
3
Inverse Kinematics

Bill Goodwine
University of Notre Dame

3.1 Introduction
3.2 Preliminaries

Existence and Uniqueness of Solutions • Notation and
Nomenclature

3.3 Analytical Approaches
Reduction of Inverse Kinematics to Subproblems • Pieper’s
Solution • Example • Other Approaches

3.4 Numerical Techniques
Newton’s Method • Inverse Kinematics Solution Using
Newton’s Method

3.5 Conclusions

3.1 Introduction

This chapter presents results related to the inverse kinematics problem for robotic manipulators. As presented
elsewhere, the forward kinematics problem of a manipulator is to determine the configuration (position
and orientation) of the end effector of the manipulator as a function of the manipulator’s joint angles.
The inverse problem of that, i.e., determining the joint angles given a desired end effector configuration,
is the inverse kinematics problem and the subject of this chapter. This chapter will outline and provide
examples for two main categories of approaches to this problem; namely, closed-form analytical methods
and numerical approaches.

The main difficulty of the inverse kinematics problem in general is that for some desired end effector
configuration, there may be no solutions, there may be a unique solution, or there may be multiple
solutions. The advantage of a numerical approach is that it is relatively easy to implement. As illustrated
subsequently, however, one drawback is that the method only leads to one solution for one set of starting
values for what is fundamentally an iterative method. Also, if no solutions exist, a numerical approach
will simply fail to converge, so care must be taken to distinguish between an attempted solution that will
never converge and one that is simply slow to converge. The advantage of analytical approaches is that all
solutions can be found and if no solutions exist, it will be evident from the computations. The disadvantage
is that they are generally algebraically cumbersome and involve many steps and computations. Also, closed
form solutions only exist for certain categories of manipulators, but fortunately, the kinematics associated
with the most common manipulators generally seem to belong to the class of solvable systems.

3.2 Preliminaries

This section will elaborate upon the nature of the inherent difficulties associated with the inverse kinematics
problem and also provide a summary of the nomenclature and notation used in this chapter. The first part
of this section provides simple examples illustrating the fact that a various number of solutions may exist

Copyright © 2005 by CRC Press LLC

3-2 Robotics and Automation Handbook

y

x

l1

l2

θ1

θ2

(x, y)

φ

FIGURE 3.1 Simple two link manipulator.

for a given desired end effector configuration of a robot. The second section provides a summary of the
notation and nomenclature used subsequently in this chapter.

3.2.1 Existence and Uniqueness of Solutions

Consider the very simple planar two link robot illustrated in Figure 3.1. Assume that the first link has a
length of l1, the second link has a length of l2 and that θ1 and θ2 denote the angles of links one and two,
respectively, as illustrated in the figure. The variables x , y, and φ denote the position and orientation of
the end effector. Since this planar robot has only two joints, only two variables may be specified for the
desired end effector configuration. For the purposes of this example, the (x , y) location of the end effector
is utilized; however, any two variables, i.e., (x , y), (x , φ), or (y, φ) may be specified.

For simplicity, if we assume that l1 = l2, then Figure 3.2 illustrates a configuration in which two inverse
kinematic solutions exist, which is the case when (x , y) = (l1, l2). The two solutions are obviously,
(θ1, θ2) = (0◦, 90◦) and (θ1, θ2) = (90◦, 0◦). Figure 3.3 illustrates a configuration in which an infinite
number of kinematic solutions exist, which is the case where (x , y) = (0, 0). In this case, the manipulator is
“folded back” upon itself, which is typically physically unrealizable, but certainly is mathematically feasible.
Since this configuration will allow the robot to rotate arbitrarily about the origin, there are an infinite num-
ber of configurations that place the end effector at the origin. Figure 3.4 illustrates a configuration in which
only one inverse kinematics solution exists, which is the case when (x , y) = (l1 + l2, 0). Finally, Figure 3.5
illustrates a case where no inverse kinematic solutions exist, which is the case when (x , y) = (l1 + l2 +1, 0).

While the preceding example was very simple, it illustrates the fundamental point that the inverse
kinematics problem is complicated by the fact that there may be zero, one, multiple, or an infinite number of

l1

l2

y

x x

(x, y) = (l1, l2)

(x, y) = (l1, l2)

l1

l2

y

FIGURE 3.2 A configuration with two inverse kinematic solutions.

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-3

l1 l2

y

x

(x, y) = (0, 0)
l1

l2

y

x

(x, y) = (0, 0)

FIGURE 3.3 A configuration with an infinite number of inverse kinematic solutions.

l1 l2

y

x

(x, y) = (l1 + l2, 0)

FIGURE 3.4 A configuration with one inverse kinematic solution.

solutions to the problem for a specified configuration. This phenomenon extends to the more complicated
kinematics of six degree of freedom manipulators as well. As will become apparent in Section 3.3, certain
assumptions must be made regarding the kinematics of the manipulator to make the inverse kinematics
problem more feasible.

3.2.2 Notation and Nomenclature

This chapter will utilize the popular notation from Craig [1]. In particular:

A P is a position vector, P , referenced to the coordinate frame A;
X̂ A, Ŷ A, Ẑ A are coordinate axes for frame A;
B X̂ A,B Ŷ A,B Ẑ A are coordinate axes for frame A expressed in frame B ;
A
B R is the rotation matrix describing the orientation of frame B relative to frame A;

l1 l2

y

x

(x, y) = (l1 + l2 + 1, 0)

FIGURE 3.5 A configuration with no inverse kinematic solutions.

Copyright © 2005 by CRC Press LLC

3-4 Robotics and Automation Handbook

A PBORG is the origin of frame B expressed in coordinate of frame A;
A
B T is the homogeneous transformation relating frame B to frame A; and,
J (θ) is the Jacobian which maps joint angle velocities to the rigid body velocity of the nth

coordinate frame.

Also, unless otherwise indicated, this chapter will assume that coordinate frames are assigned to axes of
the manipulator in accordance with the Denavit-Hartenberg [2] procedure presented in Craig [1]. This
particular frame assignment procedure is implicit in some of the equations that are part of the algorithms
presented. In particular, frames i and i +1 are affixed to the manipulator in accordance with the following
rules:

1. At the point of intersection between the joint axes i and i + 1, or the point where the common
perpendicular between axes i and i + 1 intersects axis i , assign the link frame origin for frame i .

2. Assign Ẑi to point along the i th joint axis.
3. Assign X̂ i to point along the common perpendicular with axis i + 1, or if axes i and i + 1 intersect,

normal to the plane defined by the axes i and i + 1.
4. Assign frame 0 to match frame 1 when the first joint variable is zero, and for the nth frame (the last

frame), the origin and X̂n axis can be assigned arbitrarily.

If this procedure is followed, then the following link parameters are well-defined:

αi is the angle between Ẑi and Ẑi+1 measured about X̂ i ;
ai is the distance from Ẑi to Ẑi+1 measured along X̂ i ;
di is the distance from X̂ i−1 to X̂ i measured along Zi ; and,
θi is the angle between X̂ i−1 and X̂ i measured about Ẑi .

A detailed, but straightforward derivation shows that

i−1
i T =




cos θi − sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 − sin αi−1di

sin θi sin αi−1 cos θi sin αi−1 cos αi−1 cos αi−1di

0 0 0 1


 (3.1)

3.3 Analytical Approaches

This section outlines various analytical solution techniques that lead to closed form solutions to the inverse
kinematics problem. This section is not completely comprehensive because specific manipulators may have
kinematic features that allow for unique approaches. However, the primary procedures are outlined. First,
Section 3.3.1 outlines the general approach of decoupling the manipulator kinematics so that the inverse
kinematics problem can be decomposed into a set of subproblems. Section 3.3.2 presents the so-called
“Pieper’s solution,” which is applicable to six degree of freedom manipulators in which the last three axes
are rotational axes which mutually intersect. This approach essentially decomposes the inverse kinematics
problem into two subproblems, which are solved separately. Finally, Section 3.3.4 outlines two other
relatively recently developed althernative approaches.

3.3.1 Reduction of Inverse Kinematics to Subproblems

The basic approach of many analytical approaches is to decompose the complete inverse kinematics
problem into a series of decoupled subproblems. This approach will mirror that presented in [6], but will
be presented in a manner consistent with the Denavit-Hartenberg approach rather than the product of
exponentials approach in [6]. First, two relatively simple motivational example problems will be presented,
followed by the characterization of some more general results.

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-5

q6

q5q4

q3q2

q1

l1 l2

FIGURE 3.6 Elbow manipulator.

3.3.1.1 Inverse Kinematics for Two Examples via Subproblems

Consider the schematic illustration of the “Elbow Manipulator” in Figure 3.6. The link frame attachments
are illustrated in Figure 3.7. With respect to the elbow manipulator, we can make the following observations:

� If 0
6Tdes is specified for the manipulator in Figure 3.6, generally two values for θ3 may be determined

since the location of the common origin of frames 4, 5, and 6 is given by 0
6Tdes and the distance from

Z4Z3Z2 Z5

X0,1,2

X5,6

X3

Z0,1

X4, Z6

FIGURE 3.7 Link frame attachments for the elbow manipulator.

Copyright © 2005 by CRC Press LLC

3-6 Robotics and Automation Handbook

the common origin of each of the 0, 1, and 2 frames to the origins of any of the 4, 5, and 6 frames
is only affected by θ3.

� Once θ3 is determined, the height of the origins of frames 4, 5, and 6, i.e., 0PiORG, i = 4, 5, 6, is only
affected by θ2. Again, generally two values of θ2 can be determined.

� For each pair of (θ2, θ3) values, the x and y components of 0PiORG, i = 4, 5, 6, determines one unique
θ1 value.

� Once θ1, θ2, and θ3 are known, 0
3T can be computed. Using this, 3

6Tdes can be computed from

3
6Tdes = 0

3T−1 0
6Tdes

� Since axes 4, 5, and 6 intersect, they will share a common origin. Therefore,

a4 = a5 = d5 = d6 = 0

Hence,

3
6Tdes =




c4c5c6 − s4s6 c6s4 − c4c5s6 c4s5 l2

c6s5 −s5s6 −c5 0

c5c6s4 + c4s6 c4c6 − c5s4s6 s4s5 0

0 0 0 1


 (3.2)

where ci and si are shorthand for cos θi and sin θi respectively. Hence, two values for θ5 can be
computed from the third element of the second row.

� Once θ5 is computed, one value of θ4 can be computed from the first and third elements of the
third column.

� Finally, two remaining elements of 3
6Tdes, such as the first two elements of the second row, can be

used to compute θ6.

Generically, this procedure utilized the two following subproblems:

1. Determining a rotation that produced a specified distance. In the example, θ3 determined the
distance from the origins of the 1, 2, and 3 frames to the origins of the 4, 5, and 6 frames and
subsequently, θ2 was determined by the height of the origins of the 4, 5, and 6 frames.

2. Determining a rotation about a single axis that specified a particular point to be located in a desired
position. In the example, θ1 was determined in this manner.

Other subproblems are possible as well, such as determining two rotations, which, concatenated together,
specify a particular point to be located in a particular position. These concepts are presented with full
mathematical rigor in [6] and are further elaborated in [8].

As an additional example, consider the variation on the Stanford manipulator illustrated in Figure 3.8.
The assumed frame configurations are illustrated in Figure 3.9. By analogous reasoning, we can compute
the inverse kinematic solutions using the following procedure:

� Determine d3 (the prismatic joint variable) from the distance between the location of 0P6ORG and
0P0ORG.

� Determine θ2 from the height of 0P6ORG.
� Determine θ1 from the location of 0P6ORG.
� Determine θ4, θ5, and θ6 in the same manner as for the elbow manipulator.

The presentation of these subproblems is intended to be a motivational conceptual introduction rather
than a complete exposition. As is clear from the examples, for some manipulators, the inverse kinematics
problem may be solved using only one or two of the subproblems. In contrast, some inverse kinematics
problems cannot be solved in this manner. The following section presents Pieper’s solution, which is a
more mathematically complete solution technique, but one based fundamentally on such subproblems.

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-7

q6

q5

q4

q2q1

d3

FIGURE 3.8 Variation of Stanford manipulator.

3.3.2 Pieper’s Solution

The general formulation of Pieper’s solution will closely parallel that presented in Craig [1], but more
computational details will be provided. As mentioned previously, the approach presented only applied
to manipulators in which the last three axes intersect and where all six joints are revolute. Fortunately,

X4, Z6

X3, Z2

X2, Z1

X1, Z3

Z5

X5,6, Z4

FIGURE 3.9 Link frame attachments for the variation of Stanford manipulator.

Copyright © 2005 by CRC Press LLC

3-8 Robotics and Automation Handbook

however, this happens to be the case when the manipulator is equipped with a three-axis spherical wrist
for joints four through six.

Assuming a six degree of freedom manipulator and assuming that axes four, five, and six intersect, then
the point of intersection will be the origins of frames 4, 5, and 6. Thus, the problem of solving for θ1, θ2,
and θ3 simplifies to a three-link position problem, since θ4, θ5, and θ6 do not affect the position of their
common origins, 0P4ORG = 0P5ORG = 0P6ORG.

Recall that the first three elements in the fourth column of Equation (3.1) give the position of the origin
of frame i expressed in frame i − 1. Thus, from 3

4T ,

3P4ORG =




a3

− sin α3d4

cos α3d4




Expressing this in the 0 frame,

0P4ORG = 0
1T 1

2T 2
3T




a3

− sin α3d4

cos α3d4

1




Since

2
3T =




cos θ3 − sin θ3 0 a2

sin θ3 cos α2 cos θ3 cos α2 − sin α2 − sin α2d3

sin θ3 sin α2 cos θ3 sin α2 cos α2 cos α2d3

0 0 0 1




we can define three functions that are a function only of the joint angle θ3,




f1(θ3)

f2(θ3)

f3(θ3)

1


= 2

3T




a3

− sin α3d4

cos α3d4

1




where

f1(θ3) = a2 cos θ3 + d4 sin α3 sin θ3 + a2

f2(θ3) = a3 sin θ3 cos α2 − d4 sin α3 cos α2 cos θ3 − d4 sin α2 cos α3 − d3 sin α2

f3(θ3) = a3 sin α2 sin θ3 − d4 sin α3 sin α2 cos θ3 + d4 cos α2 cos α3 + d3 cos α2

and thus

0P4ORG = 0
1T 1

2T




f1(θ3)

f2(θ3)

f2(θ3)
1


 (3.3)

If frame 0 is specified in accordance with step four of the Denavit-Hartenberg frame assignment outlined
in Section 3.2.2, then Ẑ0 will be parallel to Ẑ1, and henceα0 = 0. Also, since the origins of frames 0 and 1 will
be coincident, a0 = 0 and d1 = 0. Thus, substituting these values into 0

1T and expanding Equation (3.3),

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-9

we have

0P4ORG =




cos θ1 − sin θ1 0 0

sin θ1 cos θi 0 0

0 0 1 0

0 0 0 1




×




cos θ2 − sin θ2 0 a1

sin θ2 cos α1 cos θi cos α1 − sin α1 − sin α1di

sin θ2 sin α1 cos θ2 sin α1 cos α1 cos α1d2

0 0 0 1







f1(θ3)

f2(θ3)

f3(θ3)

1




Since the second matrix is only a function of θ2, we can write

0P4ORG =




cos θ1 − sin θ1 0 0

sin θ1 cos θi 0 0

0 0 1 0

0 0 0 1







g1(θ1, θ2)

g2(θ1, θ2)

g3(θ1, θ2)

1


 (3.4)

where

g1(θ2, θ3) = cos θ2 f1(θ3) − sin θ2 f2(θ3) + a1 (3.5)

g2(θ2, θ3) = sin θ2 cos α1 f1(θ3) + cos θ2 cos α1 f2(θ3) − sin α1 f3 − d2 sin α1 (3.6)

g3(θ2, θ3) = sin θ2 sin α1 f1(θ3) + cos θ2 sin α1 f2(θ3) + cos α1 f3(θ3) + d2 cos α1. (3.7)

Hence, multiplying Equation (3.4),

0P4ORG =




cos θ1g1(θ2, θ3) − sin θ1g2(θ2, θ3)

sin θ1g1(θ2, θ3) + cos θ1g2(θ2, θ3)

g3(θ2, θ3)

1


 (3.8)

It is critical to note that the “height” (more specifically, the z coordinate of the center of the spherical
wrist expressed in frame 0) is the third element of the vector in Equation (3.8) and is independent of θ1.
Specifically,

z = sin θ2 sin α1 f1(θ3) + cos θ2 sin α1 f2(θ3) + cos α1 f3(θ3) + d2 cos α1 (3.9)

Furthermore, note that the distance from the origin of the 0 and 1 frames to the center of the spherical
wrist will also be independent of θ1. The square of this distance, denoted by r 2 is simply the sum of the
squares of the first three elements of the vector in Equation (3.8); namely,

r 2 = g 2
1(θ2, θ3) + g 2

2(θ2, θ3) + g 2
3(θ2, θ3)

= f 2
1 (θ3) + f 2

2 (θ3) + f 2
3 (θ3) + a2

1 + d2
2 + 2d2 f3(θ3) (3.10)

+ 2a1(cos θ2 f1(θ3) − sin θ2 f2(θ3))

We now consider three cases, the first two of which simplify the problem considerably, and the third of
which is the most general approach.

3.3.2.1 Simplifying Case Number 1: a1 = 0

Note that if a1 = 0 (this will be the case when axes 1 and 2 intersect), then from Equation (3.10), the
distance from the origins of the 0 and 1 frames to the center of the spherical wrist (which is the origin of

Copyright © 2005 by CRC Press LLC

3-10 Robotics and Automation Handbook

frames 4, 5, and 6) is a function of θ3 only; namely,

r 2 = f 2
1 (θ3) + f 2

2 (θ3) + f 2
3 (θ3) + a2

1 + d2
2 + 2d2 f3(θ3) (3.11)

Since it is much simpler in a numerical example, the details of the expansion of this expression will
be explored in the specific examples subsequently; however, at this point note that since the fi ’s contain
trigonometric function of θ3, there will typically be two values of θ3 that satisfy Equation (3.11). Thus,
given a desired configuration,

0
6T =




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1




the distance from the origins of frames 0 and 1 to the origins of frames 4, 5, and 6 is simply given by

r 2 = t2
14 + t2

24 + t2
34 = f 2

1 (θ3) + f 2
2 (θ3) + f 2

3 (θ3) + a2
1 + d2

2 + 2d2 f3(θ3) (3.12)

Once one or more values of θ3 that satisfy Equation (3.12) are determined, then the height of the center
of the spherical wrist in the 0 frame is given by

t34 = g3(θ2, θ3) (3.13)

Since one or more values of θ3 are known, Equation (3.13) will yield one value for θ2 for each value of θ3.
Finally, returning to Equation (3.8), one value of θ1 can be computed for each pair of (θ2, θ3) which have
already been determined.

Finding a solution for joints 4, 5, and 6 is much more straightforward. First note that 3
6 R is determined

by

0
6 R = 0

3 R3
6 R =⇒ 3

6 R = 0
3 RT 0

6 R

where 0
6 R is specified by the desired configuration, and 0

3 R can be computed since (θ1, θ2, θ3) have already
been computed. This was outlined previously in Equation (3.2) and the corresponding text.

3.3.2.2 Simplifying Case Number 2: α1 = 0

Note that if α1 = 0, then, by Equation (3.5), the height of the spherical wrist center in the 0 frame will be

g3(θ2, θ3) = sin θ2 sin α1 f1(θ3) + cos θ2 sin α1 f2(θ3) + cos α1 f3(θ3) + d2 cos α1

g3(θ3) = f3(θ3) + d2,

so typically, two values can be determined for θ3. Then Equation (3.10), which represents the distance
from the origin of the 0 and 1 frames to the spherical wrist center, is used to determine one value for θ2.
Finally, returning to Equation (3.8) and considering the first two equations expressed in the system, one
value of θ1 can be computed for each pair of (θ2, θ3) which have already been determined.

3.3.2.3 General Case when a1 �= 0 and α1 �= 0

This case is slightly more difficult and less intuitive, but it is possible to combine Equation (3.7) and
Equation (3.11) to eliminate the θ2 dependence and obtain a fourth degree equation in θ3. For a few more
details regarding this more complicated case, the reader is referred to [1].

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-11

TABLE 3.1 Example PUMA 560
Denavit-Hartenberg Parameters

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 −90◦ 0 0 θ2

3 0 2 ft 0.5 ft θ3

4 −90◦ 0.1666 ft 2 ft θ4

5 90◦ 0 0 θ5

6 90◦ 0 0 θ6

3.3.3 Example

Consider a PUMA 560 manipulator with

0
6Tdes =



− 1√

2
0 1√

2
1

0 −1 0 1
1√
2

0 1√
2

−1

0 0 0 1




and assume the Denavit-Hartenberg parameters are as listed in Table 3.1. Note that a1 = 0, so the procedure
to follow is that outlined in Section 3.3.2.1.

First, substituting the link parameter values and the value for r 2 (the desired distance from the origin
of frame 0 to the origin of frame 6) into Equation (3.11) and rearranging gives

−8 sin θ3 + 0.667 cos θ3 = −5.2778 (3.14)

Using the two trigonometric identities

sin θ = 2 tan θ
2

1 + tan2
(

θ
2

) and cos θ = 1 − tan2
(

θ
2

)
1 + tan2

(
θ
2

) (3.15)

and substituting into Equation (3.14) and rearranging gives

−4.611 tan2

(
θ3

2

)
+ 16 tan

(
θ3

2

)
− 5.944 = 0 (3.16)

Using the quadratic formula gives

tan
θ3

2
= −16 ± √

(16)2 − 4(−4.611)(−5.944)

2(−4.611)
(3.17)

=⇒ θ3 = 45.87◦, 143.66◦ (3.18)

Considering the θ3 = 45.87◦ solution, substituting the link parameter values and the z-coordinate for
0P6ORG into Equation (3.8) and rearranging gives

0.6805 sin θ2 + 1.5122 cos θ2 = 1

=⇒ θ2 = −28.68◦ or 77.14◦

Considering the θ3 = 143.66◦ solution, substituting the link parameter values and the z-coordinate for
0P6ORG into Equation (3.8) and rearranging gives

−0.6805 sin θ2 + 1.5122 cos θ2 = −1

=⇒ θ2 = 102.85◦ or − 151.31◦

Copyright © 2005 by CRC Press LLC

3-12 Robotics and Automation Handbook

At this point, we have four combination of (θ2, θ3) solutions; namely

(θ2, θ3) = (−28.68◦, 45.87◦)

(θ2, θ3) = (77.14◦, 45.87◦)

(θ2, θ3) = (102.85◦, 143.66◦)

(θ2, θ3) = (−151.31◦, 143.66◦)

Now, considering the x and y elements of 0P6ORG in Equation (3.8) and substituting a pair of values for
(θ2, θ3) into g1(θ2, θ3) and g1(θ2, θ3) in the first two lines and rearranging we have[

g1(θ2, θ3) −g2(θ2, θ3)

g2(θ2, θ3) g1(θ2, θ3)

] [
cos θ1

sin θ1

]
=
[

1

1

]

or [
cos θ1

sin θ1

]
=
[

g1(θ2, θ3) −g2(θ2, θ3)

g2(θ2, θ3) g1(θ2, θ3)

]−1 [
1

1

]

Substituting the (θ2, θ3) = (−151.31◦, 143.66◦) solution for the gi ’s gives

[
cos θ1

sin θ1

]
=
[−1.3231 −0.5

0.5 −1.3231

]−1 [
1

1

]
=
[−0.4114

−0.9113

]
=⇒ θ1 = 245.7◦

Substituting the four pairs of (θ2, θ3) into the gi ’s gives the following four sets of solutions including
θ1:

1. (θ1, θ2, θ3) = (24.3◦, −28.7◦, 45.9◦)
2. (θ1, θ2, θ3) = (24.3◦, 102.9◦, 143.7◦)
3. (θ1, θ2, θ3) = (−114.3◦, 77.14◦, 45.9◦)
4. (θ1, θ2, θ3) = (−114.3◦, −151.32◦, 143.7◦)

Now that θ1, θ2, and θ3 are known, 0
3T can be computed. Using this, 3

6Tdes can be computed from

3
6Tdes = 0

3T−10
6Tdes

Since axes 4, 5, and 6 intersect, they will share a common origin. Therefore,

a4 = a5 = d5 = d6 = 0

Hence,

3
6Tdes =




c4c5c6 − s4s6 c6s4 − c4c5s6 c4s5 l2

c6s5 −s5s6 −c5 0

c5c6s4 + c4s6 c4c6 − c5s4s6 s4s5 0

0 0 0 1


 (3.19)

where ci and si are shorthand for cos θi and sin θi respectively. Hence, two values for θ5 can be computed
from the third element of the second row.

Considering only the case where (θ1, θ2, θ3) = (−114.29◦, −151.31◦, 143.65◦),

3
6Tdes =




0.38256 0.90331 −0.194112 2.

−0.662034 0.121451 −0.739 568 24.

−0.644484 0.411438 0.644484 −2.922 0.0

0. 0. 0. 1.




Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-13

TABLE 3.2 Complete List of Solutions for the PUMA 560 Example

θ1 θ2 θ3 θ4 θ5 θ6

−114.29◦ −151.31◦ 143.65◦ −106.76◦ −137.69◦ 10.39◦
−114.29◦ −151.31◦ 143.65◦ 73.23◦ 137.69◦ −169.60◦
−114.29◦ 77.14◦ 45.86◦ −123.98◦ −51.00◦ −100.47◦
−114.29◦ 77.14◦ 45.86◦ 56.01◦ 51.00◦ 79.52◦

24.29◦ −28.68◦ 45.86◦ −144.42◦ 149.99◦ −165.93◦
24.29◦ −28.68◦ 45.86◦ 35.57◦ −149.99◦ 14.06◦
24.29◦ 102.85◦ 143.65◦ −143.39◦ 29.20◦ 129.34◦
24.29◦ 102.85◦ 143.65◦ 36.60◦ −29.20◦ −50.65◦

using the third element of the second row, θ5 = ±137.7◦. Using the first and second elements of the second
row, and following the procedure presented in Equation (3.14) through Equation (3.17), if θ5 = 137.7◦,
then θ6 = −169.6◦ and using the first and third elements of the third column, θ4 = 73.23◦.

Following this procedure for the other combinations of (θ1, θ2, θ3) produces the complete set of solutions
presented in Table 3.2.

3.3.4 Other Approaches

This section very briefly outlines two other approaches and provides references for the interested reader.

3.3.4.1 Dialytical Elimination

One of the most general approaches is to reduce the inverse kinematics problem to a system of polynomial
equations through rather elaborate manipulation and then use results from elimination theory from alge-
braic geometry to solve the equations. The procedure has the benefit of being very general. A consequence
of this fact, however, is that it therefore does not exploit any specific geometric kinematic properties of the
manipulator, since such specific properties naturally are limited to a subclass of manipulators. Details can
be found in [5, 9].

3.3.4.2 Zero Reference Position Method

This approach is similar in procedure to Pieper’s method, but is distinct in that only a single, base coordinate
system is utilized in the computations. In particular, in the case where the last three link frames share a
common origin, the position of the wrist center can be used to determine θ1, θ2, and θ3. This is in contrast
to Pieper’s method which uses the distance from the origin of the wrist frame to the origin of the 0 frame
to determine θ3. An interested reader is referred to [4] for a complete exposition.

3.4 Numerical Techniques

This section presents an outline of the inverse kinematics problem utilizing numerical techniques. This
approach is rather straightforward in that it utilizes the well-known and simple Newton’s root finding
technique. The two main, somewhat minor, complications are that generally, for a six degree of freedom
manipulator, the desired configuration is specified as a homogeneous transformation, which contains
12 elements, but the total number of degrees of freedom is only six. Also, Jacobian singularities are also
potentially problematics. As mentioned previously, however, one drawback is that for a given set of initial
values for Newton’s method, the algorithm converges to only one solution when perhaps multiple solutions
may exist. The rest of this section assumes that a six degree of freedom manipulator is under consideration;
however, the results presented are easily extended to more or fewer degrees of freedom systems.

Copyright © 2005 by CRC Press LLC

3-14 Robotics and Automation Handbook

3.4.1 Newton’s Method

Newton’s method is directed toward finding a solution to the system of equations

f1(θ1, θ2, θ3, θ4, θ5, θ6) = a1 (3.20)

f2(θ1, θ2, θ3, θ4, θ5, θ6) = a2

f3(θ1, θ2, θ3, θ4, θ5, θ6) = a3

f4(θ1, θ2, θ3, θ4, θ5, θ6) = a4

f5(θ1, θ2, θ3, θ4, θ5, θ6) = a5

f6(θ1, θ2, θ3, θ4, θ5, θ6) = a6

which may be nonlinear. In matrix form, these equations can be expressed as

f(θ) = a or f(θ) − a = 0 (3.21)

where f, θ , and a are vectors in R6. Newton’s method is an iterative technique to find the roots of Equa-
tion (3.21), which is given concisely by

θn+1 = θn − J−1(θn)f(θn) (3.22)

where

J(θn) =
[
∂ fi (θ)

∂θ j

]
=




∂ f1(θ)
∂θ1

∂ f1(θ)
∂θ2

∂ f1(θ)
∂θ3

· · · ∂ f1(θ)
∂θn−1

∂ f1(θ)
∂θn

∂ f2(θ)
∂θ1

f2(θ)
θ2

· · · ∂ f2(θ)
∂θn

...
...

. . .
...

∂ fn(θ)
∂θ1

fn(θ)
θ2

· · · ∂ fn(θ)
∂θn




Two theorems regarding the conditions for convergence of Newton’s method are presented in Appendix A.

3.4.2 Inverse Kinematics Solution Using Newton’s Method

This section elaborates upon the application of Newton’s method to the inverse kinematics problem. Two
approaches are presented. The first approach considers a six degree of freedom system utilizing a 6 × 6
Jacobian by choosing from the 12 elements of the desired T , 6 elements. The second approach is to consider
all 12 equations relating the 12 components of 0

6Tdes which results in an overdetermined system which
must then utilize a pseudo-inverse in implementing Newton’s method.

For the six by six approach, the three position elements and three independent elements of the rota-
tion submatrix matrix of 0

6Tdes. These six elements, as a function of the joint variables, set equal to the
corresponding values of 0

6Tdes then constitute all the elements of Equation (3.20). Let

0
6T(θ1, θ2, θ3, θ4, θ5, θ6) = 0

6Tθ

denote the forward kinematics as a function of the joint variables, and let 0
6Tθ (a , b) denote the element of

0
6Tθ that is in the ath row and bth column. Similarly, let 0

6Tdes(a , b) denote the element of 0
6Tdes that is in

the ath row and bth column.

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-15

Then the six equations in Equation (3.20) may be, for example

0
6Tθ (1, 4) = 0

6Tdes(1, 4)
0
6Tθ (1, 5) = 0

6Tdes(1, 5)
0
6Tθ (1, 6) = 0

6Tdes(1, 6)
0
6Tθ (2, 3) = 0

6Tdes(2, 3)
0
6Tθ (3, 3) = 0

6Tdes(3, 3)
0
6Tθ (3, 2) = 0

6Tdes(3, 2).

One must take care, however, that the last three equations are actually independent. For example, in the
case of

0
6Tdes =



− 1√

2
0 1√

2
2

0 −1 0 1
1√
2

0 1√
2

−1

0 0 0 1




these six equation will not be independent because both 0
6Tdes(2, 3) and 0

6Tdes(3, 2) are equal to zero and
the interation may converge to

T =



− 1√

2
0 − 1√

2
2

0 −1 0 1

− 1√
2

0 1√
2

−1

0 0 0 1


 �=



− 1√

2
0 1√

2
2

0 −1 0 1
1√
2

0 1√
2

−1

0 0 0 1




A more robust approach is to construct a system of 12 equations and six unknowns; in particular,

0
6Tθ (1, 4) = 0

6Tdes(1, 4)
0
6Tθ (1, 5) = 0

6Tdes(1, 5)
0
6Tθ (1, 6) = 0

6Tdes(1, 6)
0
6Tθ (2, 3) = 0

6Tdes(2, 3)
0
6Tθ (3, 3) = 0

6Tdes(3, 3)
0
6Tθ (3, 2) = 0

6Tdes(3, 2)
0
6Tθ (1, 1) = 0

6Tdes(1, 1)
0
6Tθ (1, 2) = 0

6Tdes(1, 2)
0
6Tθ (1, 3) = 0

6Tdes(1, 3)
0
6Tθ (2, 1) = 0

6Tdes(2, 1)
0
6Tθ (2, 2) = 0

6Tdes(2, 2)
0
6Tθ (3, 1) = 0

6Tdes(3, 1),

which are all 12 elements of the position vector (three elements) plus the entire rotation matrix (nine
elements). In this case, however, the Jacobian will not be invertible since it will not be square; however,
the standard pseudo-inverse which minimizes the norm of the error of the solution of an overdetermined

Copyright © 2005 by CRC Press LLC

3-16 Robotics and Automation Handbook

system can be utilized. In this case

J(θn) =
[
∂ fi (θ)

∂θ j

]
=




∂ f1(θ)
∂θ1

∂ f1(θ)
∂θ2

∂ f1(θ)
∂θ3

· · · ∂ f1(θ)
∂θ5

∂ f1(θ)
∂θ6

∂ f2(θ)
∂θ1

f2(θ)
∂θ2

· · · ∂ f2(θ)
∂θ6

...
...

. . .
...

∂ f12(θ)
∂θ1

f12(θ)
∂θ2

· · · ∂ f12(θ)
∂θ6




which clearly is not square with six columns and 12 rows and, hence, not invertible. The analog of
Equation (3.22) which utilizes a pseudo-inverse is

θn+1 = θn − (JTJ)−1JT(θn)f(θn) (3.23)

Appendix B presents C code that implements Newton’s method for a six degree of freedom manipulator.
Note, that the values for each are constrained such that −π ≤ θi ≤ π by adding or subtracting π from the
value of θi if the value of θi becomes less than −π or greater than π , respectively. Finally, implementing
the program for the same PUMA 560 example from Section 3.3.3, the following represents the iterative
evolution of the θ values for a typical program run where the initial conditions were picked randomly:

Iteration theta1 theta2 theta3 theta4 theta5 theta6
0 -136.23 -139.17 88.74 102.89 137.92 -23.59
1 -2.20 -27.61 178.80 34.10 14.86 21.61
2 44.32 69.98 51.25 -38.03 97.29 20.31
3 69.22 -32.48 114.17 -51.25 109.17 -68.76
4 120.32 56.05 29.90 -11.28 -3.81 -80.29
5 63.89 -20.66 91.33 -115.55 33.74 4.29
6 -70.59 32.21 169.15 -87.01 135.05 161.33
7 -50.98 108.14 54.72 -143.86 141.17 107.12
8 -88.86 53.58 81.08 -156.97 135.54 54.00
9 -173.40 127.80 38.88 -174.21 4.49 -27.35
1 -130.68 72.18 81.86 -104.16 14.69 55.74
11 -76.12 15.76 58.71 106.37 -27.14 -40.86
12 164.40 -155.70 58.08 13.01 43.00 -176.37
13 -18.18 -153.18 148.99 74.92 92.84 -32.89
14 -47.83 -160.55 99.49 45.87 112.59 25.23
15 -99.11 16.87 21.47 -177.35 -30.07 -115.73
16 -75.66 14.52 84.43 -132.83 -9.84 -122.40
17 -162.83 83.18 34.29 100.41 113.24 -93.66
18 -121.64 63.91 57.62 77.15 151.31 -97.00
19 -110.76 77.23 47.40 54.07 160.48 -117.69
20 -114.32 77.03 45.94 47.39 158.26 -129.10
21 -114.30 77.14 45.87 17.15 154.29 -165.67
22 -114.30 77.14 45.87 -12.91 134.74 -28.24
23 -114.30 77.14 45.87 35.38 140.57 26.89
24 -114.30 77.14 45.87 88.80 101.19 89.46
25 -114.30 77.14 45.87 57.85 63.60 69.39
26 -114.30 77.14 45.87 57.38 51.07 78.59
27 -114.30 77.14 45.87 56.02 51.00 79.53
28 -114.30 77.14 45.87 56.02 51.01 79.53
29 -114.30 77.14 45.87 56.02 51.01 79.53

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-17

3.5 Conclusions

This chapter outlined various approaches to the robotic manipulator inverse kinematics problem. The
foundation for many analytical approaches was presented in Section 3.3.1, and one particular method,
namely, Pieper’s solution, was presented in complete detail. Numerical approaches were also presented with
particular emphasis on Newton’s iteration method utilizing a pseudo-inverse approach so that convergence
to all twelve desired elements of 0

6Tdes is achieved. Sample C code is presented in Appendix B.

Appendix A: Theorems Relating to Newton’s Method

Two theorems regarding convergence of Newton’s method are presented here. See [4] for proofs. Since
Newton’s method is

θn+1 = θn − J−1(θn)f(θn)

if g(θ) = θ − J−1(θ)f(θ), convergence occurs when

θ = g(θ) (3.24)

Theorem A.1 Let Equation (3.24) have a root θ = α and θ ∈ Rn. Let ρ be the interval

‖θ − α‖ < ρ (3.25)

in which the components, g i (θ) have continuous first partial derivatives that satisfy

∣∣∣∣∂gi (θ)

∂θ j

∣∣∣∣ ≤ λ

n
, λ < 1

Then

1. For any θ0 satisfying Equation (3.25), all iterates θn of Equation (3.22) also satisfy Equation (3.25).
2. For any θ0 satisfying Equation (3.25), all iterates θn of Equation (3.22) converge to the root α of

Equation (3.24) which is unique in Equation (3.25).

This theorem basically ensures convergence if the initial value, θ0 is close enough to the root α, where
“close enough” means that ‖θ0 − α‖ < ρ. A more constructive approach, which gives a test to ensure that
θ0 is “close enough” to α is given by Theorem A.3. First, define the vector and matrix norms as follows:

Definition A.2 Let θ ∈ Rn. Define

‖θ‖ = maxi |θi |

Let J ∈ Rn×n. Define

‖J‖ = maxi



∑

j

= 1m
∣∣ ji j

∣∣



Note that other definitions of vector and matrix norms are possible as well [7].

Theorem A.3 Let θ0 ∈ Rn be such that

‖J(θ0)‖ ≤ a

Copyright © 2005 by CRC Press LLC

3-18 Robotics and Automation Handbook

let

‖θ1 − θ0‖ ≤ b

and let

n∑
k=1

∣∣∣∣∂2 fi (θ)

∂θ j ∂θk

∣∣∣∣ ≤ c

n

for all θ ∈ ‖θ − θ‖ ≤ 2b, where i, j ∈ {1, . . . , n}. If

abc ≤ 1

2

then

1. θi defined by Equation (3.22) are uniquely defined as

‖θn − θ0‖ ≤ 2b

and
2. the iterates converge to some vector, α for which g(α) = 0 and

‖θn − θ0‖ ≤ 2b

2n

Appendix B: Implementation of Newton’s Method

This appendix presents C code that implements Newton’s method for a six degree of freedom manipulator.
It assumes that all the joints are revolute, i.e., the joint angles, θi , are the variables to be determined. It has
been written not with the goal of complete robustness or efficiency, but rather for a (hopefully) optimal
combination of readability, robustness, and efficiency, with emphasis on readability. Most of the variables
that one may need to tweak are contained in the header file.

The main file is “inversekinematics.c” which utilizes Newton’s method to numerically find a solution to
the inverse kinematics problem. This file reads the Denavit-Hartenberg parameters for the manipulator
from the file “dh.dat,” reads the desired configuration for the sixth frame from the file “Tdes.dat,” reads
the initial values from the file “theta.dat.” The other files are:

� “computejacobian.c” which numerically approximates the Jacobian by individually varying the
joint angles and computing a finite approximation of each partial derivative;

� “forwardkinematics.c” which computes the forward homogeneous transformation matrix using
the Denavit-Hartenberg parameters (including the joint angles, θi);

� “homogeneoustransformation.c” which multiplies the six forward transformation matrices to de-
termine the overall homogeneous transformation;

� “matrixinverse.c” which inverts a matrix;
� “matrixproduct.c” which multiplies two matrices;
� “dh.dat” which contains the Denavit-Hartenberg parameters αi−1, ai−1, and di ;
� “theta.dat” which contains the initial values for the last Denavit-Hartenberg parameter, θi ; and,
� “inversekinematics.h” which is a header file for the various C files.

On a Unix machine, move all the files to the same directory and compile the program, by typing

> gcc *.c -lm

at a command prompt. To execute the program type

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-19

./a.out

at a command prompt.
To compile these programs on a PC running Windows using Microsoft Visual C++, it must be incor-

porated into a project (and essentially embedded into a C++ project) to be compiled.

B.1 File ‘‘inversekinematics.c’’

/* This file is inversekinematics.c
*
* This program numerically solves the inverse kinematics problem for
* an n degree of freedom robotic manipulator.
*
* It reads the Denavit-Hartenberg parameters stored in a file named
* "dh.dat". The format of "dh.dat" is:
*
* alpha_0 a_0 d_1
* alpha_1 a_1 d_2
* ...
*
* The number of degrees of freedom is determined by the number of
* rows in "dh.dat". For this program, it is assumed that the number
* of degrees of freedom is six.
*
* This program reads the desired configuration from the file
* "Tdes.dat" and stores it in the matrix Tdes[][].
*
* This program reads the initial values for Newton's iteration from
* the file "theta.dat" and stores them in the array theta[]. The
* initial values are in degrees.
*
* The convergence criterion is that the sum of the squares of the
* change in joint variables between two successive iterations is less
* that EPS, which is set in "inversekinematics.h".
*
* This program assumes that the d_i are fixed and the joint variables
* are the theta_i.
*
* This program assumes a 6-by-6 Jacobian, where n is the number of
* degrees of freedom for the system. The six elements utilized in
* the homogeneous transformation are the first three elements of the
* fourth column (the position of the origin of the sixth frame and
* elements (2,3), (3,3), and (3,2) of the rotation submatrix of the
* homogeneous transformation).
*
* Copyright (C) 2003 Bill Goodwine.
*
*/

#include "inversekinematics.h"

int main() {

Copyright © 2005 by CRC Press LLC

3-20 Robotics and Automation Handbook

double **J,**T, **Tdes,**Jinv, *f;
double *alpha,*a,*d,*theta;
double sum;
int i,j,k,l,n;
FILE *fp;

/* Allocate memory for the first line of DH parameters. */
alpha = malloc(sizeof(double));
a = malloc(sizeof(double));
d = malloc(2*sizeof(double));
theta = malloc(2*sizeof(double));

n = 1;
fp = fopen("dh.dat","r");

/* Read the DH parameters and reallocate memory accordingly.
After reading all the data, n will be the number of DOF+1. */

while(fscanf(fp,"%lf %lf %lf",&alpha[n-1],&a[n-1],&d[n]) != EOF) {
n++;
alpha = realloc(alpha,n*sizeof(double));
a = realloc(a,n*sizeof(double));
d = realloc(d,(n+1)*sizeof(double));
theta = realloc(theta,(n+1)*sizeof(double));

}
fclose(fp);

if(n-1 != N) {
printf("Warning, this code is only written for 6 DOF manipulators!\n");
exit(1);

}

/* Allocate memory for the actual homogeneous transformation and
the desired final transformation. */

T=(double **) malloc((unsigned) 4*sizeof(double*));
Tdes=(double **) malloc((unsigned) 4*sizeof(double*));
for(i=0;i<4;i++) {

T[i]=(double *) malloc((unsigned) 4*sizeof(double));
Tdes[i] = (double *) malloc((unsigned) 4*sizeof(double));

}

/* Read the desired configuration. */
fp = fopen("Tdes.dat","r");
for(i=0;i<4;i++)

fscanf(fp,"%lf%lf%lf%lf",&Tdes[i][0],&Tdes[i][1],
&Tdes[i][2],&Tdes[i][3]);

fclose(fp);

printf("Desired T = \n");
for(i=0;i<4;i++) {

for(j=0;j<4;j++) {

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-21

printf("%f\t",Tdes[i][j]);
}
printf("\n");

}

/* Allocate memory for the Jacobian, its inverse and a homogeneous
transformation matrix. */

f=(double *) malloc((unsigned) 2*N*sizeof(double));

J=(double **) malloc((unsigned) 2*N*sizeof(double*));
for(i=0;i<2*N;i++) {

J[i]=(double *) malloc((unsigned) N*sizeof(double));
}

Jinv=(double **) malloc((unsigned) N*sizeof(double*));
for(i=0;i<N;i++) {

Jinv[i]=(double *) malloc((unsigned) 2*N*sizeof(double));
}

/* Read the starting values for the iteration. */
fp = fopen("theta.dat","r");
for(i=1;i<=N;i++)

fscanf(fp,"%lf",&theta[i]);

/* Change the angle values from degrees to radians. */
for(i=1;i<=N;i++)

theta[i] *= M_PI/180.0;

for(i=1;i<=N;i++) {
theta[i] = 2.0*(double)rand()/(double)RAND_MAX*M_PI - M_PI;
printf("%.2f\n",theta[i]*180/M_PI);

}

/* Begin the iteration. The variable i is the number of iterations.
MAX_ITERATIONS is set in the file "inversekinematics.h". */

i = 0;

while(i<MAX_ITERATIONS) {
T = forwardkinematics(alpha,a,d,theta,T);
J = computejacobian(alpha,a,d,theta,T,J);

Jinv = pseudoinverse(J,Jinv);

f[0] = T[0][3]-Tdes[0][3];
f[1] = T[1][3]-Tdes[1][3];
f[2] = T[2][3]-Tdes[2][3];
f[3] = T[1][2]-Tdes[1][2];
f[4] = T[2][2]-Tdes[2][2];
f[5] = T[2][1]-Tdes[2][1];
f[6] = T[0][0]-Tdes[0][0];

Copyright © 2005 by CRC Press LLC

3-22 Robotics and Automation Handbook

f[7] = T[0][1]-Tdes[0][1];
f[8] = T[0][2]-Tdes[0][2];
f[9] = T[1][0]-Tdes[1][0];
f[10] = T[1][1]-Tdes[1][1];
f[11] = T[2][0]-Tdes[2][0];

for(k=0;k<N;k++) {
for(l=0;l<2*N;l++) {

theta[k+1] -= Jinv[k][l]*f[l];
}
while(fabs(theta[k+1]) > M_PI)

theta[k+1] -= fabs(theta[k+1])/theta[k+1]*M_PI;
}

printf("%d\t",i);
for(k=0;k<6;k++)

printf("%.2f\t",theta[k+1]*180/M_PI);
printf("\n");

sum = 0.0;
for(k=0;k<2*N;k++) {

sum += pow(f[k],2.0);
}

if(sum < EPS)
break;

i++;
}

printf("Iteration ended in %d iterations.\n",i);
if(i>=MAX_ITERATIONS) {

printf("Warning!\n");
printf("The system failed to converge in %d iterations.\n",MAX_ITERATIONS);
printf("The solution is suspect!\n");
exit(1);

}

printf("Final T = \n");
for(i=0;i<4;i++) {

for(j=0;j<4;j++) {
printf("%f\t",T[i][j]);

}
printf("\n");

}
printf("Converged ${\\bf \\theta}:$\n");
for(i=1;i<n;i++)

printf("& $%.2f^\\circ$\n",theta[i]*180/M_PI);

return(0);
}

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-23

B.2 File ‘‘computejacobian.c’’

/* This file is "computejacobian.c".
*
* It constructs an approximate * Jacobain by numerically
* approximating the partial derivatives with * respect to each joint
* variable. It returns a pointer to a * six-by-six Jacobain.
*
* The magnitude of the perturbations is determined by the
* PERTURBATION, which is set in "inversekinematics.h".
*
* Copyright (C) 2003 Bill Goodwine.
*
*/

#include "inversekinematics.h"

double** computejacobian(double* alpha,double* a, double* d,
double* theta, double** T, double** J) {
double **T1, **T2;
int i;

/* Allocate memories for the perturbed homogeneous transformations.
* T1 is the forward perturbation and T2 is the backward perturbation.
*/

T1=(double **) malloc((unsigned) (4)*sizeof(double*));
T2=(double **) malloc((unsigned) (4)*sizeof(double*));
for(i=0;i<4;i++) {

T1[i]=(double *) malloc((unsigned) (4)*sizeof(double));
T2[i]=(double *) malloc((unsigned) (4)*sizeof(double));

}

for(i=1;i<=N;i++) {

/* Compute the actual homogeneous transformation. */
T = forwardkinematics(alpha,a,d,theta,T);
theta[i] += PERTURBATION;

/* Compute the forward perturbation. */
T1 = forwardkinematics(alpha,a,d,theta,T1);
theta[i] -= 2.0*PERTURBATION;

/* Compute the backward perturbation. */
T2 = forwardkinematics(alpha,a,d,theta,T2);
theta[i] += PERTURBATION;

/* Let the Jacobain elements be the average of the forward
* and backward perturbations.
*/

J[0][i-1] = ((T1[0][3]-T[0][3])/(PERTURBATION) +
(T2[0][3]-T[0][3])/(-PERTURBATION))/2.0;

Copyright © 2005 by CRC Press LLC

3-24 Robotics and Automation Handbook

J[1][i-1] = ((T1[1][3]-T[1][3])/(PERTURBATION) +
(T2[1][3]-T[1][3])/(-PERTURBATION))/2.0;

J[2][i-1] = ((T1[2][3]-T[2][3])/(PERTURBATION) +
(T2[2][3]-T[2][3])/(-PERTURBATION))/2.0;

J[3][i-1] = ((T1[1][2]-T[1][2])/(PERTURBATION) +
(T2[1][2]-T[1][2])/(-PERTURBATION))/2.0;

J[4][i-1] = ((T1[2][2]-T[2][2])/(PERTURBATION) +
(T2[2][2]-T[2][2])/(-PERTURBATION))/2.0;

J[5][i-1] = ((T1[2][1]-T[2][1])/(PERTURBATION) +
(T2[2][1]-T[2][1])/(-PERTURBATION))/2.0;

J[6][i-1] = ((T1[0][0]-T[0][0])/(PERTURBATION) +
(T2[0][0]-T[0][0])/(-PERTURBATION))/2.0;

J[7][i-1] = ((T1[0][1]-T[0][1])/(PERTURBATION) +
(T2[0][1]-T[0][1])/(-PERTURBATION))/2.0;

J[8][i-1] = ((T1[0][2]-T[0][2])/(PERTURBATION) +
(T2[0][2]-T[0][2])/(-PERTURBATION))/2.0;

J[9][i-1] = ((T1[1][0]-T[1][0])/(PERTURBATION) +
(T2[1][0]-T[1][0])/(-PERTURBATION))/2.0;

J[10][i-1] = ((T1[1][1]-T[1][1])/(PERTURBATION) +
(T2[1][1]-T[1][1])/(-PERTURBATION))/2.0;

J[11][i-1] = ((T1[2][0]-T[2][0])/(PERTURBATION) +
(T2[2][0]-T[2][0])/(-PERTURBATION))/2.0;
}

free(T1);
free(T2);
return J;

}

B.3 File ‘‘forwardkinematics.c’’

/* This file is "forwardkinematics.c".
*
* It computes the homogeneous transformation as a function of the
* Denavit-Hartenberg parameters as presented in Craig, Introduction
* to Robotics Mechanics and Control, Second Ed.
*
* Copyright (C) 2003 Bill Goodwine.
*
*/

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-25

#include "inversekinematics.h"

double** forwardkinematics(double *alpha, double *a, double *d,
double *theta, double **T) {

double **T1,**T2;
int i,j,k;

/* Allocate memory for two additional homogeneous transformations
* which are necessary to multiply all six transformations.
*/

T1=(double **) malloc((unsigned) 4*sizeof(double*));
T2=(double **) malloc((unsigned) 4*sizeof(double*));
for(i=0;i<4;i++) {

T1[i]=(double *) malloc((unsigned) 4*sizeof(double));
T2[i]=(double *) malloc((unsigned) 4*sizeof(double));

}

T1 = homogeneoustransformation(alpha[0],a[0],d[1],theta[1],T1);

/* This loop multiplies all six transformations. The final
* homogeneous transformation is stored in T and a pointer is
* returned to T.
*/

for(i=2;i<=N;i++) {
T2 = homogeneoustransformation(alpha[i-1],a[i-1],d[i],theta[i],T2);

T = matrixproduct(T1,T2,T,4);

for(j=0;j<4;j++)
for(k=0;k<4;k++)

T1[j][k] = T[j][k];
}

free(T1);
free(T2);

return T;
}

B.4 File ‘‘homogeneoustransformation.c’’

/* This file is "homogeneoustransformation.c".
*
* This function computes a homogeneous transformation as a function
* of the Denavit-Hartenberg parameters as presented in Craig,
* Introduction to Robotics Mechanics and Control, Second Ed.
*
* The homogeneous transformation is stored in T and a pointer to T is
* returned.

Copyright © 2005 by CRC Press LLC

3-26 Robotics and Automation Handbook

*
* Copyright (C) 2003 Bill Goodwine.
*
*/

#include "inversekinematics.h"

double** homogeneoustransformation(double alpha, double a, double d,
double theta, double **T) {

T[0][0] = cos(theta);
T[0][1] = -sin(theta);
T[0][2] = 0;
T[0][3] = a;

T[1][0] = sin(theta)*cos(alpha*M_PI/180.0);
T[1][1] = cos(theta)*cos(alpha*M_PI/180.0);
T[1][2] = -sin(alpha*M_PI/180.0);
T[1][3] = -d*sin(alpha*M_PI/180.0);

T[2][0] = sin(theta)*sin(alpha*M_PI/180.0);
T[2][1] = cos(theta)*sin(alpha*M_PI/180.0);
T[2][2] = cos(alpha*M_PI/180.0);
T[2][3] = d*cos(alpha*M_PI/180.0);

T[3][0] = 0;
T[3][1] = 0;
T[3][2] = 0;
T[3][3] = 1;

return T;
}

B.5 File ‘‘matrixinverse.c’’

/* This file is "matrixinverse.c".
*
* This program computes the inverse of a matrix using Gauss-Jordan
* elimination. Row shifting is only utilized if a diagonal element
* of the original matrix to be inverted has a magnitude less than
* DIAGONAL_EPS, which is set in "inversekinematics.h".
*
* The inverse matrix is stored in y[][], and a pointer to y is
* returned.
*
* Copyright (C) 2003 Bill Goodwine.
*
*/

#include "inversekinematics.h"

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-27

double **matrixinverse(double **a, double **y, int n) {
double temp,coef;
double max;
int max_row;
int i,j,k;

/* Initialize y[][] to be the identity element. */
for(i=0;i<n;i++) {

for(j=0;j<n;j++) {
if(i==j)

y[i][j] = 1;
else

y[i][j] = 0;
}

}

/* Gauss-Jordan elimination with selective initial pivoting */

/* Check the magnitude of the diagonal elements, and if one is less
* than DIAGONAL_EPS, then search for an element lower in the same
* column with a larger magnitude.
*/

for(i=0;i<n;i++) {
if(fabs(a[i][i]) < DIAGONAL_EPS) {

max = a[i][i];
max_row = i;
for(j=i;j<n;j++) {

if(fabs(a[j][i]) > max) {
max = fabs(a[j][i]);
max_row = j;

}
}

if(max < DIAGONAL_EPS) {
printf("Ill-conditioned matrix encountered. Exiting...\n");
exit(1);

}

/* This loop switches rows if needed. */
for(k=0;k<n;k++) {

temp = a[max_row][k];
a[max_row][k] = a[i][k];
a[i][k] = temp;

temp = y[max_row][k];
y[max_row][k] = y[i][k];
y[i][k] = temp;

}
}

}

Copyright © 2005 by CRC Press LLC

3-28 Robotics and Automation Handbook

/* This is the forward reduction. */
for(i=0;i<n;i++) {

coef = a[i][i];
for(j=n-1;j>=0;j--) {

y[i][j] /= coef;
a[i][j] /= coef;

}

for(k=i+1;k<n;k++) {
coef = a[k][i]/a[i][i];
for(j=n-1;j>=0;j--) {

y[k][j] -= coef*y[i][j];
a[k][j] -= coef*a[i][j];

}
}

}

/* This is the back substitution. */
for(i=n-1;i>=0;i--) {

for(k=i-1;k>=0;k--) {
coef = a[k][i]/a[i][i];
for(j=0;j<n;j++) {

y[k][j] -= coef*y[i][j];
a[k][j] -= coef*a[i][j];

}
}

}

return y;
}

B.6 File ‘‘matrixproduct.c’’

/* This file is "matrix product.c".
*
* This file multiples a and b (both square, n by n matrices) and
* returns a pointer to the matrix c.
*
* Copyright (C) 2003 Bill Goodwine.
*
*/

double** matrixproduct(double **a,double **b,double **c,int n) {
int i,j,k;

for(i=0;i<n;i++)
for(j=0;j<n;j++)

c[i][j] = 0.0;

Copyright © 2005 by CRC Press LLC

Inverse Kinematics 3-29

for(i=0;i<n;i++)
for(j=0;j<n;j++)

for(k=0;k<n;k++)
c[i][j] += a[i][k]*b[k][j];

return c;

}

B.7 File ‘‘inversekinematics.h’’

/*
* Copyright (C) 2003 Bill Goodwine.
*/

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

#define MAX_ITERATIONS 1000
#define EPS 0.0000000001
#define PERTURBATION 0.001
#define DIAGONAL_EPS 0.0001
#define N 6

double** forwardkinematics(double *alpha, double *a, double *d,
double *theta, double **T);

double** matrixinverse(double **J, double **Jinv, int n);

double** pseudoinverse(double **J, double **Jinv);

double** computejacobian(double* alpha, double* a, double* d,
double* theta, double** T, double** J);

double** matrixproduct(double **a,double **b, double **c, int n);

double** homogeneoustransformation(double alpha, double a, double d,
double theta, double **T);

B.8 File ‘‘dh.dat’’

0 0 0
-90 0 0
0 24 6
-90 2 24
90 0 0
-90 0 0

Copyright © 2005 by CRC Press LLC

3-30 Robotics and Automation Handbook

B.9 File ‘‘Tdes.dat’’

-0.707106 0 0.707106 12
0 -1 0 12
0.707106 0 0.707106 -12
0 0 0 1

B.10 File ‘‘theta.dat’’

24.0
103.0
145.0
215.0
29.2
30.0

References

[1] Craig, J.J. (1989). Introduction to Robotics Mechanics and Control. Addison-Wesley, Reading, MA.
[2] Denavit, J. and Hartenberg, R.S. (1955). A kinematic notation for lower-pair mechanisms based on

matrices, J. Appl. Mech., 215–221.
[3] Murray, R.M., Zexiang, L.I., and Sastry, S.S. (1994). A Mathematical Introduction to Robotic Manip-

ulation, CRC Press, Boca Raton, FL.
[4] Gupta, K.C. (1997). Mechanics and Control of Robots. Springer-Verlag, Heidelberg.
[5] Paden, B. and Sastry, S. (1988). Optimal kinematic design of 6 manipulators. Int. J. Robotics Res.,

7(2), 43–61.
[6] Lee, H.Y. and Liang, C.G. (1988). A new vector theory for the analysis of spatial mechanisms.

Mechanisms and Machine Theory, 23(3), 209–217.
[7] Raghavan, M. (1990). Manipulator kinematics. In Roger Brockett (ed.), Robotics: Proceedings of

Symposia in Applied Mathematics, Vol. 41, American Mathematical Society, 21–48.
[8] Isaacson, E. and Keller, H.B. (1966). Analysis of Numerical Methods. Wiley, New York.
[9] Naylor, A.W. and Sell, G.R. (1982). Linear Operator Theory in Engineering and Science. Springer-

Verlag, Heidelberg.

Copyright © 2005 by CRC Press LLC

	Robotics and Automation Handbook
	Contents
	Chapter 3
	Inverse Kinematics
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Existence and Uniqueness of Solutions
	3.2.2 Notation and Nomenclature

	3.3 Analytical Approaches
	3.3.1 Reduction of Inverse Kinematics to Subproblems
	3.3.1.1 Inverse Kinematics for Two Examples via Subproblems

	3.3.2 Pieper’s Solution
	3.3.2.1 Simplifying Case Number 1: a1 = 0
	3.3.2.2 Simplifying Case Number 2: α1 = 0
	3.3.2.3 General Case when a1 = 0 and α1 = 0

	3.3.3 Example
	3.3.4 Other Approaches
	3.3.4.1 Dialytical Elimination
	3.3.4.2 Zero Reference Position Method

	3.4 Numerical Techniques
	3.4.1 Newton’s Method
	3.4.2 Inverse Kinematics Solution Using Newton’s Method

	3.5 Conclusions
	Appendix A: Theorems Relating to Newton’s Method
	Appendix B: Implementation of Newton’s Method
	B.1 File ‘‘inversekinematics.c’’
	B.2 File ‘‘computejacobian.c’’
	B.3 File ‘‘forwardkinematics.c’’
	B.4 File ‘‘homogeneoustransformation.c’’
	B.5 File ‘‘matrixinverse.c’’
	B.6 File ‘‘matrixproduct.c’’
	B.7 File ‘‘inversekinematics.h’’
	B.8 File ‘‘dh.dat’’
	B.9 File ‘‘Tdes.dat’’
	B.10 File ‘‘theta.dat’’
	References

