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INTRODUCTION 
Simscape™ extends the capabilities of Simulink® by providing tools for 
modeling and simulation of multi-domain physical systems, such as those 
with mechanical, hydraulic, and electrical components. In this presentation, 
we will show you how to utilize Simscape to construct models of electrical 
and mechanical systems.  Shown below is a robot arm that has six joints. We 
will develop a model of one of those joints. 
 

http://www.mathworks.com/products/simscape/?s_cid=0211_wrma_electro_ss_202980
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Our ultimate goal is to develop a model of a controller to ensure that the 
angle q of the robot arm joint shown below tracks a prescribed profile. 
The joint is actuated by a dc motor that drives an arm of mass m through 
a gear pair. The mass center is located a distance L from the rotational 
axis of the joint. The weight mg exerts a torque 𝑚𝑔𝐿 sin 𝜃 that acts in 
the negative 𝜃 direction. The dynamics are treated in Example 3.5.5 of 
System Dynamics, 3/e. 
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Since a dc motor consists partly of a circuit having resistance and inductance, 
we will start with an electrical circuit example (Example 1), and then use it to 
build a model of such a motor (Example 2). 
 
We will then build a model of the dynamics of a rotational mechanical system 
containing gears, such as the robot arm joint (Example 3). 
 
Then we will add the gravity torque 𝑚𝑔𝐿 sin 𝜃 to complete the model of the 
arm’s dynamics (Example 4). 
 
Then we will use the dc motor model to drive the mechanical system, thus 
obtaining the full model of an electrical-mechanical system that is widely 
used in engineering (Example 5). 
 
Finally, we will design a position controller for the system (Example 6). 
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With each example, we will illustrate the model 
construction step by step.  If possible, you should 
construct that model at each step as you follow the 
presentation. 
 
Our example systems are simple enough such that we can 
obtain and solve the corresponding analytical models.  We 
will use these solutions to check our simulation results.  
However, for more complicated systems this is not 
possible, and it is for these types of problems that 
simulation software is invaluable.    
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EXAMPLE 1: AN RL CIRCUIT: 

This is the final result 
we will obtain: 
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STEP 1: Select and place the Resistor, Inductor, and Electrical Reference elements from 
the Simscape>Foundation Library>Electrical>Electrical Elements library.  
 
STEP 2: Select and place the DC Voltage Source element from the  
Simscape>Foundation Library>Electrical>Electrical Sources library.  
 
STEP 3: Select and place the Current Sensor element from the  
Simscape>Foundation Library>Electrical>Electrical Sensors library.  
 
STEP 4: Connect the elements as shown below: 

+ -

Resistor

+ -

Inductor

Electrical Reference

DC Voltage Source

I
+

-

Current Sensor



9 

STEP 5: Select and place the PS-Simulink Converter from the Simscape>Utilities 
library. This block converts the physical signal (PS) to a unit-less Simulink output 
signal. Connect its input to  the upper output port of the current sensor. This is 
the I port, where I stands for “current”. The I port outputs the current as a 
physical signal which has units.  The other ports (‘+’ and ‘-’) are physical 
connections to the rest of the circuit.  
 
STEP 6: Select and place the Scope block from the Simulink>Sinks library. The 
diagram should now look like the one below. 
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STEP 7: Select and place the Solver Configuration block from the Simscape>Utilities 
library. The Solver Configuration block defines the solver settings for this Simscape 
physical network.  The Simulink solver for the entire model must be set separately. 
For this example, do not change any of the parameters in this block (all three boxes 
should be unchecked).  Connect it as shown in the figure below.  The model is now 
complete except for the parameter values. 
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A Note About Solvers: The default solver is ode 45. 
It is strongly recommended that you change the 
solver to a stiff solver (ode15s, ode23t, or ode14x). 
Do this by selecting “Configuration Parameters” 
from the Simulation menu, selecting the solver 
pane from the list on the left, and changing the 
“Solver” parameter to ode15s. Then click OK.  

11 
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Now let’s simulate the model.  By double-clicking on the appropriate block, enter 
the following values for the resistance, inductance, and voltage: R = 5, 𝐿 = 0.004, 
and v = 10 (the units are ohms, henrys, and volts, respectively, which are the default 
units used in these property boxes).  The theoretical model for this circuit is 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑣 

The time constant is therefore L/R. If v is constant, the steady state current will be 
v/R.  For our values this gives L/R = 0.008 seconds and a steady state current of 2 
amps, which is reached to within 2% after 4(0.008)=0.032 seconds.  

Set the simulation time to 0.06 and run 
the model.  You should see a plot like 
that shown in the scope to the right. The 
results agree with our analytical model. 
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EXAMPLE 2: A DC MOTOR MODEL  
We will now modify our RL circuit model to create a model of an  
armature-controlled dc motor.  The final model will look like this: 
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To create the model, first delete the connection between the Inductor and the 
Electrical Reference. Then insert the Rotational Electromechanical Converter 
block from the Simscape>Foundation Library>Electrical>Electrical Elements 
library, and connect it with the Inductor and Electrical Reference as shown.  
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The Rotational Electromechanical Converter block provides an interface 
between the electrical and mechanical rotational domains. If the current and 
voltage through and across the electrical ports are i and v, and the torque and 
angular speed through and across the mechanical ports are T and ω, then 
𝑇 = 𝐾𝑖 and 𝑣 = 𝐾𝜔, where K is the torque constant with equivalent units of 
N·m/A or V/(rad/s). Since both the torque and back emf equations have the 
same value of K, this element represents a lossless electromechanical energy 
conversion.  See Section 6.5 of System Dynamics, 3/e for a discussion of these 
and other dc motor principles. 
 
If the current I from the electrical + to - ports is positive, then the resulting 
torque is positive acting from the mechanical C to R ports. This direction can 
be altered by using a negative value for K. 
 
Open the Block Parameters dialog box of the converter and enter 0.1 N·m/A 
for K. 
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Since the Rotational Electromechanical Converter block does not contain the inertia 
of the motor’s armature, we must add an inertia to the model. Select the Inertia 
block from the Simscape>Foundation Library>Mechanical>Rotational Elements 
library, and connect it to the R port of the electromechanical converter, as shown. 
Open its Block Parameters dialog box and enter 0.0005 kg·m2 for the inertia value. 
 
Next select and place the Mechanical Rotational Reference block from the 
Simscape>Foundation Library>Mechanical>Rotational Elements library. This block 
provides a reference for measuring the across variable velocity; thus it is analogous 
to an electrical ground, which provides a reference for the across variable voltage. 
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Next add the Ideal Rotational Motion Sensor block from the 
Simscape>Foundation Library>Mechanical>Mechanical Sensors library, and 
connect it into the network through its R port as shown. The sensor is ideal since 
it does not include effects that a real sensor would introduce into the system ,  
such as inertia, friction, delays, energy consumption, and so on. Connections R 
and C are mechanical rotational power-conserving ports, while connections W 
and A are physical signal output ports for angular velocity and angular 
displacement, respectively.  
 
Then insert another Rotational Reference, Scope, and Converter block as before, 
to obtain the final model shown. 
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Testing the Motor Model: From Section 6.5 of System Dynamics, 3/e, the speed and 
current transfer functions for a motor having no mechanical damping are 

Ω(𝑠)

𝑉(𝑠)
=

𝐾

𝐿𝐼𝑠2 + 𝑅𝐼𝑠 + 𝐾2
                             

𝐼(𝑠)

𝑉(𝑠)
=

𝐼𝑠

𝐿𝐼𝑠2 + 𝑅𝐼𝑠 + 𝐾2
             

 
Using 𝑅 = 1 Ω, 𝐿 = 0.01 H, 𝐾 = 0.1N·m/A, and 𝐼 = 0.0005kg·m2, the characteristic 
roots are 𝑠 = −72.36 and − 27.64. So the time constants are 𝜏 =0.0138 and 0.0362 
s. The steady-state response with a step voltage input should be reached in about 
four times the dominant time constant, or 4𝜏 = 4 0.0362 = 0.1447 s.  
 
Using a voltage input of 1 V, the steady-state speed will be 1 𝐾 = 10 rad/s and the 
steady-state current will be 0.  The presence of numerator dynamics in the current 
transfer function suggests that the current might have a large overshoot.   



19 

Set the run time to 0.2 s.  The speed plot is shown below on the left, and the 
current plot is shown on the right. The plots confirm the results of the transfer 
function analysis. 

If we can get these results directly from the transfer functions, why use 
Simulink? Transfer function analysis may be impossible or at best very tedious 
to use for systems with nonlinearities such as torque limits and/or 
complicated input voltages such as trapezoidal functions.  In such cases, 
numerical simulation is a powerful, practical approach. See Sections 6.8 and 
6.9 in System Dynamics, 3/e for relevant examples. 



20 

Example 3: A Geared System The figure below shows a representation of a 
rotational system containing a gear pair.  The inertias 𝐼1and 𝐼2 represent the 
elements on the driving side and the driven side, respectively. The gear ratio is N. 
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For now let us assume that the load torque 𝑇2is zero, and that the driving torque 
𝑇1has the trapezoidal profile shown. We will use the Signal Builder block in the 
Simulink Sources library to create this function.  We will use a Gain block to adjust 
the height of the trapezoid (the maximum torque). 
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Now let us construct the Simscape model.  The only new Simscape elements are the 
Gear Box block from the Simscape>Foundation Library>Mechanical>Mechanisms 
library, the Ideal Torque Source block from the Simscape>Foundation 
Library>Mechanical>Mechanical Sources library, and the Simulink-PS Converter block 
from the Simscape>Utilities library. The model is shown below. Note that this time we 
have connected our scope to the Speed port (W) of the motion sensor. 



23 

Set the  following parameters in the appropriate blocks: Gain = 10, 𝐼1 = 0.085 
kg· m2, 𝐼2 = 0.37 kg· m2, and the gear ratio to 2.  
 
The Gear Box block contains only one parameter, the gear ratio. Thus, it 
represents a kinematic constraint only.  In particular, the block does not model 
gear friction or the gear inertias.  The former may be captured by a Rotational 
Friction element, while the latter must be included in the inertias I1 and I2 
connected to the gear box. 
 
 
The Ideal Torque Source block has no parameters. It represents a source capable 
of providing the torque specified at its physical-signal input port regardless of 
the angular velocity across its terminals.  Since power is the product of torque 
and angular velocity, the Torque Source is ideal in the sense that it is sufficiently 
powerful to deliver the specified torque at any speed.  
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The Simulink-PS Converter block converts a unit-less Simulink signal to a physical 
signal (PS). Its Block Parameters dialog box is shown below.  
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Set the Stop Time to 15 and run the model.  You should see the following 
display in the Scope. The speed is measured in rad/s. The maximum speed 
is about 230 rad/s, which corresponds to approximately 2200 rpm.  The 
speed levels off as it should, because the applied torque becomes zero after 
ten seconds.  
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Example 4: Dynamics of a Robot Arm Joint Now we are ready to model the 
dynamics of the robot arm joint shown below. We will include the dc motor model 
later.  
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The completed model is shown below.  We will use the following parameter 
values: Gain = 3, 𝐼1 = 0.085 kg· m2, 𝐼2 = 0.37 kg· m2, gear ratio = 2, m = 4 kg, 
L = 0.25 m, and g = 9.81 m s2 .  The Signal Builder produces the same 
trapezoidal profile used in Example 3. 
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Let’s examine the new blocks introduced to model the gravitational torque  
−𝑚𝑔𝐿 sin 𝜃.  The following figure shows that part of the model containing the 
new blocks. These are: the PS Gain block from the Simscape>Foundation 
Library>Physical Signals>Functions library, and the PS Math Function block from 
the same library. The PS Gain block multiplies the input physical signal by a 
constant called the Gain.  For our model, enter –m*g*L in the Block Parameters 
dialog box.  Then assign the values of m, g, and L  in the MATLAB Command 
window. The PS Math Function block applies a mathematical function to the 
input u.  Enter sin(u) in its Parameter dialog box. Note that we have now 
connected the scope to the angle port A. 
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Run the model using a Stop Time of 15 s.  You should see the following in the 
Scope. The arm angle is in radians. The constant amplitude oscillations are due to 
the fact that the system has no damping.  When the applied torque goes to zero 
after 10 seconds, the arm oscillates like a pendulum about 𝜃 = 0. For small 
angles, the differential equation model predicts a period of 1.69 s. This agrees 
exactly with the simulation results.  
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Example 5: Adding the Motor to the Arm Model The complete model is shown 
below. The only new block is the Controlled Voltage Source block from the 
Simscape>Foundation Library>Electrical>Electrical Sources library. This block 
represents an ideal voltage source that is powerful enough to maintain the 
specified voltage at its output regardless of the current passing through it. (Recall 
that electrical power is the product of voltage and current.) 
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Use 𝑅 = 0.5 Ω, 𝐿 = 0.002 H, 𝐾 = 0.05N·m/A. Use Gain = 3, 𝐼1 = 0.0851 
kg· m2, 𝐼2 = 0.37 kg· m2, gear ratio = 2, m = 4 kg, L = 0.25 m, and g = 9.81 
m s2 .  The inertia 𝐼1 now includes the very small motor inertia 9 × 10−5 
kg· m2. The Signal Builder produces the same trapezoidal profile used in 
Example 3.  Set the Stop Time to 15 and run the model.  You should see 
the following in the Scope. The arm angle is in radians. 
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The plot is slightly different from Example 4. The arm now oscillates about a 
smaller angle because of the motor gain, but the period is about the same 
despite the dynamics of the motor.  This is because the armature circuit 
time constant 𝐿 𝑅 = 0.004 s is very small compared to the period of the 
mechanical subsystem. 
 
This suggests that we can ignore the electrical dynamics of the motor when 
developing a model of a control system for the arm.  We will take this 
approach to keep the model complexity to a minimum.  
 
Of course, if you need to know the motor current as part of the simulation, 
then you must retain the circuit model.  But we will not do this here. 
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Example 6: Position Control of the Robot Arm: Neglecting the circuit dynamics 
enables us to construct the model shown below. Insert the PID Controller block 
from the Simulink>Continuous library and insert the Sum block and another 
Scope (to measure the control torque) as shown. 
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Open the Block Parameters dialog box of the PID Controller block and set the 
gains to the following values: Proportional = 50, Integral = 200, and Derivative 
= 5. Set the Gain to 1. Then run the model with a Stop Time of 15 s.  You should 
see the following in the Scope for the arm angle.  Clearly the angle follows the 
desired profile very closely. 
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Now open Scope1, which shows the torque required to achieve this performance.  
Controller engineers must always consider the actuator requirements before 
finalizing the design.  Here the maximum torque required is about 13 N·m.  In 
addition, the plot shows that the torque must change quickly, and this may not be 
possible for the chosen motor. 

At this point the engineer may want 
to consider including the motor 
circuit model in order to determine 
the maximum required current. (Note 
the benefit of Model-Based Design: 
we are able to evaluate alternatives 
and make informed design decisions 
well in advance of hardware 
implementation and testing. ) 
Assessing motor requirements is 
covered in detail in Section 6.6 of 
System Dynamics, 3/e. 
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We have not discussed the selection of the PID controller gains. That is the subject 
of Chapters 10 and 11 in System Dynamics, 3/e. There are many ways of doing this, 
including the MATLAB® pidtool and sisotool design tools, and Simulink 
Control Design.  
 
This completes our modeling of the robot arm joint, which is an example of a 
common electromechanical system. We have used only those blocks available in 
the basic Simulink libraries, plus those in the Simscape Foundation library and the 
Simscape Utilities library.  
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MathWorks provides additional Simscape libraries for physical modeling.  Two 
of these are SimElectronics and SimMechanics.  These contain additional 
blocks that enable modeling of more complex multi-domain systems.   
 
For example, SimElectronics includes a DC Motor block similar to the model we 
just developed, except that it also accounts for internal motor friction.  In fact, 
SimElectronics offers more than 55 electronic and electromechanical 
components, including a variety of semiconductor, motor, drive, sensor, and 
actuator elements, as well as building blocks to implement your own custom 
subsystems. 
 
SimMechanics contains blocks for modeling rigid body dynamics, for both 
planar and three-dimensional motion.  Its sub-libraries include blocks for 
modeling constraints, kinematics, different types of joints, drivers, sensors, and 
actuators.  In fact, SimMechanics would allow us to model the entire 3-
dimensional mechanical robot shown previously on slide 3.  

http://www.mathworks.com/products/simelectronics/?s_cid=0211_wrma_electro_se_202980
http://www.mathworks.com/products/simmechanics/?s_cid=0211_wrma_electro_ms_202980

