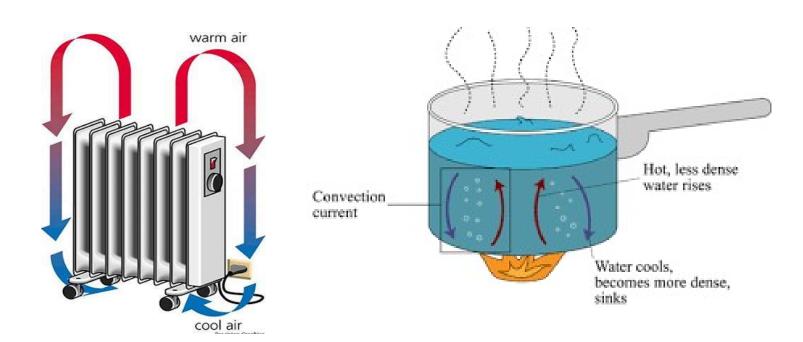
OPERACIONES UNITARIAS

2023

UT 1 - CALOR: CONVECCION a-

- La convección, es la transferencia de calor mediante el movimiento de un fluido.
- Ocurre cuando ponemos en contacto la superficie de un sólido con un fluido.
- La convección se lleva a cabo porque un fluido en movimiento recoge energía de un cuerpo caliente o lleva energía a un cuerpo frío
- En 1701 Newton definió el calor transferido por convección entre una superficie en contacto con un fluido por medio de:

$$Q = h A (T_S - T)$$


h = coeficiente de transferencia de calor por convección

T_S = temperatura de la superficie del sólido

T = temperatura media del fluido

Ejemplos de Convección natural

- Una cacerola con agua sobre una hornilla caliente. Como resultado, el agua del fondo se calienta más que en la superficie.
- La δ agua caliente es menor que la δ agua fría.
- El agua del fondo asciende y transmite su calor por convección natural.
- De manera semejante, ocurre con el aire que se pone en contacto con una superficie.(Radiante calefactor)

El coeficiente de convección natural para aire se puede obtener por:

cilindros o planos verticales:

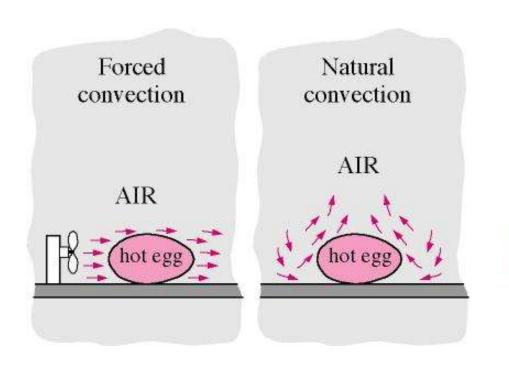
$$h = 1.127 (\Delta T)^{\frac{1}{3}}$$
 si L> 0.4 m
 $h = 1.217 \left(\frac{\Delta T}{L}\right)^{0.25}$ si L < 0.4 m
- cilindros horizontales: $h = 1.305 \Delta T^{\frac{1}{3}}$

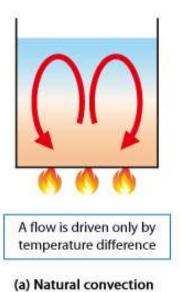
- placas calientes con la cara hacia abajo o placas frías con la cara hacia abajo

$$h = 1.305 \Delta T^{\frac{-7}{3}}$$

- placas frías con la cara hacia arriba o placas calientes con la cara hacia abajo

$$h = 0.5035 \left(\frac{\Delta T}{L}\right)^{0.25}$$


El coeficiente de convección natural para aire se puede obtener por:


Geometría	Dimensión Característica L	Tipo de flujo	Rango de GrPr	Coeficiente deTransferencia de calor ha (W/m²K)
Placas y cilindros verticales	Altura	Laminar Turbulento	10 ⁴ hasta 10 ⁹ 10 ⁹ hasta10 ¹³	ha=1.42(ΔT/L) ^{1/4} ha=1.31ΔT ^{1/3}
Cilindros horizontales	Diámetro externo	Laminar Turbulento	10 ⁴ hasta 10 ⁹ 10 ⁹ hasta10 ¹³	ha=1.32(ΔT/L) ^{1/4} ha=1.24ΔT ^{1/3}
Placas horizontales Superficie superior caliente o Superficie inferior fría	Como se define en el texto	Laminar Turbulento	10 ⁵ hasta 2.10 ⁷ 2.10 ⁷ hasta 3.10 ¹⁰	ha=1.32(ΔT/L) ^{1/4} ha=1.52ΔT ^{1/3}
Placas horizontales Superficie superior fría o Superficie inferior caliente	Como se define en el texto	Laminar	3.10 ⁵ hasta3.10 ¹⁰	ha=0.59(ΔT/L) ^{1/4}

L en metros. ΔT en °C Estas relaciones se pueden extender a presiones mayores o menores con respecto a la atmosférica multiplicando por los siguientes factores (p/1.033)^{1/2} para flujo laminar y (p/1.032)^{2/3}para flujo turbulento (presiones en atmósferas absolutas)

Convección forzada

- En la convección forzada las corrientes se producen por medio de una bomba, un agitador, un compresor o un ventilador.

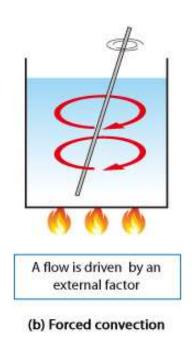


TABLE 1.2 Summary of Dimensionless Groups Used in Heat Transfer

Group	Symbol	Definition
Bejan number	Be	$\Delta PL^2/\mu\alpha$
Biot number	Bi	hL/k
Colburn j-factor	j_h	St · Pr ^{2/3}
Eckert number	Ec	$\hat{V}_{\infty}^2/c_p(T_w - T_{\infty})$
Elenbass number	El	$\rho^2 \beta g c_p z^4 \Delta T / \mu k L$
Euler number	Eu	$\Delta P/\rho \hat{V}^2$
Fourier number	Fo	$\alpha t/L^2$
Froude number	Fr	\hat{V}^2/gL
Graetz number	Gz	$\rho c_p \hat{V} d^2 / kL$
Grashof number	Gr	$g\beta \Delta T L^3/v^2$
Jakob number	Ja	$\rho_I c_{pl}(T_w - T_{sat})/\rho g_g h_{fg}$
Knudsen number	Kn	λ/L
Mach number	Ma	Ŷ/a
Nusselt number	Nu	hL/k
Péclet number	Pe	$Re \cdot Pr = \rho c_p \hat{V} L/k$
Prandtl number	Pr	$c_p \mu/k = \nu/\alpha$
Rayleigh number	Ra	$Gr \cdot Pr = \rho g \beta \Delta T L^3 / \mu c$
Reynolds number	Re	$\rho \hat{V} L/\mu$
Stanton number	St	$Nu/Re \cdot Pr = h/\rho c_p \hat{V}$
Stefan number	Ste	$c_p(T_w - T_m)/h_{sf}$
Strouhal number	Sr	Lf/\hat{V}
Weber number	We	$\rho \hat{V}^2 L / \sigma$

Por medio de relaciones de Números Adimensionales podemos definir los fenómenos de Convección.

• Si la relación entre el número de Grashof y (Re)²

Gr / Re²>> 1 Convección Libre o Natural

Gr / Re² << 1 Convección Forzada

Grashof number

Gr

 $g\beta \Delta T L^3/v^2$

Gr = Fuerzas de flotación / Fuerzas viscosas

Reynolds number

Re

 $\hat{V}L/\mu$

Re = Fuerzas de inercia / Fuerzas viscosas

Y con estos resultados concluimos que:

- Los fenómenos relacionados con la convección libre son dominados por fuerzas de flotación y el número de Nusselt será función de (Gr y Pr)
- Los fenómenos relacionados con la convección forzada están dominados por fuerzas de inercia y el número de Nusselt será función de (Re y Pr)

$$Nu = h L/k$$

$$Pr = Cp \mu / k$$
$$= v / \alpha$$

Nu = transferencia de calor por convección / transferencia de calor por conducción.

Pr = velocidad de difusión de la cantidad de movimiento (viscosidad) / velocidad de difusión del calor (difusividad térmica)

Convección forzada

La magnitud de la transferencia de calor por convección forzada es de decenas a cientos de veces más grande que la que se logra por convección natural.

$$Q = h A \Delta T$$

h = coeficiente de transferencia de calor por convección forzada.

h depende:

- -geometría del sistema
- -velocidad del fluido
- -de las propiedades de este

- Se emplean correlaciones apropiadas para cada condición específica.
- Estas correlaciones dependen de números adimensionales-
- tales como el Nusselt, Reynolds, Prandtl, Grashof, Graetz, etc.

Typical values of convection heat transfer coefficient

Type of

convection

h, W/m2 · °C

Free convection of

gases

2-25

Free convection of

liquids

10-1000

Forced convection

of gases

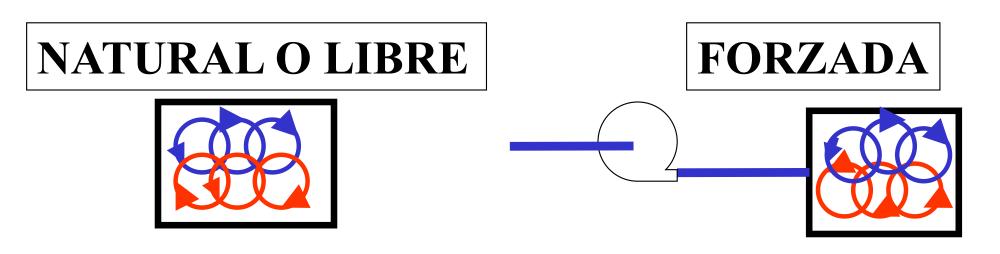
25-250

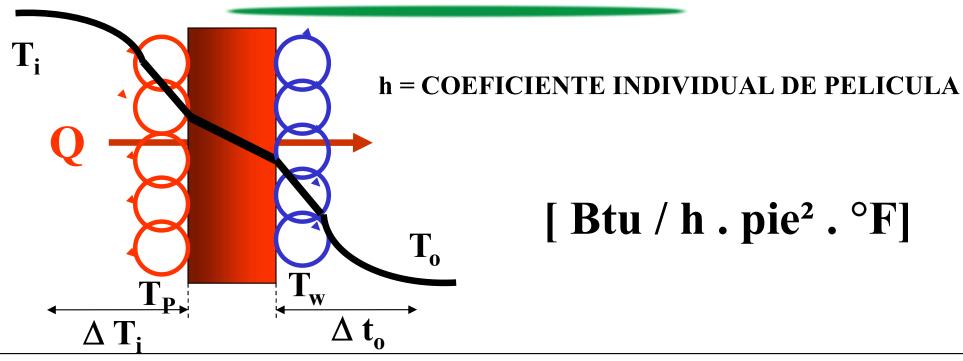
Forced convection

of liquids

50-20,000

Boiling and


condensation


2500-100,000

Coeficientes aproximados de película

Sin cambio de estado		
Agua	1450 a 9760	
Gases	15 a 250	
Solventes orgánicos	300 a 2500	
Aceites	50 a 585	
Condensación		
Vapor	5000 a 15000	
Solventes orgánicos	730 a 2500	
A ceites ligeros	1000 a 2000	
Aceites pesados (vacío)	100 a 250	
Amoniaco	2500 a 5000	
Evaporación		
Agua	4000 a 9760	
Solventes orgánicos	500 a 1500	
Amoniaco	1000 a 2000	
Aceites ligeros	730 a 1460	
Aceites pesados	50 a 250	

CONVECCION: Transferencia de calor entre fluido frío adyacente que reciben calor de superficies calientes, que transfieren al resto del fluido frió por mezcla, o partes calientes y frías de un fluido por mezclas. (agua que se calienta en un recipiente).

$$Q = \frac{A_{i}(T_{i} - T_{p})}{R_{i}} = \frac{A_{o}(T_{w} - T_{o})}{R_{o}}$$

$$Q = h_i A_i \Delta T_i = h_o A_o \Delta T_o$$

$$Q = h A \Delta t$$

El flujo de calor convectivo por unidad de area es proporcional a la diferencia entre la temperatura de la superficie y la temperatura del fluido, como se establece en la ley de Newton de enfriamiento

 $Q = h A \Delta t$

Q:FLUJO DE CALOR (Kcal/h)

A: AREA DE INTERCAMBIO DE CALOR (m²)

△ T: DIFERENCIA DE TEMPERATURA (°C)

h: COEFICIENTE PELICULAR DE TRANSMISION

DE CALOR POR CONVECCION (Kcal/h m² °C)

$$Q = h A \Delta t$$

La dependencia lineal de la fuerza impulsora de la temperatura $(T_s - T_f)$, es la misma que para la conducción pura en un sólido con conductividad térmica constante.

A diferencia de la conductividad térmica, el coeficiente de transferencia de calor no es una propiedad intrínseca del fluido.

Depende tanto de los patrones de flujo determinados por la mecánica de fluidos como de las propiedades térmicas del fluido. Si T_f – T_s > 0, el calor será transferido del fluido a la superficie.

- h: DEPENDE DE MUCHAS VARIABLES
 - a) PROPIEDADES DEL FLUIDO (ρ , μ , λ , c_p)
 - b) GEOMETRIA DEL SISTEMA
 - c) VELOCIDAD DEL FLUIDO
 - d) DIFERENCIA CARACTERISTICA DE Tº

h: COEFICIENTE PELICULAR DE TRANSMISION

DE CALOR POR CONVECCION (Kcal/h m² °C)

definir; A y ∆t

FLUJO FLUJO LAMINAR
TURBULENTO

h : "no es una constante característica del fluido"

h: "no es una propiedad de transporte"

Los Profesores de la Cátedra OPERACIONES UNITARIAS

i Agradecemos su asistencia!