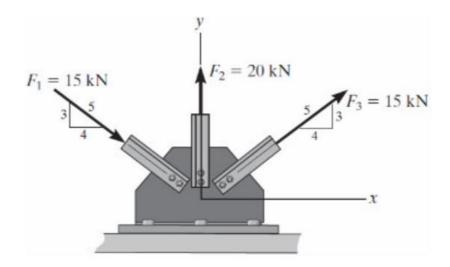
qwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwer Trabajo Práctico 1
Sistemas de fuerzas Acciones sobre las Estructuras

01/03/2024
Estabilidad I – Ingenieria Civil
Estabilidad I – Ingenieria Civil
WINCUYO
UNIVERSIDAD NACIONAL DE CUYO

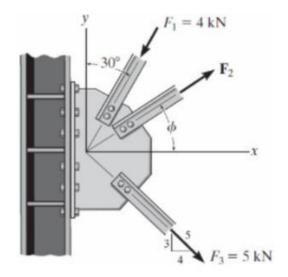
Dra. M Amani - Ing-M. Sanchis - Ing. M. Valentini


argnikizxcvbnmqwertyuropasar ghjklzxcvbnmqwertyuropasdfghjkl jklzxcvbnmqwertyuropasdfghjklzx zxcvbnmqwertyuropasdfghjklzxcv cvbnmqwertyuropasdfghjklzxcvbn mqwertyuropasdfghjklzxcvbnm qwertyuropasdfghjklzxcvbnmq

| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| ESTADIIIAAA I          | espacio. Acciones sobre las Estructuras. | de      |

## Ejercicio N°1:

#### Fuerzas coplanares concurrentes:

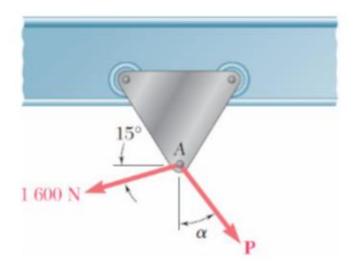

Dada la unión estructural sobre la cual actúan las fuerzas indicadas en la figura. Determine la fuerza Resultante del sistema (en magnitud, dirección y sentido) . Grafique el sistema en escala.



## Ejercicio N°2:

## Fuerzas coplanares concurrentes:

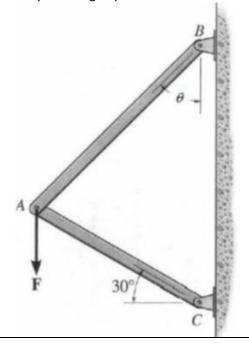
Conociendo que  $\emptyset = 30^{\circ}$  y que la Fuerza Resultante del sistema actúa en la dirección del eje X en sentido +. Determinar el valor de la magnitud de la fuerza F2 y el de la fuerza Resultante.




| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| ESTADIIIAAA I          | espacio. Acciones sobre las Estructuras. | de      |

## Ejercicio N°3:

#### Fuerzas coplanares concurrentes.

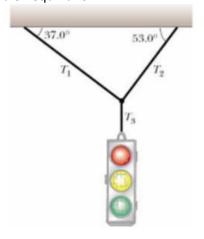

Siendo  $\alpha$ = 45® determine el valor de la fuerza P necesario para conseguir que la fuerza Resultante del sistema sea vertical. Y determine además el valor de la Resultante.



## Ejercicio N°4:

#### Fuerzas coplanares concurrentes.

Conociendo que la magnitud de la fuerza  $F=450~N~y~que~Ø=45^{\circ}$ . Encontrar las fuerzas que actuando en las direcciones de AB y AC tengan por resultante la fuerza F

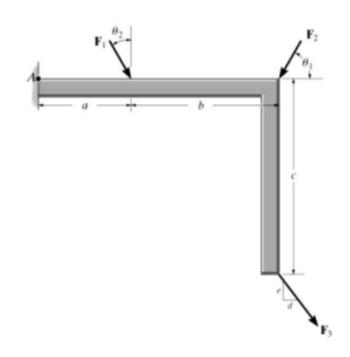



| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

#### Ejercicio N°5:

# Fuerzas coplanares concurrentes

El semáforo de la figura pesa 120 N y cuelga del cable T3. Determinar fuerzas en las direcciones T1 y T2 necesarias para mantener el sistema en equilibrio.



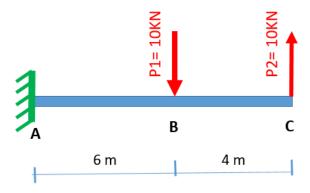

## Ejercicio N°6:

## Fuerzas coplanares no concurrentes

Determinar la fuerza resultante y el momento de las fuerzas respecto al punto A; que actúan sobre las siguiente estructura:

Siendo F1= 300N , F2= 400N, F3=500N , Ø1 = 60 $^{\circ}$  y Ø2 = 30 $^{\circ}$  a= 3m , b= 5m y c= 6m , d=3 y e=4

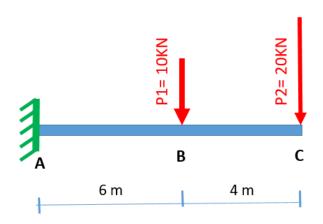



| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

## Ejercicio N°7:

#### Fuerzas coplanares paralelas

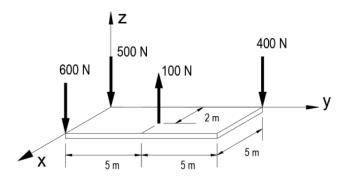
Determinar la resultante del siguiente sistema de Fuerzas.


Calcular el momento de las fuerzas respecto a los puntos A, B y C. Compare resultados y coloque conclusión.



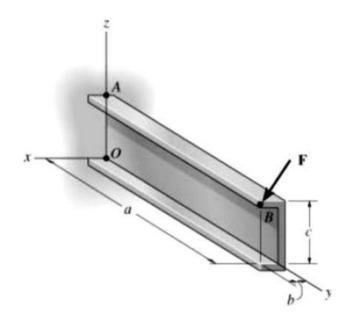
## Ejercicio N°8:

## Fuerzas coplanares paralelas


Determinar la resultante del siguiente sistema de Fuerzas y su ubicación. Respecto a que punto el momento de estas fuerzas será máximo?. Y respecto a cual será nulo?



| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

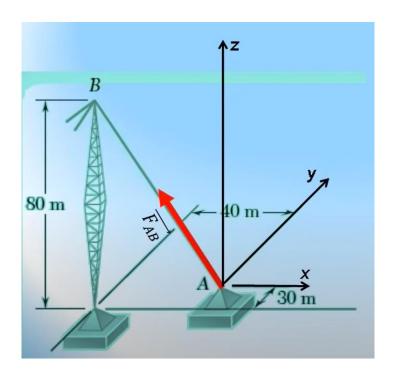

#### Ejercicio N°9: Fuerzas paralelas en el espacio.

Dado el sistemas de fuerzas paralelas en el espacio de la figura determinar magnitud dirección y sentido de la Resultante . Y determinar el punto de aplicación de dicha resultante.



#### Ejercicio N°10: Momento de una fuerza respecto a un punto en el espacio.

Conocida la fuerza F a través de la magnitud de sus versores (Fx= 600i, Fy= 300j y Fz= 600k) N. Y Siendo la dimensiones a= 2m, b= 0,2m y c= 0,4m. Determinar el momento de la fuerza F respecto al punto A.




| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| ESTADIIIAAA I          | espacio. Acciones sobre las Estructuras. | de      |

## Ejercicio N°11: Fuerzas concurrentes en el espacio.

Sobre uno de los tensores que sostiene la antena de la figura actúa la fuerza FAB

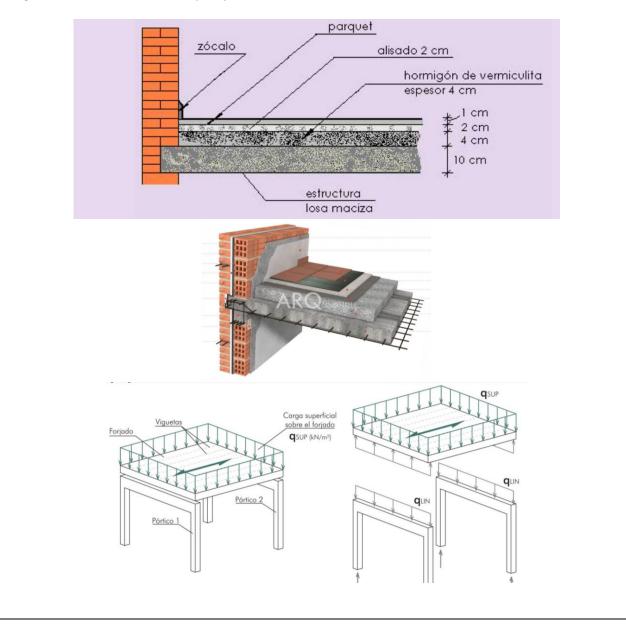
= 500 KN. Determinar las componentes de dicha fuerza en el apoyo A respecto a las direcciones X, Y y Z.



| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

## Ejercicio N°12:

Realizar el análisis de carga por unidad de superficie:


## 1) Entrepiso

Datos:

Cargas Permamentes:

- Piso de parquet de pinotea = 9 kN/m3
- Carpeta de nivelación (alisado) = 20 kN/m3
- Hormigon de verniculita = 4,5 KN/m3
- Losa de Hormigon armado 24 KN/m3

Cargas variable s/destino . Entrepiso p/Habitacion familiar = 2 KN/m2



| Fac | cultad de Ingeniería<br>UNCuyo | Trabajo Practico N 1                                                         | Alumno:     |
|-----|--------------------------------|------------------------------------------------------------------------------|-------------|
|     | Estabilidad I                  | Sistema de Fuerzas en el plano y el espacio. Acciones sobre las Estructuras. | Hoja:<br>de |

#### 2) Cubierta de techo de chapa

#### Datos:

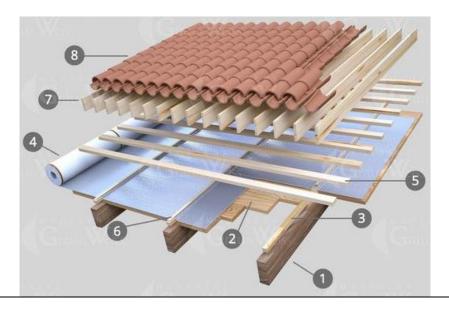
Chapa acanalada de perfil ondulado o trapezoidal de acero zincado o aluminizado de espesor 0,7 mm de espesor. (buscar peso unitario en CIRSOC 101)

Material aislante espesor 3 cm . Peso unitario 0,5 Kn/m3

Entablonado de madera de 2,5 de espesor. Peso unitario 6 kN/m3

#### Carga accidental:

Nieve variable s/la zona Por ej. En Mza ciudad = 0,3 kN/m2:




#### 3) Cubierta de techo de teja colonial

Teja colonial incluido el enlistonado de apoyo. (buscar peso unitario en CIRSOC 101) Material aislante espesor 3 cm . Peso unitario 0,5 Kn/m3 Entablonado de madera de 2,5 de espesor. Peso unitario 6 kN/m3

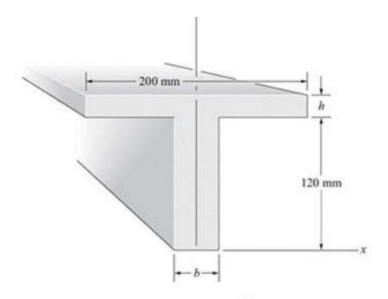
#### Carga accidental:

Nieve variable s/la zona Por ej. En Mza San Rafael = 0.6 kN/m2:



|   | Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|---|------------------------|------------------------------------------|---------|
| L | UNCuyo                 |                                          |         |
|   | Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
|   | Estabilidad i          | espacio. Acciones sobre las Estructuras. | de      |

## Ejercicio N°13:


Realizar el análisis de carga por unidad de longitud de las siguientes vigas:

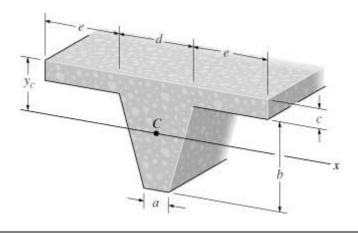
## 1) Viga metálica – peso propio

Siendo el peso unitario del acero = 78,5 kN/m3

b= 20mm y h=10mm.

Si la longitud de esta viga es de 7m. ¿Cuál es su peso total?

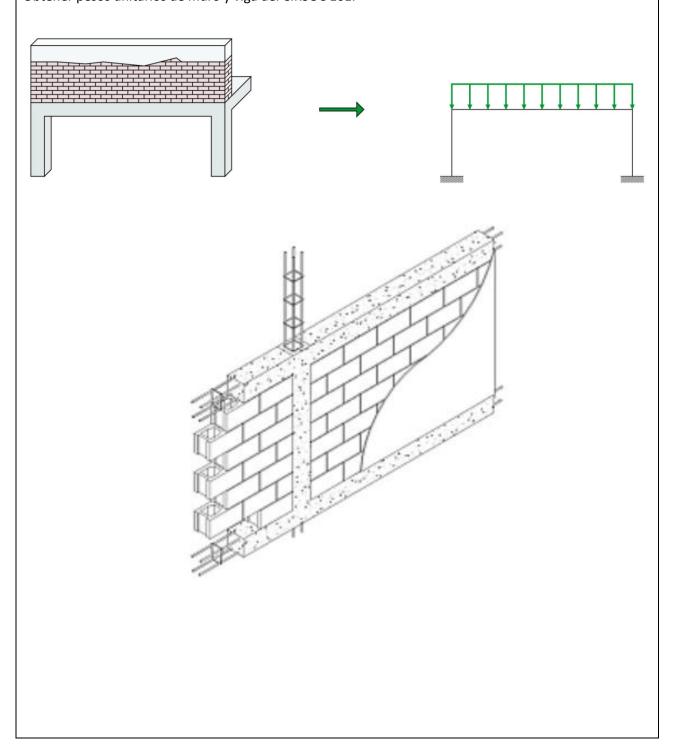



## 2) Viga de Hormigon Armado – peso propio

Siendo el peso unitario del acero = 24 kN/m3

b= 20mm y h=10mm.

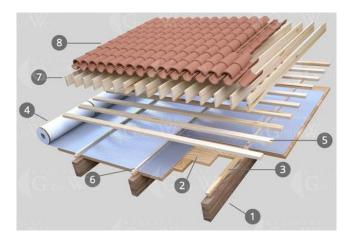
Determine el peso por m de longitud.

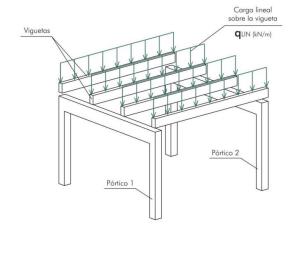

Si la viga tiene una longitud de 12 m. ¿Cuál es su peso total?

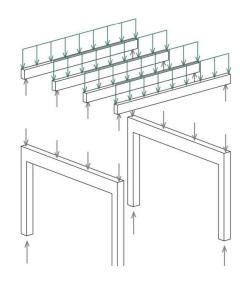


| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

## 3) Viga de Hormigon Armado cargada con muro de ladrillos


La viga de hormigón armado que se encuentra en la parte inferior tiene un ancho de 20 cm y una altura de 30 cm. Considerando que el muro de mampostería, bloque hueco de hormigón, tiene un ancho de 20 cm y alto de 2,5 m. Determinar la carga de peso propio y sobrecarga que recibe por m lineal dicha viga. Obtener pesos unitarios de muro y viga del CIRSOC 101.





| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

#### 4) Carga sobre correa o viga de techo

Considerando que las correas de techo de la figura del ej.4.3 son de madera con peso unitario de 9 kN/m3 y con sección de 6 cm de base y 12cm de altura que se encuentran separadas cada 80cm. Y reciben la carga que les transmite el techo a través del entablonado, cuyo peso por m2 fue determinado en el ej. 4.3. Determinar el peso propio de las correas y el valor de la carga que reciben de la cubierta. Realizar análisis de área de influencia. Dibujar esquemáticamente la viga inclinada, equivalente a dicha correa de techo , y representar las cargas sobre la misma.



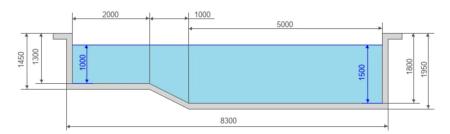




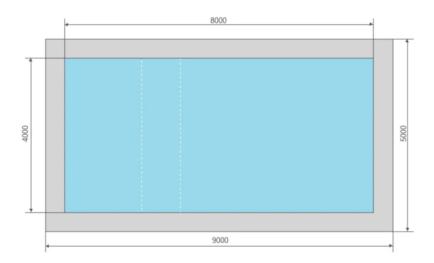
| Facultad de Ingeniería | Trabajo Practico N 1                     | Alumno: |
|------------------------|------------------------------------------|---------|
| UNCuyo                 |                                          |         |
| Estabilidad I          | Sistema de Fuerzas en el plano y el      | Hoja:   |
| EStabilidad I          | espacio. Acciones sobre las Estructuras. | de      |

# 5) Cargas en pileta de natación.

Para la pileta de la figura con paredes de hormigón armado (P. unitario 25 kN/3) y siendo el P. unit. del agua = 10 kN/m3.


Determinar las acciones que realiza el agua sobre paredes y fondo de la pileta.

Determinar peso por m2 de la losa de fondo de la pileta.


Determinar peso por m lineal de cada muro de la pileta.

Determinar peso total del conjunto (estructura de la pileta + agua)

#### Vista desde un costado



#### Vista perimetral desde arriba

