Universidad Nacional de Cuyo Facultad de Ingeniería

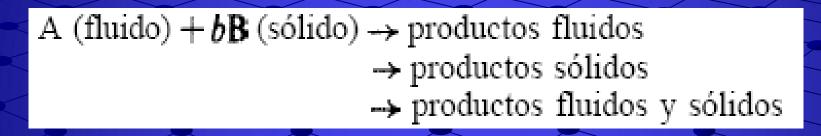
Capacitación para técnicos aspirantes a operadores de una refinería de petróleo 2023

REACCIONES CATALIZADAS

Docente: Ing. Jorge Nozica

REACCIONES HETEROGÉNEAS

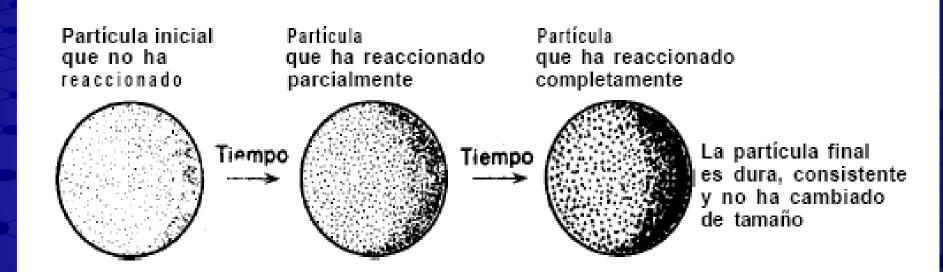
SISTEMAS HETEROGENEOS:


Sistemas de reacción donde los reactivos y productos se encuentran presentes en diferentes fases

$$A(g) + B(s) = R(g) + P(s)$$

Cianuro sódico a partir de amida

$$NaNH_2(l) + C(s) \xrightarrow{800^{\circ}C} NaCN(l) + H,(g)$$


REACCIONES SÓLIDO – FLUIDO

Consideraciones

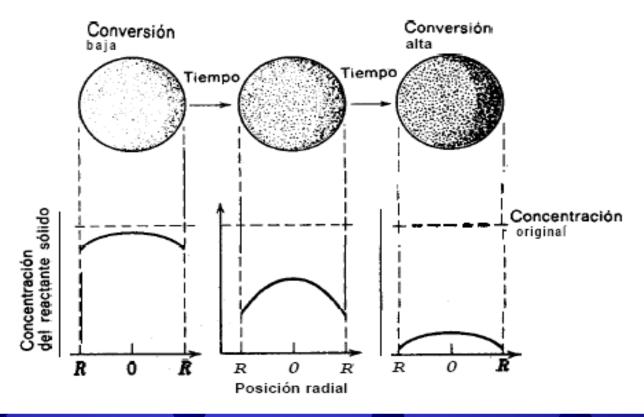
- Ecuaciones químicas
 - Describen la relación existente entre el consumo de reactivos y la generación de productos
- Ecuaciones cinéticas
 - Indican la relación entre la velocidad de consumo de reactivos o generación de productos en función de variables del sistema, ej: concentración, densidad
- Mecanismos de Reacción:
 - Modelos matemáticos que predicen o interpretan caminos de reacciones posibles

Modelo de estudio: I-Partículas que no cambian su tamaño

- Oxidaciones de metales sulfurados
- Obtención de metales por reducción de sus óxidos

II-Partículas que cambian su tamaño

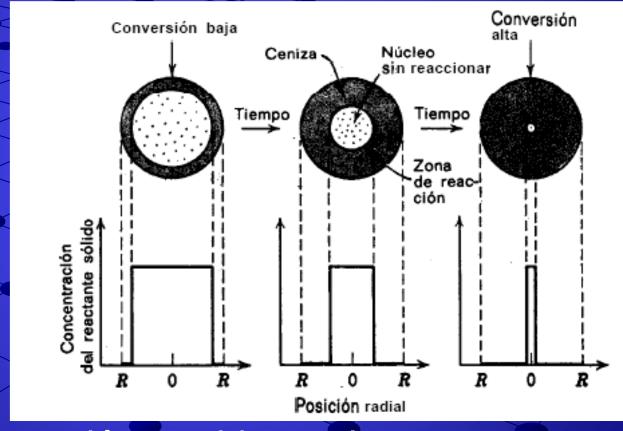
Particula inicial que no ha reaccionado



- Oxidaciones o combustiones sin ceniza
- Sulfuros de carbono a partir de sus elementos

cenizas no **adherentes** o productos gaseosos

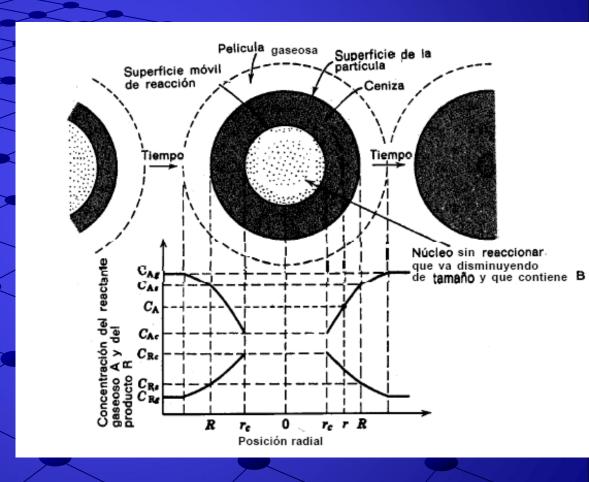
MODELOS DE ESTUDIO


O CONVERSIÓN PROGRESIVA

El reactivo gaseoso penetra y reacciona simultáneamente en toda la partícula

MODELOS DE ESTUDIO

O NUCLEO SIN REACCIONAR

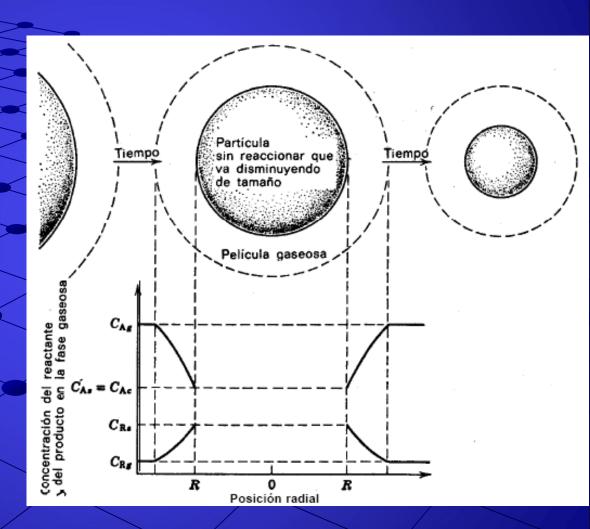


 La capa de reacción se ubica en la capa externa y se dirige hacia el interior dejando capa de cenizas

MODELOS DEL NUCLEO SIN REACCIONAR PARA PARTICULAS DE TAMAÑO CONSTANTES

A(g) + b B (s) = R

- 1-Difusión de A a través de la película de gas
- 2-Difusión de A a través de la ceniza hasta superficie de reacción
- 3-Reacción de A con la superficie del sólido
- 4-Difusión de R a través de la ceniza hacia afuera
- 5-Difusión de R a través de la capa de gas hacia afuera


VELOCIDAD DE REACCIÓN PARA PARTÍCULAS DE TAMAÑO DECRECIENTE

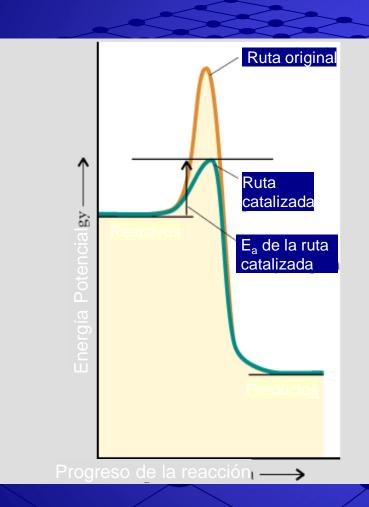
A(g) + b B (s) = R

1-Difusión de A a través de la película de gas

2-Reacción de A con la superficie del sólido

3-Difusión de R a través de la capa de gas hacia afuera

Expresiones cinéticas y etapas controlantes


- Etapa controlante Película de gas
- Etapa controlante reacción química

Reacciones Sólido – Gas catalizadas por sólidos

CATALIZADORES

- Un catalizador es una sustancia que sin estar permanentemente involucrada en la reacción, incrementa la velocidad con la que una transformación química se aproxima al equilibrio.
- Un catalizador es una sustancia que químicamente altera un mecanismo de reacción así como la velocidad total de la misma, regenerándose en el último paso de la reacción

CATÁLISIS

Un catalizador provee una nueva ruta de reacción con una energía de activación menor, y por lo tanto permite que más moléculas de reactivo crucen la barrera y formen más productos, acelerando la reacción. Notar que Ea para la reacción inversa disminuye también en la reacción catalizada.

Aplicaciones

Fe, Ni, Pt, Pd, Ag → reacciones con H--Hidrocarburos (Hidrogenación, deshidrogenación, hidrólisis)

NiO, ZnO, MnO₂ -> Oxidación, Fácil reacción con O₂

$$ZnO+H_2 \rightarrow Zn + H_2O$$

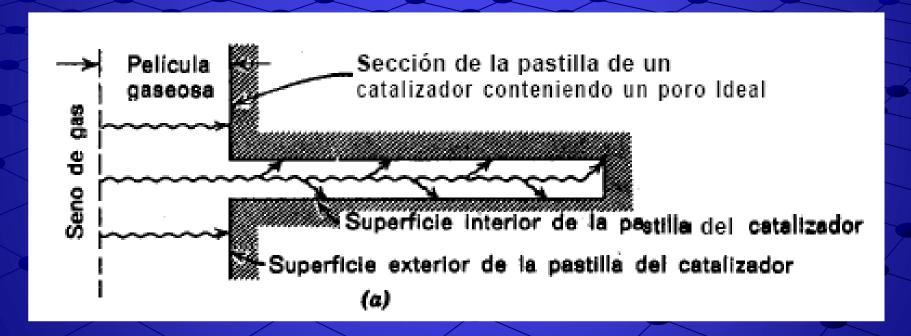
Sulfuros → moléculas con S

$$NiO + H_2S \rightarrow NiS + H_2O$$

Ecuaciones cinéticas

- Condiciones de contorno:
 - La reacción ocurre en la interfase existente entre el gas reactivo y la superficie del catalizador
 - Catalizador presente en agregados tipo pastilla porosa o pellet
 - Modelo de Conversión progresiva se ajusta más al del núcleo sin reaccionar, pero deben hacerse consideraciones especiales

Modelos de experimentación

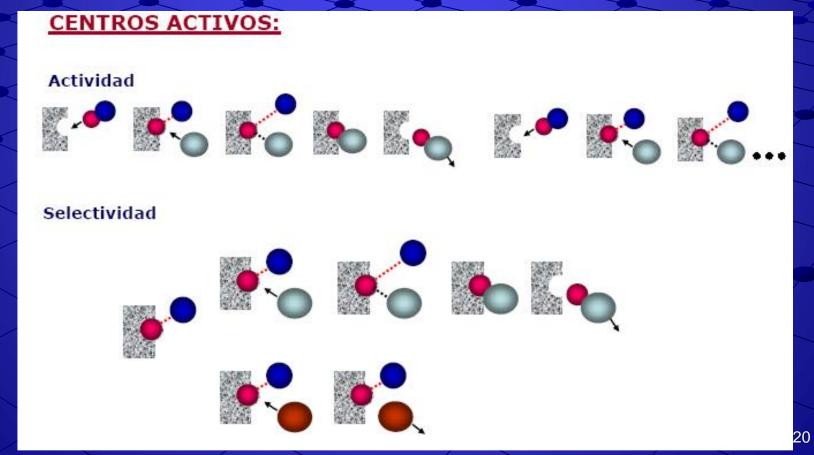

RESISTENCIAS CONTROLANTES

- Resistencia de la película gaseosa: Los reactivos deben fluir a través del gas hacia la superficie exterior del catalizador
- Resistencia a la difusión dentro de los poros: El área es mayor dentro del catalizador por lo que los reactivos deben circular por ellos.
- Resistencia en la superficie: Los reactivos deben ligarse a la superficie del catalizador
- Resistencia de poros al flujo de producto
- Resistencia gaseosa al flujo de producto
- Resistencia al flujo de calor: El flujo de calor puede ser lento y perder isotermia el sistema, provocando cambios en la velocidad de reacción

17

Modelo ideal

Consideramos flujo de reactantes dentro de un poro ideal



Caso 1 Etapa controlante película de gas

- La velocidad de difusión en los poros o en los efectos de superficie es mayor que la de la capa gaseosa
- La VELOCIDAD DE REACCIÓN es proporcional a la diferencia de concentración del reactivo en el gas y la concentración del reactivo en equilibrio en la superficie de sólido.

Caso 2 Etapa controlante fenómeno de superficie

- 1º Adsorción de una molécula en la superficie que queda ligada a un centro activo
- 2º reacciona con otra molécula situada adyacente o con una procedente de la corriente gaseosa o se descompone en ese lugar
- 3º Los productos de desorben desde la superficie, dejando el centro activo libre

COMPONENTES DE UN CATALIZADOR

Sustancia activa (elemental ó compuesta).

Metales de transición.

Cerámicas oxídicas: óxidos simples, óxidos mixtos.

Cerámicas no oxídicas: carburos, nitruros.

Cerámicas silíceas y no silíceas.

Polímeros y compósitos.

Soporte: cerámicas, polímeros (naturales, sintéticos).

Aditivos: promotores, rellenos, ligantes, matrices.

Formas de estructuras catalíticas

