5/9/2019 XML-RPC Specification
XML-RPC Specification

Tue, Jun 15, 1999; by Dave Winer.

Updated 6/30/03 DW

Updated 10/16/99 DW

Updated 1/21/99 DW

This specification documents the XML-RPC protocol implemented in UserLand Frontier 5.1.

For a non-technical explanation, see XML-RPC for Newbies.

This page provides all the information that an implementor needs.

Overview

XML-RPC is a Remote Procedure Calling protocol that works over the Internet.

An XML-RPC message is an HTTP-POST request. The body of the request is in XML. A procedure
executes on the server and the value it returns is also formatted in XML.

Procedure parameters can be scalars, numbers, strings, dates, etc.; and can also be complex record and list
structures.

Request example
Here's an example of an XML-RPC request:

POST /RPC2 HTTP/1.0

User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
<methodName>examples.getStateName</methodName>
<params>
<param>
<value><id>41</id></value>
</param>
</params>
</methodCall>

Header requirements

The format of the URI in the first line of the header is not specified. For example, it could be empty, a single
slash, if the server is only handling XML-RPC calls. However, if the server is handling a mix of incoming
HTTP requests, we allow the URI to help route the request to the code that handles XML-RPC requests. (In
the example, the URI is /RPC2, telling the server to route the request to the "RPC2" responder.)

A User-Agent and Host must be specified.

The Content-Type is text/xml.

The Content-Length must be specified and must be correct.

xmlrpc.scripting.com/spec.html

1/5

5/9/2019 XML-RPC Specification

Payload format
The payload is in XML, a single <methodCall> structure.

The <methodCall> must contain a <methodName> sub-item, a string, containing the name of the method to
be called. The string may only contain identifier characters, upper and lower-case A-Z, the numeric
characters, 0-9, underscore, dot, colon and slash. It's entirely up to the server to decide how to interpret the
characters in a methodName.

For example, the methodName could be the name of a file containing a script that executes on an incoming
request. It could be the name of a cell in a database table. Or it could be a path to a file contained within a
hierarchy of folders and files.

If the procedure call has parameters, the <methodCall> must contain a <params> sub-item. The <params>
sub-item can contain any number of <param>s, each of which has a <value>.

Scalar <value>s

<value>s can be scalars, type is indicated by nesting the value inside one of the tags listed in this table:

Tag Type Example
<i4> or <int> four-byte signed integer -12
<boolean> 0 (false) or 1 (true) 1
<string> string hello world
<double> double-precision signed floating -12.214
point number
<dateTime.iso8601> date/time 19980717T14:08:55
<base64> base64-encoded binary eWI1IGNhbidOIHJTY WQgdGhpcyE=

If no type is indicated, the type is string.

<struct>s

A value can also be of type <struct>.

A <struct> contains <member>s and each <member> contains a <name> and a <value>.

Here's an example of a two-element <struct>:

<struct>

<member>
<name>lowerBound</name>
<value><i4>18</i4></value>
</member>

<member>
<name>upperBound</name>
<value><i4>139</id></value>
</member>

</struct>

<struct>s can be recursive, any <value> may contain a <struct> or any other type, including an <array>,
described below.

<array>s
A value can also be of type <array>.

An <array> contains a single <data> element, which can contain any number of <value>s.

xmlrpc.scripting.com/spec.html 2/5

5/9/2019 XML-RPC Specification

Here's an example of a four-element array:

<array>

<data>
<value><id>12</id></value>
<value><string>Egypt</string></value>
<value><boolean>0</boolean></value>
<value><id>-31</id></value>
</data>

</array>

<array> elements do not have names.
You can mix types as the example above illustrates.

<arrays>s can be recursive, any value may contain an <array> or any other type, including a <struct>,
described above.

Response example

Here's an example of a response to an XML-RPC request:

HTTP/1.1 200 OK

Connection: close

Content-Length: 158

Content-Type: text/xml

Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value><string>South Dakota</string></value>
</param>
</params>
</methodResponse>

Response format
Unless there's a lower-level error, always return 200 OK.
The Content-Type is text/xml. Content-Length must be present and correct.

The body of the response is a single XML structure, a <methodResponse>, which can contain a single
<params> which contains a single <param> which contains a single <value>.

The <methodResponse> could also contain a <fault> which contains a <value> which is a <struct>
containing two elements, one named <faultCode>, an <int> and one named <faultString>, a <string>.

A <methodResponse> can not contain both a <fault> and a <params>.
Fault example

HTTP/1.1 200 OK

Connection: close

Content-Length: 426

Content-Type: text/xml

Date: Fri, 17 Jul 1998 19:55:02 GMT
Server: UserlLand Frontier/5.1.2-WinNT

xmlrpc.scripting.com/spec.html 3/5

5/9/2019 XML-RPC Specification

<?xml version="1.0"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>faultCode</name>
<value><int>4</int></value>
</member>
<member>
<name>faultString</name>
<value><string>Too many parameters.</string></value>
</member>
</struct>
</value>
</fault>
</methodResponse>

Strategies/Goals

Firewalls. The goal of this protocol is to lay a compatible foundation across different environments, no new
power is provided beyond the capabilities of the CGI interface. Firewall software can watch for POSTs
whose Content-Type is text/xml.

Discoverability. We wanted a clean, extensible format that's very simple. It should be possible for an HTML
coder to be able to look at a file containing an XML-RPC procedure call, understand what it's doing, and be
able to modify it and have it work on the first or second try.

Easy to implement. We also wanted it to be an easy to implement protocol that could quickly be adapted to
run in other environments or on other operating systems.

Updated 1/21/99 DW

The following questions came up on the UserLand discussion group as XML-RPC was being implemented in
Python.

e The Response Format section says "The body of the response is a single XML structure, a
<methodResponse>, which can contain a single <params>..." This is confusing. Can we leave out the
<params>?

No you cannot leave it out if the procedure executed successfully. There are only two options, either a
response contains a <params> structure or it contains a <fault> structure. That's why we used the word
"can" in that sentence.

e Is "boolean" a distinct data type, or can boolean values be interchanged with integers (e.g. zero=false,
non-zero=true)?

Yes, boolean is a distinct data type. Some languages/environments allow for an easy coercion from
zero to false and one to true, but if you mean true, send a boolean type with the value true, so your
intent can't possibly be misunderstood.

e What is the legal syntax (and range) for integers? How to deal with leading zeros? Is a leading plus
sign allowed? How to deal with whitespace?

An integer is a 32-bit signed number. You can include a plus or minus at the beginning of a string of

numeric characters. Leading zeros are collapsed. Whitespace is not permitted. Just numeric characters
preceeded by a plus or minus.

xmlrpc.scripting.com/spec.html 4/5

5/9/2019 XML-RPC Specification

e What is the legal syntax (and range) for floating point values (doubles)? How is the exponent
represented? How to deal with whitespace? Can infinity and "not a number" be represented?

There is no representation for infinity or negative infinity or "not a number". At this time, only decimal
point notation is allowed, a plus or a minus, followed by any number of numeric characters, followed
by a period and any number of numeric characters. Whitespace is not allowed. The range of allowable
values is implementation-dependent, is not specified.

e What characters are allowed in strings? Non-printable characters? Null characters? Can a "string" be
used to hold an arbitrary chunk of binary data?

Any characters are allowed in a string except < and &, which are encoded as < and &. A string
can be used to encode binary data.

e Does the "struct" element keep the order of keys. Or in other words, is the struct "foo=1, bar=2"
equivalent to "bar=2, foo=1" or not?

The struct element does not preserve the order of the keys. The two structs are equivalent.

e Can the <fault> struct contain other members than <faultCode> and <faultString>? Is there a global
list of faultCodes? (so they can be mapped to distinct exceptions for languages like Python and Java)?

A <fault> struct may not contain members other than those specified. This is true for all other
structures. We believe the specification is flexible enough so that all reasonable data-transfer needs can
be accomodated within the specified structures. If you believe strongly that this is not true, please post
a message on the discussion group.

There is no global list of fault codes. It is up to the server implementer, or higher-level standards to
specify fault codes.

e What timezone should be assumed for the dateTime.i1s08601 type? UTC? localtime?

Don't assume a timezone. It should be specified by the server in its documentation what assumptions it
makes about timezones.

Additions
e <base64> type. 1/21/99 DW.
Updated 6/30/03 DW
Removed "ASCII" from definition of string.
Changed copyright dates, below, to 1999-2003 from 1998-99.
Copyright and disclaimer

© Copyright 1998-2003 UserLand Software. All Rights Reserved.

xmlrpc.scripting.com/spec.html 5/5

