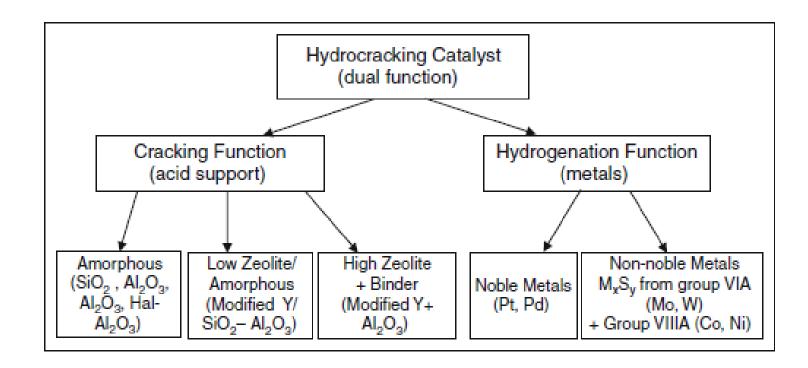
PROCESAMIENTO DE **HIDROCARBUROS**

CARRERA DE INGENIERÍA EN PETRÓLEOS


Ing . Jorge Nozica

CLASE N° 8: FCC

- CRAKING CATALÍTICO FLUIDIZADO
- IMPORTANCIA EN EL PROCESAMIENTO DE HC
- ALIMENTACIÓN Y PRODUCTOS
- REACCIONES QUIMICAS
- CATALISIS
- PROCESOS CORRELACIONES
- BALANCES

Comparativa de HIDROCRAKING vs FCC

- Hidrocraking utiliza catalizador dual
- Produce alcanos de menor PM

QUIMICA DEL HIDROCRAKING

1. Alkane hydrocracking

$$R - CH_2 - CH_2 - R' + H_2 \longrightarrow R - CH_3 + R' - CH_3$$

2. Hydrodealkylation

$$CH_2 - R$$

+ $H_2 \longrightarrow$ + $R - CH_3$

3. Ring opening

4. Hydroisomerization

5. Polynuclear aromatics hydrocracking

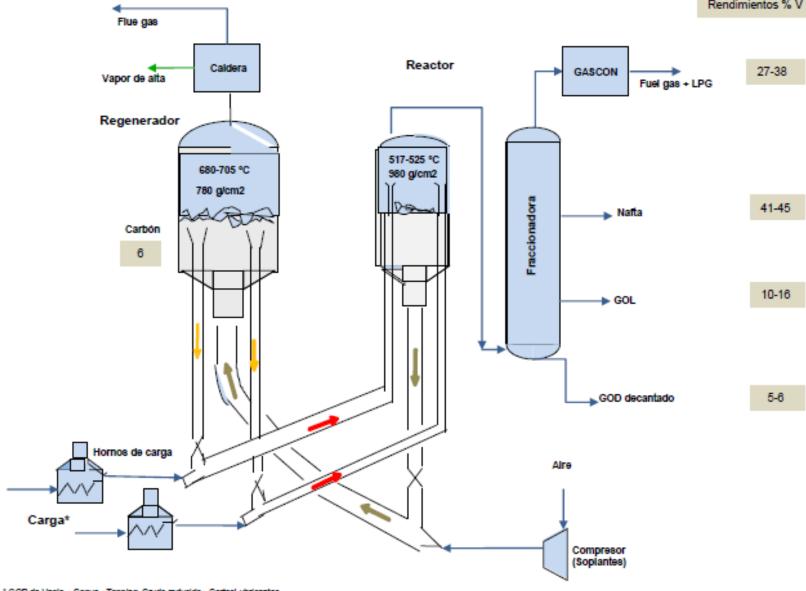
CRAKING CATALÍTICO

Reacciones:

- Las reacciones fundamentales son de cracking o ruptura molecular.
- La reacción se produce muy rápidamente en una tubería vertical denominada "Riser".
- El cracking catalítico es más controlable que el térmico.
- La separación rápida de producto y catalizador en ciclones después del Riser evita fenómenos de "overcracking".
- El catalizador circula en forma continua entre el reactor-riser donde ocurre la reacción y el regenerador donde el catalizador es reactivado al quemarse el coque depositado en la superficie.
- Además el catalizadores el vehículo que transporta el calor desde el regenerador al reactor.
- Las reacciones son más rápidas y selectivas que en el cracking térmico.

CRAKING CATALÍTICO

Olefinas
$$\xrightarrow{SB\,(H+)}$$
 Olefina $_{(Menor\,Peso\,Molecular)}$ + Olefina $_{(Menor\,Peso\,Molecular)}$ OC $_{10}$ $\xrightarrow{SB\,(H+)}$ OC $_{4}$ + OC $_{6}$...


Parafinas $\xrightarrow{SL\,(H+)}$ Parafina $_{(Menor\,Peso\,Molecular)}$ + Olefina $_{(Menor\,Peso\,Molecular)}$ + Olefina $_{(Menor\,Peso\,Molecular)}$ PC $_{20}$ $\xrightarrow{SL\,(H+)}$ PC $_{10}$ + OC $_{10}$...

- SB: Sitios Bronsted (dadores de H+)
- SL: Sitios Lewis (Sustraen H-)

FLUID CATALITIC CRAKING

- Proceso de transformación catalítica, de regeneración continua.
- Utilizado para mejorar corrientes de productos pesados de bajo valor como el VGO.
- Principalmente se produce gasolina y olefinas C3/C4, utilizadas luego en alquilación (mejoradores de RON)
- Gran desarrollo en catalizadores y diseño de reactores, han mejorado el producto para utilizar alimentaciones de residuo o para uso petroquímico

FLUID CATALITIC **CRAKING**

^{*} GOP de Vacio - Coque - Topping, Crudo reducido - CortesLubricantes

FLUID CATALITIC CRAKING

- La reacción es en estado gaseoso a través de un lecho de catalizador sólido fluidizado.
- Los productos craqueados, se separan del sólido y son enviados a una columna de destilación para separación de sus productos.
- El catalizador agotado es regenerado quemando el coke depositado
- El calor de combustión producido es utilizado para mantener las reacciones endotérmicas necesarias

IMPORTANCIA DEL FCC

- Las alimentaciones utilizadas deben encontrarse en niveles adecuados de impurezas.
- Se utiliza VGO Hidrotratado (HT VGO), Residuo Atmosférico Desulfurizado (ARDS)
- Puede ser alimentado con Residuos de Vacío (VR), se denomina RFCC
- Transforma alimentaciones pesadas desulfuradas por, craking en fracciones livianas de calidad de combustible.
- Pueden ser operadas para aumentar la producción de gasolina en detrimento de diesel

--->Gas → LPG Gas Recovery → i-C₄ C₄ Gas Gasoline Blending Naphtha Naphtha Catalytic Naphtha Gasoline Reformer Hydrotreating Aromatic Distillation Gas Isomerization Kerosene Kerosene MTBE Hydrotreating Kerosene Gas Crude Oil Gas oil Gas oil Hydrotreating Diesel Gas Oil i-C₄ ▲ Gas Alkylation → LPG Vacuum GO Hydrotreating → Propylene AR Vacuum Distillation MTBE → LPG Methanol Gas Gas VR FCC Gasoline Blending Gasoline Residue Direct Desulphurtzation FCC (AR/VR) Fuel Oil Gas A Thermal Cracking

FCC

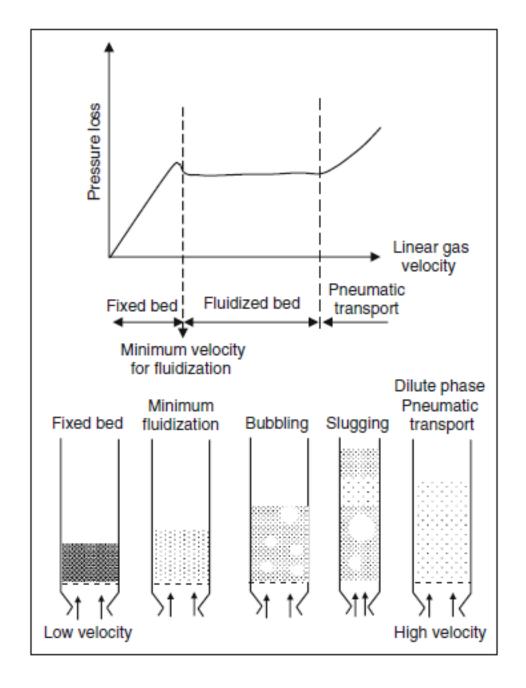
ALIMENTACIÓN Y PRODUCTOS

- Se utiliza principalmente gasoil de 316-516 °C (600-1050°F)
- Es una mezcla de P,N y Ar.
- La alimentación HIDROTRATADA, presenta dos limitantes:
 - Compuestos de residuo de Carbón Conradson (CCR)
 - Metales contaminates
- CCR: Los depósitos de coke formados superan capacitad de regeneración del catalizador
- Organometales: desactivan y envenenan catalizador
- Nitrógeno: desactiva sitios ácidos, pero soportan 0.2%wt

ALIMENTACIÓN Y PRODUCTOS

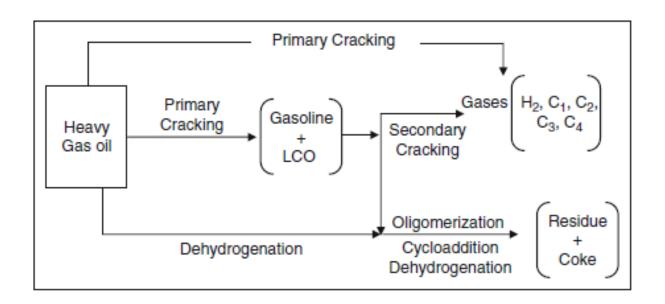
PROPIEDADES DE CORRIENTES DE ALIMENTACIÓN

	Desulphurised vacuum gas oil	Atmospheric residue
Specific gravity (15/4 °C)	0.896	0.889
API	26.3	27.5
Gas oil fraction (GO), wt% (boiling point < 343 °C)	7	4
VGO fraction (VGO), wt% (boiling point 343-538 °C)	88.5	52.5
Vacuum residue fraction (VR), wt% (boiling point > 538 °C)	4.5	43.5
Conradson Carbon Residue (CCR), wt%	0.2	4.2
Sulphur, wt%	0.4	0.11
Nitrogen, wt%	0.064	0.19
Nickel (Ni), wppm	0.26	17
Vanadium (V), wppm	0.15	0.5


ALIMENTACIÓN Y PRODUCTOS

PROPIEDADES DE CORRIENTES DE PRODUCTO

Products	Characteristics	Yield (wt%)
Dry gas + H_2S ($C_1 + C_2 + C_3 + H_2$) + H_2S	H ₂ S must be removed	3-5
LPG: C_3 , $C_3^{=}$. C_4 , $C_4^{=}$	Petrochemical feedstock	8-20
Gasoline	Main product, good octane number	35–60
Light cycle oil (LCO)	Rich in aromatics, high sulphur content, diluent for fuel	12-20
Heavy cycle oil (HCO) + slurry	Very rich in aromatics, slurry of solids, (mainly catalyst coke)	10-15
Coke	Consumed in regenerator	3–5


FLUIDIZACIÓN

• TIPOS DE COMPORTAMIENTO DE LECHOS

QUIMICA DEL FCC

ESQUEMA DE REACCIONES INVOLUCRADAS

LCO (Ligth Ciclyc Oil)

QUIMICA DEL FCC-Reacciones deseadas

Olefins – smaller olefins

$$CH_3 - CH = CH - CH_2 - CH_2 - CH_2 - CH_3 \rightarrow$$

 $CH_3 - CH = CH - CH_3 + CH_2 - CH = CH_2$

Alkylaromatics – Dealkylation

Alkylaromatics – Side chain cracking

QUIMICA DEL FCC-Reacciones no deseadas

Transferencia de Hidrógeno

$$3C_nH_{2n} + C_mH_{2m} \rightarrow 3C_nH_{2n+2} + C_mH_{2m-6}$$

Olefin Naphthene Paraffin Aromatic

Se transfiere H2, transformando olefinas muy reactivas en parafinas estables o aromáticos

Combinación de H en insaturaciones-formación de coke

$$C_nH_{2n-6}$$
 or C_mH_{2m-2} $\xrightarrow{H \text{ loss}}$ Coke
Aromatics Cyclo-olefins Alkylation, condensation
Polymerization

RESUMEN DE REACCIONES INVOLUCRADAS

Paraffins

Thermal catalytic cracking
Paraffin cracking → Paraffins + Olefins

Olefins

The following reaction can occur with olefins:

Olefin cracking → LPG olefins

Olefin cyclisation → Naphthenes

Olefin isomerisation → Branched olefins + Branched paraffins

Olefin H-transfer → Paraffins

Olefin cyclisation → Coke

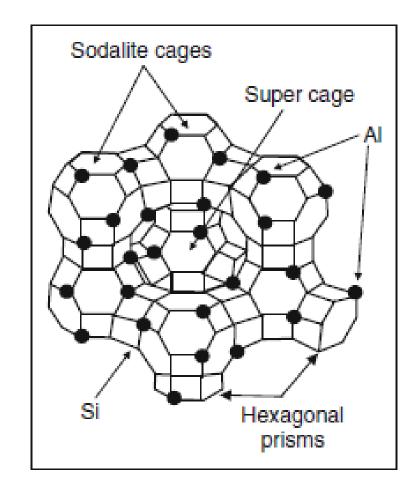
Naphthenes

Naphthene cracking → Olefins

Naphthene dehydrogenation → Aromatics

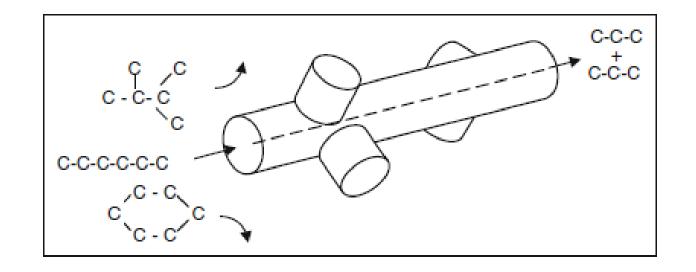
Naphthene isomerisation → Restructured naphthenes

Aromatics


Aromatics (side chain) → Aromatics + Olefins

Aromatic transalkylation → Alkylaromatics

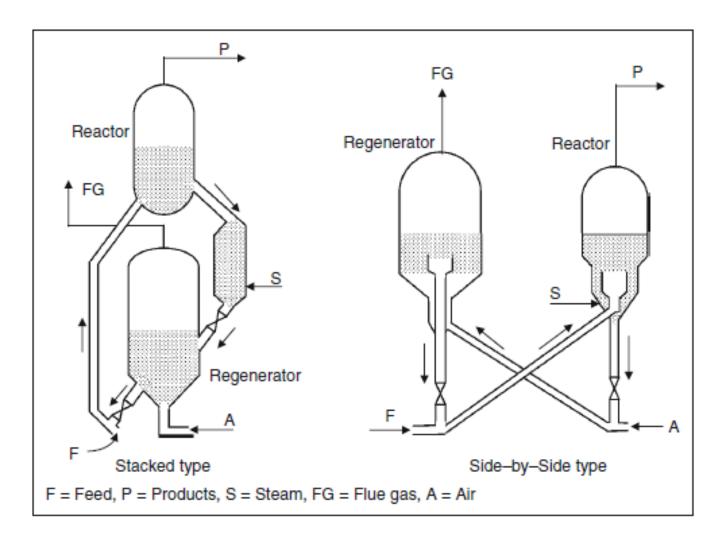
Aromatic dehydrogenation → Polyaromatics → Coke


CATÁLISIS

- Zeolita Tipo Y
- Utilizada en polvo 75 micrones
- Aproximadamente 800 m2/g
- Estructura cristalina de alúmino silicatos en matriz
- Mesoporos y microporos

CATÁLISIS

- Zeolita tipo ZSM-5
- Se agrega al 5%
- Mejora rendimiento en RON
- Canales zigzag (ver video)
- Al incorporarse mezcladas, aumentan conversión de olefinas de C3/C4



CATÁLISIS-MATRICES

- a) AGLUTINANTE: Incorporado solamente para dar soporte a una red estructural más grande.
- b) RELLENO ESTRUCTURAL: Incorporado para dar estructura, se usan arcillas del tipo caolín, forma el esqueleto.
- c) METALES: Se incorpora para contribuir la oxidación completa del CO a CO2 en el regenerador. Se adiciona una pequeña cantidad para fijar el SOx contaminante sobre el catalizador, no contaminando sitios activos y luego regenerado como SH2

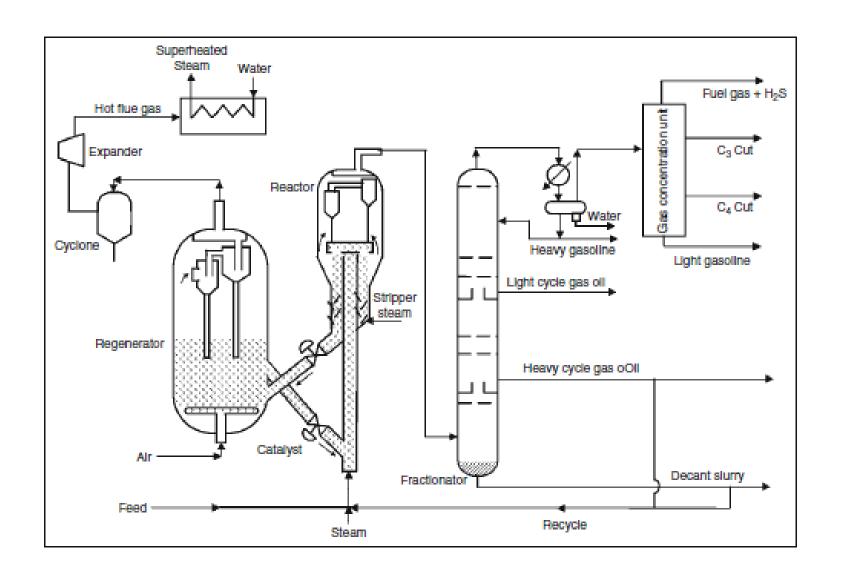
PROCESO DE FCC

CONFIGURACIONES DE REACCIÓN

DESCRIPCIÓN DEL PROCESO DE FCC

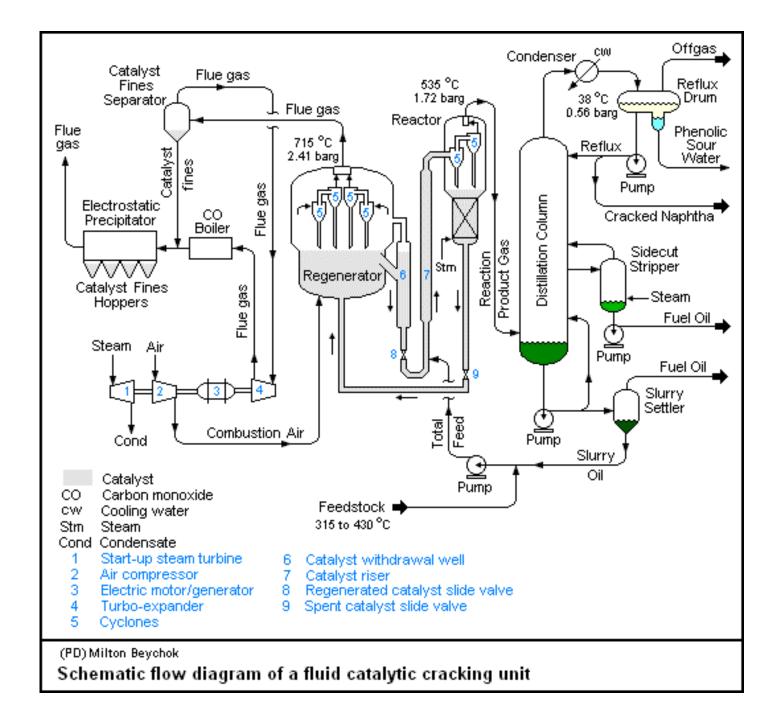
Vapor y VGO se calientan 316-427° C (600-800°F) y se envían al fondo del tubo de ingreso al reactor. Esta es la zona de reacción endotérmica y se llama RAISER, aquí se produce la fluidización.

El catalizador caliente regenerado, ingresa también desde el fondo a 650-760° C (1200-1400 °F)

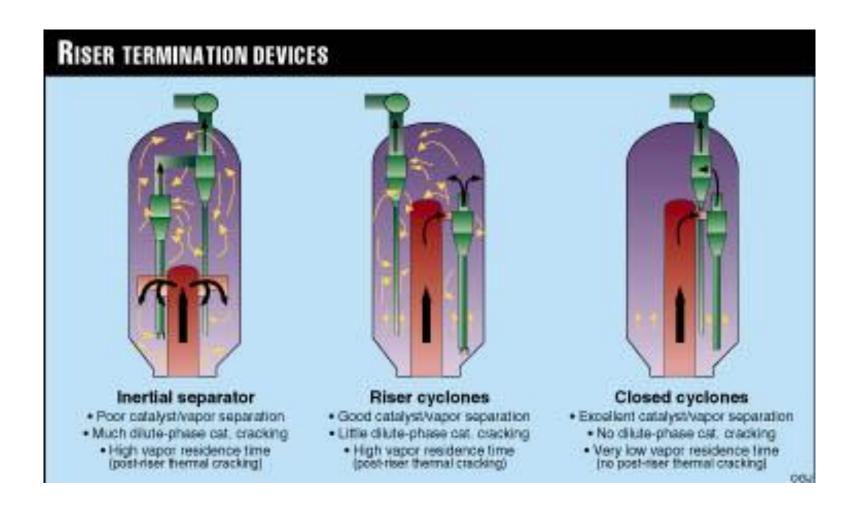

La reacción transcurre entre 2 y 10 seg, desalojando por el tope del reactor, los gases hacia la torre fraccionadora y el catalizador y las fracciones pesadas, se separan en la zona de desacople

Se inyecta vapor en la zona de stripper y el líquido es removido del sólido con ayuda de los bafles instalados.

El catalizador agotado, es enviado al regenerador a 425-538° C (900-1000°F)


El coke depositado sobre el catalizador agotado, es quemado con aire en exceso, asegurando combustión eficiente. El gas caliente sale por el tope del regenerador

FLOW SHEET - FCC



DESCRIPCIÓN DE FCC

- El gas caliente se envía a unidad de producción de vapor sobre calentado, que se utiliza para calentar la reacción
- Los gases son enviados a una torre fraccionadora que separa gases livianos, gasolina pesada (principal), Ligth cycle oil (LCO), heavy Cycle Oil (HCO) y lodo decantado
- Gases se envían a Gas Concentrado (gas combustible, propano, butano, LPG y gasolina liviana)
- Los lodos son una mezcla de aromáticos pesados y polvos de catalizador. (se pueden filtrar y reciclar o usar como solvente aromático)

Sistema de recuperación de polvos

PROCESO Y OPERACIÓN

Principales variables de proceso

Variables Independientes

- Temperatura de Reacción
- Actividad del Catalizador (y tipo de catalizador)
- Uso de promotor de olefinas (ZSM5)
- Reciclos de GOP/GOD
- Puntos de cortes entre Productos
- Calidad de la carga
- Temperatura de precalentamiento

MODOS DE FLUIDIZACIÓN

Location in FCC	Mode of fluidisation
Regenerator	Turbulent fluidisation: to attain uniform burning temperature in bed.
Line for catalyst transport from regenerator to riser	Bubbling fluidisation
Riser	Pneumatic transport: Catalyst and products are carried out from riser. Plug flow has a few seconds of residence time.
Stripper	Bubbling fluidisation: Steam is injected in the stripper to vaporise and recover heavy oil and reduce coke formation.
Lift line from regenerator to reactor	Pneumatic transport

CORRELACIONES DE FCC

DEFINICIÓN DE CONVERSIÓN

$$CONV\% = \left(\frac{\text{volume of oil feed - volume of cycle stock}}{\text{volume of oil feed}}\right) \times 100$$

Conversión se define como el porcentaje de alimentación convertido en productos livianos del rango de gasolina y rangos inferiores

El producto Cycle Stock, es la fracción no convertida en gasolina o equivalente

CORRELACIONES DE FCC

• Correlaciones de Maples

Products	Correlation
Coke wt%	$0.05356 \times \text{CONV} - 0.18598 \times \text{API} + 5.966975$
LCO LV%	$0.0047 \times \text{CONV}^2 - 0.8564 \times \text{CONV} + 53.576$
Gases wt%	$0.0552 \times CONV + 0.597$
Gasoline LV%	$0.7754 \times \text{CONV} - 0.7778$
iC ₄ LV%	$0.0007 \times \text{CONV}^2 + 0.0047 \times \text{CONV} + 1.40524$
nC ₄ LV%	$0.0002 \times \text{CONV}^2 + 0.019 \times \text{CONV} + 0.0476$
C ₄ LV%	$0.0993 \times \text{CONV} - 0.1556$
C ₃ LV%	$0.0436 \times \text{CONV} - 0.8714$
C ₃ LV%	$0.0003 \times \text{CONV}^2 + 0.0633 \times \text{CONV} + 0.0143$
HCO	100 - CONV - (LCO LV%)
Wt% S in Gases	3.9678 × (wt% S in feed) + 0.2238
Wt% S in LCO	1.04994 × (wt% S in feed) + 0.00013
Wt% S in	1.88525 × (wt% S in feed) + 0.0135
HCO	
S in Coke ^a	wt% S in feed – wt% S in gases – wt% S LCO – wt% S HCO
Gasoline API	$-0.19028 \times CONV + 0.02772 \times (Gasoline LV\%) + 64.08$
LCO API	$-0.34661 \times \text{CONV} + 1.725715 \times \text{(Feed API)}$
J.	

⁴Assuming no sulphur in gasoline

BALANCES

Una corriente de alimentación de 20.000 BPD (q1) de AGO (650-850°F) API 24 y S 0.2%wt se mezcla con otra de 15.000 BPD (q2) de VGO (850-1050°F) API 15 y S 0.35%wt. Se usan para alimentar la unidad de FCC. Use las correlaciones para realizar el balance de materia en la unidad de reacción. Asuma conversión 75% LV

Ejemplo

- SG AGO=0.9099 y SG = 0.9659 de despejar de fórmula API
- Caudal másico AGO = 265.000 lb/h
- Caudal másico VGO = 211.250 lb/h
- Caudal másico total de mezcla = 476.250 lb/h
- S AGO = 530 lb/h
- S VGO = 739 lb/h
- S en alimentación = 0.266 % wt
- Conversión 75%
- Cycle stoc = porción sin convertir hasta gasolina (LCG+HCGO)=25%

BALANCE DE COMPONENTES

- SG de mezcla = (q1/(q1+q2))x SG 1+(q2/(q1+q2))x SG 2
- SG feed = 0.9339
- API feed = 20.02

		lb/h
Coke wt%	6.3	30,004
LCO LV%	15.8	81,337
Created II crea	4.7	22,574
Gasoline LV%		226,816
iC ₄ LV%	5.7	16,375
nC ₄ LV%	2.6	7735
C= LV%	7.3	22,356
C ₃ LV%	2.4	6230
C ₃ LV%	6.4	16,987
HGO wt%	9.7	46,027
S in H ₂ S wt%	1.28	289
S in LCO wt%		226
S in HCO wt%	0.515	237
S in Coke wt%	1.734	517
Gasoline API	51.4	
LCO API	8.5	