
Copyright © 2013. The McGraw-Hill Companies, Inc.

System Dynamics, Third Edition

William J. Palm III

Using Simscape™ for Modeling

Electromechanical Systems:

Dynamics and Control of a Robot Arm

PowerPoint to accompany

1

These slides are intended to be used with the author’s text, System Dynamics, 3/e,
published by McGraw-Hill©2014.

Acknowledgments

The author wishes to acknowledge the support of McGraw-Hill for hosting these
slides, and The MathWorks, Inc., who supplied the software. Naomi Fernandes, Dr.
Gerald Brusher, and Steve Miller of MathWorks provided much assistance. Dr.
Brusher’s contributions formed the basis for many of the Simscape models
presented here.

MATLAB®, Simulink®, and Simscape™ are registered trademarks and trademarks of
The MathWorks, Inc. and are used with permission.

2

The equations and math symbols in these slides were created with the new equation
editor in PowerPoint 2010, and thus material containing these elements will appear
as graphics when viewed in an earlier version.

3

INTRODUCTION
Simscape™ extends the capabilities of Simulink® by providing tools for
modeling and simulation of multi-domain physical systems, such as those
with mechanical, hydraulic, and electrical components. In this presentation,
we will show you how to utilize Simscape to construct models of electrical
and mechanical systems. Shown below is a robot arm that has six joints. We
will develop a model of one of those joints.

http://www.mathworks.com/products/simscape/?s_cid=0211_wrma_electro_ss_202980

4

Our ultimate goal is to develop a model of a controller to ensure that the
angle q of the robot arm joint shown below tracks a prescribed profile.
The joint is actuated by a dc motor that drives an arm of mass m through
a gear pair. The mass center is located a distance L from the rotational
axis of the joint. The weight mg exerts a torque 𝑚𝑔𝐿 sin 𝜃 that acts in
the negative 𝜃 direction. The dynamics are treated in Example 3.5.5 of
System Dynamics, 3/e.

5

Since a dc motor consists partly of a circuit having resistance and inductance,
we will start with an electrical circuit example (Example 1), and then use it to
build a model of such a motor (Example 2).

We will then build a model of the dynamics of a rotational mechanical system
containing gears, such as the robot arm joint (Example 3).

Then we will add the gravity torque 𝑚𝑔𝐿 sin 𝜃 to complete the model of the
arm’s dynamics (Example 4).

Then we will use the dc motor model to drive the mechanical system, thus
obtaining the full model of an electrical-mechanical system that is widely
used in engineering (Example 5).

Finally, we will design a position controller for the system (Example 6).

6

With each example, we will illustrate the model
construction step by step. If possible, you should
construct that model at each step as you follow the
presentation.

Our example systems are simple enough such that we can
obtain and solve the corresponding analytical models. We
will use these solutions to check our simulation results.
However, for more complicated systems this is not
possible, and it is for these types of problems that
simulation software is invaluable.

7

EXAMPLE 1: AN RL CIRCUIT:

This is the final result
we will obtain:

f(x)=0

Solv er

Configuration

Scope

+ -

Resistor

PS S

PS-Simulink

Conv erter

+ -

Inductor

Electrical Reference

DC Voltage Source

I
+

-

Current Sensor

8

STEP 1: Select and place the Resistor, Inductor, and Electrical Reference elements from
the Simscape>Foundation Library>Electrical>Electrical Elements library.

STEP 2: Select and place the DC Voltage Source element from the
Simscape>Foundation Library>Electrical>Electrical Sources library.

STEP 3: Select and place the Current Sensor element from the
Simscape>Foundation Library>Electrical>Electrical Sensors library.

STEP 4: Connect the elements as shown below:

+ -

Resistor

+ -

Inductor

Electrical Reference

DC Voltage Source

I
+

-

Current Sensor

9

STEP 5: Select and place the PS-Simulink Converter from the Simscape>Utilities
library. This block converts the physical signal (PS) to a unit-less Simulink output
signal. Connect its input to the upper output port of the current sensor. This is
the I port, where I stands for “current”. The I port outputs the current as a
physical signal which has units. The other ports (‘+’ and ‘-’) are physical
connections to the rest of the circuit.

STEP 6: Select and place the Scope block from the Simulink>Sinks library. The
diagram should now look like the one below.

10

STEP 7: Select and place the Solver Configuration block from the Simscape>Utilities
library. The Solver Configuration block defines the solver settings for this Simscape
physical network. The Simulink solver for the entire model must be set separately.
For this example, do not change any of the parameters in this block (all three boxes
should be unchecked). Connect it as shown in the figure below. The model is now
complete except for the parameter values.

f(x)=0

Solv er

Configuration

Scope

+ -

Resistor

PS S

PS-Simulink

Conv erter

+ -

Inductor

Electrical Reference

DC Voltage Source

I
+

-

Current Sensor

A Note About Solvers: The default solver is ode 45.
It is strongly recommended that you change the
solver to a stiff solver (ode15s, ode23t, or ode14x).
Do this by selecting “Configuration Parameters”
from the Simulation menu, selecting the solver
pane from the list on the left, and changing the
“Solver” parameter to ode15s. Then click OK.

11

12

Now let’s simulate the model. By double-clicking on the appropriate block, enter
the following values for the resistance, inductance, and voltage: R = 5, 𝐿 = 0.004,
and v = 10 (the units are ohms, henrys, and volts, respectively, which are the default
units used in these property boxes). The theoretical model for this circuit is

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑣

The time constant is therefore L/R. If v is constant, the steady state current will be
v/R. For our values this gives L/R = 0.008 seconds and a steady state current of 2
amps, which is reached to within 2% after 4(0.008)=0.032 seconds.

Set the simulation time to 0.06 and run
the model. You should see a plot like
that shown in the scope to the right. The
results agree with our analytical model.

13

EXAMPLE 2: A DC MOTOR MODEL
We will now modify our RL circuit model to create a model of an
armature-controlled dc motor. The final model will look like this:

14

To create the model, first delete the connection between the Inductor and the
Electrical Reference. Then insert the Rotational Electromechanical Converter
block from the Simscape>Foundation Library>Electrical>Electrical Elements
library, and connect it with the Inductor and Electrical Reference as shown.

15

The Rotational Electromechanical Converter block provides an interface
between the electrical and mechanical rotational domains. If the current and
voltage through and across the electrical ports are i and v, and the torque and
angular speed through and across the mechanical ports are T and ω, then
𝑇 = 𝐾𝑖 and 𝑣 = 𝐾𝜔, where K is the torque constant with equivalent units of
N·m/A or V/(rad/s). Since both the torque and back emf equations have the
same value of K, this element represents a lossless electromechanical energy
conversion. See Section 6.5 of System Dynamics, 3/e for a discussion of these
and other dc motor principles.

If the current I from the electrical + to - ports is positive, then the resulting
torque is positive acting from the mechanical C to R ports. This direction can
be altered by using a negative value for K.

Open the Block Parameters dialog box of the converter and enter 0.1 N·m/A
for K.

16

Since the Rotational Electromechanical Converter block does not contain the inertia
of the motor’s armature, we must add an inertia to the model. Select the Inertia
block from the Simscape>Foundation Library>Mechanical>Rotational Elements
library, and connect it to the R port of the electromechanical converter, as shown.
Open its Block Parameters dialog box and enter 0.0005 kg·m2 for the inertia value.

Next select and place the Mechanical Rotational Reference block from the
Simscape>Foundation Library>Mechanical>Rotational Elements library. This block
provides a reference for measuring the across variable velocity; thus it is analogous
to an electrical ground, which provides a reference for the across variable voltage.

17

Next add the Ideal Rotational Motion Sensor block from the
Simscape>Foundation Library>Mechanical>Mechanical Sensors library, and
connect it into the network through its R port as shown. The sensor is ideal since
it does not include effects that a real sensor would introduce into the system ,
such as inertia, friction, delays, energy consumption, and so on. Connections R
and C are mechanical rotational power-conserving ports, while connections W
and A are physical signal output ports for angular velocity and angular
displacement, respectively.

Then insert another Rotational Reference, Scope, and Converter block as before,
to obtain the final model shown.

18

Testing the Motor Model: From Section 6.5 of System Dynamics, 3/e, the speed and
current transfer functions for a motor having no mechanical damping are

Ω(𝑠)

𝑉(𝑠)
=

𝐾

𝐿𝐼𝑠2 + 𝑅𝐼𝑠 + 𝐾2

𝐼(𝑠)

𝑉(𝑠)
=

𝐼𝑠

𝐿𝐼𝑠2 + 𝑅𝐼𝑠 + 𝐾2

Using 𝑅 = 1 Ω, 𝐿 = 0.01 H, 𝐾 = 0.1N·m/A, and 𝐼 = 0.0005kg·m2, the characteristic
roots are 𝑠 = −72.36 and − 27.64. So the time constants are 𝜏 =0.0138 and 0.0362
s. The steady-state response with a step voltage input should be reached in about
four times the dominant time constant, or 4𝜏 = 4 0.0362 = 0.1447 s.

Using a voltage input of 1 V, the steady-state speed will be 1 𝐾 = 10 rad/s and the
steady-state current will be 0. The presence of numerator dynamics in the current
transfer function suggests that the current might have a large overshoot.

19

Set the run time to 0.2 s. The speed plot is shown below on the left, and the
current plot is shown on the right. The plots confirm the results of the transfer
function analysis.

If we can get these results directly from the transfer functions, why use
Simulink? Transfer function analysis may be impossible or at best very tedious
to use for systems with nonlinearities such as torque limits and/or
complicated input voltages such as trapezoidal functions. In such cases,
numerical simulation is a powerful, practical approach. See Sections 6.8 and
6.9 in System Dynamics, 3/e for relevant examples.

20

Example 3: A Geared System The figure below shows a representation of a
rotational system containing a gear pair. The inertias 𝐼1and 𝐼2 represent the
elements on the driving side and the driven side, respectively. The gear ratio is N.

21

For now let us assume that the load torque 𝑇2is zero, and that the driving torque
𝑇1has the trapezoidal profile shown. We will use the Signal Builder block in the
Simulink Sources library to create this function. We will use a Gain block to adjust
the height of the trapezoid (the maximum torque).

22

Now let us construct the Simscape model. The only new Simscape elements are the
Gear Box block from the Simscape>Foundation Library>Mechanical>Mechanisms
library, the Ideal Torque Source block from the Simscape>Foundation
Library>Mechanical>Mechanical Sources library, and the Simulink-PS Converter block
from the Simscape>Utilities library. The model is shown below. Note that this time we
have connected our scope to the Speed port (W) of the motion sensor.

23

Set the following parameters in the appropriate blocks: Gain = 10, 𝐼1 = 0.085
kg· m2, 𝐼2 = 0.37 kg· m2, and the gear ratio to 2.

The Gear Box block contains only one parameter, the gear ratio. Thus, it
represents a kinematic constraint only. In particular, the block does not model
gear friction or the gear inertias. The former may be captured by a Rotational
Friction element, while the latter must be included in the inertias I1 and I2
connected to the gear box.

The Ideal Torque Source block has no parameters. It represents a source capable
of providing the torque specified at its physical-signal input port regardless of
the angular velocity across its terminals. Since power is the product of torque
and angular velocity, the Torque Source is ideal in the sense that it is sufficiently
powerful to deliver the specified torque at any speed.

24

The Simulink-PS Converter block converts a unit-less Simulink signal to a physical
signal (PS). Its Block Parameters dialog box is shown below.

25

Set the Stop Time to 15 and run the model. You should see the following
display in the Scope. The speed is measured in rad/s. The maximum speed
is about 230 rad/s, which corresponds to approximately 2200 rpm. The
speed levels off as it should, because the applied torque becomes zero after
ten seconds.

26

Example 4: Dynamics of a Robot Arm Joint Now we are ready to model the
dynamics of the robot arm joint shown below. We will include the dc motor model
later.

27

The completed model is shown below. We will use the following parameter
values: Gain = 3, 𝐼1 = 0.085 kg· m2, 𝐼2 = 0.37 kg· m2, gear ratio = 2, m = 4 kg,
L = 0.25 m, and g = 9.81 m s2 . The Signal Builder produces the same
trapezoidal profile used in Example 3.

28

Let’s examine the new blocks introduced to model the gravitational torque
−𝑚𝑔𝐿 sin 𝜃. The following figure shows that part of the model containing the
new blocks. These are: the PS Gain block from the Simscape>Foundation
Library>Physical Signals>Functions library, and the PS Math Function block from
the same library. The PS Gain block multiplies the input physical signal by a
constant called the Gain. For our model, enter –m*g*L in the Block Parameters
dialog box. Then assign the values of m, g, and L in the MATLAB Command
window. The PS Math Function block applies a mathematical function to the
input u. Enter sin(u) in its Parameter dialog box. Note that we have now
connected the scope to the angle port A.

29

Run the model using a Stop Time of 15 s. You should see the following in the
Scope. The arm angle is in radians. The constant amplitude oscillations are due to
the fact that the system has no damping. When the applied torque goes to zero
after 10 seconds, the arm oscillates like a pendulum about 𝜃 = 0. For small
angles, the differential equation model predicts a period of 1.69 s. This agrees
exactly with the simulation results.

30

Example 5: Adding the Motor to the Arm Model The complete model is shown
below. The only new block is the Controlled Voltage Source block from the
Simscape>Foundation Library>Electrical>Electrical Sources library. This block
represents an ideal voltage source that is powerful enough to maintain the
specified voltage at its output regardless of the current passing through it. (Recall
that electrical power is the product of voltage and current.)

31

Use 𝑅 = 0.5 Ω, 𝐿 = 0.002 H, 𝐾 = 0.05N·m/A. Use Gain = 3, 𝐼1 = 0.0851
kg· m2, 𝐼2 = 0.37 kg· m2, gear ratio = 2, m = 4 kg, L = 0.25 m, and g = 9.81
m s2 . The inertia 𝐼1 now includes the very small motor inertia 9 × 10−5
kg· m2. The Signal Builder produces the same trapezoidal profile used in
Example 3. Set the Stop Time to 15 and run the model. You should see
the following in the Scope. The arm angle is in radians.

32

The plot is slightly different from Example 4. The arm now oscillates about a
smaller angle because of the motor gain, but the period is about the same
despite the dynamics of the motor. This is because the armature circuit
time constant 𝐿 𝑅 = 0.004 s is very small compared to the period of the
mechanical subsystem.

This suggests that we can ignore the electrical dynamics of the motor when
developing a model of a control system for the arm. We will take this
approach to keep the model complexity to a minimum.

Of course, if you need to know the motor current as part of the simulation,
then you must retain the circuit model. But we will not do this here.

33

Example 6: Position Control of the Robot Arm: Neglecting the circuit dynamics
enables us to construct the model shown below. Insert the PID Controller block
from the Simulink>Continuous library and insert the Sum block and another
Scope (to measure the control torque) as shown.

34

Open the Block Parameters dialog box of the PID Controller block and set the
gains to the following values: Proportional = 50, Integral = 200, and Derivative
= 5. Set the Gain to 1. Then run the model with a Stop Time of 15 s. You should
see the following in the Scope for the arm angle. Clearly the angle follows the
desired profile very closely.

35

Now open Scope1, which shows the torque required to achieve this performance.
Controller engineers must always consider the actuator requirements before
finalizing the design. Here the maximum torque required is about 13 N·m. In
addition, the plot shows that the torque must change quickly, and this may not be
possible for the chosen motor.

At this point the engineer may want
to consider including the motor
circuit model in order to determine
the maximum required current. (Note
the benefit of Model-Based Design:
we are able to evaluate alternatives
and make informed design decisions
well in advance of hardware
implementation and testing.)
Assessing motor requirements is
covered in detail in Section 6.6 of
System Dynamics, 3/e.

36

We have not discussed the selection of the PID controller gains. That is the subject
of Chapters 10 and 11 in System Dynamics, 3/e. There are many ways of doing this,
including the MATLAB® pidtool and sisotool design tools, and Simulink
Control Design.

This completes our modeling of the robot arm joint, which is an example of a
common electromechanical system. We have used only those blocks available in
the basic Simulink libraries, plus those in the Simscape Foundation library and the
Simscape Utilities library.

37

MathWorks provides additional Simscape libraries for physical modeling. Two
of these are SimElectronics and SimMechanics. These contain additional
blocks that enable modeling of more complex multi-domain systems.

For example, SimElectronics includes a DC Motor block similar to the model we
just developed, except that it also accounts for internal motor friction. In fact,
SimElectronics offers more than 55 electronic and electromechanical
components, including a variety of semiconductor, motor, drive, sensor, and
actuator elements, as well as building blocks to implement your own custom
subsystems.

SimMechanics contains blocks for modeling rigid body dynamics, for both
planar and three-dimensional motion. Its sub-libraries include blocks for
modeling constraints, kinematics, different types of joints, drivers, sensors, and
actuators. In fact, SimMechanics would allow us to model the entire 3-
dimensional mechanical robot shown previously on slide 3.

http://www.mathworks.com/products/simelectronics/?s_cid=0211_wrma_electro_se_202980
http://www.mathworks.com/products/simmechanics/?s_cid=0211_wrma_electro_ms_202980

