UNIDAD 3 Sistemas Multivariables

Profesores:

Ing. María Susana Bernasconi-

sbernasc@uncu.edu.ar susybernasconi@gmail.com

Ing Fernando Geli

fernandogeli@gmail.com

Sistemas MIMO

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Bibliografía:

Ingeniería de Control Moderna-K.OGATA
Control and Dynamics Systems – Y. TAKAHASHI – M.RABIN – D.AUSLANDER

Cuando un sistema tiene una sola entrada y una sola salida se denomina sistema SISO (single input single output);

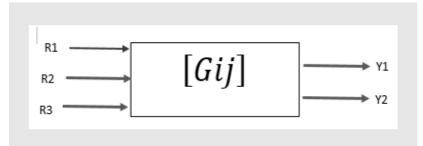
cuando posee varias entradas y varias salidas se llama

sistema MIMO (multi input multi output).

Para sistemas SISO, la función de transferencia *G*(*s*) corresponde a la relación salida entrada escrita directamente como:

$$G(s) = \frac{Y(s)}{R(s)} \Big|_{\text{condics. iniciales} = 0}$$

Sin embargo, para sistemas MIMO se requiere introducir subíndices para identificar tanto al número de salida *i* como al número de entrada *j* con respecto a la posición de la función de transferencia individual *Gi j*(*s*), asociada a una salida y a una entrada específica:



$$G_{i,j}(s) = \frac{Y_i(s)}{R_j(s)}$$

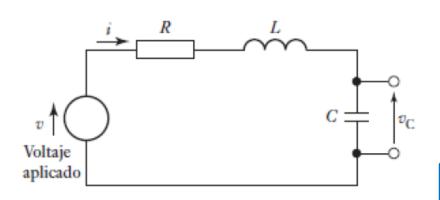
Cuando tenemos sistemas dinámicos lineales, se cumple que:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x} + Du$$

- $\mathbf{x}(t)$ es el vector de estado, de dimensión n.
- $\mathbf{u}(t)$ es el vector de entradas, de dimensión m.
- y(t) es el vector de salida, de dimensión p.
- $\mathbf{A}(t)$ es la matriz del sistema, de dimensiones $n \times n$.
- B(t) es la matriz de entradas, de dimensiones $n \times m$.
- C(t) es la matriz de salida, de dimensiones $p \times n$.
- $\mathbf{D}(t)$ tiene dimensiones $p \times n$ (en la mayoría de los sistemas es nula).

En la Figura se muestra un sistema resistor-inductor-capacitor Hallar las ecuaciones de estado

$$v = v_{\rm R} + v_{\rm L} + v_{\rm C}$$



$$v = iR + L\frac{di}{dt} + v_{C}$$

$$i = C(dv_{C}/dt)$$

$$v = LC\frac{d^2v_c}{dt^2} + v_c + RC\frac{dv_c}{dt}$$

$$\frac{di}{dt} = -\frac{R}{L}i - \frac{1}{L}vc + \frac{1}{L}v$$

$$\frac{dvc}{dt} = \frac{1}{C}i$$

$$X_1(t)=i(t)$$

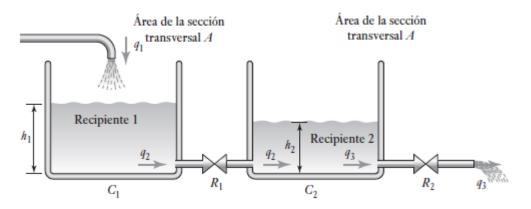
$$X_2(t) = vc(t)$$

$$\dot{x_1} = -\frac{R}{L}x_1 - \frac{1}{L}x_2 + \frac{1}{L}x_1$$

$$\dot{x_2} = \frac{1}{C}x_1$$

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -R/L & -1/L \\ 1/C & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1/L \\ 0 \end{bmatrix} v$$

$$[y] = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



$$q_1 - q_2 = A_1 \frac{\mathrm{d}h_1}{\mathrm{d}t}$$

$$q_1 - \frac{(h_1 - h_2)\rho g}{R_1} = A_1 \frac{\mathrm{d}h_1}{\mathrm{d}t}$$

$$q_{2} - q_{3} = A_{2} \frac{dh_{2}}{dt}$$

$$q_{2} - \frac{h_{2}\rho g}{R_{2}} = A_{2} \frac{dh_{2}}{dt}$$

$$\frac{(h_{1} - h_{2})\rho g}{R_{1}} - \frac{h_{2}\rho g}{R_{2}} = A_{2} \frac{dh_{2}}{dt}$$

$$\begin{bmatrix} \dot{h_1} \\ \dot{h_2} \end{bmatrix} = \begin{bmatrix} \frac{\rho g}{R_1 A_1} & \frac{-\rho g}{R_1 A_1} \\ \frac{\rho g}{R_1 A_2} & \frac{-\rho g}{A_2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \end{bmatrix} * \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{0} \end{bmatrix} * q_1$$

$$[y]$$
= $\begin{bmatrix} 0 & 1 \end{bmatrix} * \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$

Generalizamos para sistemas de orden n-esimo representados por ecuaciones diferenciales lineales en las que la función de entrada no contiene términos derivados

$$y + a_{1} \quad y + \cdots + a_{n-1} \dot{y} + a_{n} y = u$$

$$x_{1} = y \qquad \dot{x}_{1} = x_{2}$$

$$x_{2} = \dot{y} \qquad \dot{x}_{2} = x_{3} \qquad \dot{x}_{2} = x_{3}$$

$$\vdots \qquad \dot{x}_{n-1} = x_{n}$$

$$x_{n} = x_{n} \qquad \dot{x}_{n} = a_{n} x_{1} + \cdots - a_{1} x_{n} + u$$

$$x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{n} - a_{n-1} - a_{n-2} - \cdots - a_{1} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

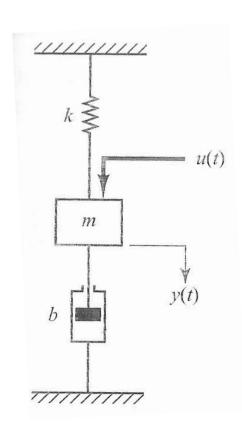
$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$y = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$y = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

Considere el sistema mecánico que aparece en la Figura 3.16. Se supone que el sistema es lineal. La fuerza externa u(t) es la entrada al sistema, y el desplazamiento y(t) de la masa es la salida. El desplazamiento y(t) se mide a partir de la posición de equilibrio en ausencia de una fuerza externa. Este sistema tiene una sola entrada y una sola salida.

A partir del diagrama, la ecuación del sistema es



$$m\ddot{y} + b\ddot{y} + ky = u$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

$$y = \mathbf{C}\mathbf{x} + Du$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$x_1(t) = y(t)$$

$$x_2(t) = \dot{y}(t)$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{m} (-ky - b\ddot{y}) + \frac{1}{m} u$$

$$\dot{x}_2 = -\frac{k}{m} x_1 - \frac{b}{m} x_2 + \frac{1}{m} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D} = 0$$

Generalizamos para sistemas de orden n-esimo representados por ecuaciones diferenciales lineales en las que la función de entrada contiene términos derivados

$$y + a_1 y + \dots + a_{n-1} \dot{y} + a_n y = b_0 u + b_1 u + \dots + b_{n-1} \dot{u} + b_n u$$

$$x_1 = y - \beta_0 u$$

$$x_2 = \dot{y} - \beta_0 \dot{u} - \beta_1 u = \dot{x}_1 - \beta_1 u$$

$$x_3 = \ddot{y} - \beta_0 \ddot{u} - \beta_1 \dot{u} - \beta_2 u = \dot{x}_2 - \beta_2 u$$

$$x_n = y^{(n-1)} - \beta_0 u^{(n-1)} - \beta_1 u^{(n-2)} - \dots - \beta_{n-2} \dot{u} - \beta_{n-1} u = \dot{x}_{n-1} - \beta_{n-1} u$$

donde β_0 , β_1 , β_2 , ..., β_n se determinan a partir de

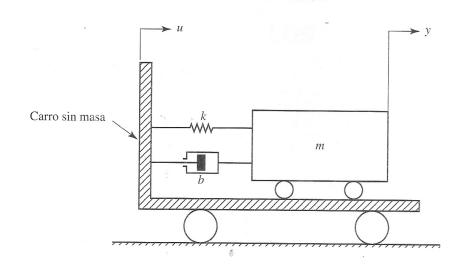
$$\beta_{0} = b_{0}
\beta_{1} = b_{1} - a_{1}\beta_{0}
\beta_{2} = b_{2} - a_{1}\beta_{1} - a_{2}\beta_{0}
\beta_{3} = b_{3} - a_{1}\beta_{2} - a_{2}\beta_{1} - a_{3}\beta_{0}
\vdots
\beta_{n} = b_{n} - a_{1}\beta_{n-1} - \dots - a_{n-1}\beta_{1} - a_{n}\beta_{0}$$

$$\dot{x}_{1} = x_{2} + \beta_{1}u
\dot{x}_{2} = x_{3} + \beta_{2}u
\vdots
\dot{x}_{n-1} = x_{n} + \beta_{n-1}u
\dot{x}_{n-1} = x_{n} + \beta_{n-1}u$$

$$\dot{x}_{1} = x_{2} + \beta_{1}u
\dot{x}_{2} = x_{3} + \beta_{2}u
\vdots
\dot{x}_{n-1} = x_{n} + \beta_{n-1}u
\dot{x}_{n-1} = -a_{n}x_{1} - a_{n-1}x_{2} - \dots - a_{1}x_{n} + \beta_{n}u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{n-1} \\ \beta_n \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \beta_0 u$$



$$m\frac{d^2y}{dt^2} = -b\left(\frac{dy}{dt} - \frac{du}{dt}\right) - k(y - u)$$

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = b\frac{du}{dt} + ku$$

$$y + a_1 y + \dots + a_{n-1} \dot{y} + a_n y = b_0 u + b_1 u + \dots + b_{n-1} \dot{u} + b_n u$$

$$\ddot{y} + \frac{b}{m}\dot{y} + \frac{k}{m}y = 0* u'' + \frac{b}{m}\dot{u} + \frac{k}{m}u$$

$$a_1 = \frac{b}{m}$$

$$a_2 = \frac{k}{m}$$

$$b_0 = 0,$$

$$b_1 = \frac{b}{m}$$

$$b_2 = \frac{\kappa}{m}$$

$$\Rightarrow$$

$$\beta_0 = b_0 = 0$$

$$\beta_1 = b_1 - a_1 \beta_0 = \frac{b}{m}$$

$$a_1 = \frac{b}{m},$$
 $a_2 = \frac{k}{m},$ $b_0 = 0,$ $b_1 = \frac{b}{m},$ $b_2 = \frac{k}{m}$
$$\beta_2 = b_2 - a_1\beta_1 - a_2\beta_0 = \frac{k}{m} - \left(\frac{b}{m}\right)^2$$

$$\ddot{y} + \frac{b}{m}\dot{y} + \frac{\dot{k}}{m}y = 0* u'' + \frac{b}{m}\dot{u} + \frac{\dot{k}}{m}u$$

$$a_1 = \frac{b}{m},$$
 $a_2 = \frac{k}{m},$ $b_0 = 0,$ $b_1 = \frac{b}{m},$ $b_2 = \frac{k}{m}$

$$\beta_0 = b_0 = 0$$

$$\beta_1 = b_1 - a_1 \beta_0 = \frac{b}{m}$$

$$\beta_2 = b_2 - a_1 \beta_1 - a_2 \beta_0 = \frac{k}{m} - \left(\frac{b}{m}\right)^2$$

$$x_1 = y - \beta_0 u = y$$

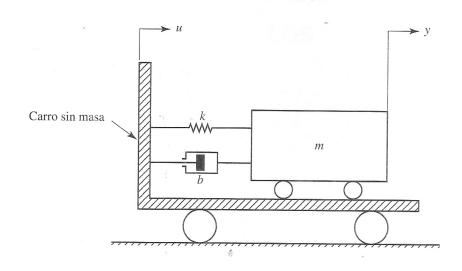
$$x_2 = \dot{x}_1 - \beta_1 u = \dot{x}_1 - \frac{b}{m} u$$

$$\dot{x}_1 = x_2 + \beta_1 u = x_2 = -\frac{b}{m} u$$

$$\dot{x}_2 = -a_2 x_1 - a_1 x_2 + \beta_2 u = -\frac{k}{m} x_1 - \frac{b}{m} x_2 + \left[\frac{k}{m} - \left(\frac{b}{m} \right)^2 \right] u$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{b}{m} \\ \frac{k}{m} - \left(\frac{b}{m}\right)^2 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

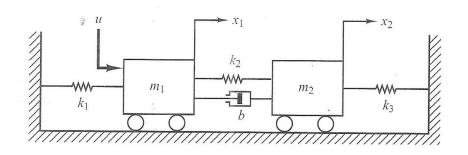


$$m\frac{d^2y}{dt^2} = -b\left(\frac{dy}{dt} - \frac{du}{dt}\right) - k(y - u)$$

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = b\frac{du}{dt} + ku$$

$$(ms^2 + bs + k)Y(s) = (bs + k)U(s)$$

Función de transferencia =
$$G(s) = \frac{Y(s)}{U(s)} = \frac{bs + k}{ms^2 + bs + k}$$



$$m_1\ddot{x}_1 = -k_1x_1 - k_2(x_1 - x_2) - b(\dot{x}_1 - \dot{x}_2) + u$$

$$m_2\ddot{x}_2 = -k_3x_2 - k_2(x_2 - x_1) - b(\dot{x}_2 - \dot{x}_1)$$

$$m_1\ddot{x}_1 + b\dot{x}_1 + (k_1 + k_2)x_1 = b\dot{x}_2 + k_2x_2 + u$$

$$m_2\ddot{x}_2 + b\dot{x}_2 + (k_2 + k_3)x_2 = b\dot{x}_1 + k_2x_1$$

$$[m_1s^2 + bs + (k_1 + k_2)]X_1(s) = (bs + k_2)X_2(s) + U(s)$$

$$[m_2s^2 + bs + (k_2 + k_3)]X_2(s) = (bs + k_2)X_1(s)$$

$$[(m_1s^2 + bs + k_1 + k_2)(m_2s^2 + bs + k_2 + k_3) - (bs + k_2)^2]X_1(s)$$

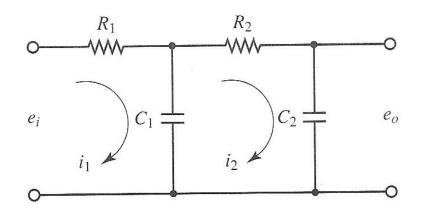
= $(m_2s^2 + bs + k_2 + k_3)U(s)$

$$[(m_1s^2 + bs + k_1 + k_2)(m_2s^2 + bs + k_2 + k_3) - (bs + k_2)^2]X_1(s)$$

= $(m_2s^2 + bs + k_2 + k_3)U(s)$

$$\frac{X_1(s)}{U(s)} = \frac{m_2 s^2 + b s + k_2 + k_3}{(m_1 s^2 + b s + k_1 + k_2)(m_2 s^2 + b s + k_2 + k_3) - (b s + k_2)^2}$$

$$\frac{X_2(s)}{U(s)} = \frac{bs + k_2}{(m_1s^2 + bs + k_1 + k_2)(m_2s^2 + bs + k_2 + k_3) - (bs + k_2)^2}$$



Suponemos que ei es la entrada y eo es la salida. Las capacitancias C1 y C2 no cambian inicialmente. En la segunda etapa del circuito (la parte R2C2) produce un efecto de carga en la primera etapa (la parte R₁C₁)

$$\frac{1}{C_1} \int (i_1 - i_2) dt + R_1 i_1 = e_i$$

$$\frac{1}{C_1} \int (i_2 - i_1) dt + R_2 i_2 + \frac{1}{C_2} \int i_2 dt = 0$$

$$\frac{1}{C_2} \int i_2 dt = e_o$$

$$\frac{1}{C_{1}} \int (i_{1} - i_{2}) dt + R_{1}i_{1} = e_{i}$$

$$\frac{1}{C_{1}} \int (i_{2} - i_{1}) dt + R_{2}i_{2} + \frac{1}{C_{2}} \int i_{2} dt = 0$$

$$\frac{1}{C_{1}s} [I_{1}(s) - I_{2}(s)] + R_{1}I_{1}(s) = E_{i}(s)$$

$$\frac{1}{C_{1}s} [I_{2}(s) - I_{1}(s)] + R_{2}I_{2}(s) + \frac{1}{C_{2}s} I_{2}(s) = 0$$

$$\frac{1}{C_{2}s} I_{2}(s) = E_{o}(s)$$

$$\frac{E_o(s)}{E_i(s)} = \frac{1}{(R_1C_1s+1)(R_2C_2s+1) + R_1C_2s}$$

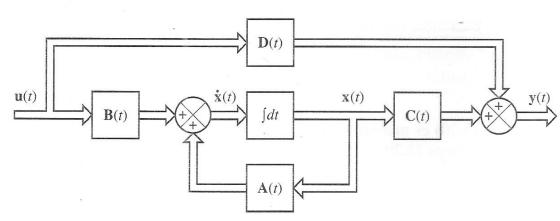
$$= \frac{1}{R_1C_1R_2C_2s^2 + (R_1C_1 + R_2C_2 + R_1C_2)s + 1}$$

Función de transferencia

$$\frac{Y(s)}{U(s)} = G(s)$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

$$y = Cx + Du$$



$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}U(s)$$

$$Y(s) = \mathbf{C}\mathbf{X}(s) + DU(s)$$

$$\Rightarrow (s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{B}U(s)$$
$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s)$$

$$Y(s) = [\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D]U(s)$$
$$Y(s) = \mathbf{G}(s)\mathbf{U}(s)$$

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D$$

$$G(s) = \frac{Q(s)}{|s\mathbf{I} - \mathbf{A}|}$$

Función de transferencia y modelo de estado

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$

donde $\mathbf{x}(0)$ es el vector de condiciones iniciales. Si es $\mathbf{x}(0) = \mathbf{0}$, entonces:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

$$[s\mathbf{I} - \mathbf{A}] \mathbf{X}(s) = \mathbf{B}\mathbf{U}(s)$$

$$\mathbf{X}(s) = [s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{B}\mathbf{U}(s)$$

$$\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s) = \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{B}\mathbf{U}(s) + \mathbf{D}\mathbf{U}(s)$$

$$\mathbf{Y}(s) = \left[\mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{B} + \mathbf{D}\right] \mathbf{U}(s) \Rightarrow$$

$$\Rightarrow \mathbf{G}(s) = \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{B} + \mathbf{D}$$

$$\tilde{G}(s) = \tilde{\mathbf{C}}[s\mathbf{I} - \tilde{\mathbf{A}}]^{-1} \tilde{\mathbf{B}} + \tilde{\mathbf{D}} =$$

$$= \mathbf{C}\mathbf{T}[s\mathbf{I} - \mathbf{T}^{-1}\mathbf{A}\mathbf{T}]^{-1} \mathbf{T}^{-1}\mathbf{B} + \mathbf{D} =$$

 $= \mathbf{CTT}^{-1} [s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{TT}^{-1} \mathbf{B} + \mathbf{D} =$

 $= C[sI - A]^{-1}B + D = G(s)$

$$[s\mathbf{I} - \mathbf{A}]^{-1} = \frac{1}{\det[s\mathbf{I} - \mathbf{A}]} Adj [s\mathbf{I} - \mathbf{A}]^{T}$$

$$p(s) = \det[s\mathbf{I} - \mathbf{A}]$$

 $Polos = Valores \ propios \ de \ \mathbf{A}$

Solución homogénea para una ecuación diferencial escalar

$$\dot{x} = ax$$

$$x(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_k t^k + \dots \longrightarrow x(0) = b_0$$

$$b_1 + 2b_2t + 3b_3t^2 + \dots + kb_kt^{k-1} + \dots = a(b_0 + b_1t + b_2t^2 + \dots + b_kt^k + \dots)$$

$$b_{1} = ab_{0}$$

$$b_{2} = \frac{1}{2} ab_{1} = \frac{1}{2} a^{2}b_{0}$$

$$b_{3} = \frac{1}{3} ab_{2} = \frac{1}{3 \times 2} a^{3}b_{0}$$

$$\vdots$$

$$b_{k} = \frac{1}{k!} a^{k}b_{0}$$

$$x(t) = \left(1 + at + \frac{1}{2!} a^2 t^2 + \dots + \frac{1}{k!} a^k t^k + \dots \right) x(0)$$

$$= e^{at} x(0)$$

Solución homogénea para una ecuación diferencial matricial

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

x = vector de dimensión n

A = matriz de coeficientes constantes de $n \times n$

$$\mathbf{x}(t) = \mathbf{b}_0 + \mathbf{b}_1 t + \mathbf{b}_2 t^2 + \dots + \mathbf{b}_k t^k + \dots \implies \boxed{\mathbf{x}(0) \neq \mathbf{b}_0}$$

$$\mathbf{b}_1 + 2\mathbf{b}_2t + 3\mathbf{b}_3t^2 + \dots + k\mathbf{b}_kt^{k-1} + \dots = \mathbf{A}(\mathbf{b}_0 + \mathbf{b}_1t + \mathbf{b}_2t^2 + \dots + \mathbf{b}_kt^k + \dots)$$

$$\mathbf{b}_1 = \mathbf{A}\mathbf{b}_0$$

$$\mathbf{b}_2 = \frac{1}{2} \mathbf{A} \mathbf{b}_1 = \frac{1}{2} \mathbf{A}^2 \mathbf{b}_0 \quad \bullet$$

$$\mathbf{b}_3 = \frac{1}{3} \mathbf{A} \mathbf{b}_2 = \frac{1}{3 \times 2} \mathbf{A}^3 \mathbf{b}_0$$

$$\mathbf{b}_k = \frac{1}{k!} \, \mathbf{A}^k \mathbf{b}_0$$

$$\mathbf{x}(t) = \left(\mathbf{I} + \mathbf{A}t + \frac{1}{2!} \mathbf{A}^2 t^2 + \dots + \frac{1}{k!} \mathbf{A}^k t^k + \dots\right) \mathbf{x}(0)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

Solución para el caso no homogéneo para una ecuación diferencial escalar

$$\dot{x} = ax + bu$$

$$\dot{x} - ax = bu$$

$$e^{-at}[\dot{x}(t) - ax(t)] = \frac{d}{dt} [e^{-at}x(t)] = e^{-at}bu(t)$$

$$e^{-at}x(t) - x(0) = \int_0^t e^{-a\tau}bu(\tau) d\tau$$

$$x(t) = e^{at}x(0) + e^{at} \int_0^t e^{-a\tau}bu(\tau) d\tau$$

Solución para el caso no homogéneo para una ecuación diferencial matricial

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 \mathbf{x} = vector de dimensión n

 $\mathbf{u} = \text{vector de dimensión } r$

A = matriz de coeficientes constantes de $n \times n$

 \mathbf{B} = matriz de coeficientes constantes de $n \times r$

$$\dot{\mathbf{x}}(t) - \mathbf{A}\mathbf{x}(t) = \mathbf{B}\mathbf{u}(t)$$

$$e^{-\mathbf{A}t}[\dot{\mathbf{x}}(t) - \mathbf{A}\mathbf{x}(t)] = \frac{d}{dt} \left[e^{-\mathbf{A}t}\mathbf{x}(t) \right] = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau$$

Solución para el caso no homogéneo para una ecuación diferencial matricial aplicando Transformada de Laplace

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$

$$(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{x}(0) + \mathbf{B}\mathbf{U}(s)$$

Premultiplicando por $(sI - A)^{-1}$

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)$$

$$\mathbf{X}(s) = \mathcal{L}[e^{\mathbf{A}t}]\mathbf{x}(0) + \mathcal{L}[e^{\mathbf{A}t}]\mathbf{B}\mathbf{U}(s)$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau$$

EJEMPLO 11.5. Obtenga la matriz de transición de estados $\Phi(t)$ del sistema siguiente

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Obtenga también la inversa de la matriz de transición de estados, $\Phi^{-1}(t)$. Para este sistema,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

La matriz de transición de estados $\Phi(t)$ se obtiene mediante

$$\mathbf{\Phi}(t) = e^{\mathbf{A}t} = \mathcal{L}^{-1}[s\mathbf{I} - \mathbf{A})^{-1}]$$

Como

$$s\mathbf{I} - \mathbf{A} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} s & -1 \\ 2 & s+3 \end{bmatrix}$$

la inversa de (sI - A) se obtiene mediante

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{(s+1)(s+2)} \begin{bmatrix} s+3 & 1\\ -2 & s \end{bmatrix}$$

$$= \begin{bmatrix} \frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \end{bmatrix}$$

$$\Phi(t) = e^{\mathbf{A}t} = \mathcal{L}^{-1}[s\mathbf{I} - \mathbf{A})^{-1}]$$

$$= \begin{bmatrix} 2e^{-t} - e^{-2t} & e^t - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$

Si se tiene en cuenta que $\Phi^{-1}(t) = \Phi(-t)$, se obtiene la inversa de la matriz de transición de estados del modo siguiente:

$$\Phi^{-1}(t) = e^{-At} = \begin{bmatrix} 2e^t - e^{2t} & e^t - e^{2t} \\ -2e^t + 2e^{2t} & -e^t + 2e^{2t} \end{bmatrix}$$

EJEMPLO 11.6. Obtenga la respuesta en el tiempo del sistema siguiente:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

donde u(t) es la función escalón unitario que se presenta en t=0, o

$$u(t) = 1(t)$$

Para este sistema,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

La matriz de transición de estados $\Phi(t) = e^{\mathbf{A}t}$ se obtuvo en el Ejemplo 11.5 como

$$\Phi(t) = e^{\mathbf{A}t} = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$

La respuesta a la entrada escalón unitario se obtiene entonces como

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t \begin{bmatrix} 2e^{-(t-\tau)} - e^{-2(t-\tau)} & e^{-(t-\tau)} - e^{-2(t-\tau)} \\ -2e^{-(t-\tau)} + 2e^{-2(t-\tau)} & -e^{-(t-\tau)} + 2e^{-2(t-\tau)} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} [1] d\tau$$

o bien

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} \frac{1}{2} - e^{-t} + \frac{1}{2} e^{-2t} \\ e^{-t} - e^{-2t} \end{bmatrix}$$

Si el estado inicial es cero, o $\mathbf{x}(0) = \mathbf{0}$, entonces $\mathbf{x}(t)$ se puede simplificar a

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} - e^{-t} + \frac{1}{2} e^{-2t} \\ e^{-t} - e^{-2t} \end{bmatrix}$$

Controlabilidad y observabilidad.

Una función de transferencia desarrollada en fracciones simples muestra al sistema de manera desacoplada, es decir, que las variables de estado son afectadas directamente por la función de entrada U(s) y cada una de ellas afecta individualmente la salida Y(s). El equivalente matricial de un sistema desacoplado es cuando se presenta la matriz de estado A, como una matriz diagonal. Si en un sistema cuya ecuación de estado homogénea es:

$$\frac{d}{dt}X(t) = A * X(t)$$

$$\frac{d}{dt}T * X^{o}(t) = A * T * X^{o}(t)$$

$$T^{-1} * A * T = \begin{bmatrix} p_{1} & 0 & 0 & 0 & 0 \\ 0 & p_{2} & 0 & 0 & 0 \\ 0 & 0 & ... & 0 & 0 \\ 0 & 0 & 0 & ... & 0 \\ 0 & 0 & 0 & 0 & p_{n} \end{bmatrix}$$

$$\frac{d}{dt}X^{o}(t) = T^{-1} * A * T * X^{o}(t)$$

realizamos una transformación lineal del vector de estado X(t) a un nuevo vector Xº(t), mediante una matriz cuadrada T (recordar que hay muchas matrices de transformación, pero sólo una hará que A se convierta en una matriz diagonal) Puede verse que esta ecuación es igual a la ecuación (4.11), a diferencia de que al haber llevado a cabo una transformación lineal, la nueva matriz A diagonalizada está representada en la ecuación (4.13) como el producto de 3 matrices: T-1 * A * T .

$$s * I - T^{-1} * A * T = T^{-1} * (s * I - A) * T$$

$$|T^{-1} * (s * I - A) * T| = |(s * I - A)| = 0$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 & 1 & 0 \\ 2 & -3 & 2 \\ 0 & 1 & -3 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\begin{vmatrix} s*I - A \end{vmatrix} = \begin{vmatrix} s+3 & -1 & 0 \\ -2 & s+3 & -2 \\ 0 & 1 & s+3 \end{vmatrix} = 0 \implies s^3 + 9*s^2 + 23*s + 15 = 0$$

$$p_1 = -1$$

$$p_2 = -3$$

$$p_3 = -5$$

$$v_{i}^{1} = 1$$

$$(A - p_1 * I) * v^1 = \begin{bmatrix} -3 & 1 & 0 \\ 2 & -3 & 2 \\ 0 & 1 & -3 \end{bmatrix} - (-1) * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} v_1^1 \\ v_2^1 \\ v_2^1 \end{bmatrix} = 0$$

$$v_2^1 = 2$$

$$\begin{vmatrix}
v_1^1 = 1 \\
v_2^1 = 2 \\
v_3^1 = 1
\end{vmatrix}$$

$$v^1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$(A - p_1 * I) * v^1 = \begin{vmatrix} -2 & 1 & 0 \\ 2 & -2 & 2 \\ 0 & 1 & -2 \end{vmatrix} * \begin{bmatrix} v_1^1 \\ v_2^1 \\ v_3^1 \end{bmatrix} = 0$$

$$v^2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$v^2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \qquad v^3 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$-2*v_1^1 + 1*v_2^1 + 0*v_3^1 = 0$$

$$2 * v_1^1 - 2 * v_2^1 + 2 * v_3^1 = 0$$

$$0 * v_1^1 + 1 * v_2^1 - 2 * v_3^1 = 0$$

$$T = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 2 \\ 1 & -1 & -1 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 & 1 & 0 \\ 2 & -3 & 2 \\ 0 & 1 & -3 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} x_1^{\circ} \\ x_2^{\circ} \\ x_3^{\circ} \end{bmatrix} = \underbrace{\begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -5 \end{bmatrix}}_{T^{-1} * A * T} * \begin{bmatrix} x_1^{\circ} \\ x_2^{\circ} \\ x_3^{\circ} \end{bmatrix} + \underbrace{\frac{1}{4}}_{T^{-1} * B} * \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & -1 \end{bmatrix}}_{T^{-1} * B} * \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$y = C * X + D * U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + D * U$$

$$y = C * T * X^{\circ} = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 2 \\ 1 & -1 & -1 \end{bmatrix} * \begin{bmatrix} x_{1}{}^{\circ} \\ x_{2}{}^{\circ} \\ x_{3}{}^{\circ} \end{bmatrix}$$

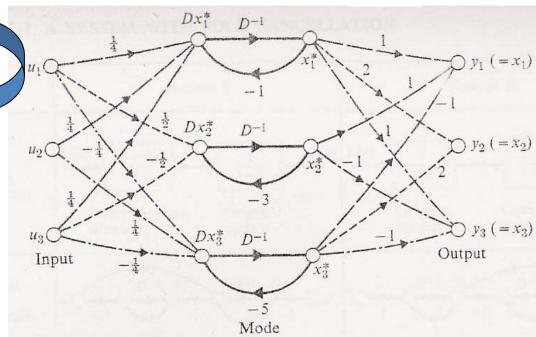
Controlabilidad:

$$\frac{1}{4} * \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & -1 \end{bmatrix}$$
$$T^{-1} * B$$

Observabilidad:

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 2 \\ 1 & -1 & -1 \end{bmatrix}$$

$$C*T$$



Controlabilidad

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
 $\mathbf{a} = \mathbf{s}\mathbf{c}$

 \mathbf{x} = vector de estados (vector de dimensión n)

u = señal de control (escalar)

 $\mathbf{A} = \text{matriz de } n \times n$

 $\mathbf{B} = \text{matriz de } n \times 1$

Este sistema es completamente controlable en t=to si es posible construir una señal de control sin restricciones que transfiera un estado inicial a cualquier estado final en un tiempo finito to<t<t1. Se supone que el estado final es el origen en el espacio de estados y que el tiempo inicial es to=0

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}u(\tau) d\tau$$

$$\mathbf{x}(t_1) = \mathbf{0} = e^{\mathbf{A}t_1}\mathbf{x}(0) + \int_0^{t_1} e^{\mathbf{A}(t_1 - \tau)} \mathbf{B}u(\tau) d\tau \longrightarrow \mathbf{x}(0) = -\int_0^{t_1} e^{-\mathbf{A}\tau} \mathbf{B}u(\tau) d\tau$$

$$e^{-\mathbf{A}\tau} = \sum_{k=0}^{n-1} \alpha_k(\tau) \mathbf{A}^k \longrightarrow \mathbf{x}(0) = -\sum_{k=0}^{n-1} \mathbf{A}^k \mathbf{B} \int_0^{t_1} \alpha_k(\tau) u(\tau) d\tau$$

$$\int_{0}^{t_{1}} \alpha_{k}(\tau)u(\tau) d\tau = \beta_{k}$$

$$\mathbf{x}(0) = -\sum_{k=0}^{n-1} \mathbf{A}^{k} \mathbf{B} \beta_{k}$$

$$= -[\mathbf{B} \mid \mathbf{A}\mathbf{B} \mid \cdots \mid \mathbf{A}^{n-1} \mathbf{B}] \begin{bmatrix} \underline{\beta_{0}} \\ \underline{\beta_{1}} \\ \vdots \\ \underline{\beta_{n-1}} \end{bmatrix}$$
La MATRIZ DE CONTROLABILIDAD n x n debe ser de rango n

 $[\mathbf{B} \mid \mathbf{A}\mathbf{B}^{\parallel}] \cdots \mid \mathbf{A}^{n-1}\mathbf{B}]$

Observabilidad

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
 $\mathbf{x} = \text{vector de estado (vector de dimensión } n)$
 $\mathbf{y} = \text{vector de salida (vector de dimensión } m)$
 $\mathbf{y} = \mathbf{C}\mathbf{x}$ $\mathbf{A} = \text{matriz } n \times n$
 $\mathbf{C} = \text{matriz } m \times n$

Un sistema es completamente **observable** si el estado x(to) se determina a partir de la observación de y(t) durante un intervalo de tiempo finito , t0<t<1. El sistema es completamente observable si todas las transiciones del estado afectan a todos los elementos del vector de salida. Se consideran sistemas lineales e invariantes en el tiempo. Se supone to=0 A veces algunas variables de estado no son accesibles para la medición directa, por lo que se hace necesario estimarlas para construir las señales de control. Estas estimaciones son posibles si y solo si el sistema es completamente observable.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \qquad \mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_{0}^{t} e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0) + \mathbf{C}\int_{0}^{t} e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau + \mathbf{D}\mathbf{u}$$

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0)$$

$$e^{\mathbf{A}t} = \sum_{k=0}^{n-1} \alpha_k(t)\mathbf{A}^k$$

$$\mathbf{y}(t) = \sum_{k=0}^{n-1} \alpha_k(t)\mathbf{C}\mathbf{A}^k\mathbf{x}(0)$$

$$[\mathbf{C}^* \mid \mathbf{A}^*\mathbf{C}^* \mid \cdots \mid (\mathbf{A}^*)^{n-1}\mathbf{C}^*]$$

La MATRIZ DE OBSERVABILIDAD n x nm debe ser de rango n

Sea el sistema descrito por

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

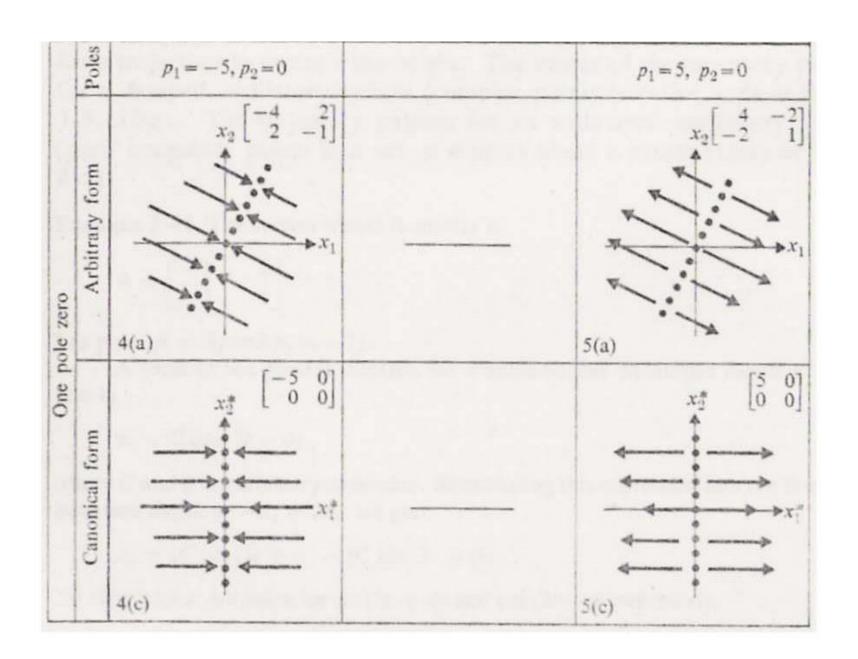
¿Es este sistema controlable y observable?

$$[\mathbf{B} \mid \mathbf{A}\mathbf{B}] = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$
 El rango es 2, por lo tanto es completamente controlable

$$[\mathbf{C}^* \mid \mathbf{A}^*\mathbf{C}^*] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 El rango es 2, por lo tanto es completamente observable

Movimiento en el espacio de estado.

	Poles	$p_1 = -1, p_2 = -4$	$p_1 = -2, p_2 = 1$	$p_1 = 1, p_2 = 4$
cero	Arbitrary form	$\begin{bmatrix} -2 & -1 \\ -2 & -3 \end{bmatrix}$	$\begin{bmatrix} -\frac{3}{2} & -\frac{2}{2} \\ 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$
poles not zero		1(a) Stable node $ \begin{bmatrix} -1 & 0 \\ 0 & -4 \end{bmatrix} $	$\begin{array}{c c} 2(a) \ Saddle \end{array} \qquad \begin{array}{c c} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$	3(a) Unstable <i>node</i> [1 0] [0 4]
1=	Canonical form	X X X X	No. of the second secon	x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1(c)	2(c)	3(c)



	Poles	$\rho_1 = \rho_2 = -2$	$p_1 = p_2 = 0$	$p_1 = p_2 = 2$
Coupled	Arbitrary form	$\begin{bmatrix} -1 & -1 \\ -1 & -3 \end{bmatrix}$ x_2 x_3 x_4 x_4	$\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$ $7(a)$	$\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$ x_2 x_1 $8(a)$
	Jordan canonical form	$x_{2}^{*}\begin{bmatrix} -2 & 1\\ 0 & -2 \end{bmatrix}$ x_{1}^{*} $6(c)$	$\begin{bmatrix} x_2^* & \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \\ & & & $	$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ x_{1}^{*} $8(c)$
Decoupled	(Diagonal)	9 Stable star		$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ 11 Unstable star

Poles	$p_1, p_2 = -1 \pm 3j$	$p_1, p_2 = \pm 3j$	$p_1, p_2 = 1 \pm 3j$
Arbitrary form	$\begin{bmatrix} 2 & -3 \\ 6 & -4 \end{bmatrix}$	$\begin{bmatrix} -1 & 2 \\ -5 & 1 \end{bmatrix}$ x_2	$\begin{bmatrix} -2 & 3 \\ -6 & 4 \end{bmatrix}$ $\downarrow x_2$ $\downarrow x_3$ $\downarrow x_4$
	12(a) Stable focus $\begin{bmatrix} -1 & 3 \\ -3 & -1 \end{bmatrix}$	13(a) Center $\begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$	14(a) Unstable focus $\begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$
Modified canonical form	12(c)		14(c)

Poles	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} & \text{\mathfrak{Ims}} \\ \hline & p_1 \times \\ \hline & \times \\ \alpha \times 0 \\ \hline & p_1 < \alpha < 0 \\ \end{array}$	p_1
A in arbitrary form	1(a) x_1 Eigenvector x_3	x_1 Eigenvector x_3	**x3
$\begin{bmatrix} p_1 & 0 & 0 \\ 0 & \alpha & \omega \\ 0 & -\omega & \alpha \end{bmatrix}$	$1(c) x_1^*$ x_3^*	x_1^* x_3^* x_2^*	3(c) x ₁ *