
Biotecnología del Petróleo

Reactores para tratamiento de agua superficiales

Tipos de biorreactores:

Microorganismos suspendidos: Los sistemas suspendidos pueden ser lodos activados, lechos fluidizados o reactores discontinuos secuenciales. El agua circula en un sistema donde los microorganismos degradan el contaminante. De acuerdo al tipo de contaminante el tratamiento puede ser anaerobio o aerobio o una combinación secuencial de ambos. Las células forman un lodo que se separa y se dispone o bien se recircula según el caso.

Microorganismos inmovilizados

En los sistemas inmovilizados el agua se pasa sobre un biofilm adherido a una superficie sólida que puede formar un bioreactor de lecho fijo, un reactor biológico de contacto (RBCs) o un filtro de goteo.

Nuevas tecnologías:

Reactores con carbón activado: libera el contaminante lentamente.

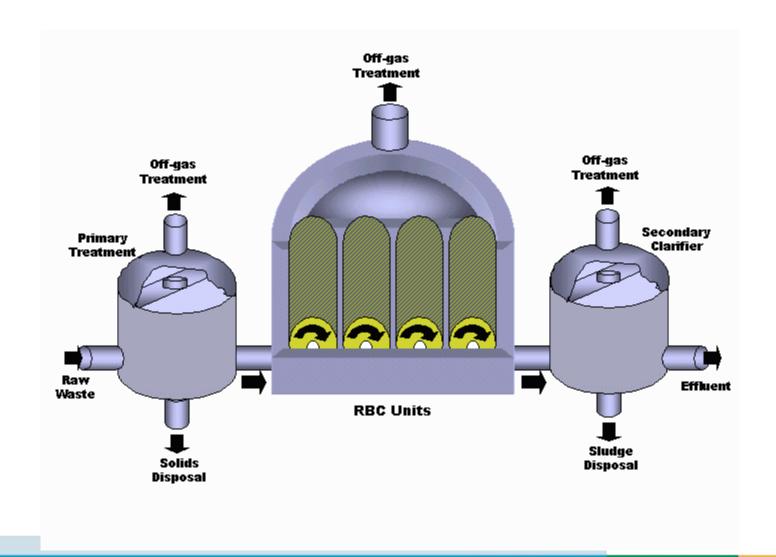
Humedales

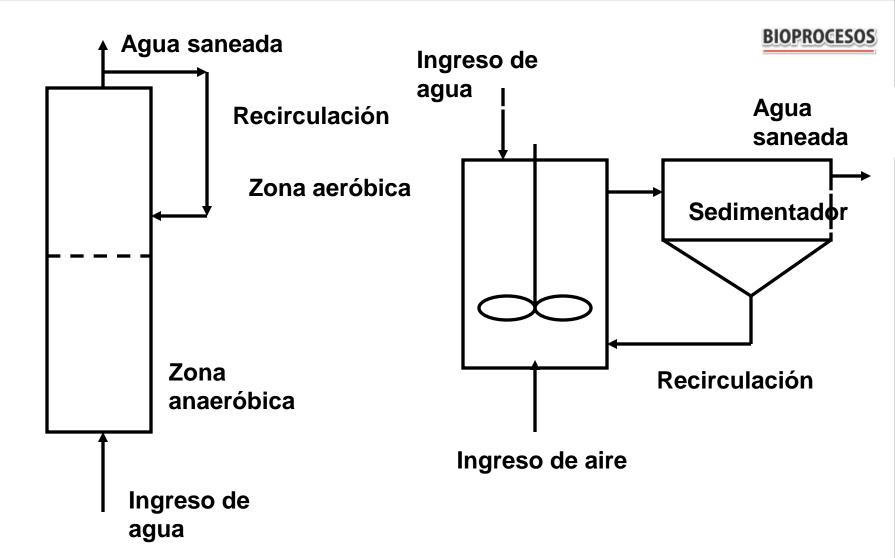
Reactores en columna

Filtro de goteo: es un sistema que el agua se distribuye sobre un medio filtrante formado por un medio altamente poroso y un sistema de drenaje.

El contaminante se degrada aeróbicamente al circular sobre un medio con microorganismos inmovilizados. Las dimensiones del filtro varían de 0,9 a 2,5 m. Posee un sistema de recolección del agua en la parte inferior y puede ser tratada en otro reactor para su purificación

La duración del tratamiento y el mantenimiento del sistema de rociado depende de la cantidad de tiempo necesario para tratar el contaminante. Se requiere monitoreo del agua tratada y de la acumulación de metales


Aplicación


SVOCs, hidrocarburos (combustibles), y cualquier material orgánico biodegradable. Algunos pesticidas, PCP, clorobenzeno y sus isómeros. Cuando se usan cometabolitos: PCBs, VOCs halogenados, y SVOCs.

Limitaciones

- La dilución en el agua del contaminante frecuentemente no permite mantener una densidad de población adecuada (poco Carbono)
- Se deben agregar nutrientes
- Hay restricciones para tratar contaminantes muy tóxicos y se requiere un diseño especial.
- Se requiere controlar la contaminación del aire en lodos activados.
- Si las temperaturas ambientales o el agua es fría se debe calentar el medio para llevar a cabo el proceso.
- Estos reactores a veces son colonizados por microorganismos no deseados.
- Los lodos residuales requieren tratamiento posterior.
- Puede haber problemas de descarga de efluentes
- Hace falta inocular el agua.
- Se deben agregar nutrientes
- Los procesos demoran algunos años

columna

con recirculac

biomasa

$$dX/dt = \mu X$$

$$\mu = \mu_{max}$$
. S/(Ks + S) (Monod)

$$dX/dt = \mu_{max}$$
. S. X /(Ks + S)

$$Y = (dX/dt)/(dS/dt) = dX/dS$$

$$dS/dt = \mu_{max}$$
. S. X /[Y(Ks + S)]

$$k = \mu_{max}/Y$$

$$dS/dt = k S. X /(Ks + S)$$

$$dX/dt = Y. k. S. X /(Ks + S)$$

Como no todas las células proliferan, algunas mueren y otras están en fase de latencia

$$dX/dt = Y. k. S. X /(Ks + S) - bX$$

Los coeficientes se deben determinar experimentalmente

Cuando hay inhibición por sustrato o tóxica

$$dS/dt = k. S. X /(Ks + S + S^2/K_1)$$
 (Andrews)

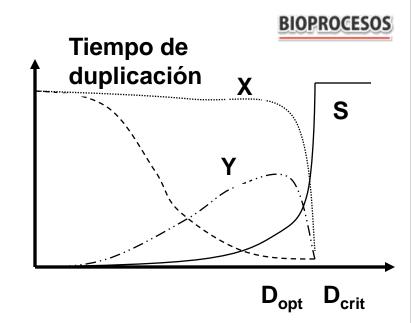
$$dX/dt = 0 = Y. k. S. X /(Ks + S) = bX$$

$$S_{min} = bKs/(Yk - b)$$

Cinética de crecimiento continuo

$$dX/dt = \mu X - DX$$

Donde D es la velocidad de dilución


$$D = Q/V$$

Si
$$\mu = 0$$
 dX/dt = -DX

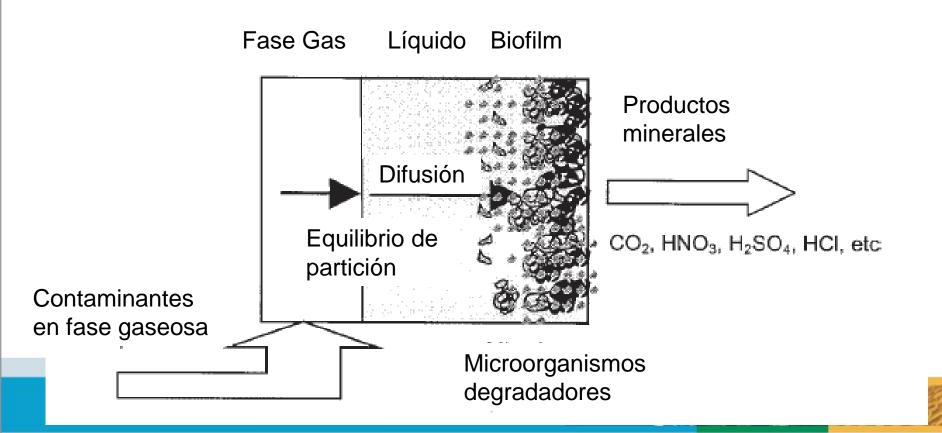
$$dX/dt = \mu_{max}$$
. S. X /(Ks + S) -DX

$$Y = (dX/dt)/(dS/dt) = dX/dS$$

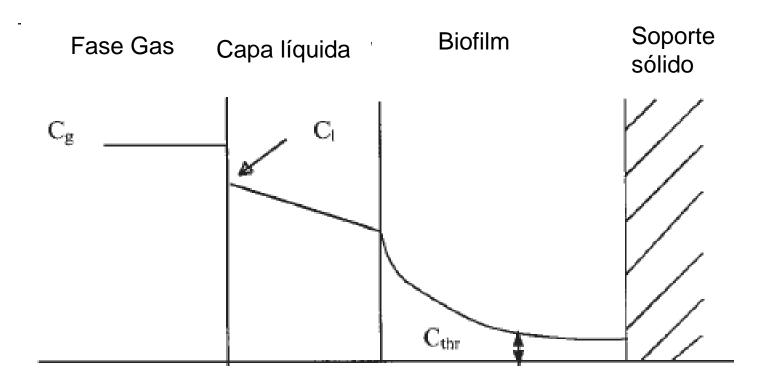
$$dS/dt = [\mu_{max}. S. X /(Ks + S) -DX]/Y$$

Si definimos

θh = tiempo retención hidráulica = V/Q


θc = tiempo de retención de sólidos = XV/velocidad de eliminación de biomasa

	Mezcla completa sin recirculación de sólidos	Mezcla completa con recirculación de sólidos
Concentración sustrato efluente	$S= K_s (1+b \theta_c)/$ $\theta_c (Yk-b)-1$	$S=K_{s} (1+b \theta_{c})/$ $\theta_{c} (Yk-b)-1$
Concentración de biomasa	$\mathbf{X} = \mathbf{Y}(\mathbf{S}_0 \mathbf{-} \mathbf{S}) / (1 \mathbf{+} \mathbf{b} \mathbf{\theta}_{\mathbf{c}})$	$\mathbf{X} = \mathbf{Y}(\mathbf{S}_0 \mathbf{-} \mathbf{S}) \; \mathbf{\theta}_{\mathbf{c}} / \; (1 \mathbf{+} \mathbf{b} \mathbf{\theta}_{\mathbf{c}}) \; \mathbf{\theta}_{\mathbf{h}}$
Tiempo crítico de retención de sólidos	$1/(\theta_c)^{M} = YkS_0/(K_s + S_0) - b$	$1/(\theta_c)^{M} = YkS_0/(K_s + S_0) - b$
Concentración del material inerte en el reactor	$I = I_0$	$\mathbf{I} = \mathbf{I}_0 \boldsymbol{\theta}_{\mathbf{c}} / \boldsymbol{\theta}_{\mathbf{h}}$


BIOPROCESOS

PURIFICACIÓN BIOLÓGICA DE GASES

Consiste en disolver un gas contaminante arrastrado por una corriente en agua y luego degradarlo por los microorganismos presentes en el líquido o adherido sobre un soporte sólido

Disolución del gas al líquido. Cte o coeficiente de Henry

$$K_H = \frac{C_g}{C_l} \qquad \qquad \ln K_H = \frac{a}{T} + b * Z + c \qquad \qquad S = \frac{C_m}{C_g}$$

 C_q = concentración en gas

 $C_I =$ concentración en líquido

T = temperatura absoluta

Z = concentración de sales

 C_m = concentración en membrana

S = coeficiente de solubilidad

Compound:	Ethanol	Butanone	ls obuteral- dehyde		Trichloro- ethene	Limonene	Hexane
К _н (25 °С)	0.00021	0.0023	0.0074	0.0658	0.403	0.82	74

Difusión en el líquido

$$J = -D * \frac{dC_l}{dx}$$

 $J: Mol m^{-2} s^{-1} o g m^{-2} s^{-1}$ $D: m^2 s^{-1}$

Compound	D _{air}	D _{water}	Membrane	D _{membrane}
	(m² s ⁻¹)	(m ² s ⁻¹)	Material	(m² s ⁻¹)
Oxygen Oxygen (25 °C) Ethanol CO ₂ Benzene	1.40×10 ⁻⁵ 1.24×10 ⁻⁵ 1.64×10 ⁻⁵ 1.20×10 ⁻⁵	2.50×10^{-9} 1.13×10^{-9} 2.00×10^{-9} 1.30×10^{-9}	natural rubber polydimethyl siloxane (35°C) poly(vinyl acetate) PMDA-MDA (20°C) poly(vinyl acetate)	2.5×10^{-10} 4.0×10^{-9} 1.5×10^{-13} 9.0×10^{-13} 4.8×10^{-17}

Degradación biológica del contaminante

Ecuación de Monod modificada

$$\frac{dC_l}{dt} = \left(\frac{\mu}{Y_{xs}}\right) * X$$

X: concentración de biomasa g m⁻³ Y_{xs} = rendimiento o productividad biomasa sustrato

C₁ concentración del contaminante en fase líquida g m⁻³

 μ : Velocidad de crecimiento g g⁻¹ h⁻¹

Ecuación de Monod

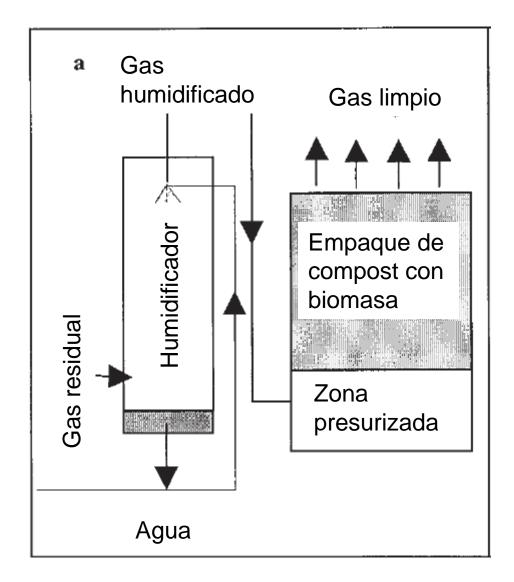
$$-\frac{dC_l}{dt} = K * \frac{C_l}{K_s + Cl}$$

K: velocidad máxima de crecimiento K_s: Concentración de sustrato a la cual la velocidad de crecimiento es la mitad de la

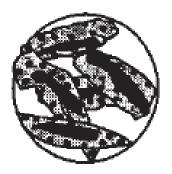
$$dC_1$$

$$-\frac{dC_l}{dt} = k * Cl$$

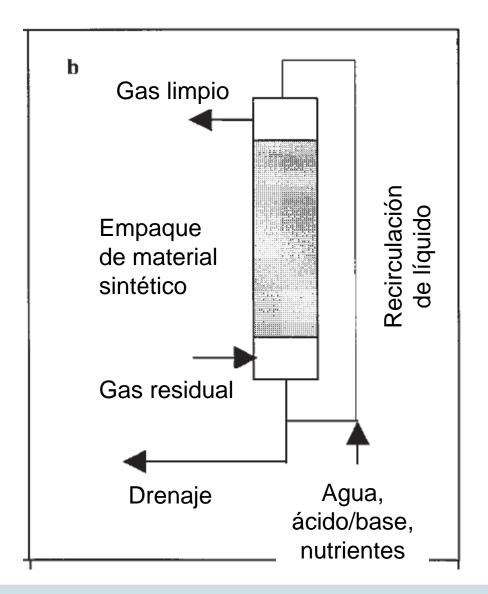
máxima



Combinando según Ottengraf y Van Den Oever para un biofiltro

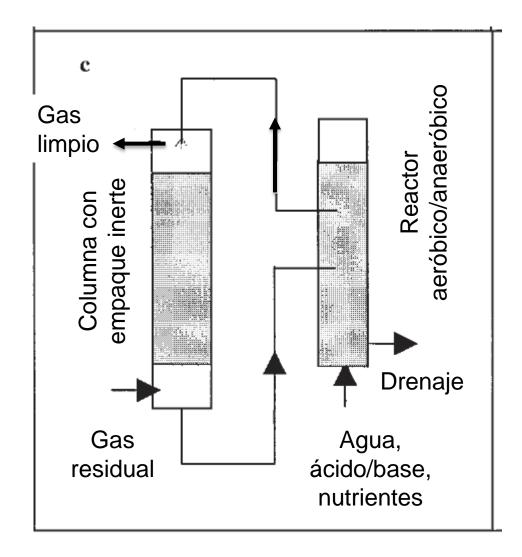

$$\frac{C_{gsal}}{C_{gin}} = 1 - \frac{A_s H}{U_g} * \sqrt{\frac{kD}{2Cgi_{nm}}}$$

A_s: área específica (m²/m⁻³)
D coeficiente de difusión (m²/s⁻¹)
H altura en metros
U velocidad superficial del gas m²s⁻¹
m coeficiente de distribución

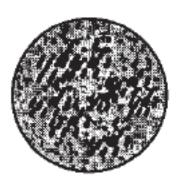


Biofiltro

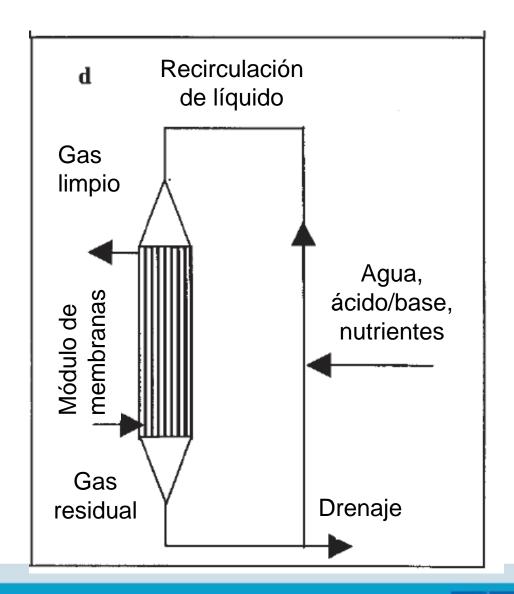
La partícula de compost está rodeada por una capa de agua y bolsas de gas en el biofiltro



Biofiltro de lecho empacado



El empaque de material sintético esta parcialmente cubierto por agua, biomasa y gas



Bio scruber



Flóculos o gránulos de bacterias en el bioreactor de bioscruber

Bioreactor de membrana

Módulo de membrana con biomasa y fluido nutritivo en el interior del tubo y gas en el exterior

Parámetros a considerar

Tiempo de contacto real o tiempo de contacto de reactor vacío

$$T = 3600 * \frac{V}{Q}$$

V : volumen del material de filtro, Q : caudal

$$T = \varepsilon * 3600 * \frac{v}{o}$$
 ε : porosidad real

Velocidad de carga superficial

$$B_A = \frac{Q}{A}$$

A área superficial del lecho

Tasa de carga de masa

$$B_V = Q * \frac{C_{qin}}{A}$$

C_{ain} concentración del gas a la entrada

Parámetros a considerar

Tasa de carga volumétrica

$$V_s = \frac{Q}{V}$$

Capacidad de eliminación

$$CE = Q * \frac{C_{qin} - Cgs_{al}}{V}$$

 C_{qsal} concentración de gas a la salida

Eficiencia de remoción

$$ER = \frac{C_{gin} - Cgsal}{C_{gin}} * 100$$

BIOPROCESOS

Parámetro	Biofiltro	Biofiltro de lecho empacado	Bioscurbber
Concentración de contaminante (g/m³)	<1	<0,5	<5
Constante de Henry	<10	<1	<0,01
Tasa de carga superficial (m³m-3h-1)	50-200	100-1000	100-1000
Tasa de carga másica (gm ⁻³ h ⁻¹)	10-160	<500	<500
Tiempo de contacto en lecho vacío (s)	15-60	<500	<500
Tasa de carga volumétrica (m³m-3h-1)	100-200		250-580
Capacidad de eliminación (gm ⁻³ h ⁻¹)	10-160		
Eficiencia de remoción (%)	95-99		85-90

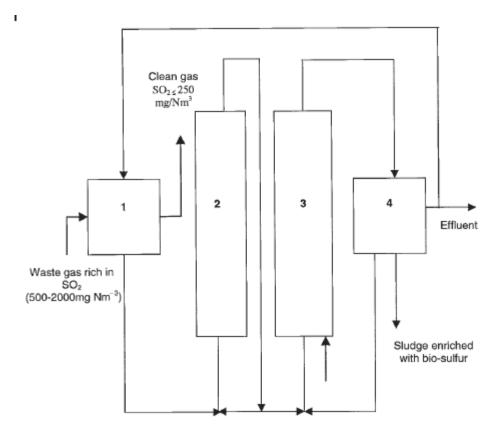


Fig. 17.4 Conversion of SO_2 by means of sulfate reduction and subsequent sulfide oxidation reactors to biologically formed elemental sulfur (after Grootaerd et al., 1977). 1: absorption of SO_2 gas; 2: sulfate reduction; 3: partial oxidation of hydrogen sulfide; 4: separation of sludge enriched with biosulfur.

BIOPROCESOS