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Singularities and uncertainties in arm configurations are the main problems in kinematics robot control
resulting from applying robot model, a solution based on using Artificial Neural Network (ANN) is pro-
posed here. The main idea of this approach is the use of an ANN to learn the robot system characteristics
rather than having to specify an explicit robot system model.

Despite the fact that this is very difficult in practice, training data were recorded experimentally from
sensors fixed on each joint for a six Degrees of Freedom (DOF) industrial robot. The network was designed
to have one hidden layer, where the input were the Cartesian positions along the X, Y and Z coordinates,
the orientation according to the RPY representation and the linear velocity of the end-effector while the
output were the angular position and velocities for each joint, In a free-of-obstacles workspace, off-line
smooth geometric paths in the joint space of the manipulator are obtained.

The resulting network was tested for a new set of data that has never been introduced to the network
before these data were recorded in the singular configurations, in order to show the generality and effi-
ciency of the proposed approach, and then testing results were verified experimentally.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

For industrial applications, it is necessary to move the end-
effector of a manipulator along some desired path with a pre-
scribed speed. To achieve this goal, the motion of the individual
joints of a manipulator must be carefully coordinated. Robot con-
trol usually requires control signals applied at the joints of the ro-
bot while the desired trajectory is specified for the end-effector.
Then, it is essentially important for the controller to provide both
positions and velocities transformation from Cartesian to joint
space coordinate [1–3].

Kinematics control, and dynamic control are the two main areas
of robot control problem [4]. Handling of torque limits naturally
leads to control algorithms based on the dynamic model of the
manipulator as, e.g., in [5–7]. A problem with these algorithms is
the remarkable computational load required to handle the dynam-
ics of a full-sized manipulator, which is seldom affordable by cur-
rent industrial control units. In addition, implementation of
torque-based control laws requires replacement of the low-level
joint servos typically available in industrial robots with custom
control loops. As a matter of fact, to our knowledge, on-line dy-
ll rights reserved.
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namic-based methods have indeed been tested in experiments
only on laboratory setup with arms of a few degrees of freedom
(DOF).

A different approach to path tracking aimed at overcoming the
above drawbacks is based on the so-called kinematics control. In
detail, kinematics control consists in an inverse kinematics trans-
formation which sends to the joint servos the reference values cor-
responding to an assigned end-effector trajectory (both position
and velocity); as a first advantage, this allows simple interfacing
with the standard control architecture of industrial robots. In the
framework of kinematics-based methods for path tracking, the
counterpart of the physically meaning joint torque limits is played
by acceleration constraints and the use of full dynamic models can
be avoided; this typically leads to computationally light algorithms
that allow real-time implementation on standard numerical hard-
ware even for robot arms of many (DOFs). A further advantage of
kinematics control methods is the possibility of exploiting the
presence of redundant (DOFs).

It must be remarked that to achieve perfect path tracking, it is
necessary to know the whole trajectory beforehand, which leads
to off-line control techniques [8]. In the presence of uncertainty
in kinematics, it is impossible to derive the desired joint angles
from the desired Cartesian path by only solving the inverse kine-
matics problem [9]. On the other hand, the Jacobian matrix is a
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critical component for generating trajectories of prescribed geom-
etry in the joint space. Most coordination algorithms employed by
industrial robots avoid numerical inversion of the Jacobian matrix
by driving analytical inverse solution on an ad hoc basis. Therefore,
it is important that efficient algorithms be developed [1].

Many research efforts have been devoted towards solving this
problem, one of the first algorithms employed was the Resolved
Motion Rate-Control method [10], which uses the pseudoinverse
of the Jacobian matrix to obtain the joint velocities corresponding
to a given end-effector velocity, an important drawback of this
method was the singularity problem.

A velocity-singular configuration is a configuration in which a
robot manipulator has lost at least one motion (DOF). In such con-
figurations, the inverse Jacobian will not exist, and the joint veloc-
ities of the manipulator will become unacceptably large that often
exceed the physical limits of joint actuators [11]. To overcome the
problem of kinematics singularities, the use of a damped least
squares inverse of the Jacobian matrix has been later proposed in
lieu of the pseudoinverse [12,13].

Since in the above algorithmic methods the joint angles are ob-
tained by numerical integration of the joint velocities, these and
other related techniques suffer from errors due to both long-term
numerical integration drift and incorrect initial joint angles. To alle-
viate the difficulty, algorithms based on the feedback error correc-
tion are introduced [14,15]. However, it is assumed that the exact
model of manipulator Jacobian matrix of the mapping from joint
coordinate to Cartesian coordinate is exactly known. It is also not
sure to what extent the uncertainty could be allowed. Therefore,
most research on robot control has assumed that the exact kine-
matics and Jacobian matrix of the manipulator from joint space to
Cartesian space are known. This assumption leads to several open
problems in the development of robot control laws today [8].

There have been an increasing research interest of Artificial
Neural Networks (ANNs). In recent years, and many efforts have
been made on applications of Neural Networks to various control
problems [16–20]. ANNs, try to mirror the brain functions in a
computerized way by resorting to the learning mechanism as the
basis of human behavior. Utilizing the samples from the experi-
ments, ANNs can be applied to the problems with no algorithmic
solutions or with too complex algorithmic solutions to be found.
Their ability of learning by examples makes the ANNs more flexible
and powerful than the model based approaches [21].

An adaptive learning approach using ANN has been proposed
here to control the motion of a 6DOF serial robot manipulator
and to overcome the arising problems, which are mainly singular-
ities and uncertainties in arm configurations. In this approach a
network have been trained to learn desired set of angular positions
and velocities from a given set of end-effector positions/orienta-
tions and velocities. Passing nearby and through singular configu-
rations, data used were recorded experimentally from sensors
fixed on each joint (as was recommended by Karilk and Aydin
[4]), and training was done off-line until reaching acceptable error
percentages finally training results were verified experimentally.
2. Overview of serial robot kinematics

In the programming of robot manipulators, a set of desired posi-
tions and orientations and their time derivatives, are specified in
space, the problem is to find all possible sets of actuated joint vari-
ables and their corresponding time derivatives which will bring the
end-effector to the set desired positions and orientations with the
desired motion characteristics [1].

It is known that the vector of Cartesian space coordinates (the
end-effector position and orientation) x of a robot manipulator is
related to the joint coordinates q by:
x ¼ f ðqÞ ð1Þ

where f(�) is a nonlinear differential function.
On the other hand, the mapping from the vector of joint veloc-

ities q
�

to the vector of Cartesian space velocities x
�

is also of interest,
which is given by:

x
�
¼ JðqÞ q

�
ð2Þ

where J(q) is the Jacobian matrix.
The inverse kinematics problem is defined as, given x the end-

effector position and orientation vector, q the joint variable vector
is to be found. More desirably given x and x

�
to find q and q

�
.

In other words, the inverse kinematics problem is to solve the
inverse problems [3]:

q ¼ f�1ðxÞ ð3Þ

q
�
¼ J�1ðqÞ x

�
ð4Þ

In solving Eq. (3), Denavit and Hertenberg [22] proposed a matrix
method of systematically establishing a coordinate system to each
link of an articulated chain as shown in Fig. 1 to describe both trans-
lational and rotational relationships between adjacent links [18,23].

In this method each of the manipulator links is modelled, this
modelling describes the ‘‘A” homogeneous transformation matrix,
which uses four link parameters.

The forward kinematics solution can be obtained as:

AEND�EFFECTOR ¼ T6 ¼ A1 � A2 � A3 � A4 � A5 � A6

¼

Rotation
matrix

j Position
vector

���� j � � ��
Perspective

transformation
j Scaling

2
6664

3
7775

¼

nx sx ax px
ny sy ay py
nz sz az pz
0 0 0 1

2
664

3
775 ð5Þ

where n is the normal vector of the hand. Assuming a parallel-jaw
hand, it is orthogonal to the fingers of the robot arm. s is the sliding
vector of the hand. It is pointing in the direction of the finger motion
as the gripper opens and closes. a is the approach vector of the hand.
It is pointing in the direction normal to the palm of the hand (i.e.,
normal to the tool mounting plate of the arm). p is the position vec-
tor of the hand. It points from the origin of the base coordinate sys-
tem to the origin of the hand coordinate system, which is usually
located at the center point of the fully closed fingers.

The orientation of the hand is described according to the RPY
rotation as:

RPYð/x;/y;/zÞ ¼ RotðZw;/zÞ � RotðYw;/yÞ � RotðXw;/xÞ ð6Þ

After T6 matrix is solved:

/z ¼ ATAN2ðny;nxÞ ð7Þ
/y ¼ ATAN2ð�nz;nx cos /z þ ny sin /zÞ ð8Þ
/x ¼ ATAN2ðax sin /z � ay cos /z; oy cos /z � ox sin /zÞ ð9Þ

These equations describe the orientation according to the RPY
representation [4].

To find the inverse kinematics solution, however, joints angels
are found according to the manipulator’s end position, described
with respect to the world coordinate system.

Inverse kinematics solution can be shown as a function:

IKðX;Y ; Z;/x;/y;/zÞ ¼ ðh1; h2; h3; h4; h5; h6Þ ð10Þ

Traditional methods for solving the inverse kinematics problem are
inadequate if the structure of the robot is complex, besides; these



Fig. 1. Schematic diagram for a general 6DOF serial robot showing the wrist mechanism.
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methods suffer from the fact that the solution does not give a clear
indication on how to select an appropriate solution from the several
possible solutions for a particular arm configuration, the user often
needs to rely on his/her intuition to pick the right answer [19,23].

On the other hand, the manipulator singularity resolution prob-
lem has attracted many research interests, and various approaches
have been proposed to tackle the problem.

Techniques of coping with kinematics singularities can be di-
vided into four groups: avoiding singular configurations, robust in-
verses, a normal form approach and extended Jacobian techniques.

The first approach to copy with singularities is to keep a current
configuration far away from singular configurations. Unfortu-
nately, it causes severe restrictions on the configuration space, as
well as the workspace, because the singular configurations split
the configuration space into separate components. To avoid ill con-
ditioning of the Jacobian matrix, robust inverses are used, Instead
inverting the original Jacobian matrix at singularity; a disturbed,
well-conditioned Jacobian matrix is inverted. The main drawback
using this approach is that robust inverse methods increase errors
in following a desired path.

The normal form technique, with the use of diffeomorphisms in
joint and task spaces, expresses original kinematics around singu-
larity in the simplest, normal form. Then, a piece of the path to fol-
low, corresponding to the singular configuration mapped into the
task space, is moved from the task to the joint space and trajectory
planning is performed there. Far away from singularities the basic
Newton algorithm is used to generate a trajectory. Finally, trajec-
tory pieces are joined.

For most singularities the normal form approach enables to de-
tect their types. It provides for a smooth passing through singular
configurations. The main disadvantage of the normal form ap-
proach is a significant computational load in deriving the
diffeomorphisms.

Finally, the extended Jacobian technique, supplements original
kinematics with auxiliary functions. Then, extended Jacobian is
formulated to be well-conditioned.

For nonredundant manipulators with square Jacobian matrices
the extended Jacobian forms a non-square matrix and its general-
ized (Moore–Penrose) inversion is computationally expensive [24].

Therefore, to analyze the singular conditions of a manipulator
and develop effective algorithms to resolve the inverse kinematics
problem at or in the vicinity of singularities are of great
importance.
3. Artificial neural networks – a brief description

A neural network is a massively parallel-distributed processor
that has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the human brain in
two respects; the network through a learning process acquires
the knowledge, and interneuron connection strengths known as
synaptic weights are used to store the knowledge.

An ANN is a group of interconnected artificial neurons interact-
ing with one another in a concerted manner. The node receives
weighted activation of other nodes through its incoming connec-
tions. First, these are added up (summation). The result is then
passed through an activation function and the outcome is the acti-
vation of the node. The activation function can be a threshold func-
tion that passes information only if the combined activity level
reaches a certain value, or it could be a continues function of the
combined input, for this purpose, the most common to use is the
sigmoid function as a nonlinear activation function.

However any input–output function that possesses a bounded
derivative can be used in place of the sigmoid function. For each
of the outgoing connections, this activation value is multiplied by
the specific weight and transferred to the next node.

There are many learning rules can be used to train a network,
the most used learning rule is the Generalized Delta learning Rule
(GDR) which is most useful for multi layered networks training. A
back propagation network trains with two-step procedure, the
activity from the input pattern flows forward through the network
and the error signal flows backwards to adjust the weights, where
knowledge acquired by the network is stored as a set of connection
weights [25].

4. Results

The solution of the kinematics Jacobian, which is mainly solved
in this paper, involves the determination of the end-effectors posi-
tion and orientation and their rate of change as a function of given
positions and speed of the axes of motion.



Fig. 2. The topology of the designed network.

Fig. 3. The learning curve for the training set.

Table 1
Total error percentage for the training data set.

Joint 1 (%) Joint 2 (%) Joint 3 (%) Joint 4 (%) Joint 5 (%) Joint 6 (%)

Angular position (h) 2.37 0.795 0.907 1.948 3.688 0.77
Angular velocity (x) 1.683 2.02 1.525 2.19 1.375 1.313
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A supervised feed forward ANN was designed using C program-
ming language, the network consists of input, output and one hid-
den layer as can be seen in Fig. 2, every neuron in the network is
fully connected with each other, sigmoid transfer function was
used as an activation function, generalized backpropagation delta
learning rule (GDR) algorithm was used in the training process.

The input vector for the network consists of the position of the
end-effector of the robot along the X, Y and Z coordinates of the
global coordinate system, the orientation according to the RPY rep-
resentation and the linear velocity of the end-effector, while the
output vector was the angular position and velocities of each of
the six joints, respectively.

Studying the Inverse Kinematics of a serial manipulator by using
ANNs has two problems, one of these is the selection of the appro-
priate type of network and the other is the generating of suitable
training data set [26]. Different researchers have applied different
methods for gathering training data, some of them have used the
kinematics equations [4,27], some of them have used the network
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Fig. 4. A schematic diagram of the control system used.
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Fig. 5. Angular velocity of the fourth joint during testing process, showing the behavior of the network when passing nearby and through singular configurations.

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200

Time ( Sec. )

A
ng

ul
ar

 V
el

oc
ity

 ( 
D

eg
./ 

Se
c.

 )

Desired

ANN Output

Lucas of which robot is passing 
through singular configurations 

Fig. 6. Angular velocity of the fifth joint during testing process, showing the behavior of the network when passing nearby and through singular configurations.
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inversion method [3,18], some of them have used the cubic trajec-
tory planning [28] and other some have used a simulation program
for this purpose [29]. However, there are always kinematics uncer-
tainties presence in the real world such as ill-defined linkage
parameters, links flexibility and backlashes in gear train, in this ap-
proach, although this is very difficult in practice [30], training data



Table 2
Total error percentage for the testing data set.

Joint 1 (%) Joint 2 (%) Joint 3 (%) Joint 4 (%) Joint 5 (%) Joint 6 (%)

Angular position (h) 0.915 0.135 0.57 4.79 4.81 1.11
Angular velocity (x) 1.265 2.02 1.205 1.41 1.15 1.175
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Fig. 7. Trajectory tracking for the X coordinate.
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were recorded experimentally from sensors fixed on each joint (as
was recommended by Karilk and Aydin [4]).

Trajectory planning was performed to get 600 data set for every
1-s interval for the FANUC M-710i robot; 400 sets of them were
used in the training process while the remaining 200 were used
for the testing process. All input and output values are usually
scaled individually such that overall variance in the data set is
maximized, this is necessary as it leads to faster learning, all the
vectors were scaled to reflect continuous values ranges from �1
to 1.
4.1. Training process

In backpropagation networks, number of hidden neurons
determines how well a problem can be learned. If too many are
used, the network will tend to try to memories the problem
and thus not generalize well later, if too few are used the network
will generalize well but may not have enough power to learn the
patterns well. Getting the right number of hidden neurons is a
matter of trial and error, since there is no science to it, number
of hidden neurons was set to be 55 by trial and error with a con-
stant learning factor of 0.9.

The difference between desired and actual system output could
be the performance measure for the network, as a learning system
adapts its internal structure to achieve better response.

In the GDR the system is modified following each iteration,
which leads to the learning curve shown in Fig. 3.

Table 1 shows the error percentages of each of the six joints
after 0.25 million iterations.
4.2. Testing process

New data that has never been introduced to the network before
have been fed to the trained network in order to test its ability to
make prediction and generalization to any set of data later over-
coming the singularity and uncertainty in the arm configuration
resulting from applying the robot model, Fig. 4 shows a schematic
diagram of the control system used.

Testing data were meant to pass nearby and through the singu-
lar configurations (fourth and fifth joints), these configurations
have been determined by setting the determinant of the Jacobian
matrix to zero.

Figs. 5 and 6 show the velocity tracking of the fourth and fifth
joints, respectively showing the behavior of the network when
passing nearby and through singular configurations during testing
process.

Table 2 shows the percentages of error for the testing data
set.
4.3. Experimental verification

In order to verify the testing results, experiment has been per-
formed to make sure that the output is the same or sufficiently
close to the desired trajectory, and to show the combined effect
of error, Figs. 7–12 show the tracking of the Cartesian paths for
the X, Y, and Z coordinates with the Roll, Pitch and Yaw orientation
angles, respectively. The locus of which robot is passing through
singular configurations are also shown.

The error percentages in the set are shown in Table 3.
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Fig. 10. Trajectory tracking for the Roll orientation angle.
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Table 3
Total error percentage for the experimental verification.

Cartesian position Orientation

Px (%) Py (%) Pz (%) Roll (%) Pitch (%) Yaw (%)

3.34 6.72 0.35 2.55 5.54 5.79
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5. Conclusions

Inverse Kinematics problem is very important to be solved in
close-form for the robots using the Kinematics control approach,
closed-form analytical solutions can only be found for manipula-
tors having simple geometric structures. A number of algorithmic
techniques mainly based on inversion of the mapping established
between the joint space and the task space of the manipulator’s
Jacobian matrix have been proposed for those structures that can-
not be solved in closed form.

In order to overcome the arising problems from applying the
system kinematics model, which are mainly singularities and
uncertainties in the arm configuration, Artificial Neural Network
has been used trying to solve these problems. The proposed tech-
nique does not require any prior knowledge of the kinematics
model of the system being controlled, the basic idea of this concept
is the use of the ANN to learn the characteristics of the robot sys-
tem rather than to specify explicit robot system model. Any mod-
ification in the physical set-up of the robot such as the addition of a
new tool would only require training for a new trajectory without
the need for any major system software modification, which is a
significant advantage of using neural network approach.

This proposed approach possesses several distinct advantages:
First, it can be applied to any general serial manipulator with posi-
tional degrees of freedom since learning is only based on observa-
tions of input/output relationships of the system being controlled,
Second, reasonable accuracy can be achieved along the desired
path, Third, the proposed approach can be adapted to any general
serial manipulator including both redundant and non-redundant
systems.

Since one of the most important issues in using ANNs is the
selection of the appropriate type of network, for future research,
we suggest that different types of networks (different topology,
different activation function, different learning mode) to be used
in order to get, if possible, more accurate trajectory tracking.
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