
CloudSim Plus: A Cloud Computing Simulation
Framework Pursuing Software Engineering

Principles for Improved Modularity, Extensibility
and Correctness

Manoel C. Silva Filho∗†, Raysa L. Oliveira†, Claudio C. Monteiro∗, Pedro R. M. Inácio†, Mário M. Freire†
∗ Departamento de Informática - Instituto Federal de Educação, Ciência e Tecnologia do Tocantins (IFTO)

Palmas, Tocantins, Brazil 77021-090
{mcampos, ccm}@ifto.edu.br

† Instituto de Telecomunicações (IT) e Departamento de Informática, Universidade da Beira Interior (UBI)
Covilhã, Portugal 6201-001

{d1365, m6476, inacio, mario}@ubi.pt

Abstract—Cloud computing is an established technology to
provide computing resources on demand that currently faces
several challenges. Main challenges include management of
shared resources, energy consumption, load balancing, resource
provisioning and allocation, and fulfilment of service level agree-
ments (SLAs). Due to its inherent complexity, cloud simulation is
largely used to experiment new models and algorithms. This work
presents CloudSim Plus, an open source simulation framework
that pursues conformance to software engineering principles and
object-oriented design in order to provide an extensible, modular
and accurate tool. Based on the CloudSim framework, it aims
to improve several engineering aspects, such as maintainability,
reusability and extensibility. This work shows the benefits of
CloudSim Plus, its particular features, how it ensures more
accuracy, extension facility and usage simplicity.

I. INTRODUCTION

Cloud computing is a model to provide computing resources
as an utility [1]–[4] that has gained wide adoption, mainly
leveraged by the reduction of costs, management and IT
personnel [5], [6]. The current state-of-the-art cloud technol-
ogy relies on efforts from both the academy and industry,
requiring execution of experiments to assess, improve and
validate potential solutions. Examples of such efforts include
the development of algorithms for improving fault-tolerance,
resilience, resource provisioning and allocation, load balancing
and scalability. Despite the cloud provides an on-demand
charging model, the implementation of large scale experiments
in a real infrastructure is costly, time consuming, limits the
experiments reproducibility and prejudices measurement due
to an uncontrolled environment.

Alternatively, several studies are performed resorting to
computer simulation, enabling researchers to conduct their
experiments without having to afford the costs of cloud
services. Computer simulations also provide a faster way to
run experiments that would take hours or days to run in a
real infrastructure, in just a few minutes or seconds. They
also allow large scale experiments to be executed using just

a fraction of time and computing resources that would be
required using a real cloud infrastructure, additionally favoring
reproducibility and sharing of resources.

Within the aforementioned context, several simulation tools
for cloud computing have been developed by the academy. The
most widely used is CloudSim, a generalized and extensible
simulation framework for cloud computing [7].

The characteristics that contribute to the broad adoption
of CloudSim, are that: (i) it is developed in Java, a widely
used programming language; (ii) the project is open source,
enabling contributions from other developers; (iii) it was the
first open source specialized cloud simulation framework [8];
(iv) it provides great flexibility to create simulation scenarios,
where each scenario has to be implemented using Java code
instead of using a rigid graphical tool.

The shortcomings of the current version of the framework
that motivated this work were the following: (i) limited
documentation; (ii) amount of duplicated code that jeopar-
dizes maintainability, extensibility and testing; (iii) absence
of functional/integration tests, important to ensure simulator
correctness and validity; (iv) absence of design patterns [9]
to improve several metrics of software engineering and object
oriented design; (v) lack of conformance to some software
engineering practices and recommendations such as SOLID
principles [10]; (vi) lack of a more organized package structure
to allow better understanding and modularity of the project;
(vii) lack of a better class structure to allow third-party
developers to implement missing features into the framework,
without needing to change core classes.

CloudSim Plus project was initiated as an independent fork
of CloudSim, pursuing the application of the best software
engineering patterns, practices and recommendations. Its main
contributions are: (i) improved class hierarchy and code,
which is easier to understand; (ii) increased application of
reusability principles; (iii) overall review and improvement of
code documentation; (iv) re-structuring of project modules and

978-3-901882-89-0 @2017 IFIP 400

packages in order to simplify usage and to improve separation
of concerns (SoC) principle; (v) addition of integration tests
to cover overall simulation scenarios; (vi) completely new set
of features described in details at the official web site.

The proposed simulator is an open source project available
at http://cloudsimplus.org. The goal of this paper is to intro-
duce CloudSim Plus, presenting its architecture, usage, ad-
vantages and new features. The paper is organized as follows:
Section II presents the related work; Section III an overview of
CloudSim Plus; Section IV the project architecture; Section V
the improvements of CloudSim Plus over CloudSim; Section
VI its main features; Section VII how to use the framework;
and Section VIII presents the conclusion.

II. RELATED WORK

This section presents some cloud computing simulators
found in the literature. CloudSim is the most widely used
simulation framework for cloud computing [7]. It enables
modelling of several characteristics and behaviours of a cloud
provider, such as specification of infrastructure; implemen-
tation of management tasks such as resource allocation and
VM management. Despite it is the most suitable framework
for cloud simulation, it has some issues as introduced in the
previous section.

WorkflowSim [11] is a tool for simulation of workflows in
distributed environments. It implements mechanisms for work-
flow execution, introducing features such as failure models.
The tool is focused on workflow simulations and it is not
actively maintained anymore.

CloudNetSim++ [12] is a module for the OMNeT++ sim-
ulator [13] that allows modelling and simulation of physical
network aspects of a cloud provider, making it difficult to
simulate services of higher cloud computing layers.

III. CLOUDSIM PLUS OVERVIEW

CloudSim Plus is a Java 8 simulation framework that
allows modelling and simulation of different cloud computing
services, ranging from infrastructure as a service (IaaS) to soft-
ware as a service (SaaS) layers. It enables the implementation
of simulation scenarios for experimentation, assessment and
validation of algorithms for different goals. The framework
allows developers to specify the characteristics of different
entities of a cloud provider such as: (i) physical resources like
datacenters, physical machines (hosts, servers or simply PMs)
and network assets; (ii) logical resources like storage area
networks (SANs), network topologies and applications; (iii)
the virtualization layer that provides elements such as virtual
machines (VMs) to enable virtualizing physical and logical
resources; (iv) requirements and behaviour of applications and
workloads.

It automates the management of all these resources that are
provided as a service, working as virtual machine monitors
(hypervisors or simply VMMs) that perform low level ad-
ministration tasks such as: (i) VM lifecycle management (like
creation, start, stop, destruction, placement and migration); (ii)
management of active physical machines for energy saving;

(iii) scheduling of VMs execution inside PMs and applications
execution inside VMs; (iv) allocation of VMs for application
and management of application lifecycle inside VMs.

CloudSim Plus allows simulation of entire cloud computing
architectures and leaves developers concerned just in imple-
menting specific new features they need to investigate, try
and evaluate. By extending the basic mechanisms already
provided by the framework, developers can focus in imple-
menting algorithms to decide when and how these tasks are
executed in order to achieve desired provider and/or customers
goals. Such goals include load balancing, energy saving, fault-
tolerance, scalability, elasticity and minimization of costs, SLA
violations, network traffic, communication delay and so on.

IV. ARCHITECTURE

CloudSim Plus is compound of different modules.
CloudSim Plus API is the main module which represents the
simulation framework API. It is the single module required
to enable implementation of cloud simulation experiments.
Figure 1 shows a simplified view of its package structure.
Packages with a stronger color contain exclusive features
of CloudSim Plus. Those lighter ones were introduced just
to provide a better organization and separation of concerns
(SoC) [14], but containing classes went through extensive
refactorings and re-design.

Fig. 1. CloudSim Plus API package structure.

The most relevant packages of CloudSim Plus and the
classes they contain can be briefly described below:

• distributions: classes that provide generation of
pseudo random numbers following several statistical dis-
tributions used by the simulation API. Additionally, they
can be used by developers implementing their own sim-
ulations;

• network: classes for creation of datacenter network
infrastructure allowing network simulations;

• power: classes to enable power-aware simulations, in-
cluding power consumption models that can be extended
by developers creating their simulations.

The original CloudSim project comes with classes that
provide basic functionalities to quickly implement simulation

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 401

scenarios, such as models for utilization of resources like
RAM, CPU and bandwidth. It has a set of base classes and
few interfaces that must be extended by its users in order
to introduce specific features for their simulations. Aiming a
better organization of classes and interfaces in CloudSim Plus,
the lightly highlighted packages in Figure 1 were introduced,
grouping classes and interfaces with specific goals into well
defined packages. These new packages are described below:

(i) hosts, datacenters, vms, cloudlets:
group classes that provide different implementations
for Datacenters, Hosts, Vms and Cloudlets
(applications), including implementations of power- and
network-aware components;

(ii) allocationpolicies: classes that provide mech-
anisms for a Datacenter to select a Host to place or
migrate a Vm. The framework provides a worst-fit policy called
VmAllocationPolicySimple that selects the Host with
less available processor cores to place a given Vm;

(iii) brokers: classes that act on behalf of a cloud cus-
tomer, attending his/her requests for creation and destruction
of Cloudlets and Vms, assigning such applications to
specific Vms. These brokers can implement decision making
algorithms to prioritize submission of applications to the
cloud, define how a Vm is selected to run a given application,
etc. It includes an exclusive DatacenterBroker that uses
a Simulated Annealing heuristic to map Cloudlets to Vms;

(iv) schedulers: classes to schedule the execution of
multiple Cloudlets inside a Vm and the execution of
multiple Vms inside a Host. It includes time-shared and
space-shared schedulers, besides an exclusive implementation
of the Completely Fair Scheduler used in recent versions of
the Linux Kernel;

(v) resources: classes that represent physical and logical
cloud resources such as hard disks, processor cores (processing
elements or simply Pes), RAM, bandwidth and user files;

(vi) utilizationmodels: classes that models utiliza-
tion of resources such as CPU, RAM and bandwidth, defining
how a given resource is used by an application along the time.

Exclusive CloudSim Plus packages are presented in a
stronger color and are briefly describe below:

(i) listeners: classes used to get notifications during
simulation execution and then monitor the simulation scenario.
Using such monitoring features it is possible, for instance, to
allocate Vms on demand, when a specific condition is met;

(ii) heuristics: classes that provide the base to im-
plement heuristics that could be used for different purposes
such as mapping of Cloudlets to Vms and Vm migration
decisions;

(iii) builders: classes that implement the Builder design
pattern [15], working as object factories that make it easier to
create multiple simulation objects such as Hosts, Vms and
Cloudlets. This new feature will be discussed in Section VI;

A. Main CloudSim Plus classes

CloudSim Plus relies on several classes to provide its
functionalities. Figure 2 presents a reduced UML diagram

which indicates those main ones that have to be used in order
to model and execute a simulation. These classes provide basic
functionalities that can be extended by a researcher. Elements
with a stronger color were introduced in CloudSim Plus to
provide a solid base for improving framework extensibility,
and will be discussed in Section V. Due to introduction of
some interfaces, several existing classes were refactored by
extracting abstract classes to remove code duplication among
their children. Other classes were renamed to ensure a more
consistent name convention. Accordingly, such elements are
presented in a lighter color.

Fig. 2. Main classes involved in creating simulations using CloudSim Plus.

The new classes, highlighted with a darker color, represent
bandwidth, storage and RAM resources of a Host or Vm. All
these resources have certain attributes that need to be managed,
such as capacity and current used amount. Accordingly, the in-
terface Resource and implementing classes were introduced
to remove all duplicated code used to manage these resources.
The removal of duplicated code and inclusion of new test
cases also ensure that functionalities work consistently and
as expected. A description of the main classes used to create
a simulation is presented below.

(i) Datacenter, DatacenterCharacteristics
and VmAllocationPolicy: a Datacenter contains
a set of physical machines (hosts, servers or simply PMs)
that together provide the basic cloud infrastructure. Each
Datacenter has attributes that define its characteristics,
such as the costs associated with different physical
resources from its Hosts. These attributes are defined by a
DatacenterCharacteristics object. For each created
Datacenter, a VmAllocationPolicy instance must be
defined. This object decides which PM will host each Vm. The
framework provides the VmAllocationPolicySimple
implementation, a worst fit policy that allocates Vms into the
Host with most available processor cores (Pes).

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference402

(ii) Host, Pe and VmScheduler: a Host represents a
physical machine (PM) and for each PM, a list of processing
elements (Pes) must be defined (the machine CPU cores). As
the PM can host Vms, it is also required a scheduling algorithm
that will be used to manage concurrent execution of multiple
Vms in the host Pes. There are different VmSchedulers,
such as time- and space-shared, that can be used.

(iii) DatacenterBroker: represents a software that acts
on behalf of a cloud customer, receiving requests and perform-
ing requiring actions to attend them. These actions include
submitting Vms to be allocated inside some Host of a
Datacenter, submitting Cloudlets (applications) to be
executed inside some of the created Vms, making decisions
about what VM to select to place a given Cloudlet, etc.

(iv) Vm and CloudletScheduler: a Vm object repre-
sents a virtual machine that runs inside a Host and will exe-
cute applications (Cloudlets). A CloudletScheduler
defines how concurrent execution of multiple applications
is scheduled inside a Vm. It follows the same reasoning of
VmScheduler and there are the same basic implementations
available and a Completely Fair Scheduler, as described pre-
viously.

(v) Cloudlet and UtilizationModel: a Cloudlet
represents an application that will run inside a Vm, abstractly
defined in terms of its characteristics, such as the number of
million instructions to execute, the number of required Pes
and utilization models for CPU, RAM and bandwidth. Each
UtilizationModel object defines how a given resource
will be used by the Cloudlet along the time. Some basic
UtilizationModel implementations are provided, such as
the UtilizationModelFull, which indicates that a given
available resource will be used 100% all the time.

V. CLOUDSIM PLUS IMPROVEMENTS OVER CLOUDSIM

This section discusses some of the improvements of
CloudSim Plus over CloudSim.

A. Extensibility Improvements

The colored interfaces in the class diagram of Figure
2, presented in Section IV, were introduced to improve
framework extensibility. Accordingly, framework classes
inherit from interfaces that provide a contract to be followed.
They also allow conformance to the "program to an
’interface’ not to an ’implementation’" recommendation
[15] and also to the Liskov substitution principle (LSP)
that states “objects in a program should be replaceable
with instances of their subtypes without altering the
correctness of that program” [10]. Some classes were
changed to interfaces, ensuring a consistent design, namely
the new DatacenterBroker, CloudScheduler,
VmScheduler and VmAllocationPolicy interfaces.

For each one of the introduced interfaces, the corresponding
implementing classes were renamed so as to include the suffix
Simple in their names, as already used in CloudSim for other
classes. For instance, the HostSimple class replaces that
Host (which is now an interface).

B. Reduced Code Duplication

Code duplication is a major problem for software mainte-
nance and quality [16]–[22] and it is considered an anti-pattern
[23]. It increases maintenance costs and inconsistent changes
in the clones can introduce defects [24]. It also increases the
amount of code to be changed and tested, sometimes leading
developers to neglect tests. Code duplication also harms the
design of application programming interfaces (APIs) such as
those provided by this kind of project.

CloudSim project has a high level of duplicated code that
reduces software quality and extensibility. In order to assess
these issues, IntelliJ IDEA Ultimate 2016.2 IDE and its code
duplication analysis tool was used for CloudSim 3.0.3 (the
version that CloudSim Plus is based on), CloudSim 4.0.0
(the latest version) and CloudSim Plus 1.0. Table I below
summarizes the results.

TABLE I
CODE DUPLICATION FOR CLOUDSIM 3 AND 4 AND CLOUDSIM PLUS 1.0.

Project Number of
duplicated

code blocks

Sum of
duplicated
code lines

% of duplicated
lines from

previous version
CloudSim 3.0.3 415 3646 N/A
CloudSim 4.0.0 798 10973 +300.96%
CloudSim Plus 1.0 439 2536 -30.44%

These results were generated using all default op-
tions of IntelliJ code duplication analysis tool, under the
src/main/java directory of the main module of each
project, excluding all test suits and examples. Table I shows
that CloudSim 3.0.3 has 415 duplicated blocks of code, to-
talling 3646 lines of code. CloudSim 4.0.0 almost doubled the
number of duplicated blocks to 798, totalling 10973 lines of
code and 300% increase in duplicated lines since the previous
version. On the other hand, CloudSim Plus reduced the number
of duplicated lines of code from CloudSim 3.0.3 in 30%.

The aforementioned results constitute one of the main
reasons why CloudSim Plus started as an independent project
and why it was forked from the version 3 of CloudSim instead
of 4. While the re-engineering work was being performed to
reduce the code duplication in CloudSim 3, the project moved
to the 4.0 release, that increased the code duplication.

C. Tests and Code Coverage

CloudSim implements several unit tests using the JUnit tool,
trying to ensure the correctness of the simulation framework.
However, code coverage mechanisms are not used to assess
which parts of the code are being tested and which are not,
while providing percentage of overall coverage of tests along
the project source code. In order to assess the amount of code
that is covered by the existing unit tests, code coverage reports
using Java Code Coverage Library (JaCoCo) were included in
both projects (in CloudSim it was just for experimentation).

Table II shows that CloudSim 3.0.3 has 18% of code
covered by tests, while CloudSim 4.0.0 decreased to 10%, a
regression of 44% from the previous version. This is explained
by the considerable increase in code duplication from one

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 403

version to another, showing that new features are not being
tested. Such a table also provides an example on how code
duplication leads to neglecting tests. On the other hand,
CloudSim Plus officially supports code coverage reports and
has 35% of its code covered by tests, representing an evolution
of 94% from CloudSim 3.0.3, while it is still work in progress.

TABLE II
CODE COVERAGE FOR CLOUDSIM 3 AND 4 AND CLOUDSIM PLUS 1.0.

Project Code coverage
%

% of code coverage
from previous version

CloudSim 3.0.3 18% N/A
CloudSim 4.0.0 10% -44.44%
CloudSim Plus 1.0 35% +94.44%

VI. CLOUDSIM PLUS FEATURES AND ADVANTAGES

CloudSim Plus is a fork of CloudSim 3 that was re-
engineered primarily to avoid code duplication for improved
code reusability and to ensure better compliance to software
engineering and object-oriented design principles and recom-
mendations. It aims to provide a more extensible, modular,
well documented, accurate and easy-to-use framework. It
focuses on usage of software engineering standards and rec-
ommendations such as Design Patterns [15], SOLID [10] and
general responsibility assignment software patterns (GRASP)
[25] principles to achieve these goals. Following sub sections
present the main features and advantages of CloudSim Plus
over CloudSim.

A. Dynamic Arrival of Cloudlets and Vms and
Cloudlets priorization

CloudSim Plus allows DatacenterBrokers to de-
lay the submission of Cloudlets to the cloud infras-
tructure, simulating resources allocation waiting time. Te
DatacenterBrokers are also able to submit dynamically
created Vms and Cloudlets, allowing on demand allocation
of resources. These features are missing in CloudSim and
developers have to change core framework classes in order
to enable such behaviors.

The priority attribute of Cloudlets is now in fact used by
the new Completely Fair Scheduler to allow defining processes
with higher priorities than other ones. These features thus
enable the implementation of more realistic simulations.

B. Very Extensible and new DatacenterBrokers

DatacenterBroker is a fundamental entity for the
simulation. It has to implement some policies for deci-
sion making in response to customer requests. CloudSim
Plus provides a completely re-engineered package for
DatacenterBrokers. The new DatacenterBroker
interface publishes methods that allow researchers to simply
implement such methods in order to define policies for se-
lection of: VMs to execute Cloudlets; a Datacenter
to place VMs inside its hosts; an alternative Datacenter
in case of VM allocation failure, working as a fallback

mechanism. All these features are just possible in CloudSim
by modifying core classes of the framework.

A new DatacenterBroker that uses a Simulated An-
nealing heuristic to find a sub-optimal mapping between
Cloudlets and Vms was introduced to provide an alter-
native for the Round-robin mapping that is provided by the
single broker existing in CloudSim. The Round-robin mapping
does not consider the fitness of a Cloudlet to a Vm. The
introduced broker uses an heuristic to find a solution that
reduces the mapping cost, defined as the number of idle Vm
CPU cores.

C. Re-engineered network module and new set of interfaces

The module for network simulations was re-engineered in
order to fix the issues caused by code duplication. Code
duplication also leaded to neglecting tests, once there is no
test case for those classes. The module used a lot of hard-
coded values inside core classes for creating objects such as
Cloudlets and Vms, which would be defined externally by
the developer creating his/her own simulations. These values
were clearly used just to perform the experiments presented in
[26]. Further, they do not make the module directly reusable
and even violate the open/closed principle (OCP).

A complete set of Java interfaces was introduced
to start providing a more structured class hierarchy
and to reduce code duplication. The classes
Datacenter, DatacenterCharacteristics,
DatacenterBroker, Host, PowerHost, Pe, Vm,
VmAllocationPolicy, VmScheduler, Cloudlet
and CloudletScheduler are now defined as interfaces.

These interfaces enable conformance to the Liskov substi-
tution principle (LSP) [27], allowing instances of a given class
to be substituted by different implementations at runtime. For
instance, declaring an object using the Host interface allows
different implementations of that interface to be used, such as
a regular HostSimple, a NetworkHost or a power-aware
PowerHost (currently inside the hosts package).

D. Event Listeners

The package org.cloudsimplus.listeners in-
cludes classes that implements the new EventListener
interface to provide event notification for simulations. These
notifications are related to changes in the state of simulation
entities. The listeners enable notifying when (i) a Host
updates the processing of its Vms, is allocated to a Vm or
is deallocated to a Vm; (ii) a Vm has its processing updated
or fails to be placed at a Host due to lack of resources; (iii)
a Cloudlet has its processing updated, finishes its execution
inside a Vm; or (iv) a simulation processes any kind of event,
providing information about it.

These listeners were implemented using Java 8 functional
interfaces, enabling the use of Lambda Expressions that allow
a function reference to be passed as parameter to another
function. Such a reference will be used to automatically call
the function every time the listened event is fired. Researchers

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference404

developing in Java 7 can also use these listeners in the old-way
by passing an anonymous class to them.

Listeners allow developers to perform specific tasks when
different events happen and can be largely used for monitoring
purposes and metrics collection.

E. Builder Classes

The package org.cloudsimplus.builders includes
classes and interfaces that implement the Builder de-
sign pattern [15]. They were introduced as an alterna-
tive way to help creating simulation objects, such as
Hosts, Datacenters, DatacenterBrokers, Vms
and Cloudlets.

Creation of these objects requires many parameters and
some of them have to be created before others (e.g.: Hosts
have to be created before a Datacenter). Furthermore, it is
a repetitive task that can lead to code redundancy. The builder
classes help setting default values to be used when creating
objects. Once these values are set, a single method suffices to
create as many instances of the object as desired.

F. Integration tests

Integration tests allow an entire system to be tested in
a more holistic manner. They allow to check how different
software components work together and whether results are
as expected. Sometimes, only the unit tests are not enough to
assert the correctness of a software. Methods can give expected
results when tested isolatedly, but may work in an unexpected
way when interacting with other components. Accordingly,
integration tests were introduced in CloudSim Plus to provide
a more accurate simulation framework.

G. Software Design Quality Metrics

CloudSim Plus relies on a continuous integration service
[28] that provides automatic tests and builds execution. This
service ensures more reliability for CloudSim Plus users, given
that any test or build failure will be immediately reported.
Additionally, as project design and code quality directly impact
software quality, CloudSim Plus uses a code analysis service
[29] that automates code review and provides public code
quality and coverage reports.

VII. HOW TO USE CLOUDSIM PLUS

A Java code snippet of a minimal simulation example is
shown in Listing 1. The code that creates secondary objects
such as schedulers and allocation policies is omitted due to
space restrictions.

Listing 1. A snippet of a CloudSim Plus simulation example in Java
1 s i m u l a t i o n = new CloudSim () ;
2 d a t a c e n t e r = c r e a t e D a t a c e n t e r (s i m u l a t i o n) ;
3 b r o k e r 0 = new D a t a c e n t e r B r o k e r S i m p l e (s i m u l a t i o n) ;
4

5 Vm vm0 = createVm (b r o k e r 0) ;
6 vmLis t . add (vm0) ;
7 b r o k e r 0 . submi tVmLis t (vmLis t) ;
8

9 f o r (i n t i = 0 ; i < 2 ; i ++) {
10 C l o u d l e t c l o u d l e t = c r e a t e C l o u d l e t (b roke r0 , vm0) ;

11 c l o u d l e t L i s t . add (c l o u d l e t) ;
12 }
13 b r o k e r 0 . s u b m i t C l o u d l e t L i s t (c l o u d l e t L i s t) ;
14

15 s i m u l a t i o n . s t a r t () ; / / b l o c k s u n t i l f i n i s h e d
16 new C l o u d l e t s T a b l e B u i l d e r H e l p e r (b r o k e r 0 .

g e t C l o u d l e t s F i n i s h e d L i s t ()) . b u i l d () ;

The depicted code initializes CloudSim Plus (line 1). After
that, it instantiates a new Datacenter (line 2) and then
a DatacenterBroker (line 3) that will act on behalf of
a customer to submit his/her Vms and Cloudlets to the
cloud. A Vm is then instantiated and submitted to the cloud
by the broker (lines 5 to 7). After that, two Cloudlets are
instantiated and submitted to the broker (lines 9 to 13). The
simulation is started and the framework waits until it finishes,
stopping the simulation automatically (line 15). Finally, exe-
cuted Cloudlets are obtained from the broker and results
are printed in the console in a tabular way (line 16).

Figure 3 shows the results for such a simulation scenario
containing: 1 Vm with just 1 CPU core (Pe) capable of
executing 1000 million instructions per second (MIPS); and
2 Cloudlets to be executed inside that Vm, needing to
execute 10000 million instructions (MI) each one. The figure
indicates that the Cloudlets were executed, both in the
Datacenter with id 2 and inside the Vm with id 0. As there
are 2 Cloudlets but just 1 Pe, and since this example uses
a space shared scheduler for execution of Cloudlets inside
the Vm, the first Cloudlet finished in 10 seconds, while the
other waited the first one to finish.

Fig. 3. Results of a cloud computing simulation using CloudSim Plus.

VIII. CONCLUSION AND FUTURE WORK

Cloud computing research relies on simulation experiments
to develop, test, evaluate and tune-up potential solutions. It
is difficult to accurately replicate a real system in a simu-
lation experiment, mainly concerned in modelling the arrival
of stochastic events such as workload bursts. Therefore, to
contribute for valid results, a simulation framework has to (i)
be well-designed (ii) get away from code duplication to avoid
code degeneration (iii) be extensively tested and (iv) provide
classes following software engineering principles. CloudSim
Plus is accordingly aligned with these requirements. It was
totally refactored to apply several of these principles to provide
a state-of-the-art cloud simulation framework. As future work,
there are several features planned to be included, such as SLA
management and automatic vertical scaling of Vms.

ACKNOWLEDGEMENTS

This work is supported by the Portuguese Fundação para a
Ciência e a Tecnologia (FCT) under the UID/EEA/50008/2013
Project and by the Brazilian CAPES foundation through the
Proc. no 13585/13-4. We would like to acknowledge the work
of the team behind CloudSim for providing such a framework.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 405

REFERENCES

[1] S. S. Manvi and G. Krishna Shyam, “Resource management for Infras-
tructure as a Service (IaaS) in cloud computing: A survey,” Journal of
Network and Computer Applications, vol. 41, pp. 1–17, 2013.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing: Recommendations of the National Institute of
Standards and Technology,” National Institute of Standards and
Technology, Gaithersburg, MD, Tech. Rep., 2011. [Online]. Available:
http://www.nist.gov

[3] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual
machine placement schemes in cloud computing,” Journal of Network
and Computer Applications, vol. 66, pp. 106–127, may 2016.

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, apr 2010.

[5] A. Lin and N.-c. Chen, “Cloud computing as an innovation : Percepetion
, attitude , and adoption,” International Journal of Information Manage-
ment, vol. 32, no. 2012, pp. 533–540, 2012.

[6] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-degree compared,” in Grid Computing Environments
Workshop, GCE 2008. Austin, TX: IEEE, 2008, pp. 1–10.

[7] R. N. R. Calheiros, R. Ranjan, A. Beloglazov, and A. F. D. Rose,
“CloudSim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algorithms,”
Software: Practice and Experience, vol. 41, no. Issue 1, pp. 23–50, 2011.

[8] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya,
“CloudSim: A Novel Framework for Modeling and Simulation of
Cloud Computing Infrastructures and Services,” p. 9, 2009. [Online].
Available: http://arxiv.org/abs/0903.2525

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[10] R. C. Martin, Agile software development principles, patterns, and
practices, 1st ed. Pearson, 2002.

[11] W. Chen, M. Rey, and M. Rey, “WorkflowSim : A Toolkit for Simu-
lating Scientific Workflows in Distributed Environments,” in IEEE 8th
International Conference on E-Science (e-Science). IEEE, 2012, p. 8.

[12] A. W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S. U. Khan,
and R. Buyya, “CloudNetSim++ : A Toolkit for Data Center Simulations
in OMNET++,” in 11th Annual High Capacity Optical Networks and
Emerging/Enabling Technologies (Photonics for Energy). IEEE, 2014,
pp. 104–108.

[13] A. Varga, “The OMNeT++ discrete event simula-
tion system,” in European Simulation Multiconference
(ESM). Prague, CZ: CiteSeer, 2001. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.1728

[14] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed.
McGraw-Hill Education, 2009.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, 2007.

[16] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship, 1st ed. Prentice Hall, 2008.

[17] M. Fowler, Refactoring: Improving the Design of Existing Code, 1st ed.
Addison-Wesley Professional, 1999.

[18] I. Sommerville, Software Engineering, 9th ed. Pearson, 2010.
[19] N. T. Krishnan, D. Mazinanian, and G. P., “Assessing the Refactorability

of Software Clones,” IEEE Transactions on Software Engineering,
vol. 41, no. 11, pp. 1055–1090, 2015.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[21] S. Demeyer, S. Ducasse, O. Nierstrasz, S. Demeyer, S. Ducasse, and
O. Nierstrasz, “Detecting Duplicated Code,” in Object-Oriented Reengi-
neering Patterns, 2003, ch. 8, pp. 173–185.

[22] S. McConnell, “Why you should use routines...routinely,” IEEE Soft-
ware, vol. 15, no. 4, pp. 94–95,96, jul 1998.

[23] F. Palomba, A. De Lucia, G. Bavota, and R. Oliveto, “Anti-Pattern
Detection: Methods, Challenges, and Open Issues,” in Advances in
Computers, 2014, vol. 95, ch. 4, pp. 201–238.

[24] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do Code
Clones Matter?” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 485–495.

[25] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development, 3rd ed.
Prentice Hall, 2004.

[26] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling parallel appli-
cations in cloud simulations,” in Proceedings of 4th IEEE International
Conference on Utility and Cloud Computing, UCC 2011. Victoria,
NSW: IEEE, 2011, pp. 105–113.

[27] B. H. Liskov and J. M. Wing, “A Behavioral Notion of Subtyping,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1811–1841, 1994.

[28] T. CI, “Travis CI - Test and Deploy with Confidence.” [Online].
Available: http://travis-ci.org

[29] Codacy, “Codacy: Review less, merge faster.” [Online]. Available:
http://codacy.com

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference406

