Space feedback control Linear Quadratic Regulator (LQR control)

Dr. Ing. Rodrigo Gonzalez

rodrigo.gonzalez@ingenieria.uncuyo.edu.ar

Control y Sistemas

Ingeniería Mecatrónica, Facultad de Ingeniería, Universidad Nacional de Cuyo

June 2020

Linear Quadratic Regulator

An alternative method to pole placement is to place the poles so that the closed loop system optimizes a cost function:

Linear Quadratic Regulator

An alternative method to pole placement is to place the poles so that the closed loop system optimizes a cost function:

$$J = \int_0^\infty (x^T Q_x x + u^T Q_u u) dt$$

Linear Quadratic Regulator

An alternative method to pole placement is to place the poles so that the closed loop system optimizes a cost function:

$$J = \int_0^\infty (x^T Q_x x + u^T Q_u u) dt$$

where x^TQ_xx is the **state cost** and u^TQ_uu is the **control cost**. The matrices Q_x and Q_u are symmetric, positive (semi-) definite matrices. This is called the **linear quadratic regulator (LQR)** problem.

Linear Quadratic Regulator

An alternative method to pole placement is to place the poles so that the closed loop system optimizes a cost function:

$$J = \int_0^\infty (x^T Q_x x + u^T Q_u u) dt$$

where x^TQ_xx is the **state cost** and u^TQ_uu is the **control cost**. The matrices Q_x and Q_u are symmetric, positive (semi-) definite matrices. This is called the **linear quadratic regulator (LQR)** problem.

The solution to the LQR problem is given by

$$u = -Kx$$
, $K = Q_u^{-1}B^TS$

Linear Quadratic Regulator

An alternative method to pole placement is to place the poles so that the closed loop system optimizes a cost function:

$$J = \int_0^\infty (x^T Q_x x + u^T Q_u u) dt$$

where x^TQ_xx is the **state cost** and u^TQ_uu is the **control cost**. The matrices Q_x and Q_u are symmetric, positive (semi-) definite matrices. This is called the **linear quadratic regulator (LQR)** problem.

The solution to the LQR problem is given by

$$u = -Kx$$
, $K = Q_u^{-1}B^TS$

where S is a positive definite, symmetric matrix given by

$$A^TS + SA - SBQ_u^{-1}B^TS + Q_v = 0$$

This equation is called the algebraic Riccati equation.

Linear Quadratic Regulator

The tuning of the LQR is to choose the weighting matrices Q_x and Q_u . To guarantee that a solution exists, the system must be **reachable** and that $Q_x \ge 0$ and $Q_u > 0$.

The tuning of the LQR is to choose the weighting matrices Q_x and Q_u . To guarantee that a solution exists, the system must be **reachable** and that $Q_x \ge 0$ and $Q_u > 0$.

1. Simplest choice:
$$Q_x = I$$
 and $Q_u = \rho I$

$$J = \int_0^\infty (x^T x + \rho u^T u) dt$$

The tuning of the LQR is to choose the weighting matrices Q_x and Q_u . To guarantee that a solution exists, the system must be **reachable** and that $Q_x \geqslant 0$ and $Q_u > 0$.

1. Simplest choice: $Q_x = I$ and $Q_y = \rho I$ $J = \int_{0}^{\infty} (x^{T}x + \rho u^{T}u)dt \quad \Rightarrow \quad \text{trade-off} \Rightarrow ||x||^{2} \ vs \ \rho ||u||^{2}$

This reduce the tuning to select ρ , which then becomes a trade-off between state cost and control cost.

The tuning of the LQR is to choose the weighting matrices Q_x and Q_u . To guarantee that a solution exists, the system must be **reachable** and that $Q_x \geqslant 0$ and $Q_u > 0$.

1. Simplest choice: $Q_x = I$ and $Q_u = \rho I$ $J = \int_{-\infty}^{\infty} (x^T x + \rho u^T u) dt \qquad \Rightarrow \qquad \text{trade-off} \implies \|x\|^2 \quad vs \quad \rho \|u\|^2$

This reduce the tuning to select ρ , which then becomes a trade-off between state cost and control cost.

2. Output weighting. Let $z=\mathcal{C}_z x$ be the output you want to keep small.

Choose $Q_x = C_z^T C_z$, and $Q_u = \rho I$. \Rightarrow trade-off $\Rightarrow \|z\|^2 \ vs \ \rho \|u\|^2$

3. Diagnonal weighting.

$$Q_x = \begin{bmatrix} q_1 & & 0 \\ & \ddots & \\ 0 & & q_n \end{bmatrix} \qquad Q_u = \begin{bmatrix} \rho_1 & & 0 \\ & \ddots & \\ 0 & & \rho_p \end{bmatrix}$$

Choose the individual diagonal elements based on how much each state or input signal should contribute to the overall cost.

3. Diagnonal weighting.

$$Q_x = \begin{bmatrix} q_1 & & 0 \\ & \ddots & \\ 0 & & q_n \end{bmatrix} \qquad Q_u = \begin{bmatrix} \rho_1 & & 0 \\ & \ddots & \\ 0 & & \rho_p \end{bmatrix}$$

Choose the individual diagonal elements based on how much each state or input signal should contribute to the overall cost.

Alternative, (*Bryson's rule*) choose the diagonal weights as $q_i = \alpha_i^2/x_{i,max}^2$ and $\rho_i = \beta_i^2/u_{i,max}^2$, where $x_{i,max}$ and $u_{i,max}$ represents the largest response. α and β are used for additional individual weighting of the state and control cost,

$$\sum_{i=1}^{n} \alpha_i^2 = 1 \qquad \sum_{i=1}^{p} \beta_i^2 = 1$$

3. Diagnonal weighting.

$$Q_x = \begin{bmatrix} q_1 & & 0 \\ & \ddots & \\ 0 & & q_n \end{bmatrix} \qquad Q_u = \begin{bmatrix} \rho_1 & & 0 \\ & \ddots & \\ 0 & & \rho_p \end{bmatrix}$$

Choose the individual diagonal elements based on how much each state or input signal should contribute to the overall cost.

Alternative, (*Bryson's rule*) choose the diagonal weights as $q_i=\alpha_i^2/x_{i,max}^2$ and $\rho_i=\beta_i^2/u_{i,max}^2$, where $x_{i,max}$ and $u_{i,max}$ represents the largest response. α and β are used for additional individual weighting of the state and control cost,

$$\sum_{i=1}^{n} \alpha_i^2 = 1 \qquad \sum_{i=1}^{p} \beta_i^2 = 1$$

4. Trial and error

Consider the following system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & v_0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} av_0/b \\ v_0/b \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

Vehicle data: $v_0 = 12 m/s$ a = 2 mb = 4 m

Consider the following system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 12 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 6 \\ 3 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

Place the poles so that the closed loop system optimizes the cost function:

$$J = \int_0^\infty (x^T Q_x x + u^T Q_u u) dt$$

where

$$Q_x = \begin{bmatrix} q_1 & 0 \\ 0 & q_2 \end{bmatrix} \qquad Q_u = \rho$$

Vehicle data:
$$v_0 = 12 m/s$$

 $a = 2 m$
 $b = 4 m$

Optimal control (LQR) Optimal control, example

Revisit Example - Vehicle steering (Ex 7.4)

For the case when

$$Q_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Q_u = 10$$

For the case when

$$Q_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_u = 10$$

The solution to the algebraic Ricatti equation is

$$A^TS + SA - SBQ_u^{-1}B^TS + Q_x = 0$$

Optimal control, example

Revisit Example - Vehicle steering (Ex 7.4)

For the case when

$$Q_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_u =$$

The solution to the algebraic Ricatti equation is

$$S = \begin{bmatrix} 0.292 & 0.470 \\ 0.470 & 2.754 \end{bmatrix}$$

For the case when

$$Q_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_u = 10$$

The solution to the algebraic Ricatti equation is

$$S = \begin{bmatrix} 0.292 & 0.470 \\ 0.470 & 2.754 \end{bmatrix}$$

and the corresponding control law becomes

$$u = -Kx$$
, $K = Q_u^{-1}B^TS = [0.316 \ 1.108]$

For the case when

$$Q_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_u = 10$$

The solution to the algebraic Ricatti equation is

$$S = \begin{bmatrix} 0.292 & 0.470 \\ 0.470 & 2.754 \end{bmatrix}$$

and the corresponding control law becomes

$$u = -Kx$$
, $K = Q_u^{-1}B^TS = [0.316 \quad 1.108]$

The closed loop system poles are

$$E = \begin{bmatrix} -2.6110 + 2.1371i \\ -2.6110 - 2.1371i \end{bmatrix}$$

For the case when

$$Q_x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_u = 10$$

The solution to the algebraic Ricatti equation is

$$S = \begin{bmatrix} 0.292 & 0.470 \\ 0.470 & 2.754 \end{bmatrix}$$

and the corresponding control law becomes

$$u = -Kx$$
, $K = Q_u^{-1}B^TS = [0.316 \quad 1.108]$

The closed loop system poles are

$$E = \begin{bmatrix} -2.6110 + 2.1371i \\ -2.6110 - 2.1371i \end{bmatrix}$$

Compared to the pole placement design, this corresponds to $\zeta=0.77$ and $\omega_n=3.44$.

Bibliography

Karl J. Astrom and Richard M. Murray Feedback Systems. Version v3.0i.
 Princeton University Press. September 2018. Chapter 7.