
Trabajo Práctico 4
PARTE B: Integrales de Superficie

NOTA: Muchos ejercicios de este trabajo práctico han sido tomados del libro “Cálculo de
varias variables”de Thomas, décimosegunda edición, Ed. Pearson.
Los ejercicios (o secciones) pueden ser obligatorios (o), recomendados no obligatorios (r) y op-
cionales (*).

Cálculo del área de una superficie, A(S) =

�

S

dσ, en distintas representaciones

Expĺıcita: z = f(x, y) Impĺıcita: φ(x, y, z) = 0 Parametrizada: r(u, v)

A(S)

�

Rxy

√
(−fx)2 + (−fy)2 + 1 dxdy

�

R

∥∇φ∥
|∇φ · p|

dA

�

Ruv

∥su × sv∥ dudv

1. Parametrización de superficies, áreas y planos tangentes

1. Ejercicios tomados de Geometŕıa Anaĺıtica: repaso.

Dadas las siguientes representaciones vectoriales paramétricas de superficies, identifique
para cada caso de qué superficie cuádrica se trata, a partir de la eliminación de los paráme-
tros que las describen.

a) (o) r(β, t) = (2t chβ, 8t shβ, t2). Es decir:

x = 2t chβ

y = 8t shβ t ≥ 0;β ∈ R.

z = t2

b) (r) r(α, β) = (5 cosα senβ, 2 senα senβ, 9 cosβ). Es decir:

x = 5 cosα senβ

y = 2 senα senβ α ∈ [0, 2π], β ∈ [0, π].

z = 9 cosβ

c) (r) r(α, t) = (4t cosα, 7t senα, t2). Es decir:

x = 4t cosα

y = 7t senα t ≥ 0;α ∈ [0, 2π].

z = t2

2. Determine una parametrización para la superficie. (Hay más de una manera correcta de
hacerlo.)
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a) (o) Porción del paraboloide z = x2 + y2 tal que z ≤ 4.

b) (r) Porción del paraboloide z = 9− x2 − y2 tal que z ≥ 0.

c) (r) Cono truncado: parte del cono z =

√
x2+y2

2 entre los planos z = 0 y z = 3.

d) (r) Región esférica: parte de la esfera x2 + y2 + z2 = 3, entre los planos z =
√
3
2 y

z = −
√
3

2 .

e) (r) Región esférica: parte “inferior” de la esfera x2 + y2 + z2 = 9 cortada por z =
+
√

x2 + y2.

f ) (r) Banda ciĺındrica circular: porción del cilindro y2 + z2 = 9 entre los planos x = 0
y x = 3.

g) (o) Plano inclinado dentro de un cilindro: porción del plano x+ y + z = 1 dentro del
cilindro x2 + y2 = 9.

h) (r) Plano inclinado dentro de un cilindro: porción del plano x+ y + z = 1 dentro del
cilindro y2 + z2 = 9.

3. (*) Dé una parametrización para la superficie que es la parte del cilindro de ecuación
x2 + y2 = R2 que se encuentra entre el plano z = 0 y la curva cerrada C que está en el
el semiespacio z ≥ 0, dada por r(t) = (R cos t, R sen t, c(t)), 0 ≤ t ≤ 2π, donde c(t) es una
función derivable en [0, 2π].

4. Calcule el área de la superficie dada por:

a) (o) la porción del plano y + 2z = 2 dentro del cilindro x2 + z2 = 1

b) (r) La porción de cono z = 2
√

x2 + y2, entre los planos z = 2 y z = 6.

c) (r) La porción de paraboloide: z = 2− x2 − y2, cortado por el cono z =
√

x2 + y2.

d) (o) La porción inferior de la esfera x2+y2+z2 = 9, cortada por el cono z =
√

x2 + y2.

5. (r)

a) Los puntos de la parte del paraboloide de ecuación z = x2 + y2 que cumplen z ≤ 4,
forman una superficie. Determine el área de la misma.

b) Plantee una integral para calcular el área de la superficie que es la parte del parabo-
loide de ecuación z = x2 + y2 que se encuentra en el primer octante, entre los planos
z = 1 y z = 4.

6. (o) Encuentre una ecuación para el plano tangente al cilindro circular parametrizado por

r(θ, z) = (3 sen(2θ), 6 sen2 θ, z), 0 ≤ θ ≤ π, en el punto P0(3
√
3
2 , 92 , 0) correspondiente a

(θ, z) = (π3 , 0). Agregue, si es posible, una ecuación para la recta normal a la superficie en
el mismo punto.

7. (r) Encuentre una ecuación para el plano tangente a la superficie hemisférica parametrizada
por r(ϕ, θ) = (4 senϕ cos θ, 4 senϕ sen θ, 4 cosϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

2 , en el punto

P0(
√
2,
√
2, 2

√
3) correspondiente a (ϕ, θ) = (π6 ,

π
4 ). Agregue, si es posible, una ecuación

para la recta normal a la superficie en el mismo punto.

8. (r)

a) Un toro de revolución (ver figura) se obtiene al hacer girar un ćırculo C en el plano
xz, alrededor del eje z en el espacio. Si C tiene un radio r > 0 y su centro es (R, 0, 0),
verifique analizando algunas curvas reticulares, que una parametrización del toro es

r(u, v) = ((R+ r cosu) cos v, (R+ r cosu) sen v, r senu), 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π.
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b) Demuestre que el área de la superficie del toro es A = 4π2Rr.

9. (r) Parametrización de una superficie de revolución: suponga que la curva C parametrizada
por r(u) = (f(u), g(u)) gira alrededor del eje x, donde g(u) > 0 para a ≤ u ≤ b.

a) Interprete que
r(u, v) = (f(u), g(u) cos v, g(u) sen v)

es una parametrización de la superficie de revolución resultante, donde 0 ≤ v ≤ 2π
es el ángulo formado por el vector que va desde (f(u), 0, 0) hasta r(u, v) y el plano
xy. Observe que f(u) mide la distancia a lo largo del eje de revolución y g(u) mide
la distancia al eje de revolución.

b) Encuentre una parametrización para la superficie obtenida al hacer girar la curva
x = y2, y ≤ 0, alrededor del eje x.

10. (r)

a) Parametrización de un elipsoide: verifique que r(θ, ϕ) = (a cos θ cosϕ, b sen θ cosϕ, c senϕ)

es una parametrización del elipsoide x2

a2
+ y2

b2
+ z2

c2
= 1. Especifique los valores que

deben tomar los parámetros.

b) Escriba una integral para el área de la superficie del elipsoide, pero no la evalúe.

11. (o) Calcule el área de la proción del paraboloide z = 4− x2 − y2 que está arriba del anillo
1 ≤ x2 + y2 ≤ 4 en el plano xy.
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2. Integrales de superficie de campos escalares y vectoriales

12. Calcule la integral de la función f dada, sobre la superficie S indicada:

a) (o) f(x, y, z) = x sobre S : y = x2, 0 ≤ x ≤ 2, 0 ≤ z ≤ 3.

b) (r) f(x, y, z) = x2 sobre la esfera unitaria S : x2 + y2 + z2 = 1.

c) (r) f(x, y, z) = x2
√
5− 4z sobre el domo parabólico z = 1− x2 − y2, z ≥ 0.

d) (o) f(x, y, z) = xyz sobre la superficie del sólido rectangular cortado en el primer
octante por los planos x = a, y = b y z = c.

e) (r) f(x, y, z) = z − x, sobre la porción de la gráfica de z = x + y2 arriba del
triángulo en el plano xy, con vértices en (0, 0, 0), (1, 1, 0) y (0, 1, 0) (véase la
figura).

Agregue planteos usando integrales apropiadas, para calcular valores medios de las
funciones anteriores sobre las superficies correspondientes.

Además, si en algún caso se puede interpretar a la función f como la densidad en cada
punto de la superficie S, indique cómo se podŕıan calcular la masa y las coordenadas
del centro de masa de la placa delgada.

13. (r) Plantee fórmulas para hallar el centro de masa de una capa delgada que es la parte
superior de la esfera de ecuación x2 + y2 + z2 = 9 cortada por el cono dado por z =√

x2 + y2, sabiendo que la densidad en cada punto es la función δ(x, y, z).

14. (r) Determine el centroide de la porción de esfera x2 + y2 + z2 = a2 que está en el primer
octante.

15. Utilice una parametrización para determinar el flujo

�
S
F · n dσ del campo vectorial F a

través de la superficie S en la dirección dada.

a) (o) F(x, y, z) = (x, y, z) a través de la superficie S que es la parte del cilindro
x2 + y2 = 1 cortada por los planos z = 0 y z = 1, en la dirección que se aleja del
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eje z. Realice un esbozo de la superficie y del campo vectorial, interpretando el valor
obtenido.

b) (r) F(x, y, z) = (−y, x, 0) a través de la superficie S que es la parte del cilindro
x2 + y2 = 1 cortada por los planos z = 0 y z = 1, en la dirección que se aleja del
eje z. Realice un esbozo de la superficie y del campo vectorial, interpretando el valor
obtenido.

c) (o) F(x, y, z) = (z2, x,−3z) a través de la superficie del cilindro z = 4 − y2 cortado
por los planos x = 0, x = 1 y z = 0 en la dirección que se aleja del eje x.

d) (o) F(x, y, z) = (0, 0, z) a través de la porción de esfera en el primer octante x2+y2+
z2 = a2, para cierto a > 0, en la dirección que se aleja del origen.

16. Encuentre las integrales de superficie de los campos vectoriales dados, a través de la porción
de la esfera x2 + y2 + z2 = a2 (a > 0) en el primer octante, en la dirección que se aleja del
origen.

a) (r) F(x, y, z) = zk.

b) (r) F(x, y, z) = (y,−x, 1).

c) (r) F(x, y, z) =

(
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
.

(Este es el ejemplo 4 de la sección 16.8 del libro de Thomas).

17. (r) Sea F : R3 → R3 el campo vectorial dado por F(x, y, z) = (x, y, z) y sea S la superficie
que es el disco inlcuido en el plano y = 1 con centro en el punto (0, 1, 0) y radio 1, con
orientación dada por el vector n = (0, 1, 0) en cada punto. Calcule el flujo de F a través
de S.

18. (r) Sea F : R3 → R3 el campo vectorial dado por F(x, y, z) = (xy, yz, zx).

a) Calcule el flujo de F a lo largo de la circunferencia con centro en el origen de coor-
denadas y radio 1, incluida en el plano z = 0, orientada positivamente vista desde el
semieje z positivo.

b) Indique, justificando su respuesta, si F es o no conservativo en R3.

c) Calcule el flujo de F a través de la porción del paraboloide de ecuación z = 1− x2 −
y2 que está por arriba del plano z = 0, en la dirección que se aleja del origen de
coordenadas.

d) Calcule el flujo de ∇ × F a través de a porción del paraboloide de ecuación z =
1−x2− y2 que está por arriba del plano z = 0, en la dirección que se aleja del origen
de coordenadas.

e) Observe si hay alguna relación entre algunos de los resultados obtenidos.

3. Teorema de Stokes

19. Utilice el teorema de Stokes para calcular la circulación de F a lo largo de la curva C
mediante la integral de superficie correspondiente.

a) (o) F = (x2, 2x, z2) y C: la elipse 4x2 + y2 = 4 en el plano xy, en sentido antihorario.

b) (o) F = (2y, 3x,−z2) y C: la circunferencia x2 + y2 = 9 en el plano xy, en sentido
antihorario.
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20. (r) Sea n el vector unitario normal que se aleja del origen de coordenadas, de la capa

eĺıptica S dada por 4x2 + 9y2 + 36z2 = 36, z ≥ 0, y sea F = (y, x2, (x2 + y4)
3
2 sen e

√
xyz).

Calcule el flujo del rotacional

�
S
∇× F · ndσ, utilizando el teorema de Stokes.

21. Calcule el flujo del rotacional a través de la superficie S en la dirección del vector unitario

normal exterior n,

�
S
∇× F · ndσ en cada caso:

a) (o) F = (2z, 3x, 5y) y S: r(r, θ) = (r cos θ)i + (r sen θ)j + (4 − r2)k, con 0 ≤ r ≤ 2 y
0 ≤ θ ≤ 2π.

b) (r) F = (3y, 5−2x, z2−2) y S: r(θ, ϕ) = (
√
3 senϕ cos θ,

√
3 senϕ sen θ,

√
3 cosϕ), con

0 ≤ ϕ ≤ π
2 y 0 ≤ θ ≤ 2π.

22. (r) Sea S el cilindro x2 + y2 = a2 con a > 0 y 0 ≤ z ≤ h, junto con su tapa superior,
x2 + y2 ≤ a2, z = h. Sea F = (−y, x, x2). Utilice el teorema de Stokes para encontrar el
flujo de ∇× F a través de S, en la dirección que se aleja del origen de coordenadas.

23. (*) Dada una curva suave, simple y cerrada, C, demuestre que

�
S
∇ × F · ndσ vale lo

mismo para cualquier supercie orientable S que tenga como frontera la curva C, siempre
que la orientación de S induzca la misma dirección positiva en C.

24. (r) Pruebe la identidad ∇×∇f = 0, asumiendo continuidad de las derivadas parciales de
segundo orden de f ; luego utilice esta identidad y el teorema de Stokes para demostrar que
las circulaciones de los siguientes campos alrededor de la frontera de cualquier superficie
orientable suave en el espacio son cero.

a) F = (2x, 2y, 2z).

b) F = ∇(xy2z3).

c) F = ∇× (xi+ yj+ zk).

d) F = ∇f .

25. (r)

a) Demuestre que el rotacional de

F =

(
−y

x2 + y2
,

x

x2 + y2
, z

)
es igual a cero, pero que �

C
F · dr

es diferente de cero si C es la circunferencia x2 + y2 = 1 en el plano xy recorrida en
sentido antihorario, visto desde el semieje positivo de z. (Note que el dominio de F
no es simplemente conexo.)

b) Busque una función f tal que ∇f = F. ¿Dónde se cumple esa igualdad?

c) ¿Esto contradice el hecho de no ser conservativo F en su dominio?

26. (*) Pruebe que el campo vectorial F(x, y, z) = (x, y, z) no es el rotor de ningún campo
vectorial G. Sugerencia: haga una prueba por contradicción, suponiendo que existe un
campo vectorial G tal que F = ∇×G, considere una esfera con centro en el origen y radio
R > 0 y una curva cerrada, simple y suave por partes C incluida en dicha superficie. Dicha
curva determina dos superficies que son porciones de la esfera. Considere una de ellas y
llámela S. Aplicando el Teorema de Stokes, dé dos interpretaciones a la integral de ĺınea�
C G · dr y obtenga una contradicción.
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4. Divergencia y Teorema de la Divergencia de Gauss

27. (r) Calcule la divergencia de los siguientes campos vectoriales:

a) El campo giratorio F = ((−yi+ xj))(x2 + y2)−
1
2 .

b) El campo radial F = (x, y).

c) El campo gravitacional F = −GmM
xi+ yj+ zk

(x2 + y2 + z2)3/2
, con G, m y M , constantes.

28. (r) Dado el campo vectorial F(x, y) = (x2, y2), indique si es o no solendoidal. En caso de
no serlo, muestre si es posible, una fuente y un sumidero. Sugerencia: esboce un gráfico de
F.

29. Use el teorema de la divergencia para calcular el flujo de F hacia afuera de la superficie S
frontera de D, siendo

a) (o) F = (y − x, z − y, y − x) y D el cubo acotado por los planos x = ±1, y = ±1,
z = ±1.

b) (o) F = (6x2 + 2xy)i + (2y + x2z)j + (4x2y3)k y D la región cerrada en el primer
octante cortada por x2 + y2 = 4 y el plano z = 3.

c) (*) F(x, y, z) =

(
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
y

D =
{
(x, y, z) ∈ R3 : a ≤ x2 + y2 + z2 ≤ b

}
, donde a > 0. Concluya que el flujo de F

a través de cualquier esfera centrada en el origen será el mismo, independientemente
del radio de la esfera. (Ver el ejemplo 4 de la sección 16.8 del libro de Thomas).

30. (r)

a) Demuestre que si las derivadas paricales necesarias de los componentes del campo
G = (M,N,P ) son continuas, entonces ∇ · ∇ ×G = 0.

b) ¿Qué puede concluir acerca del flujo del campo ∇ × G a través de una superficie
cerrada en la que se pueda aplicar el Teorema de la Divergencia? Justifique su res-
puesta.

31. (r) Sean F1 y F2 campos vectoriales con componentes derivables y sean a y b constantes
reales arbitrarias. Verifique las siguientes identidades.

a) ∇ · (aF1 + bF2) = a∇ · F1 + b∇ · F2.

b) ∇× (aF1 + bF2) = a∇× F1 + b∇× F2.

c) ∇ · (F1 × F2) = F2 · ∇ × F1 − F1 · ∇ × F2.

32. (r) Sean F un campo vectorial diferenciable (sus componentes son diferenciables) y g una
función escalar diferenciable definida en R3. Verifique las identidades:

a) ∇ · (gF) = g∇ · F+∇g · F.
b) ∇× (gF) = g∇× F+∇g × F.

33. (*) Sea F un campo vectorial cuyos componentes tienen derivadas parciales continuas de
primer orden en R3 y sea D una región acotada por una superficie cerrada suave, S. Si

|F| ≤ 1, ¿se puede acotar

�
D
∇ · F dV ? Justifique su respuesta.
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34. (r) Sea F = (x, y, z) y suponga que una superficie S y una región sólida D satisfacen las
hipótesis del teorema de la divergencia. Demuestre que el volumen de D está dado por la
fórmula

Volumen de D =
1

3

�
S
F · n dσ.

35. (r) Entre todos los sólidos rectangulares definidos por las desigualdades 0 ≤ x ≤ a, 0 ≤
y ≤ b, 0 ≤ z ≤ 1, encuentre aquél para el cual el flujo total de F = (−x2− 4xy,−6yz, 12z)
hacia fuera a través de las seis caras sea máximo. ¿Cuál es el flujo máximo?

36. (*) Demuestre que el flujo de un campo vectorial constante F = C a través hacia fuera
de cualquier superficie cerrada a la que se aplique el teorema de la divergencia es igual a
cero.

5. Laplaciano

37. (*) Una función f es armónica en una región D en el espacio si satisface la ecuación de
Laplace

∇2f = ∇ · ∇f = fxx + fyy + fzz = 0

en D.

a) Suponga que f es armónica en una región acotada D encerrada por una superficie
suave S y que n es el vector unitario normal a S que se ha elegido. Demuestre que la
integral sobre S de ∇f · n, la derivada de f en la dirección de n, es igual a cero.

b) Demuestre que si f es armónica en D, entonces

�
S
f∇f · n dσ =

�
D
|∇f |2 dV.

38. (*) Pruebe las siguientes afirmaciones:

a) El Laplaciano de un campo escalar f(x1, x2, ..., xn) cumple:

∆f =
∂2f

∂x21
+

∂2f

∂x22
+ · · ·+ ∂2f

∂x2n
.

b) El Laplaciano de un campo vectorial definido en R3 cumple:

∆F = ∇(∇ · F)−∇× (∇× F).

6. (*) Ejercicios integradores

39. La siguiente figura corresponde al campo vectorial dado por F(x, y) = (1, ey). Se incluye
en el mismo algunas curvas equipotenciales.
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a) Indique si F es o no conservativo en R2. Justifique su respuesta.

b) Si C es cualquier curva equipotencial de F (por ejemplo la curva punteada que aparece
en la figura, o cualquier otra), recorrida en cualquier sentido, ¿cuánto vale la integral

de ĺınea de F a lo largo de C,

�
C
F ·T ds? Justifique cada afirmación de su respuesta.

c) Calcule la integral de ĺınea de F a lo largo de la circunferencia centrada en el origen,
de radio 1 y positivamente orientada. Justifique detalladamente su respuesta.

40. La superficie S es la parte de la esfera de ecuación x2+z2+(y−4)2 = 25 para la cual y ≥ 0,
orientada en la dirección que se aleja del centro de la esfera. Sea F el campo vectorial dado
por F(x, y, z) = (y2, z2, x2).

a) Calcule el flujo a través de S del rotacional de F.

b) Indique si F es o no solenoidal.

c) Calcule el flujo de F a través de cualquier superficie suave cerrada orientada positi-
vamente.

41. Considere el campo vectorial F : R3 → R3 dado por F(x, y, z) = yi − xj y la superficie
S ⊂ R3, dada por x2 + y2 + z2 = 9, z ≥ 0 .

a) Halle el rotacional de F. Interprete.

b) Calcule la integral de superficie de rotF,

�
S
rotF · n dσ,

en la dirección que se aleja del origen de coordenadas.

c) Indique si F es un campo conservativo o no. Justifique.

42. Considere el sólido formado por los puntos del espacio que cumplen x2 + y2 ≤ 4 y que
están comprendidos entre los planos z = 0 y z = 1; sea el campo vectorial dado por
F(x, y, z) = (xy2, yz, zx2).

a) Calcule el flujo de F hacia fuera a través de la superficie del sólido . Haga un desarrollo
detallado y trabaje con prolijidad. Justifique sus pasos.

b) Calcule el rotacional de F . Indique si se trata o no de un campo conservativo.

43. Sea F(x, y, z) = (x, y, x+ z).

a) Calcule divF(1, 2, 3) e interprete.
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b) Plantee dos fórmulas para calcular el flujo a lo largo de la curva C que viene dada
por la representación paramétrica r(t) = (cos t, sen t, 1), t ∈ [0, 2π].

c) Indique si F es o no conservativo, justificando su respuesta.
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