Análisis Matemático l Clase 22: Series de Taylor

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Junio, 2023

Objetivo: dada una función f y un punto a en el interior del dominio de f, se desean construir polinomios que constituyan **buenas** aproximaciones de f cerca de a.

Objetivo: dada una función f y un punto a en el interior del dominio de f, se desean construir polinomios que constituyan **buenas** aproximaciones de f cerca de a.

Un ejemplo de la construcción que se desea es la **linealización** de f en a. Recordar que:

$$f(x) \approx L(x) = f'(a)(x-a) + f(a),$$

y la aproximación mejora cuando x tiende a a. Observar que la linealización es un polinomio de grado 1 y que su utilidad radica en que es una expresión sencilla para realizar cálculos (evaluaciones en x particulares, derivación, integración, etc.).

Objetivo: dada una función f y un punto a en el interior del dominio de f, se desean construir polinomios que constituyan **buenas** aproximaciones de f cerca de a.

Un ejemplo de la construcción que se desea es la **linealización** de f en a. Recordar que:

$$f(x) \approx L(x) = f'(a)(x-a) + f(a),$$

y la aproximación mejora cuando x tiende a a. Observar que la linealización es un polinomio de grado 1 y que su utilidad radica en que es una expresión sencilla para realizar cálculos (evaluaciones en x particulares, derivación, integración, etc.).

¿Se podrán obtener mejores aproximaciones de f aumentando el grado del polinomio de aproximación?

Ejemplo: sea

$$f(x) = \frac{1}{1-x}$$

Ejemplo: sea

$$f(x) = \frac{1}{1-x}$$

Observar que para |x| < 1, f(x) se puede ver como la suma de una serie geométrica de razón x y primer término 1.

Ejemplo: sea

$$f(x) = \frac{1}{1-x}$$

Observar que para |x| < 1, f(x) se puede ver como la suma de una serie geométrica de razón x y primer término 1. Así:

$$f(x) = \frac{1}{1-x} = \sum_{n=1}^{\infty} x^{n-1} = 1 + x + x^2 + x^3 + \dots + x^n + \dots, \quad \text{cuando } |x| < 1.$$

Ejemplo: sea

$$f(x) = \frac{1}{1-x}$$

Observar que para |x| < 1, f(x) se puede ver como la suma de una serie geométrica de razón x y primer término 1. Así:

$$f(x) = \frac{1}{1-x} = \sum_{n=1}^{\infty} x^{n-1} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$
, cuando $|x| < 1$.

La serie anterior **está centrada en** a=0 pues contiene potencias de x-0 y converge en el intervalo (-1,1) (centrado en 0). Decimos que (-1,1) es el intervalo de convergencia y R=1 es el radio de convergencia.

Además, las sumas parciales de la serie son polinomios:

$$P_0(x) = 1$$

 $P_1(x) = 1 + x$
 $P_2(x) = 1 + x + x^2$

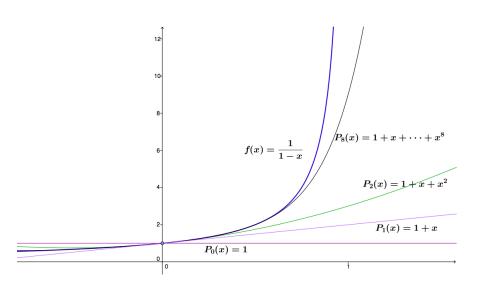
En general, la suma parcial n-ésima será:

$$P_n(x) = 1 + x + x^2 + \cdots + x^n.$$

Como la serie $\sum_{n=1}^{\infty} x^{n-1}$ converge a f(x), entonces tenemos:

$$\lim_{n\to\infty} P_n(x) = f(x), \qquad |x| < 1.$$

Así, a medida que n es mayor, el polinomio P_n aproxima mejor a f cerca de a=0.



A lo largo de la clase (y la siguiente) vamos a estudiar:

 Dada una función f y un punto a en el interior de su dominio, generar una serie en potencias de x - a, con sumas parciales dadas por polinomios. Dicha serie se llamará serie de Taylor centrada en a generada por f.

A lo largo de la clase (y la siguiente) vamos a estudiar:

- Dada una función f y un punto a en el interior de su dominio, generar una serie en potencias de x - a, con sumas parciales dadas por polinomios. Dicha serie se llamará serie de Taylor centrada en a generada por f.
- Estudiar condiciones que garanticen que la serie de Taylor centrada en a hallada en el ítem anterior converge, en cierto intervalo, a la función original. De esta forma, las sumas parciales de la serie de Taylor serán buenas aproximaciones de f cerca del punto a.

Series de Taylor (dejarlo para el final de la clase)

En esta parte, vamos a ver cómo generar una serie de Taylor. Para ello, supongamos que:

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + a_3 (x-a)^3 + \cdots, \quad |x-a| < R$$

Series de Taylor (dejarlo para el final de la clase)

En esta parte, vamos a ver cómo generar una serie de Taylor. Para ello, supongamos que:

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + a_3 (x-a)^3 + \cdots, \quad |x-a| < R$$

Entonces necesariamente:

$$a_0 = f(a) = f^{(0)}(a)$$
 (convención $f^{(0)} = f$).

Si derivamos f:

$$f'(x) = a_1 + 2a_2(x - a) + 3a_3(x - a)^2 + \cdots$$

y entonces:

$$a_1 = f'(a)$$
.

Si volvemos a derivar:

$$f^{(2)}(x) = 2a_2 + 3.2.a_3(x - a) + \cdots$$

y así

$$f^{(2)}(a) = 2a_2 \Rightarrow a_2 = \frac{f^{(2)}(a)}{2}$$
.

La derivada de orden 3 de f es:

$$f^{(3)}(a) = 3.2a_3 + \text{términos que dependen de } (x - a),$$

y:

$$f^{(3)}(a) = 3.2.a_3 \Rightarrow a_3 = \frac{f^{(3)}(a)}{3!}$$

y en general los coeficientes de la serie f en potencias de (x - a) son:

$$f^{(n)}(a) = n!.a_n \Rightarrow a_n = \frac{f^{(n)}(a)}{n!} \quad n = 0, 1, ...$$

Serie de Taylor generada por una función

Sea f una función con derivadas de todos los órdenes en un intervalo I que contiene a un punto a. Entonces, la serie de Taylor generada por f y centrada en el punto a es:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \qquad x \in I.$$

Escribimos:

$$f \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \qquad x \in I.$$

Las sumas parciales de la serie de Taylor de una función f, centrada en a, se llaman polinomios de Taylor:

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Ejemplo: mostrar que la serie de Taylor centrada en a=0 generada por $f(x)=e^x$ es

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad x \in \mathbb{R}.$$

Es decir se pide comprobar:

$$e^{x} \sim \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \qquad x \in \mathbb{R}.$$

Además, usando el criterio del cociente, comprobar que esta serie converge para todo $x \in \mathbb{R}$ (es decir, el radio de convergencia es $R = +\infty$).

Solución: vamos a calcular los coeficientes de la serie de Taylor generada por la función exponencial en a=0

$$\frac{f^{(n)}(0)}{n!}$$
, $n=0,1,2,...$

Para n = 0, $f^{(0)}(x) = f(x) = e^x$ y entonces:

$$\frac{f^{(0)}(0)}{0!} = \frac{e^0}{1} = 1.$$

Además, $f'(x) = e^x$, $f^{(2)}(x) = e^x$ y entonces

$$f^{(n)}(x) = e^x$$
 para todo n .

Así

$$\frac{f^{(n)}(0)}{n!} = \frac{e^0}{n!} = \frac{1}{n!}.$$

Por lo tanto

$$e^x \sim \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Por lo tanto

$$e^{x} \sim \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

En cuando a la convergencia de la serie, aplicamos criterio del cociente:

$$\rho = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} \frac{n!}{|x|^n} = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 \quad \text{para todo } x,$$

donde hemos usado:

$$(n+1)! = (n+1).n!$$

para simplificar la expresión:

$$\frac{n!}{(n+1)!} = \frac{n!}{(n+1)n!} = \frac{1}{n+1}.$$

Así, como $\rho = 0 < 1$, por el criterio del cociente obtenemos que la serie de Taylor generada por $y = e^x$ converge para todo x. **Esto no significa** necesariamente que converge a la función exponencial. Para comprobar eso, hay que hacer un análisis diferente?

Pablo D. Ochoa (Facultad de Ingeniería)

Pregunta: ¿podemos asegurar que

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
? Es decir $\lim_{n \to \infty} P_n(x) = e^x$?

La respuesta a esta pregunta la veremos un poco más adelante. Sin embargo, observar que si tomamos los primeros polinomios de Taylor:

$$P_0(x) = 1$$

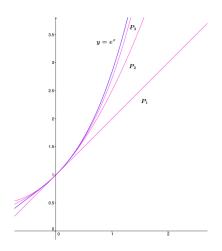
$$P_1(x) = 1 + x$$

$$P_2(x) = 1 + x + \frac{1}{2}x^2.$$

$$P_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3.$$

y los graficamos:

Aproximación de $y = e^x$ mediante los polinomios de Taylor



se obtiene que a medida que n aumenta, los polinomios P_n son cada vez más parecidos a e^x , es decir, conjeturamos que $\lim_{n\to\infty} P_n(x) = e^x$ para todo x.

Como otra evidencia, comparamos los valores de la función exponencial con el polinomio de Taylor de grado 3 centrado en 0:

x	-1.0	-0.2	-0.1	0	0.1	0.2	1.0
e^x	0.3679	0.81873	0.904837	1	1.105171	1.22140	2.7183
$P_3(x)$	0.3333	0.81867	0.904833	1	1.105167	1.22133	2.6667

Analizaremos ahora el problema de la convergencia de series de Taylor a la función que la genera.

Teorema

Si f tiene derivadas de todos los órdenes en un intervalo I que contiene a un punto a en su interior, entonces para cada $x \in I$ y cada $n \in \mathbb{N}$, existe c_n entre a y x tal que:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f^{(2)}(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(c_n)}{(n+1)!}(x - a)^{n+1}.$$

Nota: el término:

$$R_n(x) = \frac{f^{(n+1)}(c_n)}{(n+1)!}(x-a)^{n+1}$$

se denomina residuo o resto de orden n.

Por ende, la conclusión del teorema anterior puede escribirse: para cada $x \in I$ y cada $n \in \mathbb{N}$, existe c_n entre a y x tal que

$$f(x) = P_n(x) + R_n(x)$$

donde P_n es el polinomio de Taylor centrado en a de f y R_n es el residuo de orden n.

Por ende, la conclusión del teorema anterior puede escribirse: para cada $x \in I$ y cada $n \in \mathbb{N}$, existe c_n entre a y x tal que

$$f(x) = P_n(x) + R_n(x)$$

donde P_n es el polinomio de Taylor centrado en a de f y R_n es el residuo de orden n.

Recordemos que para obtener:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

las sumas parciales de la serie de Taylor deben converger a f(x). Es decir, se debe tener:

$$f(x) = \lim_{n \to \infty} P_n(x).$$

En vista del teorema anterior, esto sucede si y solo si:

$$\lim_{n\to\infty}R_n(x)=0.$$

Definición

Si $R_n(x)$ tiende a cero cuando $n \to \infty$ para cada x de un intervalo I que contiene a a, entonces decimos que la serie de Taylor centrada en a generada por f converge a f en I y escribimos:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Ejemplo 1: demuestre que:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

para todo $x \in \mathbb{R}$.

Definición

Si $R_n(x)$ tiende a cero cuando $n \to \infty$ para cada x de un intervalo I que contiene a a, entonces decimos que la serie de Taylor centrada en a generada por f converge a f en I y escribimos:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Ejemplo 1: demuestre que:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

para todo $x \in \mathbb{R}$.

Solución. anteriormente se obtuvo que:

$$e^x \sim \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}.$$

Pablo D. Ochoa (Facultad de Ingeniería)

Análisis Matemático I

Junio, 2023

18 / 21

Para demostrar que la exponencial es igual a la serie de Taylor generada, vamos a comprobar que:

$$\lim_{n\to\infty} R_n(x) = 0 \quad \text{para todo x real.}$$

En este caso, por el Teorema de convergencia de series de Taylor, para cada x y cada n, existe c_n entre a=0 y x tal que:

$$R_n(x) = \frac{f^{n+1}(c_n)}{(n+1)!}x^{n+1} = \frac{e^{c_n}}{(n+1)!}x^{n+1}.$$

Para probar que el residuo tiende a cero, vamos a distinguir tres casos:

Para demostrar que la exponencial es igual a la serie de Taylor generada, vamos a comprobar que:

$$\lim_{n\to\infty} R_n(x) = 0 \quad \text{para todo x real.}$$

En este caso, por el Teorema de convergencia de series de Taylor, para cada x y cada n, existe c_n entre a=0 y x tal que:

$$R_n(x) = \frac{f^{n+1}(c_n)}{(n+1)!}x^{n+1} = \frac{e^{c_n}}{(n+1)!}x^{n+1}.$$

Para probar que el residuo tiende a cero, vamos a distinguir tres casos: -Si x=0, entonces

$$e^{x} = e^{0} = 1$$
 y $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1$ cuando $x = 0$.

Para demostrar que la exponencial es igual a la serie de Taylor generada, vamos a comprobar que:

$$\lim_{n\to\infty} R_n(x) = 0 \quad \text{para todo x real.}$$

En este caso, por el Teorema de convergencia de series de Taylor, para cada x y cada n, existe c_n entre a=0 y x tal que:

$$R_n(x) = \frac{f^{n+1}(c_n)}{(n+1)!}x^{n+1} = \frac{e^{c_n}}{(n+1)!}x^{n+1}.$$

Para probar que el residuo tiende a cero, vamos a distinguir tres casos:

-Si x = 0, entonces

$$e^{x} = e^{0} = 1$$
 y $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1$ cuando $x = 0$.

-Supongamos que x > 0. Entonces c_n también es positivo y además $c_n < x$. Como la función exponencial es creciente, obtenemos:

$$e^{c_n} < e^x$$
.

Así:

$$0 \leq |R_n(x)| = \frac{e^{c_n}}{(n+1)!} x^{n+1} \leq \frac{e^x}{(n+1)!} x^{n+1}.$$

Dado que:

$$\lim_{n\to\infty}\frac{e^x}{(n+1)!}x^{n+1}=0 \quad \left(\mathsf{Aqui} \; \mathsf{usamos:} \lim_{n\to\infty}\frac{x^n}{n!}=0 \, \forall \, x \right)$$

obtenemos por el Teorema de la Compresión para sucesiones:

$$\lim_{n\to\infty} |R_n(x)| = 0 \quad \text{ para toda } x > 0. \tag{1}$$

Finalmente, utilizando la siguiente propiedad válida para toda sucesión a_n :

$$\lim_{n\to\infty}|a_n|=0\quad \text{ si y solo si }\quad \lim_{n\to\infty}a_n=0.$$

Así, podemos concluir a partir de (1) que:

$$\lim_{n\to\infty} R_n(x) = 0 \quad \text{para toda } x > 0. \tag{2}$$

-Finalmente, supongamos que x < 0. Entonces $c_n < 0$ y como la función exponencial es creciente se tiene:

$$e^{c_n} < e^0 = 1.$$

Así:

$$0 \le |R_n(x)| = \frac{e^{c_n}}{(n+1)!} |x|^{n+1} \le \frac{|x|^{n+1}}{(n+1)!}.$$

Con lo cual se obtiene como antes:

$$\lim_{n\to\infty} R_n(x) = 0 \quad \text{para toda } x < 0.$$

En conclusión, para todo $x \in \mathbb{R}$ obtenemos:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

-Finalmente, supongamos que x < 0. Entonces $c_n < 0$ y como la función exponencial es creciente se tiene:

$$e^{c_n} < e^0 = 1.$$

Así:

$$0 \le |R_n(x)| = \frac{e^{c_n}}{(n+1)!} |x|^{n+1} \le \frac{|x|^{n+1}}{(n+1)!}.$$

Con lo cual se obtiene como antes:

$$\lim_{n\to\infty} R_n(x) = 0 \quad \text{para toda } x < 0.$$

En conclusión, para todo $x \in \mathbb{R}$ obtenemos:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

Más ejemplos se verán la próxima semana.

