CloudSim Plus: A Modern Java 8
Framework for Modeling and
Simulation of Cloud Computing
Infrastructures and Services

Table of Contents

1. Introduction
2. Overview
3. Philosophy and Motivation
4. Architecture
4.1. Modules
4.2. Package Structure
4.3. How CloudSim Plus Works
5. Exclusive Characteristics and Features
5.1. Dynamic Creation of Vms and Applications (Cloudlets)
5.2. Vm Scaling

© 00 3 J b b W W DD DD

5.3. Parallel Execution of Simulations

—
(e}

5.4. Event Listeners

—
\S]

5.5. Strongly Object-oriented Framework

—
w

5.6. Classes and Interfaces Allowing Implementation of Heuristics

—
w

5.7. Implementation of the Linux Completely Fair Scheduler
5.8. Additional Characteristics

(RGN
=

6. Conclusion

7. Acknowledgements 15

Manoel C. Silva Filho"’; Raysa L. Oliveira’; Claudio C. Monteiro'; Pedro R. M.
Indcio’; Mdrio M. Freirée’

'Departamento de Informdtica - Instituto Federal de Educacdo do Tocantins (IFTO). ’Instituto de
Telecomunicagoes (IT) and Departamento de Informadtica, Universidade da Beira Interior (UBI).

[88x31] | https://licensebuttons.net/l/by-sa/4.0/88x31.png

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

o An always up-to-date white paper PDF is available here.

http://www.ifto.edu.br
http://www.it.pt
http://www.it.pt
http://di.ubi.pt
http://www.ubi.pt
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/cloudsimplus/cloudsimplus-whitepaper/blob/gh-pages/ebook.pdf

1. Introduction

The Cloud Computing paradigm has been driving innovation in different areas of knowledge and
economic sectors by providing distributed, scalable, manageable and fault-tolerant computing
resources over the Internet. The large adoption of Cloud computing services can be also explained
by diverse reasons such as: its pay-per-use charging model, which enables cost reduction for
customers; the rapid and automated allocation of resources, which enable applications to quickly
respond to bursts; and full-featured web and console interfaces, which enable customers to
configure hosted services easily.

The advances brought by Cloud Computing are backup up by academy and industry research and
and continue to attract new researchers. Issues related with SLA fulfillment, optimal VM placement
and migration, cost reduction, power efficiency, hotspot detection, load balance, fault tolerance,
anomalies detection, security enforcement, traffic and latency reduction and so on, make of Cloud
Computing an active and interesting research area.

Considering the complexity of a cloud infrastructure, computer-based simulation constitutes a
rather attractive tool to carry out research in this field. Additional reasons to use computer-based
simulation include: the need to model proposed solutions and evaluate them in a quick, cheap and
repeatable way; the use of a controlled environment, which makes it easy to monitor and collect
metrics; and the easiness to setup the required environment for experimentation.

In this article we present CloudSim Plus: a new, full-featured, re-designed, highly extensible and
modern Java 8 framework for modeling and simulation of cloud computing infrastructure, services,
underlying mechanisms and algorithms. CloudSim Plus enables researchers to model and simulate
different cloud scenarios, by implementing them using Java. Such scenarios can be used to
experiment existing and potentially new solutions for the issues mentioned above.

CloudSim Plus is an open source project available at http://cloudsimplus.org and Maven Central.

2. Overview

CloudSim Plus is based on CloudSim 3. It went through an extensive re-design and re-engineering
process to provide an updated, modern, highly extensible and easier-to-use cloud simulation
framework. These changes aim to enable sustainable project maintainability for long-term
evolution. To achieve such goals, CloudSim Plus is founded on several software design and
engineering metrics, principles and practices such as Coupling, Cohesion, Design Patterns, SOLID
principles and other ones like Don’t Repeat Yourself (DRY) and KISS.

3. Philosophy and Motivation

Software quality has become increasingly more important for the software industry, as can be seen
by the number of current software design and development methodologies and processes such as
Domain-Driven Design (DDD), Test-Driven Development (TDD), Behavior-Driven Development
(BDD), Clean Code Programming and many more. Different tools have been used to collect and
monitor software quality metrics to try detecting issues as soon as possible, such as Static Code
Analysis and Integration Testing in an automated Continuous Integration environment.

http://cloudsimplus.org
http://cloudsimplus.org/docs/maven.html
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://pt.wikipedia.org/wiki/Don’t_repeat_yourself
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Continuous_integration

Software quality helps reducing technical debt and avoids software erosion, delivering industry-
standard quality products. We are strong adepts of the open source philosophy and we started by
effectively contributing to CloudSim in 2015. However, since our team has different views of how
the framework should evolve, we decided to start CloudSim Plus as an independent fork. We also
believe that source code needs to be curated, without meaning it will restrict contributions, as it is
successfully proved by important projects like the Linux Kernel.

Finally, enforcement of backward compatibility is a common concern in software development,
mainly for public APIs such as those ones provided by a framework. However, such a concern
slows down software evolution and we contrary understand that a cloud simulation framework is
predominantly used for research purposes, even by industry. Cloud simulation scenarios are tightly
coupled to a specific version of the simulation framework. After they produce the final results and
the research goes on, new scenarios can be built using an updated version of the framework,
without worrying about the older scenarios. Accordingly, we are not afraid of breaking
compatibility so that we can foster project advance and innovation.

4. Architecture

CloudSim Plus is a Java Maven project that has a simple module and package structures. The entire
project is compounded of 4 modules that were re-organized to directly inherit from the parent
project, allowing a researcher to quickly have an overview of the structure. Redundant and out-of-
date modules such as "distribution” and "documentation” were removed since building distribution
artifacts and documentation is already automated using Maven.

Figure 1 presents the current project architecture and its modules are described as follows. The
highlighted modules are new in CloudSim Plus.

g CloudSim Plus API

-7 N AR

CloudSim Plus CloudSim Plus CloudSim Plus
Examples Testbeds Benchmarks

Figure 1. CloudSim Plus Modules

e

4.1. Modules

CloudSim Plus API is the main module that contains the framework API. It is the only independent
module that is required to build simulation scenarios. Since such a module is available at Maven
Central, there is no need to manually download the framework source code to build simulations.
This module can just be added as a maven dependency to one’s own project and he or she will be
ready to start building simulation scenarios.

CloudSim Plus Examples provides the original CloudSim examples, with refactored, well organized
and updated code to use the CloudSim Plus API. It also includes new examples for CloudSim Plus
exclusive features.

CloudSim Plus Testbeds implements some simulation testbeds in a repeatable manner. It provides

https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Software_rot
https://github.com/torvalds/linux
http://cloudsimplus.org/docs/maven.html
http://cloudsimplus.org/docs/maven.html
http://cloudsimplus.org#maven

base classes that allow a researcher to collect valid scientific results, such as average values and
standard deviations, considering a specific confidence interval. They serve as examples on how to
create broader testbed experiments.

CloudSim Plus Benchmarks is used just internally to measure the overhead of some CloudSim Plus
features.

4.2. Package Structure

CloudSim Plus has a new package organization, which ensures better separation of concerns and
make it easier to understand the project structure and to locate some class to use, extend or simply
to analyse its source code and/or documentation. Packages with a strong color contain exclusive
CloudSim Plus classes and interfaces, while the lightly colored ones were introduced to improve
organization but usually just contain classes and interfaces from CloudSim. The white packages
already existed in CloudSim.

1 1
org cloudbus | |brokers ‘ core predicates
datacenters distributions
[]

allocationpolicies ‘

1 [

Iisteners‘ cloudlets‘

&

cloudsimplus

Pl

provisioners

i

] @/ switches

network I@\

topologies
power E models

heuristics | builders ‘
schedulers
]]] readers
selectionpolicies | utilizationmodels ‘ resources ‘

Figure 2. CloudSim Plus Simplified Package Diagram

CloudSim Plus also introduces documentation for every package, quickly explaining the goals of
containing classes and interfaces, as well as the main class inside the package. Such a
documentation is an excellent start point for researchers to get an overview of the framework.

4.3. How CloudSim Plus Works

Creating a cloud simulation using CloudSim Plus requires one to write a Java program that models
the simulation scenario. The simplified diagram below presents the main interfaces involved in
creating such scenarios. For every presented interface, there is one or more implementing classes
that have to be actually instantiated (methods, attributes and several implementing classes were
omitted for simplification).

https://en.wikipedia.org/wiki/Separation_of_concerns

O 1 1 O 1 1 O

VmAllocationPolicy Datacenter DatacenterCharacteristics
1
0..*
ResourceProvisioner 2 1 Host 1 1 VmScheduler
1 1 0..1
O O
1 Pe 0. .* DatacenterBroker
O ! 1 O% 0.1

CloudletScheduler vm .
/1 0\ 0.*
. O

)
‘b O 1..3 Cloudlet
Resource j 1

N O 1..3
UtilizationModel

Figure 3. CloudSim Plus Simplified Class Diagram

The process of building a simulation scenario is described below. The goal of this section is to
provide an overview of how to build cloud simulations using CloudSim Plus. It is not going to
present the implementing classes for every presented interface. A complete simulation example is
presented in the last sub-section of this section. More details on how to use CloudSim Plus are
available at the official website.

CloudSim class is the first one that needs to be instantiated to start building a cloud simulation.
CloudSim Plus just requires it to be instantiated using the default no-arguments constructor to
initialize the simulation. The remaining objects that need to be instantiated are described as
follows.

4.3.1. Datacenter

Instances of a Datacenter must be created to represent the different data centers that make up the
cloud infrastructure. Each Datacenter has a set of characteristics (such as its timezone and costs for
charging customers) defined by a DatacenterCharacteristics object. A Datacenter also needs a
VmAllocationPolicy, which defines the policy used to select a Host to place or migrate Virtual
Machines (Vms).

For each Datacenter, a set of Hosts must be created, which represents the physical machines with
actual computing power. Each Host needs a VmScheduler, which defines the scheduling algorithm
used by the Host to execute its Vms (there are 2 schedulers available). The VmSchedulerTimeShared
enables executing Vms inside a Host in a preemptive, time-shared way. It allows different Vms to
share CPU time when there are less CPUs than required by all Vms. The VmSchedulerSpaceShared is a
non-preemptive scheduler that allocates physical CPUs to be exclusively used by each VM. If a Vm
requires more CPUs than a Host possesses, it will not be placed inside that Host.

For each Host, ResourceProvisioners objects must be set. They define the policy used by a Host to

http://cloudsimplus.org

check whether a specific amount of resource is available for a requesting Vm. They then allocate that
resource when such a Vmis created. A ResourceProvisioner must be defined to manage the allocation
of RAM, bandwidth and CPU (Processor Element, Pe) from the Host to Vms.

4.3.2. DatacenterBroker

A Datacenter Broker is a software that receives requests from a cloud customer and is in charge to
take required actions, on behalf of that one, to attend such requests. These requests usually are the
creation and destruction of Vms and allocation of applications (called Cloudlets) inside some Vm. The
broker is accountable for some decision making, such as: selecting a Datacenter and then a Host
inside it to place each Vm; and mapping each Cloudlet to one of the available Vms. The instantiation
of DatacenterBrokers is the next step, before creating and submitting Vms and Cloudlets to the cloud
infrastructure.

The DatacenterBrokerSimple class always selects the first Datacenter to place submitted Vms, before
trying other Datacenters when the allocation of a Vm fails in such a Datacenter. It provides a Round-
robin policy to select a Vm to run each (Cloudlet, without assessing Cloudlet requirements or
provider and customer goals.

CloudSim Plus enables such DatacenterBroker behaviors to be changed in runtime, allowing a
researcher to define the policies to place Vms and map Cloudlets to Vms, according to desired goals,
without requiring the creation of a new DatacenterBroker. More details are discussed in the next
section.

4.3.3. Vin

A Vmis a Virtual Machine that belongs to a specific cloud customer, which a DatacenterBroker acts on
behalf of. It abstractly represents a Virtual Machine in terms of RAM, CPU, Storage and Bandwidth
requirements. Each Vm needs a CloudletScheduler, which defines the scheduling policy to run
applications inside the Vm. Beyond time- and space-shared schedulers, which work as the
VmSchedulers used by Hosts, CloudSim Plus provides a implementation of the Completely Fair
Scheduler used in recent Linux Kernels.

Vms must be created and submitted to the broker, that in turn will decide which Datacenter and Host
each Vm will be placed into. When a Vm is submitted, the broker requests the selected Datacenter to
create the Vm. If the Datacenter does not have a Host with enough capacity for such a Vm, the broker
then forwards the request to other Datacenters, until the Vm is created or all Datacenters are
requested.

4.3.4. Cloudlet

A (loudlet abstractly represents an application running inside a Vm. Cloudlets and its related
interfaces such as the UtilizationModel are used to define application models. A Cloudlet must
define some resource requirements in advance (which currently are only CPU and storage). Such
requirements can be used by a broker to decide how to map Cloudlets to Vms in order to attend such
requirements and achieve provider and customer goals.

UtilizationModels define how different Vm resources will be used by a Cloudlet along the time,
namely RAM, CPU and Bandwidth resources. Implementations such as the

https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

UtilizationModelStochastic allows defining resource usage in a random way, using some pseudo
random number generator (PRNG). A researcher can select the PRNG implementation to use,
following a statistical distribution that meets his/her goals, such as Uniform, Normal (Gaussian),
Exponential, Pareto distribution and so on. When summarizing data from multiple simulation runs,
CloudSim Plus enables applying the Antithetic Variates Technique for uniform PRNG to reduce
standard deviation.

Cloudlet resource utilization can also be defined using the UtilizationModelPlanetLab class, based
on a trace file from Planet Lab Datacenters. On the other hand, the WorkloadFileReader class enables
the creation of an entire set of Cloudlets based on different Datacenter traces file formats.
Currently only the Standard Workload Format from The Hebrew University of Jerusalem is
implemented.

4.3.5. A minimal and complete example

The source code below shows a minimal but complete simulation example. After presenting the
objects required for a simulation, understanding the example is simple. Included comments
provide a general view of what is being made and it is not the intention to go through the details. It
just omits the package imports and the common structure of a Java class. The presented code is
only the content of the main method, putting everything together into a single method, just for
demonstration purposes. The complete example is available here.

Unresolved directive in README.adoc - include::../cloudsim-plus-
examples/src/main/java/org/cloudsimplus/examples/ReducedExample.java[tags="cloudsim-
plus-reduced-example”, indent=0]

A more adequate and reusable example is available here, together with other examples. Examples
of CloudSim Plus exclusive features can be found here.

5. Exclusive Characteristics and Features

CloudSim Plus is a full-featured simulation framework that has introduced exclusive features,
presented below. The next sub-sections also discuss how such features can be used.

5.1. Dynamic Creation of Vms and Applications
(Cloudlets)

CloudSim Plus allows on-demand creation of Vms and Cloudlets, without requiring creation of
DatacenterBrokers at runtime. The DatacenterBroker class was refactored to enable submission of
new Vms and (Cloudlets during simulation execution, accordingly requesting the creation of such
objects into the cloud infrastructure. It also enables delaying the creation of submitted Cloudlets
and Vms, which may be used to control the time when the researcher wants these objects to be
created. For instance, Vm creation can be delayed to avoid upfront allocation of resource that may
not be required immediately.

https://en.wikipedia.org/wiki/Antithetic_variates
https://www.planet-lab.org
http://www.cs.huji.ac.il/labs/parallel/workload/
http://new.huji.ac.il/en
https://github.com/manoelcampos/cloudsim-plus/blob/master/cloudsim-plus-examples/src/main/java/org/cloudsimplus/examples/ReducedExample.java
https://github.com/manoelcampos/cloudsim-plus/blob/master/cloudsim-plus-examples/src/main/java/org/cloudsimplus/examples/BasicFirstExample.java
https://github.com/manoelcampos/cloudsim-plus/blob/master/cloudsim-plus-examples/
https://github.com/manoelcampos/cloudsim-plus/blob/master/cloudsim-plus-examples/src/main/java/org/cloudsimplus/examples/

5.2. Vm Scaling

Vm migration is a well-known mechanism to optimize allocation of physical resources, which can
be applied for different goals, such as reduction of: costs, energy consumption and resource
wastage by consolidating multiple Vms into the same Host; network traffic by placing inter-
communication Vms as close as possible; SLA violations by ensuring that required resources will be
available for hosted Vms; etc. It is a fundamental mechanism to provide the so called elasticity,
which enables resources to be on-demand allocated or released.

However, Vm migration is an expensive operation that causes service downtime, introduces
overhead and must be performed carefully. Sometimes Vm migrations can be avoided by simply
scaling under or overloaded Vms. Appropriately, CloudSim Plus provides vertical and horizontal
Vm scaling mechanisms.

These two different kinds of Vm scaling, additionally with Vm migration algorithms, can be used
selectively by an Hypervisor to provide a very efficient Vm allocation policy mechanism to achieve
intended goals. This mechanism can decide the time to perform Vm migration, vertical or
horizontal Vm scale. Depending on specific conditions, one action can be favored over other ones
or even different actions can be performed at a given time. CloudSim Plus Vm Scaling mechanisms
are discussed below.

5.2.1. Vertical Vm Scaling

Vertical Vm Scaling performs on-demand down or up allocation of Vm resources such as RAM,
Bandwidth and CPUs, according to under or overloaded Vm condition, respectively. Since actual
hypervisors such as KVM and VMware ESX allows dynamically changing allocation of RAM and CPU
for a Vm, that can be used to avoid VM migration in specific conditions.

Bandwidth scaling is simpler to be performed since it is a more abstract resource, different from
virtualized RAM and CPU that are linked to the physical corresponding resource from a physical
machine. This way, such scaling can be easily performed by routers and CloudSim Plus enables
simulating this mechanism.

By using Vertical Vm Scaling feature it is possible to accommodate rising demand of applications
running inside a Vm, without migrating the Vm or creating another ones. This CloudSim Plus
feature enables performing simulations to assess, for instance, the workload limit that a Vm
supports, for a given application model. Therefore, the creation of new Vms to balance the load can
be postponed up to when they are really required, to avoid allocation of resources that stay idle for
long time periods. This is discussed in the next sub-section.

5.2.2. Horizontal Vm Scaling

Horizontal Vm Scaling allows dynamic destruction or creation of Vms, according to an under or
overload condition, respectively. Such conditions are defined by a predicate that can check
different Vm resources usage such as CPU, RAM or Bandwidth, to define if a Vm is under or
overloaded.

Depending on the model of an application running inside a Vm, by just performing a vertical up
scaling when the Vm is overloaded may not be enough to support the demand. Consider a web

https://en.wikipedia.org/wiki/Hypervisor
http://www.linux-kvm.org/page/Projects/auto-ballooning
https://labs.vmware.com/vmtj/memory-overcommitment-in-the-esx-server
https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?topic=/com.vmware.vsphere.vmadmin.doc_41/vsp_vm_guide/configuring_virtual_machines/t_change_cpu_hotplug_settings.html
https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

application relying on a Database Management Systems (DBMS) and a Web/Application Server.
Often, it is required to create new Vms running separate instances of such a Web/Application
Server to distribute user requests among them. It may be not enough just assigning more CPUs or
RAM to a Vm, in an attempt to enable more threads to process user requests. Usually a single
process may struggle to handle so many threads.

Alternatively, Horizontal Vm Scaling comes in handy by cloning a Vm to balance the load. This
feature allows a researcher to implement and evaluate load balancing algorithms for dynamic
workloads and burst conditions, by enabling the creation of new Vms to attend the demand. Some
cloud platforms such as Amazon Web Services provide an Auto Scaling feature, that can be alike
simulated in CloudSim Plus.

5.3. Parallel Execution of Simulations

Production of scientifically valid simulation results depends on several factors, which include the
accuracy of the simulator, experiments reproducibility and collection of statistic metrics over
multiple simulation runs. Although CloudSim Plus provides a lightweight, fast and easy way to
model and run cloud simulation experiments, depending on the experiment scale, it may take
several minutes to run. This is specially true when the workload is created from real and large
datacenter traces.

CloudSim Plus was re-designed to enable running multiple experiments in parallel, in a multi-core
machine, to reduce simulation time. Such a feature was enabled by changing every simulation
attribute that was being managed in a static way, inside the CloudSim class, to be managed by
instances of such a class. The benefits of this approach are two-fold: to initialize the simulation, one
has just to instantiate a CloudSim object, instead of calling a static method with redundant
parameters; each CloudSim instance owns all the objects and state that belong to a specific
simulation, allowing each simulation to run in an independent and isolated manner.

The real time reduction that can be achieved by running simulations in parallel is tightly
dependent of the simulation scenario and its scale. If the simulation is CPU-bound and is comprised
of several runs, then the parallelization might provide large time reduction. On the other hand,
small scale simulations or I/O-bound ones are not expected to take advantage of this feature.

An example available here shows how it is simple to parallelize simulation experiments in
CloudSim Plus, wusing the Java 8 Stream APIL. Consider there 1is: a class called
ParallelSimulationsExample, which represents a simulation scenario and contains a method run() to
build and start a simulation; and then a list of instances of such a scenario with different
configurations. Running each scenario instance is as simple as calling the single line of code below:

Unresolved directive in README.adoc - include::../cloudsim-plus-
examples/src/main/java/org/cloudsimplus/examples/ParallelSimulationsExample.java[tags=
"parallelExecution”,indent=0]

Since CloudSim class was re-designed, it enables using the Parallel Streams feature of Java 8, which
makes it straightforward to execute simulations in parallel, as presented above. The syntax
ParallelSimulationsExample::run may look unfamiliar, but it is the new Java 8 Method Reference
feature for Functional Programming. It enables passing functions as parameter to another function,

https://aws.amazon.com/autoscaling/
https://en.wikipedia.org/wiki/Reproducibility
https://github.com/manoelcampos/cloudsim-plus/blob/master/cloudsim-plus-examples/src/main/java/org/cloudsimplus/examples/ParallelSimulationsExample.java
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://en.wikipedia.org/wiki/Functional_programming

instead of just values. A reference to the run() method from the ParallelSimulationsExample class is
being passed to the forEach() method. Thus, that line is not calling the run() method. Rather, it will
be called inside the forEach() method when required.

5.4. Event Listeners

One of the features a cloud infrastructure must provide is the ability to monitor running services.
Monitoring capabilities can be used in different ways by involved parties. The cloud provider can,
for instance: collect resource utilization to charge customers in a pay-per-use basis; assess
fulfillment of customer SLA; or optimize resource allocation to avoid under and over resource
provisioning. Customers can, for instance, assess if the kind of resources he/she has contracted is
appropriated to his/her demand and then take the required actions if they are not.

Despite cloud resources usage is charged in a pay-per-use basis, it is up to the customer to correctly
configure the services he/she is using, to ensure an expected quality of service for his/her final
users. Scaling mechanisms that provide the so called elasticity are normally enabled and
configured by the customer. Otherwise, resources are not automatically scaled, for instance, to
attend bursts. CloudSim Plus thus provides Listeners as a mechanism to monitor simulation in
runtime, allowing collection of metrics, resource allocation decision making (such as Vm scaling)
and granular simulation execution feedback. Since the final goal of a simulation is the collection of
data to be processed, assessed and validated, Listeners enable researchers to collect such data at
any time interval they need, and writing it in any desired portable format such as CSV, JSON, XML,
YML or any other.

Despite CloudSim Plus is far easier to use and provides several new useful features, understanding
and correctly implementing large scale simulation scenarios may be challenging. Listeners can be
used by researchers to follow up simulation execution and to collect data for debug purposes.
Listeners are a variation of the Observer Design Pattern and were implemented in CloudSim Plus
using the Java 8 Functional Interfaces. These interfaces enable a researcher to use Lambda
Expressions to define the code that will capture an event, without requiring an anonymous class for
each event to be handled.

Listeners were designed to allow defining different handlers for the same event, also enabling the
framework itself to use them internally, as a type-safe message-passing mechanism. More
information about existing issues with the current mechanism can be found here. Such Listeners
are currently being used to implement Integration Tests to assess the accuracy of the simulation
framework. Examples using some Listeners can be found here. Some available listeners are
presented below, grouped by the class they belong to.

5.4.1. Host Listeners

Such Listeners enable getting notifications about events happening inside a Host. Currently, only
the onUpdateProcessinglistener is defined, which enables receiving notifications when the
execution progress of Vms inside a Host is updated. This Vm processing update is as if the Host
operating system was allowing a Vm to execute some CPU instructions, that may impact usage of
resources such as RAM, Bandwidth and obviously CPU too.

Using such a Listener, a researcher can monitor, for instance, if a specific Vm placement

10

https://en.wikipedia.org/wiki/Observer_pattern
https://www.oreilly.com/learning/java-8-functional-interfaces
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
https://github.com/manoelcampos/cloudsim-plus/issues/47
https://github.com/manoelcampos/cloudsim-plus/tree/master/cloudsim-plus-examples/src/main/java/org/cloudsimplus/examples/listeners

configuration is enabling a balanced resource usage, i.e., whether resources are begin used in
similar proportions along execution of Vms. An unbalanced resource usage situation sets a resource
wastage scenario. That prevents new Vms to be placed at the Host, due to the unavailability of some
resources while other ones are plenty.

5.4.2. Vm Listeners

Such Listeners enable getting notifications about events happening inside a Vm and are presented
below:

* onHostAllocationListener: get notifications when a Host is allocated to a Vm, that is, when a Vm is
placed inside some Host. Such a Listener can be used to log the different Hosts where a Vm may
be placed along its life cycle, since the Vm may be migrated to a different Host when the previous
one becomes under or overloaded. It also enables to check, in runtime, if a specific Vm allocation
policy is placing Vms at the expected Hosts;

» onHostDeallocationListener: this is the opposite of the previous listener, being notified every
time when a Vm is destroyed or moved from a Host. Vms must be created before applications
(Cloudlets) are submitted to a broker. Sometimes applications finish running inside a Vm, then
such a Vm becomes idle for long time periods. That may potentially detain other Vms to be placed
on a Host, because resources that could be used by new Vms are provisioned to an idle one. Using
this Listener, it is possible to determine the difference between the time when the Vm was
destroyed and when it became idle. By this way, the broker policy that defines when Vms should
be freed can be assessed to optimize resource allocation;

» onUpdateProcessinglListener: get notifications when the execution progress of a Vm is updated.
This event is fired by the event of same name from the Host where the Vm is placed. In the same
way, it can be used, for instance: to log Vm resource usage along its execution, enabling detection
of under and overload conditions; to determine if such resources are balanced; to detect and log
SLA violations. Such a Listener is also used internally by the Horizontal and Vertical Vm Scaling
mechanisms, presented above, to verify if a Vm is under or overloaded, aiming to perform down
or up scaling, respectively;

» onCreationFailurelistener: get notifications when a Vm fails to be placed into a selected
Datacenter, due to lack of a Host with enough resources. This notification is fired by a
DatacenterBroker which usually will try other available Datacenters to place the Vm. If too many
Vm creation failures are happening, there may be issues on the Vm placement policy implemented
by the DatacenterBroker or it may be a signal that the cloud infrastructure is not being able to
attend the demand. In any case, this Listener enables logging such failures for further
assessment. It may be used, for instance: to assess the suitability of a specific Vm placement
policy to reduce the time to attend a Vm placement request; or to study current cloud provider
restrictions and expansion needs.

5.4.3. Cloudlet Listeners
Such Listeners enable getting notifications about events happening inside a Cloudlet:

 onUpdateProcessinglListener: get notifications when the execution progress of a Cloudlet is
updated. This event is fired by the event of same name from the Vm where the Cloudlet is
running. It enables monitoring applications resource usage along execution time, for instance,

11

to evaluate if such Vm applications are not contending the same resources. As a concrete
example, if a Vm has multiple CPU-bound (loudlets, their execution performance may be
affected, increasing response and task completion time. Such a condition may lead to SLA
violations and reveals a flaw at the DatacenterBroker policy used to select a Vm to run each
Cloudlet;

» onFinishListener: get notifications when a (Cloudlet finishes executing. Such a Listener can be
used to collect different metrics such as wait, actual execution and completion time for each
application. These metrics and application requirements may be used, for instance, in a back
propagation process to enable a DatacenterBroker to improve its Cloudlet to Vm mapping policy.
This listener enables collecting metrics immediately after Cloudlets finish, without having to
wait the simulation to end. By this way, using techniques such as machine learning, the learning
phase can be adjusted at simulation runtime.

5.4.4. CloudSim Listeners

Listeners inside the CloudSim class are the most general ones available in CloudSim Plus, which may
have a broader applicability. The current implemented Listeners are described below:

* onClockTickListener: get notifications when the simulation clock advances, enabling to perform
any desired action at a given time. Since CloudSim Plus allows dynamic creation of Cloudlets
and Vms, as presented before, such a Listener can be used to submit new instances of those
objects to a DatacenterBroker, simulating the dynamic arrival of customers requests and
workload generated by final users;

» onSimulationPausedListener: get notifications when the simulation is paused. Such a Listener can
be used, for instance, to collect partial simulation data after the simulation is intentionally
paused at a given time, ensuring that the simulation state will not change during data
collection;

» onEventProcessinglListener: get notifications when any event is processed by CloudSim Plus. It is
a more general Listener that provides the original data related to the happened event, that is
totally dependent of the kind of event. Since CloudSim Plus is a discrete event simulation
framework, any event that happens will be caught by such Listeners. As it is the most generic
Listener available, it may have a wide applicability.

5.5. Strongly Object-oriented Framework

CloudSim Plus was comprehensively re-engineered to create relationships among classes, enabling
chained calls such as cloudlet.getVm().getHost().getDatacenter(). This way, it stores references to
actual objects, instead of just integer IDs to represent these relationships, which does not conform
to an object-oriented design. These relationships can be seen at the Class Diagram already
presented.

The line of code shown above provides a direct way to know what Vm a Cloudlet is running or will
run, what Host such a Vm is or was placed into, and finally what Datacenter such a Host is settled
down. The Null Object Design Pattern was also implemented to avoid the so propagated
NullPointerException when making such a chained call.

12

https://en.wikipedia.org/wiki/Null_Object_pattern

5.6. Classes and Interfaces Allowing Implementation of
Heuristics

Considering the large scale of cloud infrastructures, finding an optimal solution for issues such as
Vm Placement is impracticable, since this is a NP-hard problem. Alternatively, heuristic techniques
can be used to find a sub-optimal and satisfactory solution in a reasonable time. Some well-know
heuristic methods include Tabu Search, Simulated Annealing and Ant Colony Systems. These
methods usually start with an initial random solution for a defined problem and iterative and
randomly look for other solutions. A fitness value to be maximized for each solution is computed by
an utility function, then the solution finding stops when a desired fitness or number of iterations is
reached.

CloudSim Plus provides a set of classes and interfaces to enable a researcher to build such
heuristics for solving problems like Vm placement and migration. The interfaces provide a contract,
by defining method signatures to: implement a solution generation and solution cost function (the
fitness function is just the inverse of the cost); implement a function to update the solution search
state; specify the number of maximum iterations, the probability for accepting each random
solution and the predicate that defines when the solution finding must stop. The package
org.cloudsimplus.heuristics contains such classes and interfaces and also includes a Simulated
annealing heuristic to perform the map between Cloudlets and Vms.

5.7. Implementation of the Linux Completely Fair
Scheduler

Implementations of the CloudletScheduler interface, as presented in the Section How CloudSim Plus
Works, define the algorithm used by a Vm to schedule the execution of its Cloudlets. One of the
criticisms against simulation experiments is differences between some behaviors of the actual
system being simulated and the simulation itself, which may reduce the simulation accuracy.
Process scheduling is one of the behaviors that was neglected in cloud computing simulations up to
now. The scheduling algorithm impacts some application metrics such as wait time and task
completion time. A bad scheduling may lead to processes waiting for long time periods to use the
CPU or, when a process is assigned to a CPU, it is not given enough CPU time. That situation is called
starvation and may cause SLA violations.

The Completely Fair Scheduler used in recent version of the Linux Kernel provides a very efficient
policy to avoid the mentioned issues. As an actual scheduler, it considers assigned tasks priorities to
define the time slice that each process is allowed to use the CPU. It also tries to be fair when
allocating these time slices to avoid starvation of low priority processes. CloudSim Plus introduces a
implementation of the Completely Fair Scheduler to increase the accuracy of processes execution in
simulation environments.

The already existing CloudletSchedulerTimeShared class provides a simplistic implementation that
does not take processes priority into account and, in fact, it does not perform a preemption process
when there are more processes to execute than the number of available CPUs. As an example,
consider there are 3 CPU cores and 12 processes to be executed. Such a scheduler will make all
these processes to be executed simultaneously, each one using 25% of a CPU core capacity (3 cores /
12 processes), enabling 4 processes to run in each core.

13

http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Tabu_search
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
https://github.com/manoelcampos/cloudsim-plus/tree/master/cloudsim-plus/src/main/java/org/cloudsimplus/heuristics
https://en.wikipedia.org/wiki/Starvation
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://en.wikipedia.org/wiki/Preemption_(computing)

Even in recent actual processors, the presented situation is not possible, since technologies such as
Intel Hyper-Threading (HT) just enables up to 2 processes running at the same time on each CPU
core. In a real scheduler, if there are, for instance, 2 Hyper-Threading CPU cores allocated to 4
processes that are not using the entire cores capacity, a fourth process cannot use this remaining
capacity. That capacity is in fact wasted, forcing the process to wait one of the others to be
preempted, to open room for it to wuse the CPU. Therefore, the simplistic
CloudletSchedulerTimeShared may achieve better but inaccurate results. However, how CPU capacity
is wasted by actual process schedulers can be assessed in CloudSim Plus.

5.8. Additional Characteristics

Besides all the exclusive features that have been presented, CloudSim Plus has additional
characteristics that make it a promising cloud simulation framework. Some of them include:

* Completely re-designed and reusable network module. Totally refactored network examples to
make them clear and easy to change.

* Throughout documentation update, improvement and extension.

* Improved class hierarchy, modules and package structure that is easier to understand, following
the Separation of Concerns principle (SoC). For instance, power-aware Host classes and
interfaces are included into the intuitive org.cloudbus.cloudsim.hosts.power package, as well as
network-enabled ones are included into the org.cloudbus.cloudsim.hosts.network package. And
if one needs to find a power or network-enabled Vm, he/she will intuitively know where to find
it.

* As it is usual to extend framework classes to provide some specific behaviors, a researcher will
find a totally refactored code that follows clean code programming, SOLID, Design Patterns and
several other software engineering principles and practices. This way it is far easier to
understand the code and implement a required feature.

* Integration Tests to increase framework accuracy by testing entire simulation scenarios.

» Updated to Java 8, making extensive use of Lambda Expressions and Streams API to improve
efficiency and provide a cleaner and easier-to-maintain code.

6. Conclusion

CloudSim Plus is an updated cloud simulation framework that relies on the most recent advances of
the Java language. It provides a more extensible, cleaner and easy-to-understand code that
encourage developers to contribute. It uses industry-standard tools to:

* measure code quality;

* automate builds and the execution of unit and integration tests into a continuous integration
environment;

* host its meaningful and extended documentation in a searchable way, enabling documentation
versioning.

The redesign and refactoring performed in CloudSim Plus enabled reducing code duplication,
making it easier to extend. The tools presented above provide an ecosystem to properly support

14

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://en.wikipedia.org/wiki/Separation_of_concerns
https://github.com/manoelcampos/cloudsim-plus/tree/master/cloudsim-plus/src/main/java/org/cloudbus/cloudsim/hosts/power
https://github.com/manoelcampos/cloudsim-plus/tree/master/cloudsim-plus/src/main/java/org/cloudbus/cloudsim/hosts/network
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/Software_design_pattern
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.codacy.com/app/manoelcampos/cloudsim-plus/dashboard
https://travis-ci.org/manoelcampos/cloudsim-plus
https://travis-ci.org/manoelcampos/cloudsim-plus
http://cloudsimplus.rtfd.io/en/latest/

contributions by tracking code quality and software regression. In this process, several issues were
detected and fixed, improving the framework correctness.

Finally, all the new CloudSim Plus features allow researchers to implement more realistic, complex
and accurate simulations. Even the scale of simulation experiments may be enlarged by running
experiments in parallel. All these characteristics and features make CloudSim Plus a promising
cloud simulation framework.

7. Acknowledgements

CloudSim Plus is developed through a partnership among the Systems, Security and Image
Communication Lab of Instituto de Telecomunicacoes (IT, Portugal), the Universidade da Beira
Interior (UBI, Portugal) and the Instituto Federal de Educacdo Ciéncia e Tecnologia do Tocantins
(IFTO, Brazil). It is supported by the Portuguese Fundacdo para a Ciéncia e a Tecnologia (FCT)
(under the UID/EEA/50008/2013 Project) and by the Brazilian foundation Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior (CAPES) (Proc. no 13585/13-4).

We would like to thank these institutions for all the provided support and the EU-Brazil Cloud
Forum for this opportunity.

15

https://github.com/manoelcampos/cloudsim-plus/issues
https://github.com/manoelcampos/cloudsim-plus/issues
http://www.it.pt
http://www.ubi.pt
http://www.ubi.pt
http://www.ifto.edu.br
http://www.ifto.edu.br
https://www.fct.pt
http://www.capes.gov.br
http://www.capes.gov.br

	{title}
	Table of Contents
	1. Introduction
	2. Overview
	3. Philosophy and Motivation
	4. Architecture
	4.1. Modules
	4.2. Package Structure
	4.3. How CloudSim Plus Works

	5. Exclusive Characteristics and Features
	5.1. Dynamic Creation of Vms and Applications (Cloudlets)
	5.2. Vm Scaling
	5.3. Parallel Execution of Simulations
	5.4. Event Listeners
	5.5. Strongly Object-oriented Framework
	5.6. Classes and Interfaces Allowing Implementation of Heuristics
	5.7. Implementation of the Linux Completely Fair Scheduler
	5.8. Additional Characteristics

	6. Conclusion
	7. Acknowledgements

