
lable at ScienceDirect

International Biodeterioration & Biodegradation 126 (2018) 189e203
Contents lists avai
International Biodeterioration & Biodegradation

journal homepage: www.elsevier .com/locate/ ibiod
Next generation modeling of microbial souring e Parameterization
through genomic information

Yiwei Cheng a, *, Christopher G. Hubbard b, 1, Liange Zheng b, Bhavna Arora b, Li Li c,
Ulas Karaoz a, Jonathan Ajo-Franklin b, Nicholas J. Bouskill a

a Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
b Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd Berkeley, CA, USA
c Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA
a r t i c l e i n f o

Article history:
Received 31 December 2015
Received in revised form
16 June 2017
Accepted 22 June 2017
Available online 5 July 2017

Keywords:
Microbially mediated sulfate reduction
Oil reservoir
Genomics
Multiphase reactive transport model
* Corresponding author.
E-mail address: yiweicheng@lbl.gov (Y. Cheng).

1 Now at Water Research Institute, Cardiff Universi

http://dx.doi.org/10.1016/j.ibiod.2017.06.014
0964-8305/Published by Elsevier Ltd. This is an open
a b s t r a c t

Biogenesis of hydrogen sulfide (H2S) (microbial souring) has detrimental impacts on oil production
operations and can cause health and safety problems. Understanding the processes that control the rates
and patterns of sulfate reduction is crucial in developing a predictive understanding of reservoir souring
and associated mitigation processes. This work demonstrates an approach to utilize genomic information
to constrain the biological parameters needed for modeling souring, providing a pathway for using
microbial data derived from oil reservoir studies. Minimum generation times were calculated based on
codon usage bias and optimal growth temperatures based on the frequency of amino acids. We show
how these derived parameters can be used in a simplified multiphase reactive transport model by
simulating the injection of cold (30 �C) seawater into a 70 �C reservoir, modeling the shift in sulfate
reducing microorganisms (SRM) community composition, sulfate and sulfide concentrations through
time and space. Finally, we explore the question of necessary model complexity by comparing results
using different numbers of SRM. Simulations showed that the kinetics of a SRM community consisting of
twenty-five SRM could be adequately represented by a reduced community consisting of nine SRM with
parameter values derived from the mean and standard deviations of the original SRM.

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Microorganisms play key roles in the life cycle of oil and gas
formation, production, and bioremediation (Head et al., 2003, 2014;
Youssef et al., 2007, 2009). During secondary oil production,
seawater with typical sulfate concentration of ~28 mM, is often
injected into oil reservoirs to maintain reservoir pressure and
sweep out oil, potentially giving sulfate reducing microorganisms
(SRM) the opportunity to couple the reduction of sulfate to bisul-
fide (HS�) with the biodegradation of crude oil derived organics,
such as volatile fatty acids (VFAs), aromatics (e.g. toluene) and
aliphatic hydrocarbons. The sulfide produced by this process (also
known as microbial souring) presents significant corrosion (e.g.
sulfide stress corrosion cracking of carbon steel infrastructure),
health and safety, and economic problems to oil producers (Fuller
ty, Cardiff, Wales.

access article under the CC BY-NC
and Suruda, 2000; Vance and Thrasher, 2005; Semcrude, 2011).
Understanding and preventing souring is therefore an ongoing
priority for the industry.

Reservoir models are essential management tools used across
the oil industry to understand and predict fluid flow in the sub-
surface during different stages of oil production. Increasingly, ac-
curate representation of souring has become a priority
(Haghshenas et al., 2012). This is not a trivial problem, as the pro-
cess of water injection into an oil reservoir develops gradients in a
range of important environmental characteristics, and these gra-
dients vary in time and space as water injection continues. For
example, the injection of relatively cold seawater into a hotter
reservoir produces gradients in temperature, sulfate (due to high
concentrations in the injected seawater), and electron donor
(higher crude oil derived organics in the formation water than the
injection water). All of these dynamic, intersecting gradients pro-
vide a wide range of potential ecological niches for different SRM,
potentially leading to a diverse community which develops and
changes through time and space as the changing environmental
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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conditions imposed by water flooding preferentially select for
certain SRM over others as demarcated by their physiological
characteristics (or traits). Most modeling studies assumed that the
kinetics of the diverse SRM can be effectively represented by a
single set of kinetic parameters (e.g. maximum growth rate and half
saturation constant for electron acceptors and donors). Models of
experiments conducted under constant environmental conditions
further assume the kinetic parameter values to be constant (e.g.
constant maximum growth rate under isothermal conditions)
(Cheng et al., 2016). Under this scheme, ‘optimal’ values of the ki-
netic parameters are systematically derived from calibrations that
fit observed data. While computationally simple, such representa-
tions are far from reality. Microbial communities are typically
diverse and their distributions stochastic. Within natural commu-
nities, organisms thrive bymaximizing their fitness relative to their
environmental conditions and other competitors. Community
composition is therefore an emergent property that constantly
evolves as communities self-organize in response to heterogeneous
environmental conditions.When each organismmaximizes its own
growth, they collectively maximize the rate of a given process (e.g.
sulfate reduction) under the prevailing environmental condition. It
is therefore important for models to sufficiently capture the mi-
crobial complexity that can potentially emerge under these fluc-
tuating conditions. Insufficient complexity runs the risk of
diminishing the predictive power of a model as conditions and
gradients evolve through time, whereas too much complexity in-
creases computational demands and may be under-constrained by
available data. To investigate this problem of complexity we take
advantage of two rapidly developing fields: increased sophisticat-
ion in modeling microbial processes, and the greater utilization of
microbial genomics providing understanding of microbial function
and diversity in the environment.

Microbial models that predict the structure and activity of the
microbial community on the basis of physiological and ecological
traits of different microbial guilds have increasingly gained traction
as approaches for further understanding the response of a micro-
bial community to perturbation (Le Roux et al., 2016) or to better
represent microbial function in more established models (Follows
et al., 2007). The increasing utilization of a trait-based approach
lies in the advantages of reducing the complexity of the microbial
community to several different functional guilds on the basis of
traits related to substrate utilization, growth, carbon use efficiency
and their response to environmental factors (e.g. temperature).
Parameterizing different combinations of these traits can deter-
mine an individual organism's fundamental niche (Holt, 2009). The
realized niche is then determined through competition with
different modeled microbial guilds for common substrates (elec-
tron donors or acceptors). This reductionist approach can therefore
discreetly reproduce the functional basis of a given microbial
community without the computational intractability or ecological
redundancy of representing all of the individual microorganisms.

Souring, as a microbially mediated process, is inherently
amenable to representation through trait-based modeling. Both
traditional isolation experiments and more recent genomic data
provide abundant data on the physiological mechanisms that may
be used to develop and parameterize trait-based models, including,
for example, the range of electron donors the SRMmay use (Muyzer
and Stams, 2008). An important flexibility that may be represented
by trait-based modeling frameworks is the competition by different
functional guilds (e.g., denitrifiers and SRM) and linked processes
(e.g., SRM and sulfide-oxidizing bacteria) that can lead to estimates
of net production of sulfide, rather than bulk production rates. More
recent proliferation of genomic data sets provides a wealth of po-
tential data that can be used to identify specific traits of organisms.
Significant advances in the identification and annotation of complex
(meta)genomic data sets (e.g., Wu et al., 2014) make the derivation
and parameterization of key traits possible.

This work seeks to provide a way forward to more accurately
represent oil reservoir microbial dynamics, thereby improving pre-
dictions of biogenic souring. To do this we first show how genomic
information can be used to constrain the biological parameters
needed for modeling souring, providing a pathway for using micro-
bial data derived fromoil reservoir studies.We then showhow these
derived parameters can be used in a simplified reactive transport
simulation of seawater injection into a reservoir. Finally, we explore
the question of necessary model complexity by comparing model
results using different numbers of sulfate reducers.
2. Methods

2.1. Deriving model parameters from microbial datasets

Genomic data provides insights related to important traits that
can be used to constrain the parameterization of the current gen-
eration of models. While there are multiple traits that can be
derived from genomic data, optimal growth temperatures and
minimum generation time have been shown to have good corre-
lation to observational data. The generation time of individual
groups within a guild is an important trait in themodels, and can be
estimated by examining the codon usage bias evident within highly
expressed genes from individual genomes (Vieira-Silva and Rocha,
2010). Similarly, another important trait, the optimal growth tem-
perature, is found in the preferential use of several amino acids, for
which the corresponding signatures may also be discerned from
the genomes (Zeldovich et al., 2007).

Minimum generation (doubling) times were predicted based on
codon usage bias between all genes and in a set of highly expressed
genes following the linear regression model from (Vieira-Silva and
Rocha, 2010). We used ribosomal protein genes as the set of highly
expressed genes. Genome sequences for twenty-five SRMs were
downloaded from Genbank genomes (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria/) (Table 1). (Note: Only closed genomes were
downloaded). Genes and their annotations were extracted from
annotation files (.ppt files) and genes for ribosomal proteins were
identified based on the annotation fields. Using the nucleotide se-
quences for the two set of genes, codon usage bias index, DENC0,
was calculated using the following equation:

DENC
0 ¼

ENC0
all � ENC0

ribosomal protein genes

ENC0
all

(1)

where ENC' is the effective number of codons given G þ C
composition (Novembre, 2002) and inputted to the above equation.
Optimal growth temperature was calculated based on the fre-
quency of amino acids IVYWREL in the proteome of the organism as
in (Zeldovich et al., 2007). We conducted literature searches to
acquire data on optimal growth temperature and minimum gen-
eration times for SRM. Data on eleven SRM were acquired for
comparison against derived minimum generation times and
optimal temperatures from genomic data. The SRM belong to the
genus: Archaeoglobus, Desulfatibacillum, Desulfococcus, Desulfo-
sporosinus, Delsulfovibrio, Desulfurococcus, Sulfurimonas, Thermo-
desulfobacterium and Thermodesulfobium (see Table 2).

Kinetics of microbial growth under substrate limitation can be
described by Monod equation (see Equation (3)). An important
parameter in theMonod equation is the half saturation constant, Ks,
which represents the affinity of the microbe for a particular sub-
strate. Kinetic studies of dissimilatory sulfate reductions revealed a
broad range of values of half saturation constants (sulfate),

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
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Table 1
Information on the 25 SRM from which we derived average minimum generation time and optimal growth temperature.

Genus Species Strain NCBI Accession #Ribosomal protein
genes

#All
genes

Predicted Avg. Min. Generation Time
(hours)

Optimal T
(�C)

Archaeoglobus fulgidus DSM4304 NC_000917 61 2346 1.63 83
Archaeoglobus profundus DSM5631 NC_013741 57 1761 0.80 95
Archaeoglobus sulfaticallidus PM70 NC_021169 63 2153 1.58 82
Archaeoglobus veneficus SNP6 NC_015320 58 2032 1.04 85
Desulfatibacillium alkenivorans AK NC_011768 55 5197 7.92 24
Desulfobacter postgatei 2ac9 NZ_CM001488 60 3353 7.41 28
Desulfobulbus propionicus DSM2032 NC_014972 50 3228 2.62 43
Desulfococcus oleovorans Hxd3 NC_009943 55 3210 12.02 30
Desulfomicrobium baculatum DSM4028 NC_013173 53 3382 3.17 39
Desulfosporosinus acidiphilus SJ4 NC_018068 64 4367 5.80 44
Desulfosporosinus meridiei DSM13257 NC_018515 61 4291 4.41 50
Desulfosporosinus orientis DSM765 NC_016584 64 5177 5.72 46
Desulfotalea psychrophila LSv54 NC_006138 51 3065 3.63 37
Desulfotignum phosphitoxidans DSM13687 NZ_APJX00000000 57 4589 9.92 25
Desulfotomaculum acetoxidans DSM771 NC_013216 56 3989 5.91 48
Desulfovibrio desulfuricans ATCC27774 NC_011883 55 2299 4.80 28
Desulfovibrio desulfuricans ND132 NC_016803 54 3399 2.88 42
Desulfovibrio vulgaris DP4 NC_008751 56 2885 2.64 39
Desulfovibrio vulgaris Hildenborough NC_002937 56 3322 2.68 37
Desulfovibrio vulgaris RCH1 NC_017310 53 3013 2.59 38
Desulfurococcus kamchatkensis 1221n NC_011766 64 1406 1.53 104
Thermococcus litoralis DSM5473 NC_022084 64 2452 0.67 91
Thermodesulfobacterium geofontis OPB45 NC_015682 56 1539 4.08 80
Thermodesulfobium narugense DSM14796 NC_015499 53 1753 8.93 51
Thermodesulfovibrio yellowstonii DSM11347 NC_011296 54 1974 6.18 63

Table 2
Literature generation time (GT) and optimal growth temperature for 11 SRM.

Genome Measured Generation Time (hours) Measured opt. Temperature (�C) References

Archaeoglobus_profundus_DSM_5631_uid43493 6.3 88 Zhou et al. (2011)
Archaeoglobus_sulfaticallidus_PM70_1_uid201033 2.0 84 Steinsbu et al. (2010)
Desulfatibacillum_alkenivorans_AK_01_uid58913 28.4 27 Ming So and Young (1999)
Desulfococcus_oleovorans_Hxd3_uid58777 96.0 22 Savage et al. (2010)
Desulfosporosinus_acidiphilus_SJ4_uid156759 14.0 55 Alazard et al. (2010)
Desulfovibrio_desulfuricans_ATCC_27774_uid59213 10.2 30 Herrera et al. (1991)
Desulfovibrio_desulfuricans_ND132_uid63159 5.0 35 Gilmour et al. (2011)
(Crenarch) Desulfurococcus_kamchatkensis_1221n_uid59133 1.5 85 Kublanov et al. (2009)
Sulfurimonas_denitrificans_DSM_1251_uid58185 12.0 33 Takai et al. (2006)
Thermodesulfobacterium_OPB45_uid68283 5.0 83 Hamilton-Brehm et al. (2013)
Thermodesulfobium_narugense_DSM_14796_uid66601 12.0 55 Mori et al. (2003)
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3e5500 mM (Pallud and Van Cappellen, 2006; Tarpgaard et al.,
2011). These kinetic studies were conducted with pure cultures,
sediments or sediment slurries, with different experimental ap-
proaches such as progress curve experiments and initial velocity
experiments. Each type of kinetic experiment is associated with
potential experimental artifacts that need to be taken into
consideration (Roychoudhury et al., 1998; Pallud and Van
Cappellen, 2006). For example, Ks values measured in sediment
slurries have been shown to be higher than the measurements in
intact sediment (Fukui and Takii, 1994; Pallud and Van Cappellen,
2006). In our work, we focus on Ks values derived from kinetic
experiments involving pure marine and freshwater SRM cultures.
Particularly those that can also be found in the original set of
twenty-five: Archaeoglobus fulgidus (Habicht et al., 2005), Desulfo-
bacter postgatei (Ingvorsen et al., 1984), Desulfovibrio desulfuricans
(Okabe et al., 1992; Dalsgaard and Bak, 1994), Desulfovibrio vulgaris
(Ingvorsen and Jørgensen, 1984; Nethejaenchen and Thauer, 1984),
Thermodesulfobacterium sp (Sonne-Hansen et al., 1999) and Ther-
modesulfovibrio sp (Sonne-Hansen et al., 1999).

Of the twenty-five SRM listed in Table 1, eleven have been
identified in oil reservoirs in the North Sea region. Archaeoglobus
fulgidus, A. profundus, Thermococcus litoralis are hyperthermophilic
SRMs that were isolated from Thistle offshore oil production plat-
form in East Shetland Basin (Stetter et al., 1993). SRMs of the genus
Thermodesulfobacterium and Desulfotomaculum are thermophilic
SRMs also from oil production platforms in the North Sea
(Christensen et al., 2012; Rosnes et al., 1991). Mesophilic SRM from
the North Sea region have also been identified belonging to the
genus Desulfobulbus (Lien et al., 1998), Desulfotignum (Ommedal
and Torsvik, 2007), Desulfobacter (Lien and Beeder, 1997), Desulfo-
microbium and Desulfovibrio (Dahle et al., 2008).
2.2. Model description

To simulate the multiphase flow and bio-chemical reactions
needed for the model, we chose TMVOC_REACT (Zheng et al., 2013),
a simulator that combines TMVOC (Pruess and Battistelli, 2002) and
TOUGHREACT (Xu et al., 2011). TOUGHREACT is a numerical simu-
lation program for chemically reactive nonisothermal flows of
multiphase fluids in porous and fractured media. A variety of sub-
surface thermo-physical-chemical-biological processes are consid-
ered under a wide range of hydrological and geochemical
conditions. In TMVOC_REACT, the fluid and heat flow simulator in
TOUGHREACT was replaced with TMVOC, a numerical simulator for
three-phase nonisothermal flow of multicomponent hydrocarbon
mixtures in variably saturated heterogeneous media. In the TMVOC
formulation, the multiphase system is assumed to be composed of
water, noncondensable gases (NCGs), and non-aqueous phase



Fig. 1. (a, top) Mesh used in the model and the position of wells. (b, bottom) Simulated water cut trend and water cut data from an undisclosed site in the North Sea region.
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liquids (NAPL) including water-soluble volatile organic chemicals
(VOCs). The number and nature of NCGs and VOCs can be specified
by the user. The fluid components may partition (volatilize and/or
dissolve among gaseous, aqueous, and NAPL phases). Any combi-
nation of the three phases may be present, and phases may appear
and disappear in the course of a simulation. The routine GASEOS
(Moridis et al., 2008) was incorporated into TMVOC_REACT for
computation of multi-component gas mixture properties, including
parameters and formulations for the phase partitioning of toluene
andH2S in addition to CO2. The GASEOS routine incorporates several
standard cubic equations of state such as Redlich-Kwong (RK), Peng-
Robinson (PR), and Soave-Redlich-Kwong (SRK) (e.g., Orbey and
Sandler, 1998). The partition of H2S in gas and aqueous phase is
based on Duan et al. (2007) inwhich solubility of H2S is the function
of salinity, pressure and temperature. The partition of H2S between
oil and aqueous phase is a function of temperature and pressure.

The model simulates a hypothetical reservoir (with characteris-
tics based on an undisclosed North Sea fractured sandstone reser-
voir) with one injection well and one production well. A modeling
domain of 2000 m� 2000m in horizontal directionwas discretized
into 642 elements (Fig. 1a). The vertical direction extends 90 m
without discretization, corresponding to a reservoir of 90 m thick.
The injection and production wells are 250 m apart and connected
via a fracture zone. The area around the wells is made up of finely
discretized cells as shown in Fig. 1a. A constant injection and pro-
duction rate of 11 kg/s is assumed in the model in order to capture
r ¼ mMAXfðTÞ½Biomass�ð½eDonor�Þ
½eDonor� þ KeDonor

s

½eAcceptor�
½eAcceptor� þ KeAcceptor

s

KInhibitor
s

½Inhibitor� þ KInhibitor
s

(3)
the watercut trend from an undisclosed site in the North Sea region
(Fig.1b). The fracture zone in the reservoir is coarsely represented as
a single fracture, and has a porosity of 0.03 and a permeability of
2� 10�10 m2, whereas the rocks surrounding the fracture zone have
a porosity of 0.13 and a permeability ranging from 7 � 10�14 m2 to
1 � 10�11 m2. The relative permeability for the fracture zone and
surrounding rocks takes Corey's curve (Corey, 1954):

Krl ¼ bs4 Kro ¼ ð1� bsÞ2�1� bs2� (2)

where Krl and Kro are relative permeability for aqueous and NAPL
phase, respectively, and bs ¼ ðsl � slrÞ=ð1� slr � sloÞwhere slr and slo
are residual aqueous and NAPL saturation.

The NAPL phase is approximating a light oil that has a density
around 670 kg/m3. H2S, toluene, n-Hexane and n-Decane are four
Table 3
Aqueous species concentrations in Formation Water (FW) and Injection W
amendment conditions respectively in TMVOC_REACT simulation.

Primary Species Formation Water (mmol/kg

pH 7.00
Naþ 690.00
Kþ 7.40
Ca2þ 21.00
Mg2þ 5.10
SO4

2- 0.04
Cl� 660.0
CO2(ag) 8.66
H2S(ag) 0.00
NH4

� 1.00
Br� 1.48
components in the oil phase, with n-Decane being the dominant
one. The initial pressure is 191 bars and temperature is 69.4 �C.

Concentrations of aqueous species in the formation water (FW)
and the injection water (IW) follow those in Hubbard et al. (2014).
The initial concentrations of aqueous species matched that of the
formation water (FW) found in sample #158 from Warren et al.
(1994). This sample was taken from the Brent sandstone reservoir
in the Oseberg Field of the northern province of the North Sea. The
carbon source in the simulationwas represented simply as toluene,
at a concentration of 1% mass fraction in the formation oil (typical
for light crudes from the North Sea, data based on Statoil, 2015). For
the injection water (IW), we assumed an operating scenario of
produced water reinjection (e.g. Haghshenas et al., 2012), where
the injection water was a mixture of 75% seawater (SW) and 25%
FW, i.e. IW ¼ 0.75 SW þ 0.25 FW. An additional source of nitrogen
was introduced as 1.0 mmol/kg H2O (18 mg L�1) ammonium
bisulfite (NH4HSO3), which is a common chemical used to scavenge
oxygen from injection waters in order to minimize oxygen corro-
sion (Kelland, 2009). We have assumed that all the bisulfate is
transformed to sulfate by reaction with oxygen. For simplicity, the
injection water was kept constant in each simulation i.e. not
adjusted to reflect temporal changes in the produced water, which
are characteristic of actual operating oil fields. Detailed aqueous
species concentrations in FW, SW and IW can be found in Table 3.

The kinetics of the microbial population are mathematically
described by the following general Monod equation:
where r (mol/kg H2O/sec) is the reaction rate, f(T) is a temperature
function thatmodulates the growth rate of the SRM population (see
below), [Biomass] (mol/kg H2O)is the concentration of the micro-
bial biomass catalyzing the reaction, mMAX (sec�1) is the maximum
specific growth rate, Ks (mol/kg H2O) is the half saturation (affinity
constant) of the electron donor/acceptor/inhibitor. Following the
concepts as described by Rittman and MaCarty (2001), microbially
mediated reactions are divided into two components: catabolic and
anabolic. For each mole of electron donor/substrate utilized, a
fraction, fs, is conserved by the microbial biomass for cell synthesis
(anabolic) while the remaining fraction, fe, is used for energy pro-
duction (catabolic). Values of fs and fe are determined by the types
of electron donors and acceptors involved in the reaction (Rittman
andMaCarty, 2001). For reduction of sulfate coupled to oxidation of
toluene, fe and fs values are 0.93 and 0.07 respectively, resulting in
ater (IW). Chemical concentrations in FW and IW used as initial and

H2O) Injection Water (mmol/kg H2O)

7.00
516.75
9.35
12.75
40.28
21.00
566.25
8.66
0.00
1.00
1.12



Fig. 2. Maximum growth rates, mMAX, a function of temperature for increasing degrees of sulfate reducer microorganism (SRM) complexity. (A) All 25 SRM represented. (B) Nine SRM
guilds, three guilds in each thermal range: mean and ±1 standard deviation. (C) Three SRM guilds, one guild in each thermal range. Mean values of all SRM data within the same
temperature range. (D) Single SRM guild, mean values of all 25 SRM data.
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the following stoichiometric equation:

0.11625SO4
�2 þ 0.0278 C7H8(aq) þ 0.0035 NH3(aq) þ 0.0725 H2O ¼>

0.0035 C5H7O2NSRM þ 0.1765 HCO3
� þ 0.11625 HS� þ 0.06025 Hþ(4)

A stoichiometric formula of C5H7O2N is used to represent cell
biomass of the SRM in this work. For the choice of this and other
stoichiometric formulae, the reader is referred to Rittman and
MaCarty (2001, Chapter 2, Table 2.4). SRM catalyze the reduction
of sulfate to sulfide via the action of intracellular enzymes. Due to
the temperature sensitivity of the enzymes, SRM activities are
impacted by the reservoir thermal regime. Following the approach
of a recent modeling study (Farhadinia, 2008), SRM have been
classified according to their temperature optima into three groups:
mesophiles (20e40 �C), thermophiles (40e80 �C) and hyper-
thermophiles (80e113 �C). For each group, temperature effects on
growth are modeled according to a previously published function
hðTÞ ¼ ðT � TMAXÞðT � TMINÞ2
ðTOPT � TMINÞ½ðTOPT � TMINÞðT � TOPT ÞðTOPT � TMAXÞðTOPT þ TM
(Ratkowsky et al., 1983; Rosso et al., 1995). In recognition of the
importance of temperature in controlling activities of SRM in the oil
reservoir, we have incorporated a temperature function into
TMVOC-REACT that will modulate the growth rate of the SRM
population. The mathematical formulation of this temperature
function follows the Rosso et al. (1995) model. The temperature
function behaves in a similar manner as the Ratkowsky curves, and
is described by the three parameters: upper limit temperature
(TMAX), optimal temperature (TOPT, derived from genomic data) and
lower limit temperature (TMIN):

f ðTÞ ¼
8<
:

T < TMIN;0:0
TMIN < T < TMAX ; hðTÞ

T > TMAX ;0:0
IN � 2TÞ� (5)



Fig. 3. (A) Comparison between literature optimal growth temperature and predicted
optimal growth temperature (from genomic data) for 11 SRM. The diagonal black line
corresponds to the identity. (B) Comparison between literature minimum generation
time and predicted minimum generation time (from genomic data) for 11 SRM. The
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Another important parameter in the Monod equation is the
maximum growth rate, mMAX, (see Equation (3)). The mathematical
formulation employed to derive mMAX from the minimum genera-
tion (doubling) time, t, as derived from genomic data is as follows:

mMax ¼
ln2
t

(6)

2.3. Model simulations

To explore the degree of complexity necessary to represent the
kinetics of SRM community in an oil field, we conducted four sul-
fate reducing simulation scenarios. In each simulation scenario, the
SRM community is made up of different number of members.
Below we describe each scenario.

Scenario A. Full complexity of the SRM community is repre-
sented. All twenty-five SRM are represented (Fig. 2A).

Scenario B. The complexity of the SRM community is reduced in
comparison to Scenario A. There are a total of nine SRMs. Three
SRM within each of the temperature regimes (i.e. mesophilic,
thermophilic and hyperthermophilic). One of the SRM is charac-
terized bymean values of mMAX, optimal growth temperature and Ks

derived from the SRM within the corresponding temperature
regime in Scenario A. The remaining two SRM are characterized by
values of mMAX, optimal growth temperature and Ks that are ±1
standard deviation of the mean (Fig. 2B).

Scenario C. There are a total of three SRM. One SRM within each
of the temperature regimes. The SRM is characterized by mean
values of mMAX, optimal growth temperature and Ks derived from
the SRM within the corresponding temperature regime in Scenario
A (Fig. 2C).

Scenario D. The kinetics of the SRM community are represented
by a single SRM, with a single mMAX, optimal growth temperature
and Ks that are the mean of mMAX, optimal growth temperature and
Ks of all 25 SRM investigated in this work. This resulting SRM guild
operates optimally in the thermophilic region (Fig. 2D). This sce-
nario represents typical model representation of SRM in other
simple modeling studies.
diagonal black line corresponds to the identity.
3. Results and discussion

3.1. Deriving model parameters from microbial datasets

3.1.1. Comparison between predicted traits and observed traits
We compare minimum generation time and optimal growth

temperature derived from genomic data against literature
(observed) values for eleven known SRM (Fig. 3). Of the eleven SRM
with literature values, five are from the mesophilic regime (Desul-
fatibacillum alkenivorans, Desulfococcus oleovorans, Desulfovibrio
desulfuricans, Sulfurimonas denitrificans), two are from the ther-
mophilic region (Desulfosporosinus acidiphilus, Thermodesulfobium
narugense), while the remaining four are from the hyperthermo-
philic region (Thermodesulfobacterium sp., Desulfurococcus kam-
chatkensis, Archaeoglobus sulfaticallidus, Archaeoglobus profundus).
Optimal growth temperature calculated from the frequency of
amino acids IVYWREL in the proteome of the SRM (Zeldovich et al.,
2007) seems to match literature values with relatively high degree
of fidelity (R squared value of 0.86, Fig. 3A). In comparison, mini-
mum generation time, as derived from codon usage bias index
(Vieira-Silva and Rocha, 2010) does not match the literature values
with such high degree of fidelity (R squared value of 0.44). The
model tends to under-predict minimum generation time, particu-
larly at higher values of minimum generation time (Fig. 3B). In the
original study by Vieira-Silva and Rocha (2010), the authors
demonstrated codon usage bias to be a better predictor of mini-
mum generation time than other genomic signatures such as
number of rRNA operons in the genome. In the Vieira-Silva and
Rocha (2010) study, the author predicted the minimum genera-
tion time of 214 prokaryotes. The R squared value between the
predicted minimum generation time and literature values is 0.58.
Their study also showed that the observed generation time for
thermophiles used in their study, is higher than values derived
from the genomic signatures.
3.1.2. Relationships between traits
We plot minimum generation time, Ks and optimal growth tem-

perature to explore the relationship between these three traits
(Fig. 4).



Fig. 4. (A) Relationship between min generation time and optimal growth temperature. (B) Relationship between half saturation constant and minimum generation time. (C)
Relationship between optimal growth temperature and half saturation constant.
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3.1.2.1. Minimum generation time and optimal growth temperature.
While results suggest negative relationship between minimum
generation time and optimal growth temperature (R squared value
of 0.57, Fig. 4A), the correlation is not a strong one. Our current
finding with SRM literature values is similar to the observations
made by Vieira-Silva and Rocha (2010). From their data they found
no significant difference of minimal generation times between
thermophiles, mesophiles and psychrophiles.
Fig. 5. Spatial distribution of reservoir temperature (unit ¼ �C) from the beginning of
the water injection to Year 4. The temperature of the oil reservoir (formation) is 70 �C
while that of the injection water is 30 �C.
3.1.2.2. Ks and minimum generation time. While our data suggest a
weak relationship between Ks and minimum generation time for
SRM (R squared value of 0.5, Fig. 4B), such relationship has been
shown to exist in other microorganisms. The Ks and mMAX

(derived from minimum generation time using Equation (6))
trade off is also known as the r-K strategy dichotomy (MacArthur
and Wilson, 1967; Sommer, 1981). Populations that are accus-
tomed to disturbances and/or feast-and-famine lifestyles due to
intermittent nutrient influxes are r-strategists. The r-strategists
are opportunistic and are characterized by high growth rates. On
the other hand, the K-strategists are populations that thrive in
environments with more stable nutrient concentrations. These
K-strategists are also known as equilibrium populations and have
high competitive ability (e.g. high substrate affinity) (Andrews
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and Harris, 1986). When determining the vertical distribution of
two bacterial populations in a stratified lake, Weinbaur and Hofle
(1998) also characterized the life strategies of these two pop-
ulations, namely Comamonas acidovorans PX54 and Aeromonas
hydrophila PU7718. Their study revealed that A. hydrophila
PU7718 is an r-strategist with high growth rate, while
C. acidovorans PX54 with lower growth rate but high substrate
affinity and resistance to grazing is a K-strategist. Evidence
supporting this trade-off relationship can also be found in
phytoplankton community studies (Litchman and Klausmeier,
2008). Green algae with high maximum growth rate dominate
high nutrient lakes, while phytoplanktons with low maximum
growth rates but high substrate affinity (low Ks) tend to domi-
nate water bodies with low nutrient concentrations (Reynolds,
Fig. 6. Spatial distribution of mesophiles (unit ¼ mol kgw�
2006).
3.1.2.3. Ks and optimal growth temperature. Our result suggests a
negative relationship between Ks and optimal growth tempera-
ture (R squared value of 0.56, Fig. 4C). Ks, as a property of the
quaternary enzyme structure, is inherently influenced by tem-
perature (Somero, 2004; Koch et al., 2007; German et al., 2012),
although the response can be irregular (Stone et al., 2012).
Adjustment of the amino acid composition modifies the protein
structure resulting in enzyme acclimation to an optimal local
temperature. The result of this modification is to render the
protein structure more rigid at higher temperatures (Johns and
Somero, 2004) with a lower effective Ks (and higher affinity),
relative to mesophilic conditions. This relationship is used in the
1) from the beginning of the water injection to Year 4.
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derivation of Ks values that were unavailable for some of the
twenty-five SRM in the simulations. In comparison to the rela-
tionship between Ks and minimum generation time, this rela-
tionship has higher R squared value. Further, optimal growth
temperature derived from genomic data match literature values
with relatively high degree of fidelity than minimum generation
time.
3.2. Simulation results

3.2.1. Temperature impact on the emergence of the SRM community
composition

The integrated model simulated the injection of a relatively
cold seawater and produced water mix into the injection well of
the reservoir. The formation temperature of 70 �C in the model
Fig. 7. Spatial distribution of thermophiles (unit ¼ mol kgw
mimics the formation temperature found on site. The model
captured the four-year watercut trend (data) from an undis-
closed site in the North Sea region (Fig. 1b). Cold water (30 �C)
injected lowered the temperature of the region surrounding the
injection well rapidly to 36 �C within the first year. The injected
water preferentially flowed along the primary fracture con-
necting the injection well and the producing well. Breakthrough
occurred at around the first half year. As a result, a thermal
gradient began to develop along the primary fracture. The
gradient varied year to year, from 70 �C (producing well) to 37 �C
(injection well) at Year 1, to 45 �C (producing well) to 37 �C
(injection well) at Year 4 (Fig. 5). These hydrologic and thermal
conditions are maintained for all the four field scale simulation
scenarios investigating SRM community complexity (as
described in section 2.3). The simulated thermal gradient follows
�1) from the beginning of the water injection to Year 4.
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the observed thermal gradient on site (29e66 �C), which
straddles mesophile to hyperthermophile range.

Here we discuss the shift in SRM community structure for the
field scale simulation involving the twenty-five ecotypes of SRM
(Scenario A). The SRM community shifted in response to the
change in temperature. Initial conditions prescribed the SRM
abundance equally throughout the reservoir domain, and as the
temperature dropped at the injection well an SRM community
dominated by the mesophiles emerged as early Year 2
(Figs. 6e8). Deeper into the rock matrix in the oil reservoir,
temperature only begun to fall after Year 2.5. At Year 4, the
temperature at the producing well was at 45 �C. While this
temperature is conducive for the thermophiles, they did not
overtake the hyperthermophiles as the dominant until ~6
months later (Fig. S1). (Note: simulation for Scenario A was
extended by a year to show the shift in SRM community as the
temperature at the producing well continues to fall) At Year 5,
Fig. 8. Spatial distribution of hyperthermophiles (unit ¼ mol kg
temperature at the producing well is ~37 �C, the thermophiles
have taken over the hyperthermophiles as the dominant popu-
lation. However, with time, as the temperature remain conducive
for the mesophiles, we can expect the mesophiles to dominate.

3.2.2. Comparison between the different simulation scenarios
We compare the effluent sulfate and sulfide concentrations

between the four field scale simulations (Fig. 9), using scenario A
(25 SRM) as the baseline for comparison. Effluent sulfate and
sulfide from Scenario A (25 SRM) and B (9 SRM) closely matched
each other, while effluent sulfate and sulfide from scenario C (3
SRM) and D (1 SRM) closely matched each other. Effluent sulfate
broke through at the producing well and rose rapidly to 21 mmol
kgw�1 (the concentration in the injection water) in all four
scenarios by Year 1. From then on, the effluent sulfate concen-
trations of scenarios C and D diverged from those of scenarios A
and B. From Year 1.5 to Year 4, effluent sulfate concentrations of
w�1) from the beginning of the water injection to Year 4.



Fig. 9. (TOP) Comparison of effluent sulfate from the four different simulation sce-
narios. (BOTTOM) Comparison of effluent sulfide from the four different simulation
scenarios.
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scenario C and D decreased slowly from 21 mmol kgw�1 to
15 mmol kgw�1, while that of scenario A and B decreased more
rapidly from 21 mmol kgw�1 to 6 mmol kgw�1. Interestingly, the
results demonstrate that the dynamics of the 25 SRM (scenario
A) can be replicated by the 9 SRM (scenario B). In contrast,
representing the community with only 1 SRM or 3 SRM (one in
each temperature regime) cannot sufficiently capture the dy-
namics of the full SRM community. In fact, the 1 SRM and 3 SRM
representations underestimated the bulk sulfate reduction rate
of the system compared with the 9 and 25 SRM scenarios (Fig. 9).
We further evaluate model performance of scenarios BeD by
evaluating root-mean-square errors (RMSEs), s:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
Ci
o � Ci

s

�2
N

vuut
(7)

where Ci
o is the simulated effluent sulfate concentration from

scenario A, Ci
s is the simulated effluent sulfate concentration from

the remaining scenarios and N is the total number of data points.
The RMSEs for scenarios B, C and D are 0.33, 4.86 and 4.41 (mmol
kgw�1) respectively. The RMSE values for scenarios B, C and D are
calculated by assuming scenario A as the case which high degree of
SRM population complexity is incorporated, which other scenarios
are benchmarked against.
Next we compare the shifts in relative abundance in the SRM

community between scenarios A, B and C. At the injection well,
temperature rapidly declined from 70 �C to 35 �C within the first
half year. The SRM community responded to the temperature
shift, and the mesophiles dominated sulfate reduction from 0.5
years on. This trend held for all three scenarios (Fig. 10). Tem-
perature at the producing well remained at 70 �C for the first
two years, then slowly declined to 45 �C by the fourth year
(Fig. 11). For scenarios A and B, the hyperthermophiles became
the dominant population at the producing well within the first
year and continued their dominance in terms of cell numbers
through to the fourth year. This guild of hyperthermophiles
thrive at optimal temperatures in the low 80�Cs, with minimum
temperature (for growth) below 70 �C (Fig. 2). While the tem-
perature at the producing well may not be at their optimal
temperature, these hyperthermophiles remain competitive since
their mMAX values at 70 �C are similar in magnitude to the mMAX

values of the thermophiles (scenarios A and B, Fig. 2). For
scenario A (25 SRMs), the hyperthermophiles belong to the
genus Archaeoglobus (fulgidus and sulfaticallidus) and Thermode-
sulfobacterium. On the other hand, the SRM community in
scenario C behaves differently than those from scenarios A and B.
The relative abundance of the three guilds (mesophiles, ther-
mophiles, hyperthermophiles) remained constant till Year 3.5,
while the temperature of the reservoir was in the range
~50e70 �C. Within this temperature range, none of the 3 SRM
guilds derived from the original 25 are capable of growth (see
section 2.3 and Fig. 2C). As the temperature drops further (to-
wards 40 �C), the temperature became conducive for the ther-
mophiles, and they increase in relative abundance by Year 4.

Simulation results suggest the possibility of reducing model
complexity while maintaining dynamics of the target microbial
community. Multi-year reactive transport simulations of oil reser-
voir dynamics are computational intensive even without the in-
clusion of microbial kinetics. The incorporation of microbial
kinetics adds to the computational burden. Our simulations focus
solely on sulfate reduction, which already involve 25 SRM. If other
microbially mediated reactions in the oil reservoirs, e.g. biodegra-
dation of oil (Head et al., 2003) and sulfide oxidation, are to be
taken into consideration, a far greater number of model parameters
would be involved and longer computational run times could be
expected. Our simulation results demonstrate a trade off between
community complexity and simulation run time. When compared
with the 25 SRM simulation, the 1, 3 and 9 SRM simulations took a
factor of 0.42, 0.42 and 0.58 times shorter to run respectively.
Actual computational for each scenario can be found in Table S1.
While representing the SRM community as a single SRM yields the
fastest run time, it also yields the highest degree of error. In this
work, we systematically reduced microbial community complexity
and determined a reduced number of SRMs that was able to capture
the kinetics of the full 25 SRM community, with shorter compu-
tational runtime.

Here we discuss caveats of the current model. The focus of
this study is the exploration of the impacts of representing
diversity within SRM community through trait-based modeling
coupled to a simplified reactive transport model, and how we
can parameterize the kinetic parameters from genomic data
(especially in times when data are not available from physio-
logical studies). As such only microbial sulfate reduction are
incorporated into this model. In addition to sulfate reducers,



Fig. 10. Comparison of the temporal trends of mesophiles, thermophiles and hyperthermophiles distribution at the injection well between the different scenarios.
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other key anaerobic bacteria and archaea have been isolated
from oil reservoirs: fermentative heterotrophic bacteria, iron
reducing bacteria and methanogenic archaea (Head et al.,
2003). Sulfate reducers have been known to interact with
other microbial guilds in the deep subsurface. One example is
the fermenters (acid producing bacteria). Microbial fermenta-
tion produces acetate and other fatty acids, which function as
electron donors in sulfate reduction. Further, acid produced by
the acid producing bacteria impact the environment by altering
pH. Finally, in this work, partitioning of H2S between the gas,
oil and water phases are dependent on the pressure. Recently,
pH has been identified as an important factor controlling the
partitioning of H2S (Burger et al., 2013) and needs to be
considered.
4. Conclusion

In this study, we first showed how genomic information could
be used to parameterize the generation time and optimal growth
temperature required for modeling microbial souring, and pro-
vided a pathway for using microbial data derived from oil reservoir
studies. Of the two parameters, optimal growth temperature
(derived from genomics data) matched the literature data with the
highest degree of accuracy.

Next, we demonstrated how these derived parameters could
be used in a reactive transport simulation of seawater injection
into a reservoir. Model with diverse sulfate reducing microbial
community represented shifts in community composition as an
emergent property that constantly evolves as communities self-
organize in response to changing environmental conditions.
Finally, we explored the question of necessary model
complexity by comparing model results using different numbers
of sulfate reducers. Simulation results showed that the kinetics
of the 25 SRM could be adequately represented by 9 SRM (with
parameter values derived from the mean and standard de-
viations of the 25 SRM). Importantly, this reduction in
complexity from 25 to 9 SRM decreased simulation run time by
a factor of ~2. However, further simplification of the community
to 3 or 1 SRM could not reproduce the souring dynamics,
highlighting the importance of adequately capturing system
complexity in modeling.



Fig. 11. Comparison of the temporal trends of mesophiles, thermophiles and hyperthermophiles distribution at the producing well between the different scenarios.
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