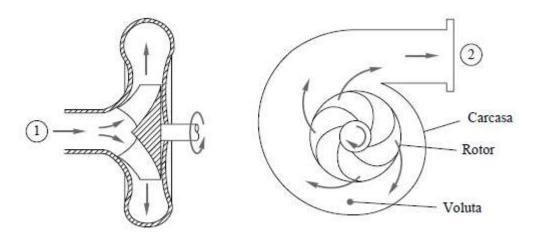
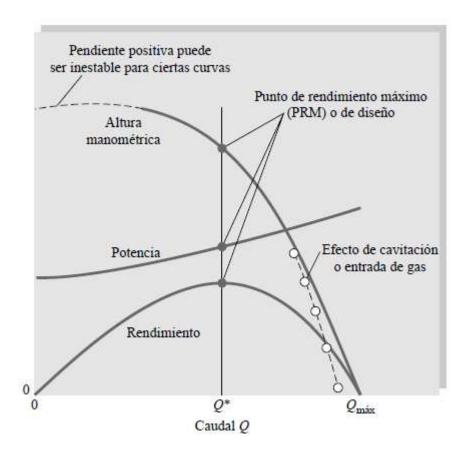
Cómo seleccionar una Bomba Centrífuga

Consideraciones al momento de elegir una Bomba centrífuga

Bombas Centrifugas

- Esta bomba está constituida por un rotor dentro de una carcasa
- El fluido entra axialmente a través del *ojo*, en el eje de la carcasa, los álabes del rotor la fuerzan a tomar un movimiento tangencial y radial hacia el exterior del rotor, donde es recogido por una carcasa que hace de difusor.
- El fluido aumenta su velocidad y presión cuando pasa a través del rotor. La parte de la carcasa, de forma toroidal, o *voluta*, decelera el flujo y aumenta más la presión.




Figura 11.3. Esquema de una bomba centrífuga típica.

Calculo de carga, potencia y caudal

• Para *calcular* realmente la carga, potencia, rendimiento y caudal de una bomba se pueden usar dos aproximaciones teóricas diferentes: (1) simples fórmulas unidimensionales y (2) complejos modelos por ordenador, que tienen en cuenta la viscosidad y tridimensionalidad del movimiento. No obstante, muchas de las mejoras en el diseño de bombas aún se deben a ensayos y a la experiencia.

Curva característica de una Bomba

- La única forma de obtener las curvas característica, es apoyarse en ensayos.
- Las curvas características se trazan casi siempre para velocidad de giro del eje n (normalmente en rpm) constante. El caudal Q (normalmente en litros por minuto para líquidos y en pies cúbicos por minuto para gases) se toma como variable independiente. Como variables dependientes, o «de salida», se consideran la altura manométrica H (En metros o Kg/cm2 para líquidos ; incremento de presión Δp para gases), la potencia al freno Pf y el rendimiento η , se apoya también en los ensayos.

- H se mantiene relativamente constante a Q bajos.
- H decrece cuando Q aumenta, hasta hacerse cero en Q = Qmáx (para un rpm y rotor dado)
- Pendiente positiva, muy inestable.
- η es nulo cuando Q=o
 o Q = Qmáx.
- Rendimiento máximo en 0,6Qmáx., considerado caudal de diseño Q

Qué hay que calcular?

- Conocemos condiciones de operación y fluido?
 - Densidad temperatura
 - Viscocidad
 - Corrisivo SS
 - Presión de vapor
- Conocemos caudal? (rangos de capacidades)
- Conocemos construcción del sistema de bombeo?
 (altura de aspiración y descarga total)
- Conocemos diámetro de tubería?
- Calcular carga y curva del sistema
- Seleccionar bomba
- Verificar ANPA

Diámetro óptimo de bombeo.

• Conociendo Q y características de fluido. v = Q/A

Tabla 1. Velocidades recomendadas para fluidos en tuberías.

		Velocidad	
Fluido	Tipo de Flujo	ft/s	m/s
Líquidos poco viscosos	Flujo por gravedad	0.5 - 1	0.15 - 0.30
	Entrada de bomba	1 - 3	0.3 - 0.9
	Salida de bomba	4 - 10	1.2 - 3
	Línea de Conducción	4 - 8	1.2 - 2.4
Líquidos viscosos	Entrada de bomba	0.2 - 0.5	0.06 - 0. 15
	Salida de bomba	0.5 - 2	0.15 - 0.6
Vapor de Agua		30 - 50	9 - 15
Aire o gas		30 - 100	9 – 30

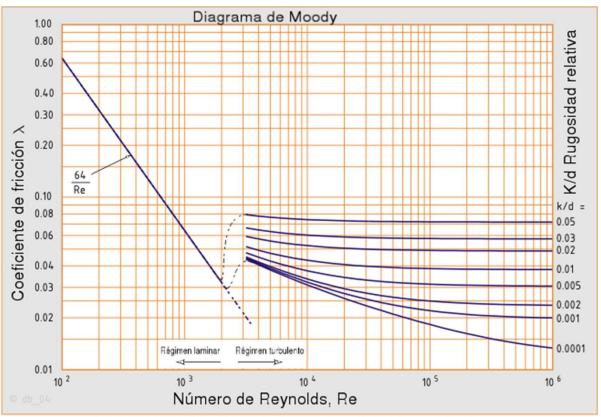
Cálculo de carga del sistema.

$$H_{\rm sys} = (z_2 - z_1) + \frac{V^2}{2g} \left(\sum \frac{fL}{D} + \sum K \right)$$
 Ecuación de Darcy-Weisbach

- La carga del sistema está compuesto por la:
 - La Diferencia de alturas estática de succión y descarga.
 - Las pérdidas asociadas la fricción de la tubería y las cargas puntuales (acoplamientos, máquinas, válvulas, etc). Proporcional al cuadrado del caudal (volúmen)
 - Generalmente las cargas puntuales se consideran despreciables (cuando son menores al 5%)

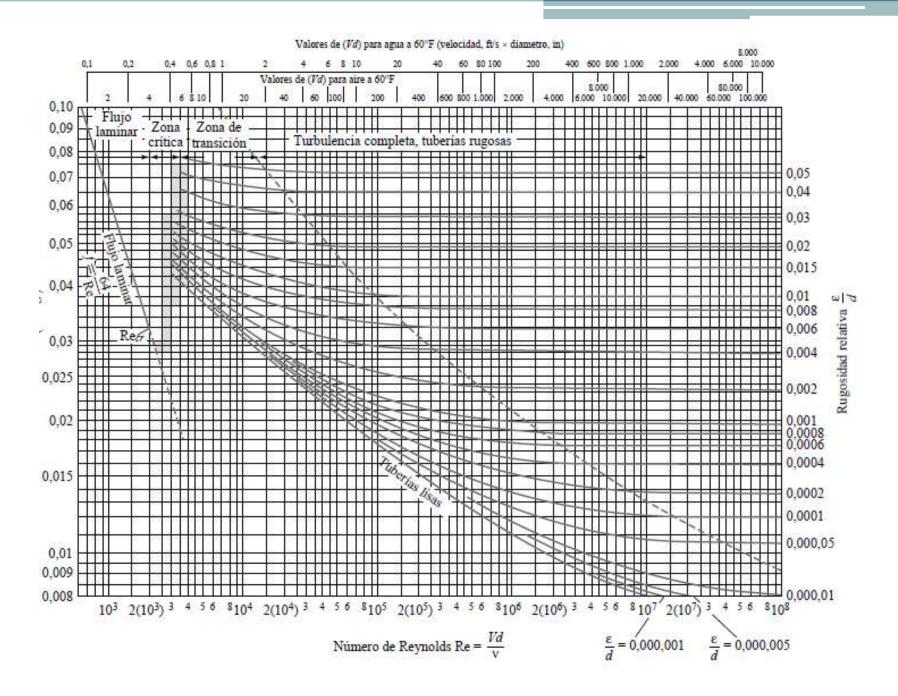
• En la Figura se presentan tres ejemplos: carga estática Hs = a, carga estática más fricción laminar Hs = a + bQ ycarga estática más fricción turbulenta Hs = a + cQ2. La intersección de las curvas del sistema con la curva característica de la bomba H(Q)determina el punto de funcionamiento

$$Hs = \Delta Z + \frac{v^2}{2g} (f \frac{L}{D} + \sum k)$$


$$v = Q/A$$

$$A = \frac{1}{4} \pi D^2$$

$$Hs = \Delta Z + \frac{Q^2}{A^2 2g} (f \frac{L}{D} + \sum k)$$


$$Hs = \Delta Z + \frac{Q^2}{A^2 2g} (f \frac{L}{D} + \sum k)$$

Cómo calcular f

Material	Rugosidad ∈ (m)	Rugosidad € (pie
Vidrio	Liso	Liso
Plástico	3.0×10^{-7} 1.5×10^{-6}	1.0×10^{-6} 5.0×10^{-6}
Tubo extruido; cubre, latón y acero	4.6 × 10 ⁻⁵	1.5 × 10 ⁻⁴
Acero, comercial o soldado	1.5 × 10 ⁻⁴	5.0 × 10 ⁻⁴
Hierro galvanizado	1.2×10^{-4}	4.0×10^{-4}
Hierro dúctil, recubierto Hierro dúctil, no recubierto	2.4×10^{-4}	8.0×10^{-4}
Concreto, hien fabricado	1.2×10^{-4}	4.0×10^{-4}
Acero remachado	1.8×10^{-3}	6.0×10^{-3}

$$Re = \frac{\rho v l}{\mu} = \frac{v l}{\nu}$$

EXAMPLE 11.6

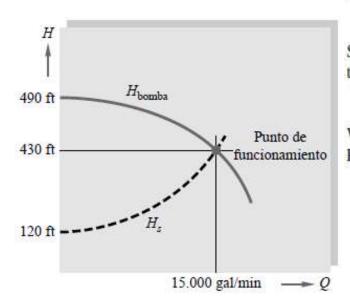
We want to use the 32-in pump of Fig. 11.7a at 1170 r/min to pump water at 60° F from one reservoir to another 120 ft higher through 1500 ft of 16-in-ID pipe with friction factor f = 0.030. (a) What will the operating point and efficiency be? (b) To what speed should the pump be changed to operate at the BEP?

Solution

For reservoirs the initial and final velocities are zero; thus the system head is

$$H_s = z_2 - z_1 + \frac{V^2}{2g} \frac{fL}{D} = 120 \text{ ft} + \frac{V^2}{2g} \frac{0.030(1500 \text{ ft})}{\frac{16}{12} \text{ ft}}$$

From continuity in the pipe, $V = Q/A = Q/[\frac{1}{4}\pi(\frac{16}{12} \text{ ft})^2]$, and so we substitute for V above to get


$$H_s = 120 + 0.269Q^2$$
 Q in ft³/s (1)

Since Fig. 11.7a uses thousands of gallons per minute for the abscissa, we convert Q in Eq. (1) to this unit:

$$H_s = 120 + 1.335Q^2$$
 Q in 10^3 gal/min (2)

We can plot Eq. (2) on Fig. 11.7a and see where it intersects the 32-in pump-head curve, as in Fig. E11.6. A graphical solution gives approximately

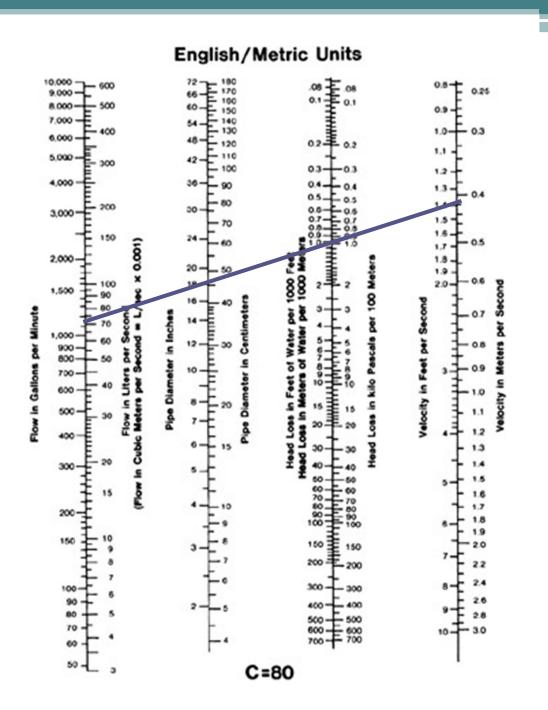
$$H \approx 430 \text{ ft}$$
 $Q \approx 15,000 \text{ gal/min}$

Hazen-Williams (sólo para agua)

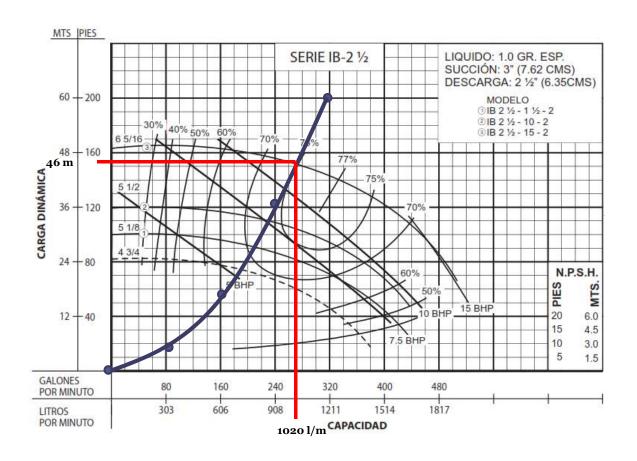
• Es difícil obtener f de la fórmula anterior. Por ello existe una fórmula que simplifica la confección de la curva del sistema.

•
$$Hhw = \frac{10,674 * L * Q^{1,852}}{C^{1,852} * D^{4,87}}$$
 L: Longitud tubería (m) Q: Caudal (m3/s)

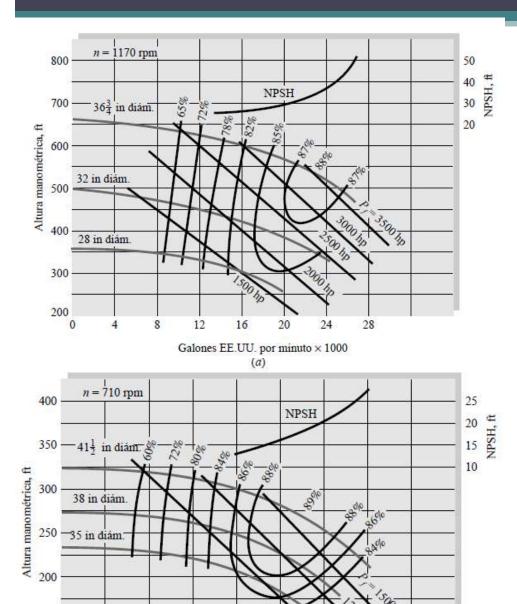
D: Diámetro interno (m)


C: Factor de Hazen-Williams

•
$$Hl = k \frac{v^2}{2g}$$

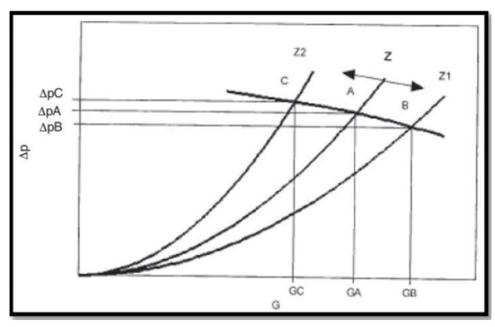

•
$$Ht = \Delta Z + Hs + Hl$$

Hazen Williams C	oefficient, C	
Pipe Material	Design C	
PVC	150	
Asbestos Cement	140	
Welded Steel	100	
Concrete	100	
Cast Iron	100	
Copper or Brass	130	
Vitrified Clay	100	
Corrugated Steel	60	


Accesorios	
Válvula esférica (totalmente abierta)	
Válvula en ángulo recto (totalmente abierta)	5
Válvula de seguridad (totalmente abierta)	2.5
Válvula de retención (totalmente abierta)	2
Válvula de compuerta (totalmente abierta)	0.2
Válvula de compuerta (abierta ¾	1.15
Válvula de compuerta (abierta ⅓	5.6
Válvula de compuerta (abierta 1/4	
Válvula de mariposa (totalmente abierta)	
"T" por la salida lateral	
Codo a 90º de radio corto (con bridas)	0.90
Codo a 90º de radio normal (con bridas)	0.75
Codo a 90º de radio grande (con bridas)	0.60
Codo a 45º de radio corto (con bridas)	0.45
Codo a 45º de radio normal (con bridas)	0.40
Codo a 45º de radio grande (con bridas)	0.35

Confección de curva del sistema. Punto de funcionamiento.

Q	Н
303	4,7
606	16,9
908	36,3
1211	60,8
1514	92,0
1817	128,9


Galones EE.UU. por minuto × 1000

150

100

- La Figura muestra las curvas características reales de una bomba centrífuga comercial.
- Una carcasa con 3 diámetros de rotor
- Si bien las curvas de abajo, poseen mayor diámetro de rotor, están consideradas para fluidos más densos. (no es lo mismo 1 metro de agua que 1 metro de mercurio)

Desplazamiento de la curva del sistema al punto óptimo.

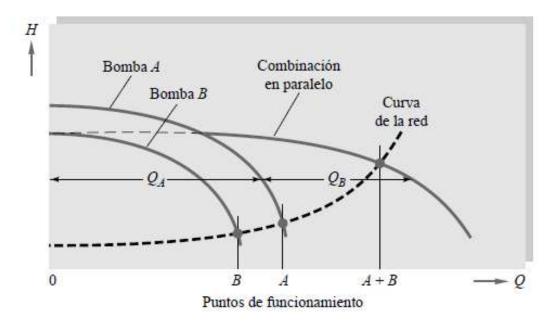
Desplamiento	Causa del desplazamiento	Caudal	Presión
De A a B	Apertura de la válvula	GB > GA	$\Delta pB \le \Delta pA$
Se necesita menos presión diferencial para garantizar el caudal GB			
De A a C	Cierre de la válvula	GC < GA	$\Delta pC \le \Delta pA$
Se necesita más presión diferencial disponible para garantizar el caudal GC			

 Mover la curva del sistema al punto de funcionamiento óptimo mediante la apertura o cierre de la válvula de regulación.

ANPA: Altura Neta Positiva de **Aspiración**

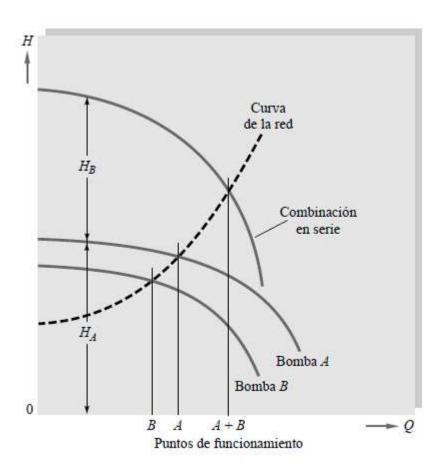
- La carga disponible a la entrada de la bomba para evitar la cavitación o evaporación del líquido. La entrada de la bomba, o zona de succión, es la región donde la presión es más baja y donde puede aparecer antes la cavitación.
- La única presión que posee el fluido para moverse hasta el rodete de la bomba, es la presión atmosférica.

NPSH =
$$\frac{p_a}{\rho g} - Z_i - h_{fi} - \frac{p_v}{\rho g}$$
 Pv: presión de vapor de Zi: altura de la bomba. Hfi: Pérdida dinámicas


Pa: presión atm o del recinto.

Pv: presión de vapor del líquido

Hfi: Pérdida dinámicas.


Bombas en paralelo

• Si una bomba proporciona la altura manométrica adecuada, pero un caudal demasiado bajo, una solución posible consiste en combinar dos bombas similares en paralelo, compartiendo la misma succión y las mismas condiciones de entrada. Una disposición en paralelo se utiliza también si varía el caudal de demanda, de modo que se usa una bomba para caudales bajos y la segunda bomba se arranca para caudales mayores. Ambas bombas deben disponer de válvulas que eviten flujo inverso cuando una de las dos se para.

Bombas conectadas en Serie

- Si una bomba proporciona el caudal adecuado, pero una altura manométrica demasiado baja, se puede considerar añadir una bomba semejante en serie, con la salida de la bomba *B* unida directamente al lado de succión de la bomba *A*.
- El principio físico para combinar dos bombas enserie es sumar las alturas manométricas de ambas para el mismo caudal, para obtener así la curva característi cacombinada.

