
14 INTRODUCTION TO 
TIME-DEPENDENT MATERIAL 
BEHAVIOR 

It is an everyday experience that even if a material is loaded by a constant load, 
its deformation may increase with time; a book-shelf loaded by too heavy books 
may increase its deflection as years goes by. As a consequence, one speaks of 
time-dependent material behavior also termed creep behavior. The terminology 
in the literature is not unique and, traditionally, when the time-dependent strains 
are related linearly to the stresses, one speaks of viscoelasticity whereas the 
notations of creep and viscoplasticity are often used when the time-dependent 
strains depend nonlinearly on the stresses. 
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Figure 14.1: Creep test; a) stress history, b) strain history. 

In this chapter, we will deal with viscoelasticity, whereas creep and vis- 
coplasticity will be addressed in the next chapter. However, we will start with a 
general discussion of various experimental findings relating to time-dependent 
behavior. 

There are three standard tests used to identify the time-dependent response 
of a material: the creep test, the relaxation test and the constant strain-rate 
test. In the creep test, the stress tr0 is applied instantaneously and then kept 
constant, cf. Fig. 14.1a), and as a result the strain history may vary as shown in 
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Figure 14.2: Relaxation test; a) strain history, b) stress history. 

~ - - c  I 
= c 2  

e = c 3  

1 > c2 > c3 

:- t ime 

increas ing  

strain rate 

Figure 14.3: Constant strain-rate test; a) strain history for three tests, b) corresponding 
stress-strain responses. 

Fig. 14.1b). In Fig. 14.1b), the strain e0 is the instantaneous strain that may be 
elastic (then e0 = ao/E)  or elasto-plastic (then eo = oo/E  + e p) and with time 
the creep strain e cr develops. 

Historically, the first quantitative statements about creep were made by the 
French engineer Vicat (1834), who observed that bridges suspended by hard- 
ened iron cables deflected significantly beyond their elastic deflections. For 
such cables, Vicat performed creep tests similar to the one shown in Fig. 14.1. 

In the relaxation test, the total strain is applied instantaneously and then kept 
constant at the value e0, cf. Fig. 14.2a), and as a result the stress history may 
vary as shown in Fig. 14.2b). In Fig. 14.2b), the stress o0 is the instantaneous 
stress that may be a result of elastic (then o0 = Eeo) or elasto-plastic response 
(then tr0 = E(eo - eP)) when enforcing the instantaneous strain e0. As time 
goes by, Fig. 14.2b) shows that the stress gradually decreases - it relaxes. 

In the constant strain-rate test, the total strain rate ~ = de~dr =constant is 
enforced on the material and the stress response is then measured so that the 
stress-strain relation can be established. In Fig. 14.3, the results of three such 
tests are shown and it appears that the larger the total strain-rate, the stiffer the 
material behaves. This is a characteristic property for materials that exhibit 
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Figure 14.4: Creep test for a 'small' stress; a) strain history, b) creep strain rate ~cr. 
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Figure 14.5: Creep test for a 'large' stress; a) strain history, b) creep strain rate ~cr. 

creep deformation and it is concluded that for such materials, the response is 
rate-dependent. This is in striking contrast to elasto-plasticity where the re- 
sponse is independent of the rate applied. 

If the stress applied in a creep test is not too large, the response shown in 
Fig. 14.4a) is obtained. Up until the time tl, we have primary c reep -  also 
called transient creep - and after time t l we have secondary creep - also called 
stationary creep. In Fig. 14.4b), the creep strain rate t~ cr = decr/dt is shown 
and it appears that during primary or transient creep, ~ r  is decreasing whereas 
during secondary or stationary creep, ~cr is constant. For some materials, the 
primary creep region is small and may be ignored; this is often the case for 
metals and steels exposed to high temperatures and constant load. 

If the stress applied in a creep test is sufficiently large, the response shown 
in Fig. 14.5a) is obtained. Now we also obtain tertiary creep after time t2 and 
in this region the creep strain rate ~cr increases, cf. Fig. 14.5b), and at time tf 
the material fails - creep failure has occurred. Modeling of the phenomenon of 
creep failure is very complex and we will here only be concerned with modeling 
of primary and secondary creep. 

Let us next discuss linear and nonlinear creep response. In Fig. 14.6, the 
results of two creep tests are shown; one with the constant stress tr0 and another 
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Figure 14.6: Creep test where linearity holds; if the stress is doubled the creep strain is 
also doubled. 
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Figure 14.7: Creep test when nonlinearity holds; if the stress is doubled the creep strain 
is more than doubled. 

test with twice the stress, i.e. 2tr0. For simplicity, the instantaneous response is 
assumed to be linear elastic, i.e. if it is e e in the first test it is 2e e in the second 
test. For linearity to hold, then if e cr is the creep strain in the first test at some 
time, the creep strain in the second test should be 2e cr at the same time. This 
linearity is characteristic for viscoelast ici ty,  which will be discussed in the next 
section. Viscoelastic response is typical for polymers and concrete loaded not 
too close to their ultimate strength. 

To illustrate nonlinear creep response, Fig. 14.7 is considered. Again two 
creep tests are performed, one with the stress tr0 and the other with the stress 
2a0. For simplicity, the instantaneous response is again assumed to be linear 
elastic, i.e. the instantaneous strain is e * in the first test and 2e ~ in the second 
test. Now however, the creep strain in the second test is not twice the creep strain 
in the first test; in practice it is larger. This nonlinear creep response is typical 
for creep of metals and steel and we shall discuss various means to model such 
creep response in the next chapter. 

To illustrate the phenomenon of recovery,  the creep test in Fig. 14.8 is con- 
sidered. As shown in Fig. 14.8a), the stress a0 is removed at time tl and after that 
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Figure 14.8: Phenomenon of recovery. 

the material is completely unloaded. The corresponding strain development is 
shown in Fig. 14.8b) where - for simplicity - the instantaneous strain is assumed 
to be elastic, i.e. equal to e e. Figure 14.8b) shows that when the specimen is 
unloaded at time t l, it responds elastically and thereby the strain decreases with 
the amount e e at time t l; however, even though the material is unstressed after 
time t~, the strain continues to decrease, i.e. the strain - or some part of it - 
is recovered. This phenomenon is characteristic for viscoelastic materials like 
polymers and concrete. The part of the total strain that is not recovered even 
after infinitely long time is called permanent creep strain. 
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Figure 14.9: Influence of temperature. 

In practice, it turns out that development of creep strains is very sensitive 
to temperature; the higher the temperature, the larger the creep strain. This 
is illustrated in Fig. 14.9 where - for simplicity - the instantaneous response 
is assumed to be linear elastic and where the E - m o d u l u s  is assumed to be 
temperature-independent. We shall later return to a more detailed discussion of 
the influence of temperature on various materials. 
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14.1 Viscoelasticity 

It is recalled that viscoelasticity means that if the stress in a creep test is doubled 
then the total strain is also doubled, cf. Fig. 14.6; this linearity is also assumed 
to hold for general load histories. The term viscoelasticity is used since the 
behavior is something between that of a viscous fluid and an elastic solid. Espe- 
cially in older literature and in material science literature, viscoelastic models 
are also referred to as rheological models and strictly speaking rheology means 
the science of viscous fluids. 

If the loading is such that the response - apart from being time-dependent - 
is elastic, the linearity property that is characteristic for viscoelasticity is closely 
fulfilled for polymers, cf. for instance Finnie and Heller (1959), Bartenev and 
Zuev (1968), Williams (1980) and Mills (1986), and for concrete, cf. for in- 
stance Finnie and Heller (1959), Neville (1963), Hannant (1969) and Browne 
and Blundell (1972). 

It turns out that there are two routes that can be followed in order to model 
viscoelasticity; one is the differential approach and the other is the hereditary 
approach. We will now provide a brief introduction to these formulations and 
the reader is referred to, for instance, Fltigge (1967), Hunter (1983), Malvem 
(1969), Pipkin (1972), Findley et al. (1976), Rabomov (1980) and Williams 
(1980) for further information. 

As emphasized above, we take the linearity principle as a basis for viscoelas- 
ticity and this leads to linear viscoelasticity that will be discussed below. Linear 
viscoelasticity has been successfully applied to concrete, most polymers, wood 
and paper. However, it will turn out that this formulation even makes for the 
possibility of modeling nonlinear viscoelasticity. 

Let us first introduce the creep compliance J(t) according to the following 
definition 

The creep compliance J(t) 

= strain developed in a creep test 

when loaded by a unit stress 

(14.1) 

Since the linearity principle holds, the strain development in a creep test with 
the constant stress a0 is then e(t) = J(t)ao. Comparing with Fig. 14.1, the 
creep compliance function J(t)  therefore gives information on how the strain 
develops with time in a creep test. 

In a similar manner, the relaxation modulus G(t) is defined by 

The relaxation modulus G(t) 

= stress developed in a relaxation test 

when loaded by a unit strain 

(14.2) 
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Figure 14.10: Two viscoelastic models in a) series and b) parallel. 

where the relaxation modulus G(t) should not be confused with the shear mod- 
ulus G related to linear elasticity. Since the linearity principle holds, the stress 
development in a relaxation test with the constant strain e0 is then given by 
0.(t) = G(t)eo. Comparing with Fig. 14.2, the relaxation modulus function G(t) 
therefore gives information on how the stress develops with time in a relaxation 
test. Certainly, one may expect that, in some fashion, the creep compliance J(t)  
and the relaxation modulus G(t) are related and we will establish this relation 
in the section dealing with the hereditary approach. 

Suppose that two viscoelastic models with creep compliances J1 (t) and J2(t) 
are placed in series, cf. Fig. 14.10a). With evident notation, we have 

O'=O'1 ----0"2; E = E 1 4 - E 2  

In a creep test with the stress 0"0, it follows that e = Jl(t)0"1 + J2(t)0"2 = (J1 (t) 4- 
JE(t))0"0. It is concluded that 

For two models placed in series 

J(t) = J1 (t) + J2(t) 

holds 

(14.3) 

Indeed, in a relaxation test it is also possible to establish how G(t) is related to 
Gl (t) and G2(t), but in the following we will not make use of this slightly more 
complex relation. 

Consider next that two viscoelastic models with relaxation moduli G1 (t) and 
G2(t) are placed in parallel, cf. Fig. 14.10b). It follows that 

0.----0.1 +0"2;  E----'61 mE2 

In a relaxation test with the strain eo, we then obtain 0. = Gl(t)el + G2(t)e2 = 
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( G 1  ( t )  + G2(t))eo. Consequently 

For two mode l s  p l a c e d  in paral le l  

G( t )  = G l ( t ) +  G2(t) 

holds  

(14.4) 

In a creep test, it is also possible to establish how J ( t )  is related to J1 (t) and 
J2(t) ,  but in the following we will not make use of this slightly more complex 
relation. 

14.2 Differential equation approach 
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Figure 14.11: a) Linear spring; b) dashpot. 

In the differential approach, viscoelastic models are constructed by various 
combinations of linear springs and dashpots. We have already touched upon this 
approach in Section 6.4 and the constitutive equations that control the spring and 
the dashpot shown in Fig. 14.11 are 

tr ~ = E e l ;  cr ~ = tl~ v (14.5) 

where superscript e and v refer to elastic and viscous behavior, respectively; the 
viscosi ty  coeff icient  tl has the dimension [Pa.s]. 

E t/ 

o ' ~  ~ 

Figure 14.12: Maxwell model. 

The M a x w e l l  m o d e l -  established by Maxwell (1868) - is shown in Fig. 14.12 
and it consists of a spring and dashpot in series. It appears that 

= ge + gv; a = tre = trv (14.6) 
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Figure 14.13: Response of Maxwell model; a) creep test, b) relaxation test and c) con- 
stant strain-rate test. 

Insertion of (14.5) in (14.6a) and use of (14.6b) give the following constitutive 
equation for the Maxwell model 

6" o" 
= --: + - M a x w e l l  m o d e l  

L tl 
(14.7) 

To determine the response during a creep test, (14.7) is multiplied by dt and 
tr 1 t ( 1  t integrated. This gives e = ~ + ~ So tr(~r)d~: = E + ~)a0 and a comparison with 

t (14.1) shows that the creep compliance is J ( t )  = -~ + ~. The response to a creep 
test is shown in Fig. 14.13a) and it appears that the Maxwell model exhibits 
secondary creep. For a relaxation test, we have e = e0 = constant and (14.7) 

then reduces to 6" + ~tr = 0 with the solution tr = C e - ~  t where the arbitrary 
constant C is determined from the condition that t = 0 gives tr = Eeo ,  i.e. 

tr = E e o e - ~  t as illustrated in Fig. 14.13b). Moreover, a comparison with (14.2) 
--E t 

shows that the relaxation modulus is G( t )  = E e  ~ .  Therefore 

E 
1 t - - t  

J ( t )  = ~ + - ;  6 ( t )  = E e  , 
rl 

M a x w e l l  m o d e l  (14.8) 

For a constant strain-rate test, we have e = ~t where the constant ~ is the strain- 
_s t 

rate. Insertion into (14.7) and integration gives tr = ~ r /+  C e - ,  where the 
arbitrary constant C is determined from the condition that t = 0 gives tr = 

et 0, i.e. tr = ttr/(1 - e - ;  ). Since t = e/~,  the stress-strain relation becomes 
E e do" E e 

a = ~r/(1 - e - ~ ) ,  which implies 7/ = E e - ~  and this means that the initial 
do" slope is always given as 7/ = E as shown in Fig. 14.13c). It appears that the 

stress-strain response depends on the strain-rate and that, for an infinitely large 
strain-rate, the response approaches linear elasticity. Considering Fig. 14.12, 
this is certainly not surprising since the dashpot responds as a rigid member for 
a sudden application of the load. 
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Figure 14.14: Response of Maxwell model; no recovery effect. 
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Figure 14.15: Kelvin model. 

If the stress in a creep test is removed at time t l, the Maxwell  model  reacts 
elastically during the unloading process and since tr = 6" = 0 when t > t l, 
(14.7) then gives that ~ = 0 when t > tl. We then obtain the response shown in 
Fig. 14.14; the Maxwell  model shows no recovery, cf. Fig. 14.8. 

The Kelvin model - established by Kelvin (1875) and also by Voigt (1892) 
and therefore also called the Voigt model - is shown in Fig. 14.15 and it consists 
of a spring and a dashpot in parallel. It follows that 

e = e ~ = e ~', tr = tr ~ + tr ~ (14.9) 

Insertion of (14.5) into (14.9b) and use of (14.9a) give the following constitutive 
equation 

[~r = Ee + tl~ Kelvin model[ (14.10) 

To determine the response in a creep test with the constant stress tr0, (14.10) 
Et is integrated to give e = ~ + Ce-'~ where C is an arbitrary constant. Since the 

dashpot reacts as a rigid member  when a load is suddenly applied, we have the 
condition e = 0 when t = 0. This condition determines C and we then obtain 
e = -~(1 - e-~ t) as shown in Fig. 14.16a). From (14.1) it is concluded that 

1 - ~ t  
J( t )  = ~ ( 1  - e n ) Kelvin model (14.11) 
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Figure 14.16: Response of Kelvin model; a) creep test, b) relaxation test and c) con- 
stant strain-rate test. 
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Figure 14.17: Response of Kelvin model; full recovery. 

It appears from Fig. 14.16a) that the Kelvin model exhibits primary creep only. 
Moreover, due to the dashpot, the Kelvin model reacts as a rigid material for a 
sudden application of the load. Due to this peculiarity, application of the Kelvin 
model should be performed judiciously. This special property is also responsible 
for the very special response when a relaxation test is performed. According to 
(14.10) and in order to maintain a constant strain e0, the stress must be a = Eeo. 
On the other hand, in order to instantaneously deform the Kelvin model to this 
strain value, an infinitely large stress is required. Therefore, in a relaxation test 
the stress increases instantaneously to infinity and immediately after, the stress 
will take the value a = Eeo; this result is illustrated in Fig. 14.16b). For a con- 
stant strain-rate test where e = ~t with ~ being constant, (14.10) immediately 
gives the result shown in Fig. 14.16c). It appears that for an infinitely small 
strain-rate, i.e. ~ ~ 0, the Kelvin model reacts as an elastic material. 

If the stress in a creep test is removed at time t l, the Kelvin model reacts as a 
rigid material during the unloading process and since a = 0 when t > tl, (14.10) 

at implies 0 = Ee  + ~/~ with the solution e = Ce-'r where the arbitrary constant 

C is determined by the condition e = el when t = tl, i.e. e = ele -~(t-q) when 
t > t l. This response is shown in Fig. 14.17 and with t ~ oo we obtain e ~ 0, 
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Figure 14.18: Burgers model. 

i.e. the Kelvin model exhibits full recovery. Certainly, this is also evident from 
Fig. 14.15 since the tensile stress in the spring, when the external stress tr = 0 
for t > t l, will compress the dashpot until the situation e = 0 has been reached. 

Having discussed the simple Maxwell and Kelvin models in detail, it is ev- 
ident that these models can be combined in series as shown in Fig. 14.18. We 
then obtain the B u r g e r s  m o d e l -  suggested by Burgers (1935) - which represents 
a pretty realistic viscoelastic model. We have 

6 = E M + ~ K ,  0 " - "  O" M - -  O'K (14.12) 

where subscripts M and K refer to the Maxwell part and the Kelvin part, re- 
spectively. Since (14.12a) gives e r  = e - e M  insertion into (14.10) gives with 
O'K = 0 "  

a = E r ( e  - e M )  + rIK(~ - e M )  

Differentiation with respect to time and insertion of (14.7) and using a M  = a 

then give the following constitutive equation 

Burgers model  

rIK rig 
~--~M6" + (1 + ' 

qM 

E r  )?r E r  .. 
+ E--uM + ~ = , l K e  + EK~ t/M 

To investigate the response in a creep test, we may force the condition 6" = 0 
on the constitutive equation and this leads to a linear second order differential 
equation in e, which may easily be solved. This solution will involve two arbi- 
trary constants to be determined from the initial conditions. While this proce- 
dure is certainly possible, the identification of the initial conditions turns out to 
be somewhat cumbersome. Indeed, this complication occurs for all viscoelastic 
differential equations of a higher order than one. An easier approach is to make 
use of (14.3), which with (14.8) and (14.11) directly gives the result 

EK 
1 t 1 - ~ t  

J ( t )  = ~ + ~ + (1 - e ,lr ) B u r g e r s  m o d e l  
~ M  

(14.13) 
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Figure 14.19: Response of Burgers model in creep test. 
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Figure 14.20: Response of Burgers model; partial recovery. 

This result is shown in Fig. 14.19 and it appears that primary and- in the limit 
- also secondary creep occurs and that the strain rate approaches ao/riM when 
t --+ oo. 

If the stress in a creep test is removed at time t l, the Maxwell part re- 
sponds elastically during unloading with no further deformation when t > t~, cf. 
Fig. 14.14, whereas the Kelvin part reacts as a rigid material during unloading 
and then full recovery is achieved in the Kelvin part when t ~ c~. Eventually, 
the only remaining strain is the viscous strain ~-M~ tl developed in the Maxwell 
part up until time t l. Therefore, the Burgers model will show the response 
shown in Fig. 14.20 and only partial recovery occurs. In conclusion, Figs. 14.19 
and 14.20 indicate that - except for tertiary creep - the Burgers model exhibits 
all the principal characteristics of a real material. 

Another often used model is the 3-parameter model shown in Fig. 14.21; this 
model is also called the standard linear solid. The constitutive equation can be 
obtained from (14.13) by letting r/m ~ oo. It is evident that this model will 
respond elastically to instantaneous loading and that it will only exhibit primary 
creep. 

The generalized Maxwell model appears from Fig. 14.22. Its response in a 



370 Introduction to time-dependent material behavior 

-------~ O" 
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Figure 14.22: Generalized Maxwell model. 

relaxation test can be inferred from (14.4) and (14.8) to provide 

General&ed Maxwell model 

n E i  t 

G(t) = E Eie ~' 
i=1 

(14.14) 

It is evident that a close approximation can be obtained to experimental data, In 
a creep test it can be shown that the response will also involve primary creep. In 
general, the response is controlled by the following equations 

E -"  E1 = E2 ----" " ' "  ----- E n ;  0 = 0.1 + 0 " 2 + ' ' ' + 0 " n  

and from (14.7) follows that 

o'I  a l  
g l  = ~-~'1 + - -  

r/1 

0 2  0"2 

r/2 

bn On 
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Figure 14.23: Generalized Kelvin model. 

It is easily checked that there are 2n + 1 of these constitutive equations which 
involve the 2 + 2n unknowns given by e, o, el, e 2 , . " ,  e, ,  Ol, o 2 , " . ,  tr,. By 
a tedious elimination process, the result becomes one constitutive relation in 
terms of one higher-order differential equation in e and o. 

The generalized Kelvin model  is given in Fig. 14.23 where the elastic spring 
with the stiffness E0 has been added in order that the response to an instanta- 
neous loading be elastic. Its response in a creep test can be inferred from (14.3) 
and (14.11) to provide 

Generalized Kelvin model  

1 1 ( 1  ~, 
J ( t )  = ~0 + i=1 Ei - e ) 

(14.15) 

It appears that primary creep, only, can be modeled even though a large possi- 
bility exists for close approximations to experimental data; possible secondary 
creep can be modeled by adding a dashpot in series with the spring E0. The 
series in (14.15) containing exponentials is called a Dirichlet series or - occa- 
sionally - a Prony series. In general, the response of the model is given by the 
following constitutive equations 

E " - E O + E I ' + E 2 " ~ ' ' ' - I - E n ;  0"--0"0 =0"1 = 0 " 2 = ' ' "  =O 'n  

and for the elastic spring and from (14.10) follow that 

ao = Eoeo 

trl = E le l  + t l l~  

02 "- E2F-2 + r/2~2 

On = Enen + l~nEn 

Again a tedious elimination process makes it possible to obtain one constitutive 
relation in terms of a higher-order differential equation in time of e and tr. 

Certainly, a very comprehensive and accurate model may be constructed by 
combining a generalized Maxwell model and a generalized Kelvin model. Irre- 
spective of how we combine springs and dashpots, it comes as no surprise that 
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it is always possible to write the constitutive equation in the following general 
form 

General format of the constitutive equation 

di tr ~ die 
a, --~ = bj - ~  

i=0 j=l 

(14.16) 

d% dOe where, per definition, we have "a'g = tr and "aT = e. In (14.16), ai and bj are 
some constant material parameters and, in general, n and m differ. An advantage 
of the differential equation approach discussed above is that each model is easy 
to physically understand and interpret and models can be constructed in an in- 
tuitive fashion. The drawback, however, is that the more advanced models soon 
become cumbersome to deal with and as already touched on in relation to the 
Burgers model the implication of a higher-order differential equation in time is 
that the initial conditions become difficult to deal with. 

t 

We have seen that an exponential term in the form e-,-;, where tr is a constant 
with the dimension of time, often emerges, cf. (14.8) and (14.11). It appears 
that this exponential term is unity for t = 0 whereas it has decreased to the 

1 value ~ when t = tr. If tr emerges in the creep compliance function, cf. (14.11) 
where tr = -~, tr is called a retardation time and if it emerges in the relaxation 
modulus, cf. (14.8) where tr again takes the value -~, it is called a relaxation 
time. If the creep compliance J(t) or relaxation modulus G(t) contain more 
exponential terms, cf. (14.15) and (14.14), it is possible to speak of a retardation 
or relaxation spectrum. In that case, a good approximation to experimental data 
over a large time span can be achieved if the retardation - or relaxation - times 
are spread uniformly; typically, a factor of 10 is chosen between these times, cf. 
for instance Ba~ant (1982) and Mills (1986). 

Returning to the constitutive relation (14.16), it appears that this differential 
equation is a linear and the superposition principle then holds - as expected. 
Therefore, if the stress history tr = trl (t) implies the response e = el (t), then the 
stress history tr = ktrl (t), where k is a constant, implies the response e = ke 1 ( t ) .  
Moreover, if the stress history tr = trl (t) implies e = ~1 ( t )  and the stress history 
tr = a2(t) implies e = eE(t) then the combined stress history tr = trl (t) + tr2(t) 
implies e = el(t) + eE(t). 

In (14.16), the material parameters ai and bj are constants, but we can relax 
this requirement and still maintain the superposition principle; as long as ai and 
bj do not depend on the stress or strain, the superposition principle will still 
hold. As an example, creep depends strongly on temperature and we may then 
let ai = ai(T) and bj = bj(T) where T is the temperature. 

It tums out that the effect of temperature can often be evaluated in a simple 
and elegant fashion and for this purpose consider the relaxation modulus defined 
by (14.2). Since the material parameters now depend on the temperature T 
we have G = G(t, T). Consider now relaxation tests performed at different 
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temperatures where To is a reference temperature. Since increase of temperature 
enhances creep deformation and plotting experimental data against logarithmic 
time, the results shown in Fig. 14.24a) are obtained. 

a) G(t, T) b) G(r 

T1 To T~ 

I P l o g  t 
log t 

=~A log a(T) 

. . . .  log 

Figure 14.24: Relaxation data plotted against logarithmic times; a) original data, b) 
master relaxation curve. 

For polymers, cf. Findley et al. (1976), and also for concrete, see Mukaddam 
and Bresler (1972), it is often observed experimentally that if the curves in 
Fig. 14.24a) are moved horizontally they can be brought to coincide; therefore, 
if the relaxation curve for the reference temperature To is moved the horizontal 
distance a(T2), where a(T) is a function of the temperature, then this curve 
coincides with the relaxation curve for the temperature T2, cf. Fig. 14.24a). 
With this property we have 

GT0(log t) = GT2 (log t + log a(T2)) 

This implies that if the reduced time ~ is defined by ~ = t a(T), where a(To) = 1, 
then all relaxation moduli can be written as G(t, T) = G(~) and all curves in 
Fig. 14.24a) can then be expressed by one curve as shown in Fig. 14.24b); this 
curve is called the master relaxation curve. The procedure above is called the 
time-temperature shift principle and evidently the same concepts hold for the 
creep compliance, i.e. 

Time-temperature shift principle 

G(t, T) = G(~) ; J(t, T) = J(~) 

The reduced time ~ is defined by 

= t a(T) 

where a(T) is the shift-factor and a(To) = 1 

In reality, this principle is not a principle per se, but it is an elegant procedure 
that can be adapted to many materials; it was introduced by Alfrey (1957) and 
Schwarzl and Staverman (1952) and expressions for the shift-factor a(T) can be 
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found, for instance, in Findley et al. (1976). If the temperature varies, it seems 
reasonable to use ~ = So a(T(r))dr where T(r)  expresses the temperature - time 
history. 

Returning to (14.16) and in order to achieve a better correlation with ex- 
perimental data, the material parameters are sometimes allowed to vary with 
the loading time. Since the material parameters then change - or harden- with 
time, such models are called time-hardening models; still the superposition prin- 
ciple holds. As an example, let the viscosity parameter 17 in the Maxwell model 
depend on the loading time, as suggested by Dischinger (1937). Then the con- 
stitutive relation (14.7) becomes 

Dischinger model 
(r tr 

exhibits time-hardening 

(14.17) 

The Dischinger model is very often used for modeling creep of concrete and 
by choosing a proper function for v/(t) close agreement with experimental data 
can be obtained; this model forms the basis in many national design codes. 
However, time-hardening models should be used with care and to illustrate that 
Fig. 14.25 is considered. In Fig. 14.25a), the stress is infinitely small up to 
t = t l where it is increased instantaneously to tr0; since the loading time starts 
at time t = 0 the strain rate at t = tl according to (14.17) is tt = tro/tl(tl). 
In Fig. 14.25b), the loading up to time tl is now exactly zero and since the 
loading time therefore starts at time tl the strain rate following (14.17) becomes 

= tr0/v/(0). In reality, the two responses shown in Fig. 14.25a) and b) must 
be identical and this illustrates the problems with using loading time as a creep 
hardening parameter; we will return to this problem later. 

Apart from creep hardening, another issue is that of aging, i.e. the material 
parameters change with time irrespective of the material being loaded or not. 
This aging effect is prominent when, for instance, glue is setting or concrete is 
hardening after it has been cast. Since such aging effects are strongly dependent 
on the temperature, it is a poor measure for aging just to use time as a parameter; 
some kind of maturity concept is more realistic. For hardening concrete, for 
instance, one may define an equivalent maturity time t, such that te is the same 
for two concrete specimens (made of the same composition) if the aging is the 
same despite the two specimens having been exposed to different temperature- 
time histories. This maturity concept was introduced by Plowman (1956) and a 
review is given by Byfors (1980). The equivalent maturity time te is defined by 

Equivalent maturity time te for measuring aging effects 

Ii f (O(f )) aT 
t, = f (Oo) 

(14.18) 
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Figure 14.25: Creep tests of Dischinger's time-hardening model; a) between t = 0 and 
t = t l the stress is infinitely small, b) between t = 0 and t = t l the stress 
is exactly zero. 

where f is a function of the absolute temperature 0 [K] and 00 is a reference 
temperature. In (14.18) 0 = 0(~) expresses the temperature-time history and 
the integration above is performed from time zero where the concrete was cast 
up until the current time t. As function f (0 ) ,  the Arrheniusfunction for thermal 

activation is often adopted, i.e. f(O) = k e - ~  where k is a constant, Q is the 
activation energy for creep [J/mol] for the material in question and R is the 
universal gas constant = 8.314 [J/mol K]. 

In view of these remarks, it then seems reasonable to model creep of aging 
materials by letting the material parameters in (14.16) depend on the equivalent 
maturity time te, i.e. ai = ai(te) and bj = bj(te). 

Nonlinear viscoelasticity based on (14.16) can be achieved by letting the 
parameters a~ and b~ depend on the stress and/or strain and we will return to this 
important possibility in Section 15.3. 

With this detailed discussion of various linear viscoelastic models exposed 
to uniaxial stress conditions, it is timely to see how these models can be gener- 
alized to three-dimensional stress conditions. Indeed this is straightforward and 
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from (14.16) it follows directly that 

General format for three-dimensional loading 

n a datrkl m # d#ek ! 
Z aij kl dt a = X B ij kl " ~  
a=0 #=0 
which in a matrix format reads 

~ A ~d~tr = ~ B ~d#E 
dt a dtll 

a=0 #=0 

(14.19) 

a 
where  Aijkl and  Bijkl are fourth-order tensors; the corresponding matrices A" 

and B p are obtained in a fashion similar to the discussion in Section 4.4. 
As an example, consider a Maxwell model for isotropic material behavior. 

A comparison with (14.7) shows that 

0 = B/jkt~kl (14.20) A~jkl~kl + AijkltTkl 

With A~jkl and AOkl being isotropic fourth-order tensors, cf. (4.93), and B/jk, 
being the unit fourth-order tensor, i.e. B/jkl~Tkl = ~ij, we obtain 

1 1 v vt~ijt~kl] A~jkt = Cijkl = ~-~[~(6ik6jl + 6il6jk) -- 1 + 

1 + ~ 1 ~ ~r (14.21) AOkl = [2 (6ikt~jl + t~il6jk) -" 1 + tl 
B i g  I 1 = ~(~ik~jl + r 

where G and v as usual denote the shear modulus and Poisson's ratio, respec- 
tively, whereas r/is a viscosity material parameter and ~ is a dimensionless ma- 
terial parameter; moreover ,  A~jKI is recognized as the isotropic elastic flexibility 
tensor C~jkl. Insertion of (14.21) into (14.20) provides 

Three-dimensional isotropic Maxwell model 

l~ ~ij(Tkk) + (aij 6ijtTkk) = gij ( ~ i j -  1 +-"'~ ~ 1 + 
(14.22) 

Apart from a redefinition of parameters, this expression corresponds exactly to 
(6.49), which, however, was derived by somewhat different means. 

�9 e . •  �9 

In accordance with (14.6), (14.22) may be written as etj + e~j = e~j and it 

�9 v 1 + r  __ l_~r ) is concluded that the viscous strain rate is given by e~j = --g-(tr~j r 
'~ = 2~ i.e. the viscous strains - or which for the choice ~ = 1/2 gives eij sij, 

the creep strains - are incompressible if the material parameter ~ is chosen as 
r = 1/2 and the volume changes are then purely elastic. 



Differential equation approach 377 

Another choice of the material parameter ~ becomes apparent if (14.22) is 
specialized to uniaxial stress conditions. Evaluating the axial strain rate ~11 and 
the transverse strain rate E22 -- t~33, we obtain 

1 1 
~ b l l  d---O'll ---- Ell 

t/ 
v r (14.23) 

" ~ 1 1 - - - - O ' 1 1  ~- E22 
t/ 

The first of these equations is in correspondence with (14.7). However, if r is 
chosen as r = v then (14.23) shows that the relation E22 = - 'V~ll holds not only 
for elastic conditions, but also during development of creep strains. This conve- 
nient situation is often supported experimentally for viscoelastic materials, for 
instance for concrete, cf. Hannant (1969) and Browne and Blundell (1972). 

As another example, consider a Kelvin model for isotropic material behavior. 
A comparison of (14.19) with (14.10) shows that 

0 AOklO'kl - BijklEkl + B/jkl~Tkl (14.24) 

With A ~ being the unit fourth-order tensor whereas B~ and B]jkt are isotropic _ ijkl 
fourth-order tensors, cf. (4.89), we obtain 

1 
AOk, "- -~(~ik~jl "4" ~il~jk) 

1 v 
BOkl = Dijkl = 2G[~(6ikgj l  4" 6ilgjk) d- 1-'~vt~ijgkl] (14.25) 

+'71v 
B/jkl -~ i ['~(Zik~l "~" ZilZjk) "t" ZijZkl] 

As before, G and v denote the shear modulus and Poisson's ratio, respectively, 
whereas t/is a viscosity material parameter and ~ is a dimensionless material 
parameter; moreover ,  B~ is recognized as the isotropic elastic stiffness tensor 

it seems more natural to choose the common factor in B~jkl as Dokl.  Intuitively, 

T~, but the choice n T'~ turns out to be more convenient as the later calculations 
will show. Insertion of (14.25) into (14.24) gives 

Three-dimensional isotropic Kelvin model 

V2vt~ijekk) + tl - (Eij "~" ~ 6ij~kk) trij = 2G(eij + 1 - 1 + v 1 - 2~ 
(14.26) 

Apart from a redefinition of parameters, this expression corresponds exactly to 
(6.56), which, however, was derived by somewhat different means. The consti- 
tutive relation above implies a,  = 3Keii + 1-~11+~2r and the choice ~ = -1  
therefore results in a ,  = 3 K e , ,  i.e. the volumetric response is purely elastic. 
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Another choice of the material parameter ~ becomes apparent if (14.26) is 
specialized to uniaxial stress conditions where eli is the axial strain and e22 = 

~33 is the transverse strain. If we again enforce the condition that e22 = -Veil 
should hold even during creep development, we obtain ekk = (1 -- 2v)ell and 
(14.26) evaluated for i j  = 11 and i j  = 22 then provides 

17 1 - 2 v  
O'll = Eell  + 1 + V (1 + r  - 2 ~  )/~ll 

n 
0 = l + v i  24 

The second of these equations is fulfilled for r = v and the first equation then 
reduces to 

a l l  ---- E/~I1 + ?//~11 

which corresponds to (14.10). We have then shown that the choice ~ = v implies 
that e22 = - v e i l  holds during uniaxial stress conditions. 

Above we have considered isotropic material behavior, but if the material is, 
say, orthotropic, it is often more convenient to work with the matrix version of 
(14.19). Then the matrices A a and B p are either unit matrices or orthotropic 
matrices and the orthotropic matrices will each contain nine independent ma- 
terial parameters in complete similarity with the discussion in Section 4.6, cf. 
in particular the orthotropic matrix format given by (4.55). Orthotropic vis- 
coelasticity is often used to model creep of wood, see MLrtensson (1992) and 
Ormarsson (1999), and paper, see Lif et al. (1999) .  

14.3 Hereditary approach 

We will now introduce the heredi tary  approach  to linear viscoelasticity, which 
allows greater freedom when constructing models than the differential approach 
that relies on the concepts of certain combinations of springs and dashpots. The 
essential issue in the hereditary approach is that of superposition. 

Consider the uniaxial stress history in Fig. 14.26a)' where the stress is in- 
creased instantaneously the constant amount Atr at time ~:. If Atr were ap- 
plied at time t = 0, the corresponding strain at time t would be given by 
Ae(t) = J(t)Atr, cf. (14.1), but now Atr is applied at time ~: so the strain 
Ae(t) at time t caused by Atr applied at time 1: becomes 

Ae(t) = J ( t  - ~:)Aa 

For an infinitesimal stress change dtr applied at time 1:, we then obtain de ( t )  = 

J ( t  - r )d tr  and integration all infinitesimal stress changes over the entire load 
history up until the current time t then provides 

Ii e( t )  = J ( t  - r)dtrO:) (14 .27)  
O0 
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Figure 14.26: a) Stress history where the stress is increased the constant amount Aa at 
time ~:, b) corresponding strain response. 

where the notation da(r) expresses that the infinitesimal stress changes are 
given as a function of the stress history tr = a(T). In (14.27), the lower in- 
tegration limit is by tradition taken as -oo ,  but since the stress is equal to zero 
up until time zero, where the loading begins, the contribution form the integral 
in (14.27) from - o o  to zero is nil. Moreover, suppose that an instantaneous 
loading occurs at time zero according to 

( 0 
~r(t) = 

/ or0 + Crl(t); 

when t < 0 

a t (0)  = 0 when t > 0 

then care should be taken in the integration. With evident notation we obtain 

I~ IS+ j( t  r)da(r) + io j ( t  e(t) = J(t - r)dtr(r) + - 
- - 0 0  - + 

= 0 + J( t )~o + J(t - r)da(r)  
+ 

i .e .  

e(t) = J(t)ao + J(t - z)dcr(r) 
+ 

With this interpretation, it appears that jumps are allowed in the stress history 
and the integral in (14.27) is therefore a so-called Stieltjes integral. 

dtr(~') 
However, if the stress history tr = tr(r) is smooth, we have da(r) = --Ti--~dr 

and (14.27) then takes the form 

Hereditary approach 

I~ dtr(r) 
e(t) = J(t - r) d~ dr 

o o  

(14.28) 
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where the integral is the usual Rieman integral. However, in the following we 
will adopt the format (14.28) in the sense that if the stress history exhibits jumps, 
then the interpretation (14.27) should be used. If the creep compliance J(t) is 
known then for any given stress history, (14.28) provides the corresponding 
strain. Since the current strain e(t) is obtained as an integration over the entire 
loading history, the terminology of hereditary approach is assigned to the for- 
mat (14.28). Moreover, the integral is an example of a so-called convolution 
integral and occasionally it is also called a Duhamel integral. 

The result (14.28) hinges only on the superposition principle which is called 
Boltzmann's superposition principle and is due to Boltzmann (1874), but the 
specific format given by (14.28) is due to Volterra (1913) and a material obey- 
ing (14.28) is therefore also called a Boltzmann-Volterra material. In (14.28), 
knowledge of J ( t - r )  and of the stress history provides the corresponding strain. 
However, if in (14.28) the strain e(t) and the creep compliance J ( t - ~ )  are taken 
as given and the stress history tr = tr(r) is taken as unknown, (14.28) represents 
an integral equation which, not surprisingly, turns out to be a Volterra integral 
equation. Viewed in this manner J ( t -  ~) comprises the so-called kernel and for 
more details see, for instance, Hildebrand (1965) and Volterra (1959). 

Since (14.28) only rests on the superposition principle, the models derived 
in the previous section can be recast into this format. As an example, take the 
Maxwell model with the creep compliance given by (14.8). From (14.28) it 
then follows that 

I~ 1 t - ~: ~ z z  ) 
e(t) = [7  + ] dr 

1:. 11 

- ( ~  + ) d ~ ( r )  - - r d a ( r )  
- ~ - 

= + _ _ 

v/ r/ 

~ 1[i = + _ 

Differention with respect to time then provides 

O" O" ~ = - - + -  
E t/ 

in accordance with (14.7). 
Therefore, per definition, the format (14.28) includes the models derived in 

the previous section, but (14.28) is more general since we can now specify any 
creep compliance J(t) and for a given stress history, (14.28) determines the 
current strain. Therefore, the creep compliance J(t) ca be identified entirely by 
means of experimental evidence and no resort has to be taken to an interpretation 
in terms of springs and dashpots. 
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F i g u r e  14.27:  a) Strain history where the strain is increased the constant amount Ae at 
time ~, b) corresponding stress response. 

Let us now assume that the strain history is known and let us derive a result 
analogous to (14.28). If the constant strain change Ae is applied at time T, see 
Fig. 14.27a), the corresponding stress change Air(t) at the current time t is given 
by Aa(t) = G(t - T)Ae, cf. (14.2). We are then led to 

tr(t) = G(t - T) de(T) 
o o  

(14.29) 

where the notation de(T) expresses that the infinitesimal strain changes are given 
as function of the strain history e = e(T). If a jump exists in the strain history, 
the interpretation of (14.29) is similar to (14.27), i.e. (14.29) is a Stieltjes inte- 
gral. If the strain history e = e(T) is smooth, (14.29) takes the format 

Hereditary approach 

I~ de(T) dr 
a(T) = G(t - T) dT 

(14.30) 

Again the lower integration limit is per tradition taken as -oo, but the integral 
contributes with nil up to time zero where the strain is applied, cf. the similar 
discussion following (14.27). It appears that once the relaxation modulus G(t) 
and the strain history are known, (14.30) provides the corresponding stress. 

Since the format (14.30) only relies on the superposition principle, this for- 
mat contains all the models discussed in the previous section. As an example, 
take the Maxwell model with the relaxation modulus G(t) given by (14.8). From 
(14.30) it then follows that 

E 
I [  - - - ( t -  r) de(T) 

tr(t) = Ee ~ , dT 
o o  dT 

E Ii  ET 
---t -- de(T) 

= E e  ~ e" d~ 
- dT 
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Differentiation with respect to time gives 

E2 _ E t l  I E ?r = ------e ~ e-~r d e ( r ) d T  + Ei: 
rl - dr  

and elimination of the integral term by means of the first equation results in 

E 
# = - - - a  + E~ 

in accordance with (14.7). 
However, the format (14.30) is more general than the format discussed in the 

previous section since it is now possible from experimental evidence to directly 
propose any relaxation modulus G(t)  and for a given strain history, (14.30) then 
provides the corresponding stress. 

We have previously indicated that one might expect that some relation exists 
between the creep compliance J( t )  and the relaxation modulus G(t); let us now 
identify this relation. 

Consider a creep test where the constant stress or0 is applied instantaneously 
at time t = 0. Then (14.28) - or (14.27) - gives 

e(t) = J( t )ao 

as expected. Supposing that this strain history is known, then insertion into 
(14.30) should provide a(t)  = ao, i.e. 

I~ d J ( r )  dr  = 1 
G ( t  - z )  ,, d r  (14.31) 

In the integration, it is noted that both G and J are zero when t < 0 and the 
integration for -oo up to t = 0-  therefore gives no contribution and most often 
there will be a discontinuity in J( t )  at time t = 0. 

Consider next a relaxation test where the constant strain e0 is applied instan- 
taneously at time t = 0. Then (14.30) - or (14.29) - gives 

o(t)  = G(t)eo 

as expected. Supposing that this stress history is known, then insertion into 
(14.28) should provide e(t) = e0, i.e. 

I~ dG(r) 
J ( t  - T) "dr dr  = l 

In this integration similar arguments hold to those discussed in relation to ( 14.31). 
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The freedom with which we can choose J(t)  - or G(t) - is a major advan- 
tage of the hereditary approach. Moreover, it is easy to generalize to three- 
dimensional loading and we obtain directly for (14.28) and (14.30) 

Three-dimensional loading 

s  = J i jk l ( t  -- r )  d t rk l ( r )  
d~ d~ 

or  

Ii aij(t) = Gijkt(t - ~) dekl(r) - d r  dr 

which in evident matrix notation becomes 

I~ da(T) 
e(t) = J( t  - r) dr 

oo " d r  
(14.32) 

I~ de(r) 
tr(t) = G( t  - T) d~ d~ 

oo 

We will now illustrate a particular property relating to the hereditary ap- 
proach. Suppose that J( t  - r) and the stress history tr(r) are known; at time 
t = tl, (14.32a) then gives 

e(tl) = I~ J ( t l - r ) d d ( ~ ) d r  
oo 

Consider now the strains at time t = t l + At where At is a small time increment; 
we obtain 

tl+At do'(r)  
e(tl + At) = J( t l  + A t -  r),, i/r dr  

i.e. 

IS dtr(r) 
e(tl +At) = J(tl + A t -  r )  d r  dr 

oo 

tl+At dry(r )  
+ J(t l  + At - ~) d~ 

Jr1 

d~r 

The important thing is that the first term on the fight-hand side is not equal to 
e(tl) since the argument in the function J differs in the two cases. Therefore 
the first term on the fight-hand side needs to be integrated from the beginning 
of the load history. Evidently, this complicates the application since at each 
time one must perform an integration over the entire load history to obtain the 
corresponding strain; indeed this is a consequence of the hereditary approach 
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where the current response is a result of the entire load history. However, this 
complicates the (numerical) determination of the response and it may be argued 
that the response of a material is more dependent on its recent history than on 
its past; this expectation is referred to as the concept of fading memory which 
is often adopted in constitutive mechanics, cf. the discussion given by Eringen 
(1975b); let us now see how the above problems can be circumvented. 

The generalized Kelvin model appears from Fig. 14.23 and it was shown 
that close predictions to experimental data can be obtained with this model. The 
corresponding creep compliance is given by (14.15), i.e 

l ~[~ L -Eit 
J(t)  = -~o + E i ( 1 -  e ", ) 

i=1 
This expression is immediately generalized to three-dimensional loading ac- 
cording to 

3 ( 0 = C o +  C i ( 1 -  e ~, ) 
i=1 

where Co and C~ are constant matrices. Insertion into (14.32) provides 

I• 
~ -E~(t- ~) da(r )  

e(t) = [Co + Ci(1 - e ,, )] .~.. dr  
i , g l ,  co i-1 

which can be written as 

Generalized Kelvin 

n n E__~ t 

E(t) = (Co + ~ C,)o(t)  - ~ e '1, ~i(t) 
(14.33) i---1 i=1 

where 

t E~ 
~i(t) = Ci I -  e ~rd t r ( r )  d~: 

dr 

At time t = t~, we obtain 

e(tl) = (Co + ~ Ci)tr(tl) - e ~, ~i(tl) (14.34) 
i=1 i=1 

and at time t = t l + At where At is a small time increment, we have with 
tr(tl -F At) = tr(tl) -I- Atr 

n 

e(tl + At) =(C0 + ~ Ci)(tr(tl) + Atr) 
i=1 

n -E~(t~ + at)_ 
- ~ e ,1, e~(tl + At) (14.35) 

i=1 
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Let the quantity A~i be determined as 

then 

A~.i = Ci Jt e ~, dv 
d'r 

F=i(tl d- At) = ei(t l)  + A~i 

Insertion of (14.37) in (14.35) and subtraction of (14.34) provide 

n 

e(t~ + At) = e(t~) + (Co + ~_~ C ) A a  
i=l 

-Ei(tl+At) -"~-tl ~ - E - j - ( t l + A t )  
- (e n, - e  t/, ) ~ i ( t l ) - -  e ni A~i 

i=1 i=1 

(14.36) 

(14.37) 

1 1 ~ 1 1 ~ _E_,tI~ ~ 1 1 dalld~: 
= (2G t- ~ ) 0 " 1 1  - -  e ,, e ~ ell  1 + v 2Gi 1 + ~i ~ 2Gi  1 + ~i d'r 

i=l i=l 

1 v Z 1 ~ ~ i  E1 t E__,~., 1 r d t r l l  
= b 2Gi  1 + ~i )O'11 "~" e ,, e e22 - ( 2 G  1 "~- V i=l i=l ~ 2Gi 1 + ~i d'r d,: 

It appears that o n c e  e ( t l )  and E/( t l )  a re  known, all terms on the fight-hand side 
are trivially identified except for the very last term that involves the quantity 
A~t which involves an integration. However, this integration is given by (14.36) 
and the important issue is that the integration limits are t l a n d  t l -I- At, i.e the 
integration should only be performed over the current time step and not over the 
entire loading history. 

The format (14.33) therefore allows a close prediction to experimental data 
and it implies a computational scheme that is very simple; for that reason this 
format is often adopted in the literature. In essence, it was suggested by Zienkie- 
wicz and Watson (1966) and more information and generalizations to include 
aging material parameters are given by Ba~ant (1979, 1982, 1996) and Dahlblom 
(1987). Applications to orthotropic materials are discussed for wood by MSxtens- 
son (1992) and Ormarsson (1999) and for paper by Lif (2003). 

Let us as an example establish the matrices Co and Ci - or rather their ten- 
sorial counterparts - in (14.33) for isotropic materials. In analogy with (14.21) 
we take 

1 1 v t~ijt~kl ] CiOkl = Cijkl = "~[-~(~ik~j, + ~il~jk) -" i + V 

Ciijkl 1 1  ~i --- ~ i  ['2 (~ik~jl + ~il~jk) -" 1"~" ~i ~ij~ki] 

For uniaxial stress conditions, where ell is the axial strain and e2a - e33 is the 
transverse strain, (14.33) gives 
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It appears that if we choose ~ = v then e22 = - - V e i l  holds not only for elas- 
tic conditions, but also during development of creep strains; as previously dis- 
cussed, this convenient situation is often supported experimentally, for instance 
for concrete, and it implies in (14.33) the great simplification that Ci = ECo.  

We finally observe that the format (14.33), in general, provides a very simple 
expression for the strain rate, namely 

k(t) Coo(t)  + 
E~ 

= - - e  ~, ~ ( t )  
i=1 17i 

Let us finally observe that it is tradition in the literature on linear viscoelas- 
ticity to make use of the Laplace-transform, which is a convenient means to 
transform linear ordinary differential equations like (14.16) into algebraic equa- 
tions and which also transforms convolution integrals like (14.28) to simple ex- 
pressions in the Laplace-transforms. For convenience and in order to emphasize 
the physical aspects, we have here chosen not to make use of this approach. 

The hereditary approach described above is derived from Boltzmann's super- 
position principle, i.e. it relies on linearity. However, it is possible to adopt a 
hereditary format and even develop a theory for nonlinear viscoelasticity. A 
number of possibilities exists and one approach is to use a multiple integral 
representation instead of the single integral appearing in (14.28). However, the 
formulations soon become very involved and applications for the solution of 
engineering problems seem to be scarce. Comprehensive reviews of various 
nonlinear hereditary theories are also included in the expositions of Findley 
et al. (1976) and Rabotnov (1980). 


