

Referencias

-Chang, R. y College, W. Química, 2002, Mc Graw Hill, 7a edición.
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Situación 3: Radiación de antenas de telefonía celular

Figura 3: Antena de telefonía

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Derivada y regla de la cadena

⋄ Optimización

⋄ Extremos absolutos

Existe la creencia popular de que las antenas de telefonía celular son perjudiciales para la
salud de las personas que viven cerca de ellas. Más allá del hecho de que no deberíamos
preocuparnos, pues su fabricación está normalizada y su instalación sumamente regulada,
suelen darse las siguientes argumentaciones.

Muchas personas dicen que mientras más cerca viven de una antena más potencia reciben
de ella, pues la potencia recibida decae con el cuadrado de la distancia. Esto es cierto.

Por otro lado, algunos ingenieros dicen que el teléfono transmite con más potencia si se
encuentra lejos de la antena que si se encuentra cerca (para economizar batería). Además,
como la persona siempre está más cerca de su teléfono que de la antena, alejarse de la
antena podría llevarla a recibir más potencia. Esto también es cierto.

Suponga que una unión vecinal, que se niega a dejar instalar una antena en el barrio, lo
contrata a usted para conciliar estos dos argumentos aparentemente contradictorios pero
verdaderamente ciertos. Le proporcionan los siguientes valores para los parámetros del
problema:

⋄ Cantidad de comunicaciones simultáneas de la antena: N = 100.

⋄ Tasa de uso del teléfono: tut = 1/(24 · 60) (1 minuto por día).

14
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⋄ Tasa de uso de la antena: tua = 16/24 (16 horas por día).

⋄ Distancia entre la persona y el teléfono: dp = 0,10 m.

⋄ Alcance de la antena: dmáx = 10000 m.

⋄ Distancia mínima entre la persona y la antena (altura de la torre): dmı́n = 30 m.

Figura 4: Esquema de torre, antena y teléfono celular.

Además, usted ha recopilado la siguiente información:

⋄ La antena transmite siempre con la misma potencia (PTa).

⋄ El teléfono transmite con una potencia variable (PTt) tal que la antena recibe una
potencia (PRa) igual a la que recibiría el teléfono si este estuviese alejado de la
antena una distancia igual al alcance de la antena (dmáx).

⋄ La potencia recibida por la antena (PRa) es inversamente proporcional al cuadrado
de distancia entre el teléfono y la antena (d), y directamente proporcional a la
potencia transmitida por el teléfono (PTt); es decir, es proporcional al cociente

PTt

d2
.

⋄ La potencia recibida por el teléfono (PRt) es inversamente proporcional al cuadrado
de la distancia entre el teléfono y la antena (d), y directamente proporcional a la
potencia transmitida por la antena (PTa).

⋄ La potencia media recibida por la persona (P ) es la suma de dos términos (P1 y
P2).

⋄ El término P1 es inversamente proporcional al cuadrado de la distancia entre el
teléfono y la antena (d), directamente proporcional a la potencia transmitida por la
antena (PTa), directamente proporcional al número de comunicaciones simultáneas
de la antena (N), y directamente proporcional a la tasa de uso de la antena (tua).
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⋄ El término P2 es inversamente proporcional al cuadrado de distancia entre el teléfono
y la persona (dp), directamente proporcional a la potencia transmitida por el teléfono
(PTt), y directamente proporcional a la tasa de uso del teléfono (tut).

⋄ Existe una distancia mínima a la que una persona puede estar de la antena (dmı́n),
la cual corresponde a la altura de la torre.

Utilizando la misma constante k para todas las relaciones de proporcionalidad menciona-
das anteriormente, aborde las siguientes consignas:

1. Construya la función potencia transmitida por el teléfono PTt = g(d), donde d es la
distancia entre el teléfono y la antena.

2. Construya las funciones P1 = P1(d) y P2 = P2(d), y grafíquelas considerando que
su dominio es [dmı́n, dmáx].

3. Construya la función P = P (d) y grafíquela considerando que su dominio es [dmı́n, dmáx].

4. Encuentre los extremos absolutos de P en el intervalo dado y explique qué signi�can
en el contexto del problema.

5. Compare P (dmáx) y P (dmı́n) con el mínimo global de P .

6. ¾Qué tiene para decirle a quienes lo contrataron? Tenga en cuenta que tiene que
explicar sus conclusiones a personas que pueden no saber Análisis Matemático.

Referencias

-https://en.wikipedia.org/wiki/Cellular_network.

-https://en.wikipedia.org/wiki/Mobile
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Situación 4: Selección de un sensor para iniciar su com-
pra

Figura 5: Sensores para medir desplazamientos

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Funciones trigonométricas

⋄ Derivación

Suponga que tiene que comprar un sensor de desplazamiento para medir la vibración de
una máquina. Si elige un sensor con un rango muy pequeño, puede que la medición se
sature (sobrepase el rango del sensor). Si, por el contrario, elige un sensor con rango muy
amplio, puede que la medición sea tan pequeña que el ruido la enmascare. Por lo tanto,
debe elegir el sensor con el rango más pequeño posible que cubra el rango de la medición
de desplazamiento.

Desafortunadamente, usted no cuenta con mediciones previas del desplazamiento, pues
aún no compran el sensor. Sin embargo, cuenta con una medición de aceleración (sí dis-
ponen de un acelerómetro en la empresa), la cual se muestra en la Figura 6. Este patrón
se repite inde�nidamente.
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Figura 6: Registro de aceleraciones medidas.

Los sensores que puede comprar, y sus rangos correspondientes, son los que se encuentran
en la Figura 8. Note que los rangos de desplazamientos (expresados en milímetros) son:
[−500, 500], [−350, 350], [−20, 20], [−5, 5], [−1, 1], [−2, 2], [−0,75, 0,75] y [−0,05, 0,05],
respectivamente. Para seleccionar el sensor, tenga en cuenta lo siguiente:

1. La medición de la aceleración ya tomada es aproximadamente sinusoidal de a tramos
y puede escribirse, en cada tramo, en la forma

a(t) = Amáx sen(ωt),

donde ω = 2πf , f = 1/T , T es el periodo de la oscilación y Amáx es la amplitud
máxima de la aceleración en el tramo considerado.

2. Debido a otras consideraciones, se sabe que la medición de desplazamiento a tomar
también será aproximadamente sinusoidal de a tramos y puede modelarse, en cada
tramo, como d(t) = −Dmáx sen(ωt), donde Dmáx es el desplazamiento máximo del
tramo estudiado.

Referencia

-Thomas, G. Cálculo, una variable, 2010. PEARSON, 12a edición.
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Situación 5: Flexion de una viga en voladizo

Figura 7: Viga en voladizo

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Derivada y regla de la cadena

⋄ Diferenciales

⋄ Integrales inde�nidas

⋄ Polinomios de Taylor

En una obra en construcción se quiere armar un elevador de carga usando de apoyo una
viga horizontal empotrada en un solo extremo, tal como se muestra en la Figura 8 (a). La
fuerza (F ) aplicada en el extremo libre provocará la �exión de la viga. Para cuanti�car
esta deformación, es necesario relacionar el desplazamiento (y) de la viga con el momento
�ector (M) causado por F . En la Figura 8 (b) se muestra la �exión que sufre un punto
P que se encuentra a una distancia x del empotramiento de la viga. La cantidad ds es la
longitud del arco de viga asociado a los incrementos dx y dy.

El radio de curvatura (ρ) en P se de�ne trazando rectas tangentes y normales en puntos de
la viga �exionada correspondientes a P y a un punto ubicado en x+dx, tal como se muestra
en la Figura 9. Observar que las rectas normales se cortan en un punto C (usualmente
llamado centro de curvatura en P). Para incrementos dx pequeños, la distancia entre C y
cada punto del tramo de viga considerado es aproximadamente la misma. Esta distancia
constituye el radio de curvatura ρ en P (ρ(x)). Como dθ es el ángulo entre las normales
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Figura 8: Flexión de la viga y punto P .

y está medido en radianes, se tiene

ρ(x) =
ds

dθ
. (3)

1. Use la fórmula (3) de ρ y aproxime ds con la hipotenusa del triángulo rectángulo
(línea punteada) para deducir la conocida fórmula del radio de curvatura:

ρ(x) =

(
1 +

(
dy
dx

)2)3/2

d2y
dx2

(4)

Observe que la pendiente de la recta tangente a la curva en (x, y(x)) es la tangente del
ángulo de inclinación θ, por lo que y′(x) = tan θ y por lo tanto dθ = d(arctan y′(x)).
En el procedimiento, deberá además usar la de�nición de diferencial.

2. Aproxime tan θ con el polinomio de Taylor de orden uno (centrado en cero). Luego,
teniendo en cuenta que y′(x) = tan θ determine por qué puede considerarse que

1 +
(
dy
dx

)2 ≃ 1 si las deformaciones son pequeñas. Finalmente, reescriba la ecuación
(4) bajo esta suposición.

3. Por la expresión de Euler-Bernoulli, se sabe que el radio de curvatura y el momento
�ector están relacionados por la ecuación:

ρ(x) =
EI

M(x)
(5)
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Figura 9: Flexión de la viga y punto P .

donde E es el módulo de Young del material y I el momento de inercia de la sección
transversal de la viga. Obtenga una ecuación para el desplazamiento y de la viga en
función deM cuando las deformaciones son pequeñas. Trate a I y E como constantes
pero recuerde que M es función de x.

Referencia

-Ra�o, C. Introducción a la estática y la resistencia de materiales, 2002, Ed. Alsina, 10a
edición.
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Situación 6: Flujo en un canal abierto

Figura 10: Construcción de un canal para riego

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Derivada y regla de la cadena

⋄ Valores extremos de funciones

Se quiere construir un canal de riego para viñedos de una importante bodega (Figura
11). Como el canal es abierto, se sabe que el �ujo puede darse en tres regímenes: crítico,
subcrítico (lento y tranquilo) y supercrítico (rápido y torrencial). El régimen crítico es un
estado inestable poco recomendado para el diseño de estructuras hidráulicas. Es por tanto
necesario obtener una ecuación característica de este régimen que permita reconocerlo y
evitarlo. Posteriormente, es conveniente determinar las variables posibles de controlar con
el diseño del canal para que el régimen del �ujo sea supercrítico y el agua �uya rápida-
mente.

Si el canal funciona en régimen constante, la velocidad media del agua está dada por el
cociente entre su caudal (Q) y el área de la sección transversal del canal (A):

v(y) =
Q

A(y)
, (6)

donde y es la distancia desde el fondo del canal a la super�cie del agua. Un concepto clave
para la resolución del problema es que en el régimen crítico la energía especí�ca (E) es
mínima (cantidad de energía por unidad de peso de líquido, medida a partir del fondo del
canal) y se calcula como:

E(y) = y +
v2(y)

2g
, (7)
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donde g es la aceleración de la gravedad. Reemplazando (6) en (7) se tiene:

E(y) = y +
Q2

2gA2(y)
.

1. Teniendo esto en cuenta y considerando el caudal constante, obtenga la velocidad
del régimen crítico.

2. Posteriormente, suponga que dA/dy es constante y determine qué variables puede
controlar para que el �ujo sea supercrítico, es decir, para que la velocidad del agua
sea superior a la del régimen crítico.

3. Observe la Figura 11 y determine qué geometrías del canal son posibles bajo la
suposición que dA/dy sea constante. Justi�que su respuesta.

Figura 11: Secciones transversales de diferentes canales de riego

Referencias

-Silvestre, P. Fundamentos de hidráulica general, 1983, Ed. Limusa, 1ra edición.

-Cadavid, J. Hidráulica de canales, fundamentos, 2006, Ed. Universidad EAFIT, 20 edi-
ción.
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Situación 7: Emplazamiento de un parque eólico

Figura 12: Parque eólico

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Funciones de�nidas por partes

⋄ Integral de�nida

⋄ Antiderivadas

⋄ Integrales impropias

Un ingeniero está interesado en el estudio de la velocidad del viento en un lugar geográ�co
determinado donde se emplazará un parque eólico. Su variable de interés es:

X: velocidad del viento en km/h.

Observar que X puede tener distintas realizaciones o valores numéricos. La variable X
es un ejemplo de variable aleatoria. Las variables aleatorias son funciones y pueden ser
discretas (cuando se pueden enumerar los valores que arroja la función, como edades,
número de artículos defectuosos, etc.) o continuas (cuando la imagen de la función es un
intervalo de la recta real, como peso, densidad, etc.).

Lo primero que debe responder el ingeniero es si la variable X es discreta o continua.

Un concepto muy importante asociado a las variables aleatorias continuas es el de función
densidad f . Esta función proporciona un medio para determinar la probabilidad P de que
los valores x de la variable bajo estudio se encuentren en un intervalo seleccionado. Esta
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probabilidad es el área encerrada entre la curva de la densidad y el eje x. Así:

P (a ≤ X ≤ b) =

� b

a

f(x)dx.

Para que una función f sea una densidad debe cumplir:

⋄ f(x) ≥ 0 para todo valor x ∈ R, y
⋄
� +∞
−∞ f(x)dx = 1.

Para determinar la función densidad que se ajusta mejor a la velocidad del viento, el
ingeniero ha utilizado los datos de un año completo, proporcionados por la estación me-
teorológica más cercana, obteniendo así las frecuencias para cada valor de velocidad del
viento registrado. Este procedimiento ha dado por resultado una representación decre-
ciente a medida que la velocidad del viento es mayor. Basado en métodos estadísticos, el
ingeniero descubre que los datos pueden modelarse mediante la distribución exponencial.
La ecuación matemática de su función densidad es:

f(x) =

{
ke−

x
β , si x ≥ 0, β > 0

0, en cualquier otro caso,
(8)

donde k > 0. Al parámetro β se lo conoce como la media de la variable. En la siguiente
�gura puede observar distintas grá�cas de (8) para diferentes valores de β.

Figura 13: Distribución exponencial para distintos valores de su media β.

Usualmente se introduce el parámetro λ = 1/β y entonces la función (8) puede escribirse
como:

f(x) =

{
ke−λx, si x ≥ 0, λ > 0
0, en cualquier otro caso.

(9)
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1. Encuentre la relación entre k y λ para que f sea una función densidad. Reescriba
la función f utilizando la relación encontrada.

2. Estime el valor del parámetro λ si los registros indican que la probabilidad de que
la velocidad del viento no supere los 70 km/h en la región es 0,90. En base al inciso
anterior y al valor de λ encontrado, ¾qué expresión obtiene para f en (9)?

3. Utilizando la información del inciso 1, determine la función F de distribución acu-
mulada de la velocidad del viento:

F (x) =

� x

−∞
f(t)dt.

Observe que la función distribución acumulada F es la integral de f entre el mínimo
valor de la variable X (en este caso cero) y cualquier valor x de ella. La función F
se interpreta como la probabilidad de observar valores de la variable hasta uno en
particular, en este caso, hasta x. En símbolos:

P (X ≤ x) = F (x).

Como resultado se obtiene una función F que permite calcular probabilidades sin
necesidad de volver a realizar la integración de f en cada ocasión.

4. Represente grá�camente la función densidad (9) y la función de distribución acu-
mulada encontradas en los incisos 1 y 3.

5. Teniendo en cuenta que el valor esperado o media de X se de�ne como:

E(X) =

� ∞

−∞
xf(x)dx,

encuentre la velocidad media anual del viento en la región. A continuación, veri�que
la relación λ = 1/β explicitada anteriormente.

6. Los generadores de energía están diseñados para operar con velocidades del viento
iniciales de 14,4 km/h y llegan a la máxima producción a los 50,4 km/h. Si la
operación se vuelve rentable entre los 15 y 70 km/h, ¾cuál es la probabilidad de que
los generadores sean rentables?

Referencia

-Canavos, G. Probabilidad y estadística: aplicaciones y métodos, 1988, Ed. McGRAW-
HILL, 1ra edición.
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Situación 8: Medición de la velocidad de una pelota de
tenis en el saque

Figura 14: Equipo de medición de velocidad

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Tasa de cambio promedio

⋄ Optimización

Suponga que lo contratan para con�gurar un equipo de medición de velocidad basado
en imágenes. La con�guración consiste simplemente en setear el valor de un parámetro
llamado h.

El equipo toma una imagen de la pelota de tenis un tiempo antes de que se despegue de
la raqueta (t = t0 + h, con h < 0), una imagen justo en el momento en que se despega
(t = t0) y otra más un tiempo después de que se despega (t = t0 + h, con h > 0). Ver
Figura 15.

Figura 15: Imágenes de antes, durante y después de que la pelota se despega de la raqueta.

A partir de estas imágenes el equipo obtiene el desplazamiento d(t) de la pelota con una
resolución que se obtiene dividiendo el espacio horizontal cubierto por la cámara (1 m)
por la cantidad de pixeles con los cuales lo cubre (1000 pixeles).
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La raqueta modi�ca la velocidad de la pelota de 0 m/s a 60 m/s (aproximadamente) en
0,005 s. En el tiempo t0 (momento en que la pelota se despega de la pelota), la velocidad
de la pelota es de 60 m/s. A patir de este momento, la velocidad disminuye en 1 s de
60 m/s a un 90% de esa velocidad.

Podemos suponer que la aceleración (que le produce la raqueta a la pelota) y la desace-
leración (que le produce el aire) son aproximadamente constantes.

El manual del dispositivo especi�ca que éste aproxima la velocidad con la siguiente fór-
mula:

v(t0) ≈
d(t0 + h)− d(t0)

h
,

y que dicha aproximación tiene un error cuya cota superior es:

e(h) =
|d′′(c)h|

2
+
∣∣∣ r
h

∣∣∣; (10)

donde d′′(t) es la aceleración en función del tiempo, c es algún número perteneciente al
intervalo [t0, t0 + h] (o [t0 + h, t0] si h < 0) y r es la resolución espacial (t, t0, h y c se
miden en s; v(t) y e(h) en m/s; y d(t) y r en m).

Para con�gurar el equipo usted tiene que tomar dos decisiones:

1. ¾Debería usar h < 0, es decir medir la velocidad justo antes de que la pelota se
despegue de la raqueta; o usar h > 0, es decir medir la velocidad justo después de
que la pelota se despegó de la raqueta?

2. Para el caso elegido, ¾cuál conviene que sea el valor de h?

Referencias

-Burden, R. y Faires, J. Numerical Analysis, 2011, Brooks/Cole, 9a edición.

-https://www.marca.com/2015/07/01/tenis/1435714847.html.
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Situación 9: Selección del mejor pozo para extracción de
hidrocarburos.

Figura 16: Equipo de bombeo de petróleo

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Sumas de Riemann

⋄ Integral de�nida y aplicaciones

Una importante empresa petrolera está interesada en incorporar la explotación de un
nuevo yacimiento. No obstante, tiene un presupuesto limitado y tres pozos candidatos
(A, B y C) de una misma unidad estratigrá�ca. Es por tanto necesario determinar cuál
tendría mejor producción, para esto es necesario establecer con qué capacidad puede �uir
el hidrocarburo en cada pozo. Un método para determinar la distribución de la capacidad
de �ujo es el coe�ciente de Lorenz el cual requiere el cálculo del área bajo la curva de la
fracción de capacidad de �ujo total (fF ) versus la fracción de volumen total (fV ) , donde
fF está dado por el producto de la permeabilidad del suelo y la profundidad del pozo, y
fV por el producto de la porosidad del suelo y la profundidad del pozo. Cuanto menor
sea el coe�ciente de Lorenz, menor será la heterogeneidad del pozo y mayor es el interés
por explotar dicho pozo.

En la Tabla 3 se muestran los resultados correspondientes al pozo A.

1. Usando los datos suministrados, gra�que la distribución de fF versus fV .

2. Utilice la información dada para tomar particiones que den origen a n subinterva-
los, elija como puntos muestra los extremos derechos de cada subintervalo. Luego
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obtenga la suma de Riemann correspondiente.
3. El coe�ciente de Lorenz (CL) se de�ne de la siguiente forma:

CL =
Área entre la curva fF versus fV y la recta identidad

Área bajo la recta identidad

Calcule el coe�ciente de Lorenz aproximando el área de la curva fF versus fV con la
suma de Riemann obtenida en el punto 2. Tenga en cuenta que las variables están
de�nidas sobre el intervalo [0,1].

fV fF fV fF
0.0114 0.0309 0.4887 0.8827
0.0229 0.0645 0.5186 0.8982
0.0343 0.1032 0.5394 0.9112
0.0481 0.1367 0.5601 0.9215
0.0572 0.1625 0.5831 0.9293
0.0687 0.1961 0.5969 0.9345
0.0778 0.2270 0.6153 0.9423
0.0915 0.2657 0.6453 0.9553
0.1099 0.3121 0.6637 0.9579
0.1282 0.3456 0.6959 0.9657
0.1443 0.3921 0.7143 0.9735
0.1603 0.4359 0.7351 0.9761
0.1832 0.4747 0.7627 0.9813
0.2085 0.5289 0.7811 0.9891
0.2222 0.5727 0.7996 0.9892
0.2428 0.6011 0.8249 0.9944
0.2727 0.6450 0.8456 0.9944
0.2933 0.6889 0.8756 0.9945
0.3232 0.7302 0.9078 0.9956
0.3462 0.7560 0.9263 0.9972
0.3715 0.7767 0.9470 0.9989
0.3968 0.8026 0.9608 0.9998
0.4198 0.8207 0.9746 0.9999
0.4497 0.8465 0.9885 0.9999
0.4704 0.8620 0.9954 0.9999

Tabla 3. Fracción de capacidad de �ujo total versus fracción de volumen total
para el pozo A

4. Finalmente, sabiendo que los coe�cientes de Lorenz de los pozos B y C son 0.8886
y 0.7540, respectivamente, ¾qué pozo recomendaría Ud. explotar?

Referencia

-Martínez C. y Manuel O. Elaboración de un algoritmo para generar mapas de heteroge-
neidad a partir de datos petrofísicos de un yacimiento, 2003, Trabajo Especial de grado
para optar al título de Ingeniero Geofísico. Universidad Central de Venezuela. Venezuela.
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Situación 10: Accidente en el ensayo de la Fiesta de la
Vendimia 2017

Figura 17: Fotografía del ensayo de la Fiesta de la Vendimia 2017.

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Funciones y límites

⋄ Asíntotas

⋄ Linealización y aproximación

Suponga que, siendo ingeniero, usted es contratado como perito en el accidente ocurrido
el 2 de marzo de 2017 en el Teatro Griego Frank Romero Day, cuando una grúa colapsó
sobre las gradas y la carga que sostenía cayó sobre el escenario.

En el ensayo de la Fiesta de la Vendimia de 2017, como en años anteriores, se sostenía un
peso P mediante dos grúas con sendos cables como se muestra en la Figura 17.

Suponga que la altura de las grúas es H y que están separadas por una distancia D.
Además, asuma que las grúas y los cables son iguales y que la disposición es simétrica
(Figura 18).

1. Determine una expresión de la magnitud f de la fuerza f⃗ ejercida por cada grúa (en
la dirección de su respectivo cable) en términos de:

a) el ángulo x que forma cada cable con la horizontal (es decir, f = g(x)),

b) la altura h del peso (es decir, f = k(h)).

2. Encuentre los dominios de las funciones g y k. En el contexto del problema estudiado,
¾cuáles son realmente los dominios a considerar de estas funciones?
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Figura 18: Esquema simpli�cado de fuerzas.

3. Gra�que las funciones encontradas, y a partir de esto, emita un juicio criterioso
sobre el riesgo de colapso de las grúas.

4. A partir de la función f = k(h) y la de�nición de límite in�nito, explique que no
importa la capacidad F del tipo de grúa utilizada, siempre puede hallar una altura
h que haga que vuelque. Si bien no utilizará la siguiente información, se menciona
que la capacidad F viene dada por el peso propio de la grúa, patas, ruedas, anclajes,
el largo del brazo y la proyección ortogonal de la fuerza f⃗ sobre el brazo.

5. Suponga que un colega le propone linealizar f = k(h), para que se pueda seguir
utilizando el mismo montaje en próximos eventos, y el operario de la grúa disponga
de una fórmula simple para estimar si es seguro llegar hasta cierta altura. ¾Se comete
un error por exceso o por defecto? ¾Esto es así para cualquier valor de h? Diga si le
parece o no una buena idea usar la linealización.

Referencia

-Freeman, R. y Young, H. Física universitaria, 2009, Ed. Addison Wesley, 12da edición.
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Situación 11: Orden de complejidad de un algoritmo

Figura 19: Código de un algoritmo

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Sucesiones

⋄ Notación O

Un algoritmo es un método que se implementa en un dispositivo para resolver determina-
dos problemas. Una vez que se dispone de un algoritmo, se de�nen criterios para medir
su rendimiento. Estos criterios se centran en la simplicidad y en el uso e�ciente de los
recursos. Respecto al uso e�ciente de los recursos, éste suele medirse en función de dos
parámetros: la memoria que utiliza el algoritmo y lo que tarda en ejecutarse. Ambos re-
presentan los costos que supone encontrar la solución al problema mediante un algoritmo.
Dichos parámetros van a servir además para comparar algoritmos entre sí, permitiendo
determinar el más adecuado.

El tiempo de ejecución (T ) de un algoritmo va a depender del número de operaciones
elementales que realiza (operaciones aritméticas básicas, asignaciones a variables, compa-
raciones lógicas, etc) para un tamaño de entrada dado (n). El tamaño de entrada es el
número de componentes sobre los que se va a ejecutar el algoritmo (por ejemplo, número
de componentes de un vector, tamaño de matrices, etc.). Una vez que se tiene T , se puede
utilizar la siguiente clase de funciones para comparar la e�ciencia de algoritmos: dada
f : N → [0,∞), el conjunto de funciones de orden O (Omicron) de f es:

O(f) = {g : N → [0,∞) : existen c > 0 y n0 ∈ N tales que g(n) ≤ cf(n) para todo n ≥ n0} .

En lenguaje de algoritmos y estructura de datos, la notación O(f) se llama orden de
complejidad de f .
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1. Considere el siguiente grá�co:

a) Indique en la �gura un n0 ∈ N tal que g(n) ≤ cf(n) para todo n ≥ n0.

b) ¾Las funciones h y z pertenecen a O(f)? Justi�que.

2. Pruebe las siguientes propiedades de O:

a) Si f ∈ O(g), entonces O(f) ⊂ O(g).

b) Si f ∈ O(g) y g ∈ O(h), entonces f ∈ O(h).

La siguiente ecuación recurrente representa un caso típico del tiempo de ejecución
de un algoritmo recursivo:

T (n) =

{
2nk, si 1 ≤ n ≤ 2
T (n− 2) + 2nk, si n > 2

donde k es un número natural �jo y n = 1, 2, ...

3. ¾Por qué se dice que T representa un algoritmo recursivo?

4. Pruebe que T (n) = O(nk+1). Para ello, encuentre una expresión de T (n) aplicando el
siguiente procedimiento (su expresión de T (n) va a quedar en términos de constantes
Ci y Di que no es necesario determinar para resolver el problema):

En general, si:

a0T (n) + a1T (n− 1) + a2T (n− 2) = bnP (n),

donde P (n) es un polinomio de grado d, entonces primero se encuentran las solu-
ciones r1 y r2 de la ecuación:

a0x
2 + a1x+ a2 = 0.
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Si r1 y r2 son reales, distintas y además r1 ̸= b y r2 ̸= b, entonces:

T (n) = C1r
n
1 + C2r

n
2 +D0b

n +D1nb
n + · · ·+Ddn

dbn.

Si r1 y r2 son reales y distintas pero alguna de las dos raíces (por ejemplo r2) es
igual a b, entonces:

T (n) = C1r
n
1 +D0b

n +D1nb
n + · · ·+Ddn

dbn +Dd+1n
d+1bn.

Las constantes Ci y Di se determinan en base a los primeros valores de T (n).

Finalmente, tenga en cuenta la de�nición del conjunto O para probar que T (n) =
O(nk+1).

5. Utilizando el procedimiento del ejercicio anterior, compruebe que el algoritmo:

T (n) =

{
2nk, si 1 ≤ n ≤ 2
1
2
T (n− 2) + 2nk, si n > 2

satisface T (n) = O(nk).

Referencia

-Cormen, T., Leiserson, C., Rivest, R. y Stein, C. Introduction to algorithms, 2009. MIT
Press, 3ra edición.
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Situación 12: Curva de La�er

Figura 24. Curva de La�er

Bloques temáticos implicados en el problema

⋄ Modelación matemática

⋄ Derivación

⋄ Análisis de Grá�cas

⋄ Extremos

Introducción:

La curva de La�er representa la relación teórica existente entre los ingresos �scales y las
tasas impositivas, mostrando cómo varían la recaudación �scal al modi�car las tasas. La
curva, que fue difundida por el economista Arthur La�er, plantea que subir la tasa del
impuesto no necesariamente aumenta la recaudación, porque la base tributaria puede caer.
En el punto en que la tasa impositiva es cero, los ingresos �scales son nulos, ya que no
se aplica ningún impuesto. Mientras que, por el contrario, si la tasa impositiva es del 100
por ciento, los ingresos �scales serán nulos, que nadie aceptaría producir un bien cuyos
ingresos generales fueron destinados en su totalidad a pagar impuestos.

Si en los puntos extremos de tasas impositivas (del 0 al 100 por ciento) la recaudación
del gobierno es cero, surge como consecuencia que debe existir una tasa intermedia entre
esos extremos que constituya una recaudación máxima posible. Teniendo en cuenta que
la in�ación en una economía desprecia el valor del dinero, se puede ver a la in�ación como
un impuesto que representa la pérdida de valor debido a ese fenómeno, que enfrentan
los tenedores de los saldos reales de dinero, instrumentos �nancieros y los bonos. Es por
ello que la curva de La�er se puede utilizar para analizar los efectos de la variación de la
in�ación en una economía.

La curva de La�er básica, se puede representar como en la Figura 24. En el eje de abscisas
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se sitúan las tasas impositivas posibles sobre el benefecio del producto, denotadas por t,
medidas en términos relativos de 0 a 1 (es decir, del cero al 100 por ciento). Mientras que
en el eje de ordenadas se encuentran los ingresos gubernamentales, en miles de millones,
y son denotados por T .

Actividades:

1. Indique el dominio de la curva de La�er

2. Explique cómo se interpreta que la curva pase por los puntos (0, 0), (t∗, Tmax) y
(tmax, 0).

3. Supongamos que la curva de La�er responde a la expresión:

T (t) = A+B.senh(x) + C.sec(x).

a) Determine los valores de A, B y C que veri�can que cuando la tasa impositiva
es del 73%, los ingresos del gobierno son de 41 mil millones.

b) Analice el crecimiento o decrecimiento y la concavidad de la curva T en [0, 1]
con las constantes halladas en el inciso anterior, para comprobar que la grá�ca
de T tiene la forma de una curva de La�er básica.

c) Encuentre la tasa impositiva que permite el mayor ingreso al gobierno.

d) Encuentre los valores de las tasas que permiten al Estado obtener una recau-
dación de 32 mil millones.

e) Utilice el teorema del valor medio para integrales para encontrar el ingreso
promedio entre las tasas impositivas del 25 al 75 por ciento.
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Situación 13: Integración numérica

Figura 25. Represa

Bloques temáticos implicados en el problema

⋄ Modelación Matemática

⋄ Continuidad

⋄ Integral de�nida

⋄ Órdenes de magnitud

⋄ Longitud de curva

En ocasiones se presentan en las aplicaciones integrales de funciones que no poseen antide-
rivada con una expresión sencilla. En tales casos es útil resolver la integral numéricamente.

El Método de Trapecios Simple (Figura 26), que verá con detalle en la asignatura
Cálculo Numérico y Computación, propone aproximar la integral de f sobre el intervalo
[x0, x1] de longitud h = x1 − x0 de la siguiente manera:

I =

� x1

x0

f(x) dx =
h

2
(f(x0) + f(x1)) + (− 1

12
)h3f ′′(θ),

donde se aproxima el valor exacto de la integral I por el valor aproximado IT :

I ≈ IT :=
h

2
(f(x0) + f(x1)),

y el error que se comete es Error = (− 1
12
)h3f ′′(θ), donde θ es cierto valor que cumple

θ ∈ (x0, x1).
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Figura 26. Regla de Trapecios Simple

a) Interprete geométricamente el valor IT = h
2
(f(x0) + f(x1)).

b) Dé dos ejemplos de integrales de�nidas: uno en el que IT aproxime a I por exceso y
otro, donde la aproximación sea por defecto. Analice en cada uno de ellos el signo
del término de error de la fórmula, (− 1

12
)h3f ′′(θ).

c) ¾Para qué tipo de funciones se puede asegurar que el error al aproximar I por IT
será nulo?

Método de Trapecios Compuesto

Para resolver

I =

� x1

x0

f(x) dx (11)

numéricamente, elmétodo de trapecios compuesto propone subdividir el intervalo de
integración en n subintervalos [x0, x0 + h], [x0 + h, x0 + 2h],...,[x0 + (n − 1)h, x0 + nh]3,
donde

x0 + nh = x1, (12)

3La longitud de estos intervalos no necesita ser la misma, pero lo planteamos así por simplicidad.
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Figura 27. Regla de Trapecios Compuesta

y aproximar el valor de la integral (11) por la suma de las áreas de los trapecios rectángulos
cuyas bases (ubicadas verticalmente) tienen longitudes f(x0), f(x0+h),...,f(x0+(n−1)h)
y f(x0 + nh), y sus alturas (ubicadas horizontalmente) tienen todas ellas longitudes h
(Figura 27).

Así, se aproxima el valor de I en (11) por el de ITC dado por

ITC =
f(x0) + f(x0 + h)

2
h+

f(x0 + h) + f(x0 + 2h)

2
h+ · · · (13)

+
f(x0 + (n− 2)h) + f(x0 + (n− 1)h)

2
h+

f(x0 + (n− 1)h) + f(x0 + nh)

2
h (14)

d) A partir de la expresión (13), utilizando la notación sigma, halle una fórmula para
hallar el valor ITC .

Debe notarse que no se atraviesa ningún proceso de límite, sino que sólo se hace el cálculo
aproximado. Al hacer esta aproximación, se comete un error, que se puede medir.

Igual que en el caso de la regla de trapecios simple, se puede probar que el error admite
una expresión en términos de un punto ξ interior al intervalo (x0, x1) y del paso h elegido.
Para hallar esta expresión, realice los siguientes pasos:

e) Sume los n errores provenientes de aplicar la regla de Trapecios Simple n veces,
una vez en cada intervalo [x0 + (i − 1)h, x0 + ih], i = 1, 2, ..., n. Observe que cada
uno de estos errores contiene en su expresión un valor θi ∈ (x0 + (i− 1)h, x0 + ih),
i = 1, 2, ..., n.

f) Justi�que, indicando las condiciones que debe cumplir f ′′, que

1

n
(f ′′(θ1) + f ′′(θ2) + · · · f ′′(θn))
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es un valor que cumple

mı́n
[x0,x1]

f ′′(x) ≤ 1

n
(f ′′(θ1) + f ′′(θ2) + · · · f ′′(θn)) ≤ máx

[x0,x1]
f ′′(x).

g) Justi�que, indicando las condiciones que debe cumplir f ′′, que existe un valor ξ entre
x0 y x1 tal que

f ′′(ξ) =
1

n
(f ′′(θ1) + f ′′(θ2) + · · · f ′′(θn)) . (15)

h) En la expresión que Ud. ha obtenido para el error en (c), haga sustituciones a partir
de (15) y de (12), de manera de eliminar el factor 1

n
en el error y así obtener una

expresión que permita hallar el orden del error.

i) ¾Qué condiciones deben cumplirse para que este error sea un O(h2)?

j) Finalmente, sin calcular el valor exacto de I, halle un valor h tal que el error al
aplicar la fórmula que usted desarrolló en el ítem (d), para calcular la integral de la
función f(x) = 3− x2 entre x = 0 y x = 1, no supere el 0.01%, es decir, para que∣∣∣∣I − ITC

ITC

∣∣∣∣ ≤ 10−4.

Aplicación: longitud del borde de una represa

k) El borde de una represa (ver Figura 25) es el arco de la elipse de ecuación

x2

4002
+

y2

1002
=, 1

para el cual −100 ≤ x ≤ 100, donde x e y se miden en metros. Se debe comprar
materiales (en metros), en función de la longitud del arco. Haga una recomendación
de cuántos metros de material se debe comprar en este caso, usando para ello un
paso h = 25m, y grá�cos de la función que debe integrar junto con los trapecios
correspondientes al método (puede trabajar, por ejemplo, con Wolfram Alpha).
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Situación 14: Cuando un martillo y una pluma viajaron
a la Luna

Figura 28. Ilustración del comandante David Scott soltando una pluma y un martillo
en la super�cie lunar.

Bloques temáticos implicados en el problema

⋄ Modelación Matemática

⋄ Integrales inde�nidas

⋄ Derivadas

⋄ Problemas de valor inicial

⋄ Cálculo de asíntotas

⋄ Análisis y grá�ca de funciones

En 1971, el comandante David Scott, durante la misión Apolo 15 en la super�cie lunar,
grabó un experimento en el que dejó caer, de una misma altura, un martillo de 1,32
kilogramos y una pluma de halcón de 30 gramos. Como era de esperarse, ambos objetos
cayeron al suelo simultánemanete.

La experiencia fue en homenaje a Galileo Galilei quien, tres siglos antes, había postulado
que, en ausencia de la resistencia del aire, los objetos caen al mismo tiempo, independien-
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temente de su peso. Este postulado, no fue aceptado fácilmente en su época, entre otras
cosas, por la di�cultad de crear condiciones de vacío.

En el informe de la misión, Scott explicó, en tono de humor, que haber observado la
comprobación era algo �tranquilizador� dado que el viaje de regreso estaba basado en la
validez de esta teoría.

Con las herramientas de Análisis Matemático I y las Leyes de Newton, es posible veri�car
este postulado de Galileo Galilei, sin necesidad de viajes espaciales.

En primer lugar, suponga que un objeto de masa m con velocidad inicial v0 se deja caer
bajo la in�uencia de la gravedad en la super�cie terrestre. En este caso, hay dos fuerzas
que actúan de forma opuesta sobre el objeto:

⋄ la fuerza gravitatoria, dada por la expresión F1 = mg, donde g es la aceleración
debida a la gravedad;

⋄ la fuerza causada por la resistencia del aire que es proporcional a la velocidad v del
objeto y está dada por F2 = −bv(t), donde b es una constante positiva.

Por lo tanto, la fuerza neta sobre el objeto es:

F1 + F2 = mg − bv(t) (16)

Teniendo en cuenta la segunda Ley de Newton
(∑

i Fi = mdv
dt

)
, se tiene que:

m
dv

dt
= mg − bv (17)

y la solución de esta ecuación diferencial (que aprenderá a resolver en Análisis Matemático
II) es:

v(t) =
mg

b
+
(
v0 −

mg

b

)
e−bt/m (18)

que describe la velocidad del objeto en función del tiempo.

1. Veri�que que la función (18) es efectivamente la solución de la Ec. (17) y determine
la condición inicial.

2. Usando la información dada, obtenga ecuaciones para la posición x(t) y la acelera-
ción a(t) del objeto en función del tiempo.

3. Determine analíticamente las asíntotas de v(t).

4. Gra�que v(t) y a(t) en función del tiempo.

5. Con los cálculos hechos, ¾puede saber cuál es la velocidad terminal (cuando t tiende
a in�nito) del objeto?, ¾cómo in�uye en ella la velocidad inicial?

6. Finalmente, determine si en presencia de fricción, los objetos más pesados caen o
no más rápido que los livianos. Justi�que la respuesta cuando t tiende a in�nito y
luego, usando herramientas de Análisis, generalícela para todo tiempo t.

Suponga ahora que el objeto de masa m se deja caer en la super�ce lunar donde no hay
resistencia del aire.
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1. Reescriba la Ec. (17) para este caso y obtenga una expresión para la velocidad.

2. Gra�que v(t) y a(t) en función del tiempo.

3. Determine si en ausencia de fricción los objetos realmente caen con la misma velo-
cidad, independientemente de su masa.
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Situación 15: E�ciencia de un motor

Figura 29. Representación de un motor.

Bloques temáticos implicados en el problema

⋄ Modelación Matemática

⋄ Integrales de�nidas y Teorema Fundamental del Cálculo

⋄ Método de sustitución

⋄ Límites

⋄ Valores extremos de funciones

Un motor de combustión interna se usa para generar electicidad de emergencia de un
hospital que sufre frecuentes cortes de energía. Sin embargo, se desconoce la e�ciencia del
motor. Una forma de estimarla, es modelar el ciclo del motor a través de un ciclo de Otto
como el que se muestra en la Fig. 30.

Figura 30. Ilustración del ciclo de cuatro tiempos de un motor de Otto.
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Figura 31. Diagrama presión (P)- volumen (V) con las distintas etapas del ciclo de
Otto.

El ciclo de Otto consta de cuatro etapas:

⋄ Etapa de admisión: La válvula de admisión se abre conforme el pistón se mueve
hacia abajo, introduciendo una mezcla de combustible y aire en el cilindro. En el
diagrama presión (P )-volumen (V ) de la Fig. 31, es el tramo e → d que se supone
que tiene lugar a presión constante.

⋄ Etapa de compresión: La válvula de admsión se cierra y la mezcla se comprime
conforme el pistón se mueve hacia arriba. Es el tramo d → a en la Fig. 31. La com-
presión ocurre tan rápidamente que no hay tiempo para que haya transferencia de
calor entre el cilindro y el medio por lo que es un proceso adiabático (sin intercambio
de calor).

⋄ Etapa de combustión y expansión: Cuando el pistón ha alcanzado el punto más alto,
la mezcla aire-combustible se in�ama mediante una bujía y el rápido calentamiento
que resulta del proceso de combustión hace que aumente la presión y el gas se
expanda, empujando el pistón hacia abajo. La in�amación de la mezcla tiene lugar
en a y el rápido aumento de presión ocurre prácticamente a volumen constante
(tramo a → b). El pistonazo se modela como una expansión adiabática b → c.

⋄ Etapa de expulsión: Los productos de la combustión son forzados a salir del cilindo
por un movimiento hacia arriba del pistón conforme se abre la válvula de expulsión.
Esta etapa ocurre en dos fases, cuando el pistón está en su punto más bajo el
volumen permanece constante y es el tramo c → d. Cuando el pistón empuja el gas
remanente hacia arriba se sigue la línea d → e y el ciclo se cierra para comenzar de
nuevo.

La e�ciencia (ϵ) del ciclo se de�ne como �lo que se obtiene"dividido �lo que cuesta obte-
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nerlo�. En este caso, lo que se obtiene es el trabajo neto útil (W ) y lo que cuesta obtenerlo
es el calor que se introduce por la combustión (Qcaliente), es decir:

ϵ =
|W |

|Qcaliente|
(19)

Por lo tanto, para evaluar la e�ciencia del motor, es necesario obtener expresiones para el
trabajo neto del ciclo y el calor suministrado.

1. Calcule el trabajo neto del ciclo teniendo en cuenta que si el volumen más pequeño
es Vi y el más grande es Vj, el trabajo de expansión se estima como:

W = −
� Vj

Vi

P (V )dV (20)

Por el contrario, si el trabajo es compresivo se estima como:

W =

� Vj

Vi

P (V )dV (21)

¾Se realiza trabajo en todas las etapas del ciclo? Interprete geométricamente el
trabajo neto en el ciclo de la Fig. 31.

2. Aplicando el Teorema fundamental del Cálculo, determine la derivada del trabajo
con respecto a la temperatura (V(T)):

W (V (T )) =

� V

Vi

P (V ∗)dV ∗ (22)

Luego, reescriba el trabajo neto obtenido en términos de T . Para ello tenga en cuenta
que en los tramos adiabáticos (donde Q=0) se cumple que dW/dT = CV (T ), donde
CV es el calor especí�co.

3. Por otro lado, se sabe que el calor que se introduce por la combustión está dado por
las temperaturas en los puntos a y b del ciclo por la forma:

Qcaliente =

� Tb

Ta

CV (T )dT (23)

Usando esta expresión y el trabajo neto obtenido, de una ecuación para la e�ciencia
del motor en términos de T y resuelva la integral suponiendo a CV constante.

4. De relaciones termodinámicas se puede probar que las temperaturas y volúmenes
de los segmentos adiabáticos están relacionados de la siguiente manera:

TiV
γ−1
i = TjV

γ−1
j (24)

donde γ es una constante. Usando esta igualdad, pruebe que el rendimiento del
motor puede escribirse como:

ϵ = 1− Td

Ta

(25)

Posteriormente, analice e interprete las situaciones en que Ta → ∞ y Td → 0.
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5. La temperatura de la mezcla al inicio del golpe de compresión es Td = 300K, ¾cuál
es la e�ciencia máxima que puede tener el motor del hospital si Ta toma valores
entre 400K y 600K?
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Situación 16: Ajuste iterativo de un equipo de fabrica-
ción aditiva

Figura 32. Esquema de funcionamiento de una impresora 3D.

Bloques tematicos implicados en el problema

⋄ Modelación Matemática

⋄ Sucesiones

⋄ Series numéricas

⋄ Análisis de funciones

Tres técnicos están poniendo a punto una nueva impresora 3D. Entre los parámetros
que deben con�gurarse, se encuentra uno llamado compensación de �ujo c. Este es un
multiplicador que permite que el extrusor de la impresora aplique más volumen de material
del que teóricamente debería (si c > 1) o menos (si c < 1). Idealmente, para que el volumen
extruido V sea igual al objetivo buscado V ∗, debería ajustarse c = 1.

Sin embargo, en la práctica existen incertidumbres, como el diámetro del �lamento y
resbalamiento en las ruedas del extrusor, que hacen que el valor de c necesario para que
V = V ∗ sea algún número en el intervalo [0,5; 1,5]. Por ejemplo, si las ruedas no resbalan,
y el diámetro del �lamento es mayor a lo esperado, el extrusor aportará material de más,
lo cual puede compensarse �jando un valor para c un poco menor a 1. Por el contrario, el
resbalamiento de la rueda puede compensarse con un valor de c un poco mayor que 1. Lo
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que se sabe es que V = f(c), donde puede suponer que f es una función lineal que pasa
por el origen con pendiente α: f(c) = α.c.

Los tres técnicos coinciden en que hay que hacer un ajuste iterativo por prueba-y-error.
Esto es:

1. Fijar un valor arbitrario para c0 e imprimir una pieza, la cual tendrá un volumen V0.

2. Calcular el error correspondiente e0 = V0 − V ∗.

3. Con ese error calcular el valor de c para la próxima iteración, es decir c1.

4. Repetir esto sucesivamente para Vn, cn, en = Vn − V ∗ (recordar Vn = α.cn), hasta que
en sea lo su�cientemente pequeño.

El problema es que cada técnico da una propuesta diferente para calcular cn+1 (paso 3).

1. Técnico 1 (control bang-bang):

cn+1 = cn + an

an =

{
β en ≤ 0

−β en > 0,

con

β > 0.

2. Técnico 2 (control proporcional):

cn+1 = Q− βen,

donde

β > 0, Q > 0.

3. Técnico 3 (control proporcional-acumulativo):

cn+1 = cn + an,

donde

an = −βen

y

β > 0.
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Su tarea como ingeniero consiste en informar a los técnicos sobre las ventajas y desventajas
de cada una de las propuestas. Para esto, debe estudiar la convergencia del error para
cada una de ellas, según los valores que pueda tomar β; es decir, encontrar los casos en
que la sucesión del error converge y diverge. En caso de que para alguna/s propuesta/s el
error converja o pueda converger, debe calcular su límite suponiendo que f(c) = α.c. Para
calcular este límite, conviene encontrar primero una expresión cerrada para en en función
de e0 (donde no aparezca el símbolo de sumatoria). Puede ser de utilidad ejempli�car
numéricamente. Puede usar Excel o similar.

Finalmente, tome la propuesta del Técnico 1 y además elija una de las dos propuestas
restantes para desarrollarlas.

Guía para la resolución

1. Técnico 1:

a) Primero, diga en qué intervalo puede encontrarse α.

b) Escriba cn utilizando la notación sigma para sumas.

c) Determine una expresión para en en términos de c0, V ∗ y los ak.

d) Analice la convergencia de los en cuando n → ∞.

2. Técnico 2:

a) Diga en qué intervalo puede encontrarse α.

b) Llame r al producto αβ.

c) Llame E a αQ− V ∗.

d) Escriba c1 y e1 en función de e0.

e) Escriba c2 en función de e1 y luego en función de e0.

f ) Escriba e2 en función de c2 y luego en función de e0.

g) Escriba c3 en función de e2 y luego en función de e0.

h) Escriba e3 en función de c3 y luego en función de e0.

i) Analice el patrón y escriba una posible fórmula para en como función de e0.
Note que uno de los términos es el enésimo elemento de una sucesión de sumas
parciales.

j ) (Opcional) Escriba en+1 en función de en, y utilice la expresión para demos-
trar por inducción matemática que es cierta la fórmula planteada en el inciso
anterior.

k) Calcule el límite de en, cuando n → ∞, para distintos valores de Q, α y β.

l) Proponga un rango para β en función del volumen objetivo que asegure la
convergencia de en.

3. Técnico 3:

a) Diga en qué intervalo puede encontrarse α.
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b) Llame r a 1− αβ.

c) Escriba en+1 en función de en.

d) Escriba e1, e2 y e3 en función de e0 (recuerde que e0 = αc0 − V ∗).

e) Analice el patrón y escriba una fórmula para en como función de e0.

f ) (Opcional) Demuestre por inducción matemática que dicha fórmula es cierta.

g) Calcule el límite de en, cuando n → ∞, para distintos valores de α y β.

h) Proponga un rango para β en función del volumen objetivo que asegure la
convergencia de en.
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Situación 17: Tensión nominal del sistema eléctrico do-
méstico (en Argentina)

Figura 33. Operario eléctrico.

Bloques tematicos implicados en el problema

⋄ Modelación Matemática

⋄ Análisis de funciones

⋄ Límites

⋄ Integrales trigonométricas

Solemos decir que nuestro sistema eléctrico tiene una tensión de 220 V. Sin embargo la
tensión v(t) es en realidad una función del tiempo t según:

v(t) = 311,13 sen(2π50t). (26)

Una explicación física de esto es que una tensión variable v(t) como la dada por la ecuación
(26), al conectarse a una resistencia de valor R durante un tiempo T muy grande, produce
la misma potencia media calórica que una tensión constante v(t) = 220 bajo las mismas
condiciones.

Históricamente, tiene sentido utillizar el número 220, pues en los inicios se usaba corrien-
te continua (constante) o alterna (variable) según el lugar. Además, muchos aparatos
eléctricos de aquella época (que llevaban la inscripción AC/DC) funcionaban con ambas
corrientes y entregaban la misma potencia útil (calórica, lumínica o motríz).

Ahora que conoce la explicación física e histórica del hecho de usar el número 220, com-
pleméntelas con una explicación matemática.

Pistas para el planteo
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1. La potencia es una función del tiempo que puede calcularse como:

p(t) =
v(t)2

R
.

2. La potencia media generata en un tiempo T por una potencia p(t) es:

pM(T ) =
1

T

� T

0

p(t)dt.

3. Si p(t) se repite periódicamente en el tiempo con un periodo P , la potencia media
puede calcularse de manera más sencilla como:

pM(T ) ≈ 1

P

� P

0

p(t)dt, (27)

con un error que tiende a 0 si T tiende a ser mucho más grande que P .

Pistas para la solución

1. Veri�que la igualdad entre la potencia media generada por una tensión constante
v(t) = 220 con aquella generada por una tensión variable v(t) = 311,13 sen(2π50t),
durante un tiempo T muy grande.

2. Gra�que v(t)2 para reconocer el periodo P con el que se repite p(t). Finalmente,
compruebe (27) cuando T es mucho más grande que P .
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Situación 18: Producción de suministros sanitarios en
pandemia

Bloques temáticos

⋄ Técnicas de integración

⋄ Análisis de funciones

⋄ Cálculo de límites

⋄ Cálculo e interpretación de derivadas

⋄ Grá�ca de funciones

Planteo del problema

Durante la pandemia Covid 19 quedó clara la importancia de contar con soluciones tec-
nológicas innovadoras, donde la medicina y la ingeniera vayan de la mano, ya sea para la
impresión 3D de mascarillas protectoras faciales, el diseño y la producción de respiradores
o el desarrollo de planes de transporte y abastecimiento. Planteamos aquí una situación
hipotética (pero plausible) en el año 2020. La empresa para la que Ud. trabaja desarrolla
elementos de protección y testeo y ha sido contratada por el gobierno para ser su provee-
dor principal. Ud. está a cargo de la logística, su objetivo es lograr la producción requerida
antes del pico de contagios. Una forma simpli�cada de obtener la curva de infectados es
usar la función logística que aparece en diversos modelos de crecimiento de poblaciones.
Según esta función, la tasa de contagios está dada por la siguiente ecuación diferencial
ordinaria (EDO):
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P ′(t) = rP (t)

[
1− P (t)

L

]
(28)

Donde P (t) es el número de personas infectadas en el instante t, r es una constante propia
del sistema (tome r = 1) y L el número total de personas en la provincia susceptibles de
contagiarse. Cabe aclarar que el modelo no contempla la existencia de personas recupe-
radas ni inmunes. Se trata de una primera aproximación para representar la propagación
de una enfermedad epidémica.

1. No siempre es necesario obtener una expresión analítica para describir las soluciones
de una EDO. Interprete la derivada de la Ec. (1) como la pendiente de las rectas tan-
gentes en cada punto de la grá�ca de la función P(t), esboce así el comportamiento
de la solución de la ecuación.

2. Integre la Ec. (1) para obtener analíticamente la cantidad total (acumulada) de
contagios. Considere que la cantidad inicial de infectados (en t = 0) es 10 y está
dada por los casos sospechosos que ingresaron a la provincia desde Europa o Asia a
mediados de marzo del 2020. Ayudas para resolver la integral:

a) Agrupe de un lado de la igualdad todo lo que depende de P .

b) Utilice el método de sustitución para plantear de un lado de la igualdad una
integral respecto de P y del otro, una integral respecto de t.

c) La integral que depende de P se resuelve por el método de fracciones simples
que consiste en escribir una función racional R(x) = f(x)/g(x) (el grado del
polinomio f debe ser mayor que el de g) como una suma de fracciones sencillas
de integrar. Si g(x) es un producto de factores lineal distintos, es decir, g(x) =
(a1x+ b1)(a2x+ b2)...(akx+ bx), se sabe que existen constantes, A1, A2, ..., Ak,
tales que:

f(x)

g(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ ...+

Ak

akx+ bk
(29)

Para obtener el valor de las constantes multiplique ambos lados de la igualdad
por g(x), iguale los coe�cientes de potencias de igual grado de x y resuelva
el sistema de ecuaciones correspondiente. Finalmente, integre el lado derecho
correspondiente a la Ec. (2). (Ejemplos resuletos con éste método pueden en-
contrarse en el libro Cálculo - una variable, Thomas, en la sección �integración
de funciones racionales por medio de fracciones simples").

3. Demuestre que la cantidad total de contagios es una función creciente y acotada.

4. Determine cuándo se dará la máxima tasa de contagio y por lo tanto, antes de qué
fecha debe tener listos los insumos requeridos por el gobierno.

5. Gra�que P ′(t) y P (t). Interprete en estos grá�cos lo obtenido en los punto 1 y 3.
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Situación 19: Estudio de carga en un circuito RLC

Figura 35. Circuito eléctrico con resistencia, inductor y capacitor.

Bloques temáticos implicados en el problema

⋄ Modelación Matemática

⋄ Análisis de funciones

⋄ Fracciones parciales

⋄ Integral impropia

⋄ Integración por partes

Como alumno de la carrera de Mecatrónica, durante el cursado de las distintas materias
de la carrera de Ingeniería Mecatrónica, aprendí que diversos fenómenos de la vida real
pueden modelarse mediante ecuaciones conocidas como �ecuaciones diferenciales�. Este
modelado permite predecir el comportamiento de un sistema determinado. En este caso
particular, es posible determinar qué valores de los distintos componentes de un circuito
son los más adecuados para llevar a cabo una tarea especí�ca.

¾Qué es una ecuación diferencial?

En términos prácticos, una ecuación diferencial es una ecuación matemática que relaciona
una función desconocida con algunas de sus derivadas. A lo largo de la carrera serán muy
útiles, por lo cual es fundamental conocer cómo resolverlas. En esta aplicación veremos un
método conocido como �Transformada de Laplace�. Este posteriormente será desarrollado
en la asignatura �Matemática avanzada�.

¾Circuito RLC serie?¾Cómo se compone?

Este tipo de circuito eléctrico es donde los elementos que lo componen son un resistor, un
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inductor y un capacitor. Estos se conectan en serie, es un tipo de circuito fundamental
para distintas aplicaciones y será visto en �Física II�. Una manera sencilla de entender los
conceptos que veremos en el desarrollo de este ejercicio es realizando una analogía con un
circuito hidráulico:

⋄ Tensión: se mide en Voltios (V), se representa con v es la que impulsa a los electrones
a moverse por un conductor. En un sistema hidráulico, sería la presión que impulsa
el agua.

⋄ Carga: se mide en Coulombs (C) y se representa con q. Es una medida de la cantidad
de electrones en movimiento o almacenados en el circuito. En un sistema hidráulico
sería la cantidad total de agua.

⋄ Corriente: se mide en Amperes (A) y se representa con i. Es el �ujo de carga eléctrica
que se desplaza por el conductor. En un sistema hidráulico sería el caudal o el �ujo
de agua.

⋄ Resistor: su propiedad es la resistencia, que se representa por R y se mide en Ohmios
(Ω). Siguiendo con la analogía del circuito hidráulico, se opone al �ujo de corriente,
similar a una tubería estrecha.

⋄ Capacitor: su propiedad es la capacitancia, que se representa con C y se mide en
Faradios (F). Está encargado de almacenar energía eléctrica y liberarla cuando es
requerida. Análogamente sería un tanque de agua.

⋄ Inductor: su propiedad es la inductancia, que se representa con L y se mide en
Henrios (H). Este se encarga de oponerse a los cambios de corrientes que existen.
Análogamente sería una rueda de agua.
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Transformada de Laplace

Se podrá ver que el circuito RLC puede representarse a través de una ecuación diferencial
dada de la siguiente manera:

Donde cada término representa la tensión en cada uno de los componentes, la cual será
igual a la aplicada al circuito. El primer término representa una �fem autoinducida�, el
segundo la �caída de tensión� en la resistencia. Finalmente el último término es la �tensión
del capacitor�.

En este caso, buscamos encontrar el valor instantáneo de la carga �q=q(t)�, la cual se
relaciona de acuerdo a la ecuación anterior con sus derivadas. Para resolverlo utilizaremos
la �Transformada de Laplace�.

¾Qué es la de Transformada de Laplace?

Es una herramienta matemática que permite convertir ecuaciones diferenciales en ecua-
ciones algebraicas más fáciles de resolver. Su de�nición está dada por:

Determine la transformada de Laplace de:

1. f(t) = 1.

2. f(t) = eat, donde a es una constante positiva.

3. f(t) = btn, donde b ∈ R y n = 1, 2 y 3. Intente obtener una expresión general para
la transformada de Laplace de tn para cualquier n natural.

4. f(t) = sen(bt), b ∈ R.
Asuma que f y sus primeras dos derivadas son continuas en [0,∞) y que son de orden
exponencial, es decir,

|f (n)(t)| ≤ Meαt, n = 0, 1, 2,
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para ciertas constantes positivas M y α y todo t > 0.

1. Dé dos ejemplos de funciones que veri�quen que tienen, junto con sus derivadas de
primer y segundo orden, orden exponencial.

2. Demuestre las siguientes propiedades de la transformada de Laplace.

a) L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}, donde a y b son constantes y g es de
orden exponencial.

b) L{f ′(t)} = sL{f(t)} − f(0), para s > α.

c) L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0), para s > α.

Aplicación de la transformada de Laplace a ecuaciones diferenciales

Se cuenta con un circuito RLC serie, al cual se le aplicará una tensión y queremos conocer
qué carga será la que posea el capacitor y su comportamiento a lo largo del tiempo.

Los datos que se tienen son los siguientes:

⋄ R = 6Ω

⋄ L = 1H

⋄ C = 0,12F

⋄ V = 12U(t), donde U(t) = 1 si t > 0 y U(t) = 0 si t ≤ 0.

Teniendo en cuenta que las condiciones iniciales son:

q(0) = 0C,

q′(0) = 0A.

1. Utilizando los datos anteriores, plantee la ecuación diferencial a resolver.

2. Aplique la transformada de Laplace a ambos miembros de la ecuación y utilice las
propiedades deducidas antes para obtener una ecuación algebraica para L{q(t)},
para s > 0.
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3. Aplique la descomposición en fracciones simples y, recordando la transformada de
Laplace de funciones conocidas, encontrar la solución q = q(t).

4. Finalmente, analice qué sucede con la carga a largo plazo. La transformada de
Laplace también sirve para simpli�car el cálculo de este límite. Para ello, invitamos
al alumno interesado a ver el "Teorema del valor �nal", por ejemplo en https :
//en.wikipedia.org/wiki/F inal−value−theorem.
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Situación 20: Cálculo del tiempo de enfriamiento de un
turbogenerador en la Central Hidroeléctrica del Chocón.

Figura 36. A la izquierda, foto de la central hidroeléctrica del Chocón sobre el río
Limay en las provincias de Neuquén y Rio Negro; a la derecha un esquema del diseño de

ingeniería para la produccíon de energía eléctrica.

Bloques temáticos implicados en el problema

⋄ Modelación Matemática

⋄ Análisis de funciones

⋄ Límites

⋄ Linealización y Diferenciales

⋄ Funciones trascendentes

En el estudio de sistema dinámicos, muchas veces no se conoce la expresión analítica de
una magnitud en el tiempo, pero sí se tiene una expresión para su variación en el tiempo.
Un ejemplo de esto es la Ley de Enfriamiento de Newton que es muy utilizada
en ingeniería porque describe la velocidad a la que se enfría un sistema conociendo su
temperatura en un determinado momento, la temperatura del ambiente y el coe�ciente
de transferencia de calor entre el sistema y el ambiente. Dicha ley establece lo siguiente:

τ ′(t) = −k(τ(t)− ta), (30)

donde

⋄ τ(t) es la temperatura del sistema en el instante t.

⋄ k es el coe�ciente de transferencia de calor entre el sistema y el ambiente.

⋄ τa es la temperatura del ambiente.
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1 Interprete la ecuación (30), en especial el signo menos delante de k, suponiendo
primero que τ(t) < τa y luego τ(t) > τa.

En el presente problema se deberá usar la Ley de enfriamiento de Newton y los conocimien-
tos adquiridos en Análisis Matemático I para calcular el tiempo que tarda en enfriarse una
central hidroeléctrica después de haber estado en funcionamiento ininterrumpido durante
un año.

En la central hidroeléctrica del Chocón se requiere hacer mantenimiento anual reglamenta-
rio de una unidad turbogeneradora de 100 MVA. Para ello, es necesario detener la unidad
y esperar a que su temperatura se reduzca desde la temperatura de trabajo de 800C hasta
400C, sabiendo que la temperatura ambiente promedio es de 150C.

Se sabe además que los parámetros el generador son:

⋄ Masa (m): 200 Toneladas

⋄ Super�cie total (A): 70 m2

⋄ Coe�ciente de intercambio (h): 50 W/m2

⋄ Capacidad calorí�ca promedio C: 450 J/Kg K.

El coe�ciente k de transferencia de calor se puede calcular como:

k =
hA

mC
.

2. Calcule el valor del coe�ciente de transferencia k.

3. Utilizando diferenciales, escriba una expresión para aproximar el cambio real de la
temperatura ∆τ de la central desde el instante inicial hasta la primera hora. Asuma
que el tiempo t se mide en horas.

4. Use la ley de enfriamiento de Newton y los datos y parámetros dados para calcular
τ ′(0).

5. Utilice los resultados de los puntos anteriores para estimar τ(1).

6. Siga el procedimiento de los puntos anteriores para obtener una aproximación de
las temperaturas de la central tomando intervalos de 1 hora hasta llegar a un valor
de temperatura �nal de 400C. Complete la siguiente tabla y diga cuánto tardará la
central en enfriarse:
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Tiempo en horas Temperatura aproximada en 0C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

7. Gra�que los valores de la Tabla anterior (puede usar alguna herramienta informáti-
ca). ¾A qué valor tiende la temperatura cuanto el tiempo tiende a in�nito?

8. Se sabe que la siguiente función permite describir la evolución temporal de la tem-
peratura de un sistema en enfriamiento:

τ(t) = (τ0 − τa)e
−kt + τa.

Compruebe que esta función resuelve la ecuación (30). Teniendo en cuenta los pa-
rámetros dados para esta central, calcule el tiempo real que tarda en pasar de 800C
a 400C.

9. Finalmente, compare el resultado obtenido en el punto 8 con la aproximación que
respondió en el punto 6 y responda ¾Cuál es el valor relativo porcentual que se
comete haciendo la aproximación con diferenciales?
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Situación 20: Aproximando cambios de funciones poten-
ciales con multiplicaciones simples

Figura 36.

Bloques tematicos implicados en el problema

⇧ Modelación Matemática
⇧ Análisis de funciones
⇧ Derivación y Linealización

A lo largo de su carrera y vida profesional, descubrirá que las funciones potenciales y los
cambios relativos aparecen muy frecuentemente. Mediante esta actividad, usted aprenderá
a aproximar el cambio relativo de funciones potenciales usando una simple multiplicación.
La aproximación aprendida le será útil para resolver problemas aparentemente complejos,
mediante cálculos mentales muy simples.

A. Obtener la linealización L = L(x) alrededor de x = 0 de

f(x) = (1 + x)k, donde k 2 R, k 6= 0,

y justificar para qué valores de k se tiene f(x) > L(x) para x > 0 y para cuáles
f(x) < L(x) para x > 0.
Observación: la unidad 1 en el desarrollo anterior es útil para representar el estado
de referencia de una propiedad numérica de algún objeto. Por ejemplo, si se está
estudiando cuándo dinero se obtendrá por invetir un cierto dinero hoy, el problema
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se puede plantear preguntando cuántos pesos se obtendrán por cada peso invertido
hoy. Es decir, todo el análisis se puede hacer suponiendo que el valor de referencia
de la variable es 1 y luego los resultados serán proporcionales a ese valor particular.

B. Teniendo en cuenta la observación anterior, interprete a la variable x en la expresión

f(x) = (1 + x)k, donde k 2 R, k 6= 0.

Ejemplifique su interpretación.
C. Sea y = g(x) y su incremento (absoluto) cuando la variable x pasa de a a a + �x

dado por
�y = g(a+�x)� g(a).

El incremento relativo de y = g(x) es

�

r

y =

g(a+�x)� g(a)

g(a)
=

g(a+�x)

g(a)
� 1.

Suponga que y = g(x) = cxk donde c 6= 0 y k es un número real no nulo. Pruebe,
utilizando la linealización del primer inciso, que

�

r

y ⇡ k�
r

x, (30)

donde �

r

x es el incremento relativo de x con respecto al valor inicial x = a:

�

r

x =

a+�x� a

a
=

�x

a
.

Finalmente, definiendo los cambios relativos porcentuales como:

�

r%

x = 100�

r

x

y

�

r%

y = 100�

r

y,

demuestre que:
�

r%

y ⇡ k�
r%

x. (31)

A continuación, elija una aplicación.

Aplicación 1: tiempo de descarga de un archivo
El tiempo que un archivo tarda en descargarse depende de muchos factores, los dos prin-
cipales son: la velocidad de la red y la proporción que ocupa la carga útil con respecto
a la totalidad de datos que deben transmitirse para que el archivo llegue íntegro. Esto
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último se debe a que en la práctica se transmite el archivo y otros datos que sirven para
la sincronización y la detección y corrección de errores. En el caso complejo de internet,
la proporción datos transmitidos/carga útil no es simple de conocer pero puede suponerse
constante para este ejemplo.
Suponga que un archivo de 1 GB tarda una hora en descargarse con una velocidad de 3
Mb/s. ¿Cuánto tardará en descargarse con una velocidad de descarga de 3.3 Mb/s?
Primero encuentre la solución exacta y luego utilice las expresiones (30) y (31) para apro-
ximar su solución. Tenga en cuenta lo siguiente:

T =

D

V
= K

C

V
,

donde
⇧ 1 B (1 byte) = 8 bit (8 b)
⇧ T = tiempo de descarga
⇧ V velocidad de descarga
⇧ C = carga útil
⇧ D = datos transmitidos
⇧ D - C = datos que sirven para la sincronización y la detección y corrección de errores
⇧ K = constante de proporcionalidad

Aplicación 2: compra de un televisor nuevo

Suponga que se quiere decidir sobre la compra de un televisor nuevo y hay dos opciones:
uno de 50 pulgadas a 100000 pesos y otro de 55 pulgadas a 120000 pesos. Ambos tienen
una relación de aspecto K, es decir, si las bases son b

1

y b
2

, las alturas h
1

y h
2

y las
diagonales L

1

y L
2

, se tiene que

K =

b
1

b
2

=

h
1

h
2

=

L
1

L
2

. (32)

Suponga que ambos tienen un precio justo, entendiendo por esto que el precio es propor-
cional al producto del área de la pantalla por la calidad. Ya que ambos tienen un precio
justo, se desea comprar el de mayor calidad. ¿Cuál es? Para responder al interrogante,
siga los siguientes pasos.

1. Plantee fórmulas para el precio de cada televisor en términos de las áreas A
1

y A
2

de
los mismos (suponga que la constante de proporcionalidad es la misma para ambos).

2. Teniendo en cuenta la relación de aspecto (32), deduzca que las áreas de los televi-
sores A

1

y A
2

cumplen
A

1

= Cb2
1

, A
2

= Cb2
2

,
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donde C es la misma constante de proporcionalidad para ambos televisores. Luego,
obtenga

A
1

= DL2

1

y A
2

= DL2

2

,

con D la misma constante para ambos televisores.
3. Plantee un sistema que permita responder al interrogante en forma exacta. ¿Puede

resolver el sistema?
4. Teniendo en cuenta las expresiones encontradas anteriormente y la relación entre las

diagonales de los televisores, utilice (30) o (31) para responder cuál de los televisores
presenta mayor calidad.

Aplicación 3: Conversación en una obra en construcción

Suponga que está en una obra en construcción y tiene dos opciones para la armadura de
uno de sus tabiques: 100 barras del 10 o 120 barras del 8 (medida nominal en mm). Debe
tomar una decisión rápida sin consultar precios. ¿Cuál es la opción más barata? Para
responder haga las siguientes suposiciones: las dos opciones son igual de seguras, todas
las barras son del mismo largo y el precio es proporcional al volumen de cada barra (en
mm3) con la misma constante de proporcionalidad.

1. Plantee fórmulas para el costo de cada tipo de barra en términos de las áreas A
1

y A
2

de la sección transversal de cada una de ellas (suponga que ambas tienen la
misma longitud L y que la constante de proporcionalidad es la misma).

2. Teniendo en cuenta las expresiones encontradas anteriormente y la relación entre
las diámetros de las barras, utilice (30) o (31) para responder qué opción es más
barata.

Aplicación 4: Marcación de precios en tiempos de incertidumbre
Imagina que es el dueño de una ferretería y tiene a la venta tanques de agua (con tapa)
de 1000 L y de 1100 L. El de 1000 L se vende más seguido y por lo tanto usted ha
actualizado su precio en los últimos meses, pero olvidó actualizar el precio del de 1100 L.
Un día vienen a comprarle el de 1100 L y cuando ve la lista de precios, nota que el de 1000
L está a 20000 pesos y el de 1100 L a 15000 pesos, fruto de su olvido de actualización por
inflación. Usted no quiere perder al cliente , tampoco quiere venderlo a un precio inferior
a lo que le costaría volver a comprarlo. Tampoco tiene tiempo de consultar el precio con el
proveedor. ¿Cuál sería un precio justo para el tanque de 1100 L? Para responder suponga
que el precio de los tanques es proporcional (con la misma constante) a la cantidad de
plástico, que ambos tienen el mismo espesor y que tiene la misma relación de aspecto:

h
1

r
1

=

h
2

r
2

= k, (33)

donde r
1

, r
2

denota los radios de los tanques y h
1

, h
2

las alturas.

66



Análisis Matemático I

1. Escriba expresiones para el precio de ambos tanques en función de las variables de
interés (denote por e el espesor, K la constante de proporcionalidad y A

1

, A
2

el área
lateral de cada tanque).

2. Plantee un sistema de ecuaciones para obtener la solución exacta.
3. Para obtener una solución aproximada, vamos a comprobar la siguiente afirmación

intuitiva: dado que, por (33), el volumen del tanque es proporcional al cubo de una
longitud característica como puede ser el radio, el área superficial total del tanque
(laterales más las áreas de la tapa y la base) será proporcional al cuadrado de dicha
longitud. Luego, el precio del tanque será proporcional al volumen del mismo elevado
a la 2/3.
Para comprobar la afirmación, realice los siguientes pasos:

a) Utilizando (33), escriba fórmulas para las áreas superficiales y los volúmenes
de los tanques en función del radio de los mismos.

b) A partir de las expresiones encontradas en el inciso anterior, compruebe que las
áreas superficiales de los tanques son proporcionales a los volúmenes elevados
a la 2/3.

c) Finalmente, escriba los precios de los tanques en función de los volúmenes de
los mismos.

4. Utilizando la información anterior y a partir de la relaciones (30) o (31), determine
el precio aproximado del tanque de 1100 L.
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