

YPF

YPF: Es una compañía integrada, que opera en toda la cadena de valor del petróleo y gas

YPF

Refinación: transformación de petróleo crudo en productos

¿Hay un solo tipo de crudo? ¿Cómo llega a los complejos?

a gran variedad de

¿Qué destinos tienen? ¿Cuáles son sus especificaciones?

MP: Crudo

Productos Aplicaciones

Gases Combustible doméstico – M.P. Petroquímica (MAN-PIB-PP)

Naftas Combustible – M.P. Petroquímica (BTX)

Kerosene Combustible – JP1 – M.P. detergentes (LAB-LAS)

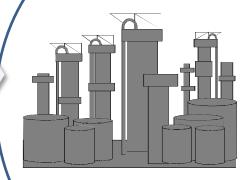
Gas Oíl Combustible

Aceites Lubricantes – aislantes – frigoríficos

Fuel Oíl Comb. Industria – Buques – Generación Eléctrica

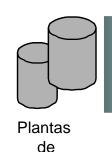
Coque Combustible – Fabricación de electrodos

Asfalto Caminos – membranas.


YPF Downstream. Una gestión integrada

La industrualización comprende diversas operaciones industriales destinadas a obtener productos a partir del crudo de petróleo, los cuales se transportan mediante distintos medios.

Oleoductos
Buques Tanques
Ferrocarril
Camión

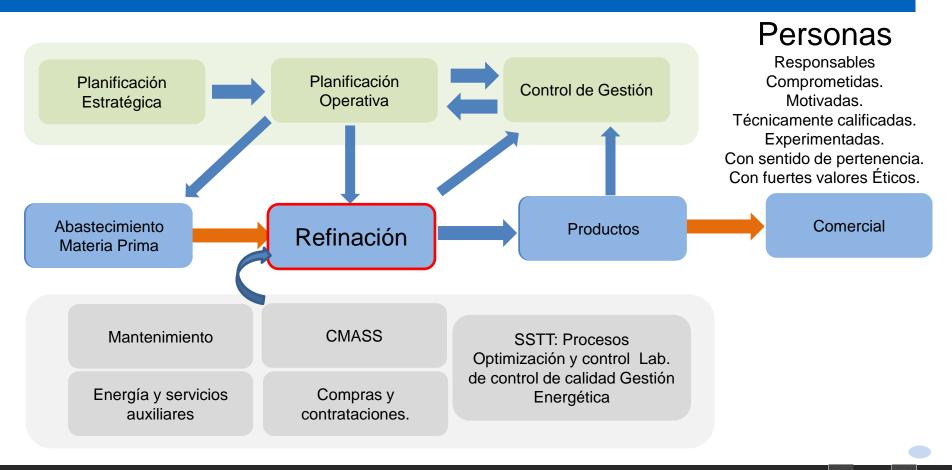

Cømplejos industriales

Logística

Poliductos
Buques Tanques
Ferrocarril
Camión

tica Comercial

Almacenaje

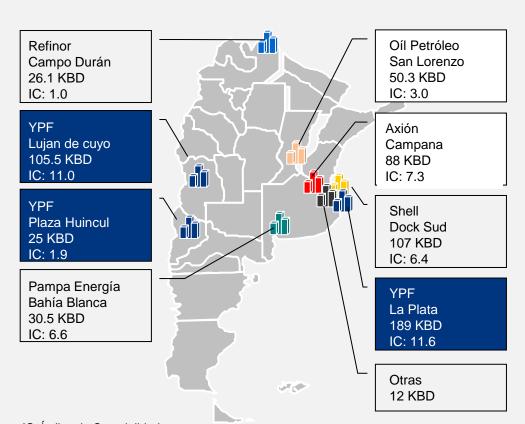

ABASTECIMIENTO DE CRUDOS

REFINACIÓN DE CRUDOS

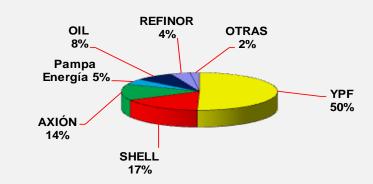
ABASTECIMIENTO DE PRODUCTOS

DISTRIBUCION DE PRODUCTOS

YPF El procesos productivo y su integración en el Downstrean

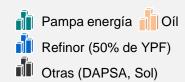


YPF Mapa de Procesos



YPF

Infraestructura de Refinación en Argentina



Participación en Capacidad de Elaboración

Total Capacidad de Elaboración 633.400 bep/día

YPF Refino de Petróleo

Objetivo: transformar el petróleo en productos ajustados en calidad y cantidad según demanda.

PROCESOS FÍSICOS

Separación

- Destilación
- Absorción
- Adsorción
- Extracción

Blending

- Naftas
- Gasoil
- Fuel Oil

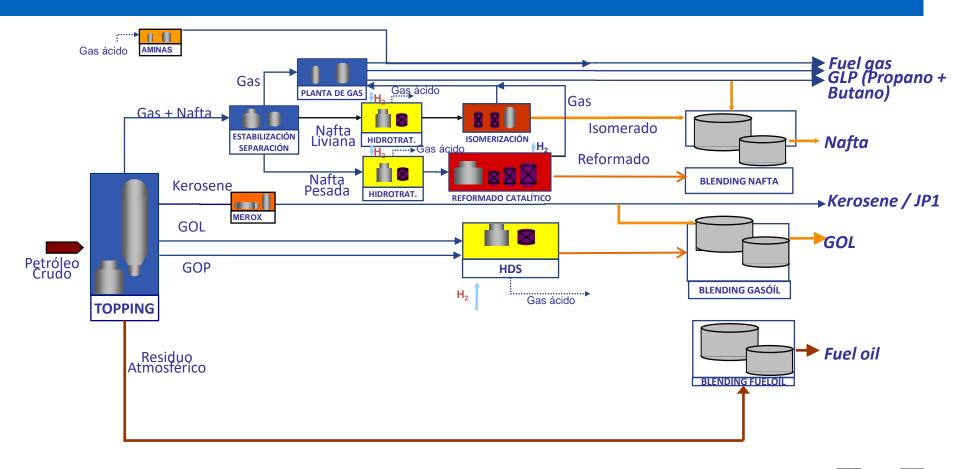
PROCESOS QUIMICOS

Reducción tamaño molécula

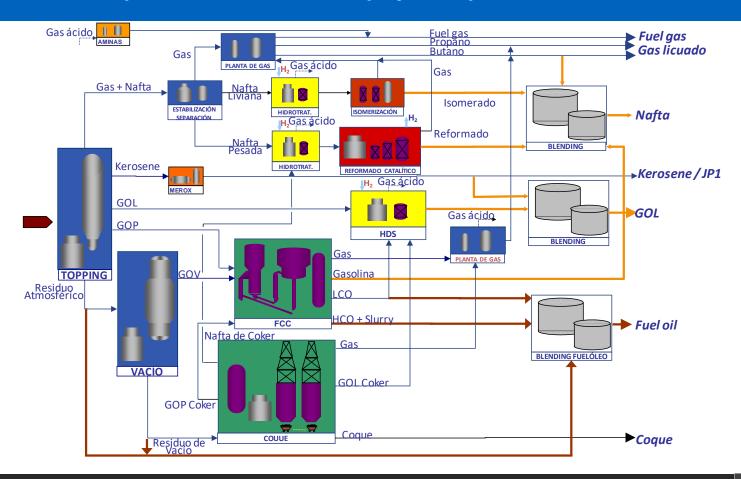
- Visbreaking
- Coquización
- •FCC
- Hydrocracking

Incremento tamaño molécula

- Alquilación
- •MTBE / ETBE / TAME

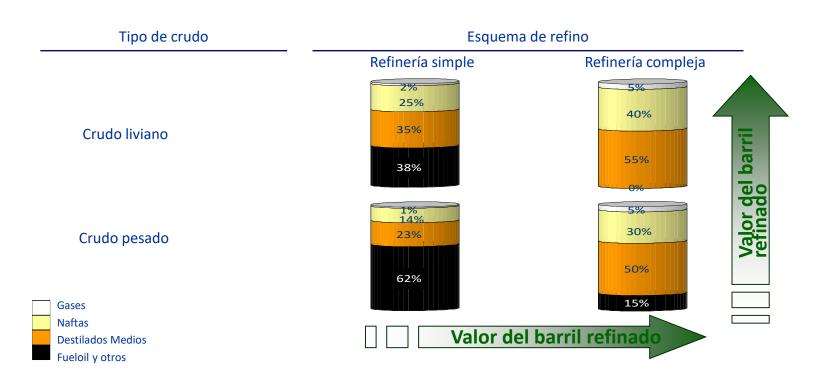

Mejora de calidad

- Hidrotratamientos
- Reformado catalítico
- Isomerización
- Endulzado

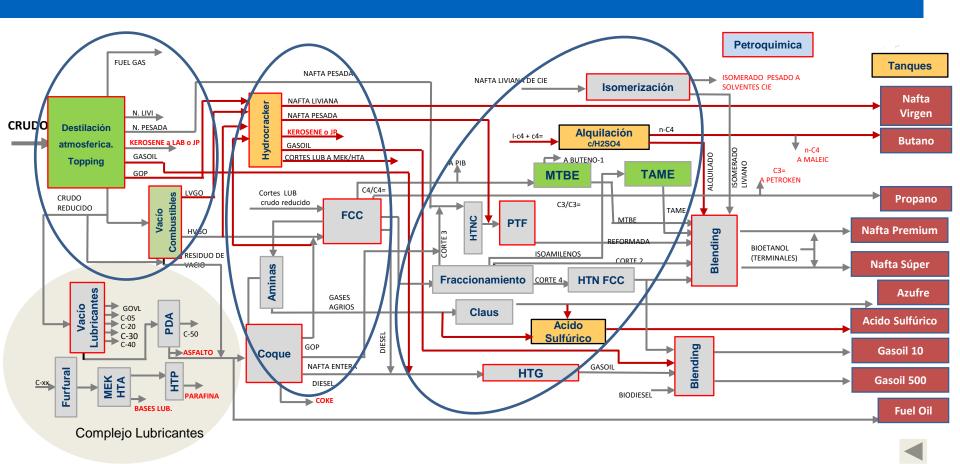

Procesos auxiliares

- Steam reforming
- •Recuperación de azufre

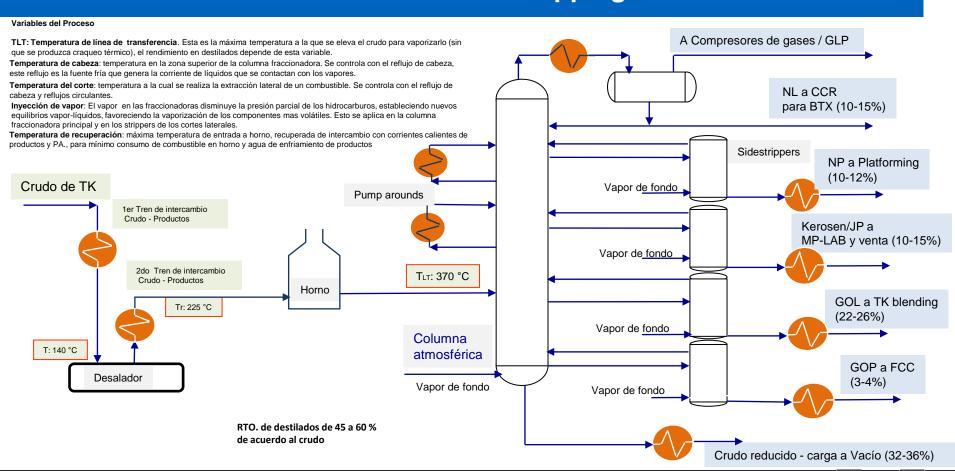
YPF Esquema de Refinería Simple o Hydroskimming



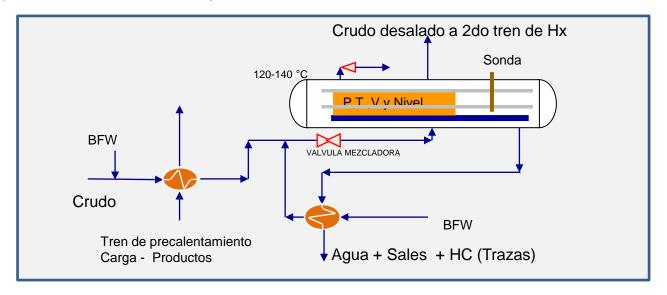
Esquema de Refinería Compleja - Esquema con Conversión



Rendimientos según tipo de crudo y esquema.


Los rendimientos de los distintos productos dependen del tipo del tipo de crudo procesado y el esquema de refinación.

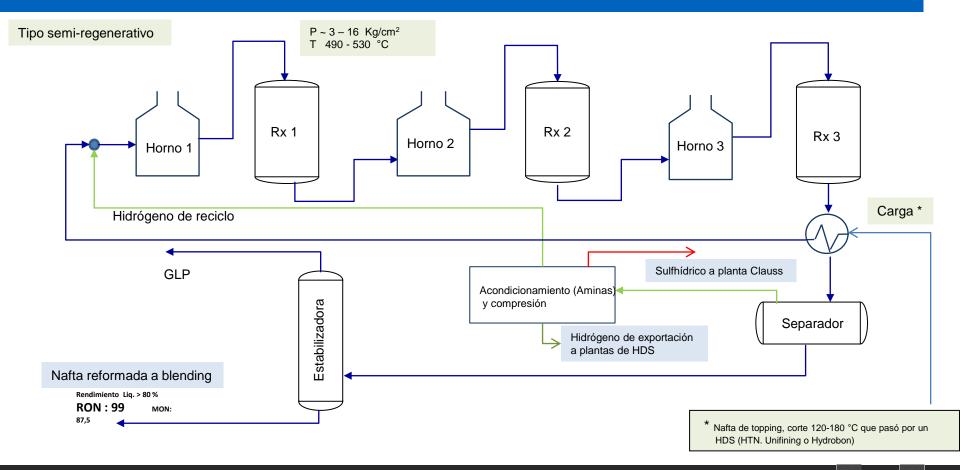
YPF Complejo Industrial La Plata (CILP)



YPF Destilación atmosférica / Topping

YPF Desalador

Antes de ingresar al horno se eliminan los sólidos en suspensión e impurezas disueltas en las gotas de agua en el desalador. Al crudo precalentado se le inyecta agua exenta de sales (agua de lavado), produciendo una mezcla que diluye en el agua las sales presentes en el crudo, generándose pequeños electrolitos (gotas), sensibles a la variaciones de un campo eléctrico.



Para lograr la mezcla se usan válvulas emulsificadoras o mezcladores estáticos. Posteriormente se lo envía a un acumulador donde se hace fluir la corriente uniformemente a través de un campo eléctrico de alto voltaje (20.000 V), generado por pares de electrodos. Las fuerzas eléctricas dentro del campo provocan que las pequeñas gotas de agua coalezcan, formando gotas más grandes que pueden decantar en el equipo.

El crudo libre de sales (crudo desalado) sale por la parte superior del equipo. A este crudo se les inyecta una solución cáustica para transformar los cloruros de calcio y magnesio en cloruros de sodio, que minimiza la generación de cloruro de hidrógeno, por lo tanto menos corrosión.

YPF Reformado catalítico

Reformado Catalítico

Objetivo:

Convierte Nafta pesada de bajo índice de octano en nafta reformada de alrededor de 100 de RON, obteniendo además Fuel Gas, LPG e Hidrógeno.

Tipo de reacciones:

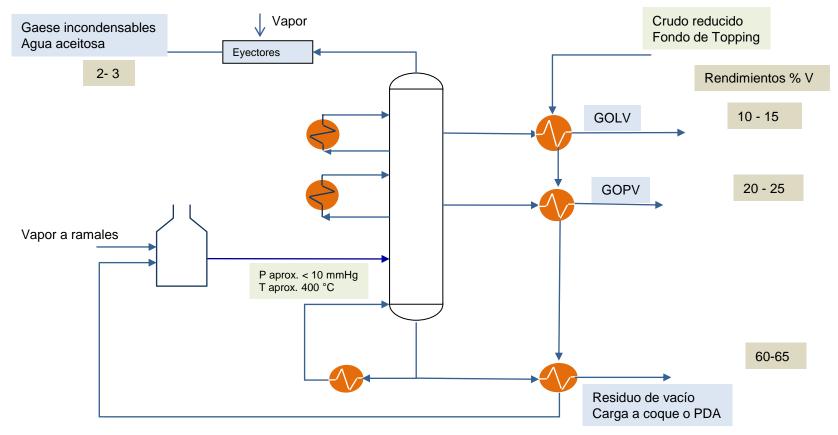
- Deshidrogenación de hidrocarburos nafténicos que pasan a aromáticos.
- Isomerización de ciclopentanos y parafinas.
- Hydrocraqueo de parafinas.

Tipo de unidades:

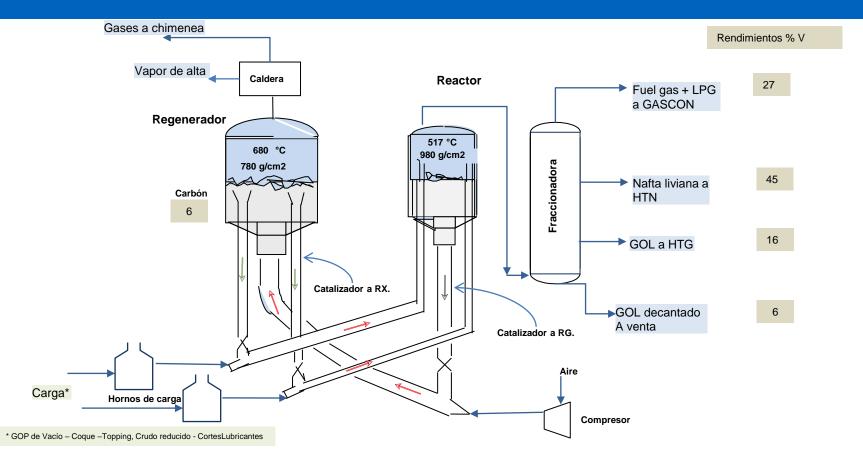
- Semirregenerativos. (Platforming Magnaforming)
- Regeneración continua. (CCR)

YPF Catalizadores de reformado

Todos los catalizadores actuales son derivados del platino sobre alúmina clorada.


La base es alúmina γ cúbica clorada. La cantidad de platino tiende a disminuir, variando entre 0.2 y 0.6 % en peso. El platino debe estar lo más disperso posible. La reducción de actividad es directamente proporcional al valor de esta dispersión.

Catalizadores bimetálicos.


- Están constituidos por platino asociado a otro metal (iridio, renio, estaño o germanio).
- La presencia del segundo metal permite una mayor dispersión de ambos y mejora el comportamiento del catalizador.
- La combinación Pt/Re es mayoritaria en los lechos semi-regenerativos y Pt/Sn en lechos circulantes.

YPF Destilación al Vacío

YPF Craqueo Catalítico: FCC

Craqueo Catalítico (FCC)

Objetivo:

Transformación de distintos cortes como GOP de topping, Vacío, cortes lubricantes, GOP de Coque y crudo reducido, en gases, carga a Petroquímica, naftas (90-92 RON), GOL.

Reacciones:

- Las reacciones fundamentales son de cracking o ruptura molecular.
- La reacción se produce muy rápidamente en una tubería vertical denominada "Riser".
- El cracking catalítico es más controlable que el térmico.
- La separación rápida de producto y catalizador en ciclones después del Riser evita fenómenos de "overcracking".

El catalizador de FCC es un sólido ácido complejo que consiste esencialmente de una zeolita (alumino silicato cristalino), que es el agente activo principal, una matriz de diversos constituyentes y otros compuestos como el ligante, el diluyente y aditivos. Se presenta en forma de polvo constituido por micro esferas de 60-70 um. Se obtiene por atomización de una suspensión acuosa de la mezcla de los distintos constituyentes.

Promotores de combustión: A base de metales nobles (Pd o Pt) permiten asegurar una combustión total del CO en CO2 en el regenerador. Se utilizan en concentraciones de ppm en el inventario total de la unidad.

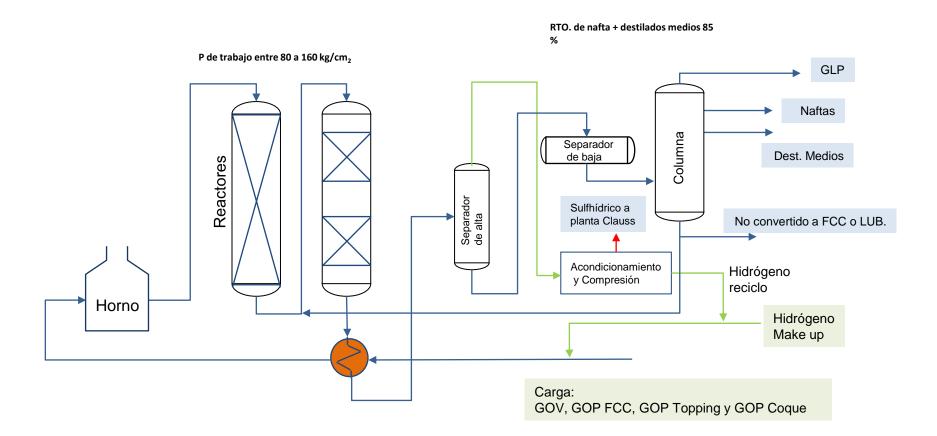
Captadores de SOx: Son óxidos metálicos que permiten fijar el SO2 en forma de sulfatos sobre el catalizador en el regenerador, transformándose en el riser en H2S que posteriormente es recuperado y no emitido a la atmósfera.

Trampas de metales: Contrarrestan el efecto nocivo del vanadio en el catalizador.

Promotores de octano: zeolitas ZSM-5, permite mejorar sensiblemente el índice de octano de la nafta favoreciendo el craqueo de componentes de bajo octano, olefinas y parafinas lineales o mono ramificadas, con el coste de una disminución en el rendimiento de nafta y aumento de olefinas.

Craqueo Catalítico (FCC): Catalizadores y aditivos

El catalizador de FCC es un sólido ácido complejo que consiste esencialmente de una zeolita (alumino silicato cristalino), que es el agente activo principal, una matriz de diversos constituyentes y otros compuestos como el ligante, el diluyente y aditivos. Se presenta en forma de polvo constituido por micro esferas de 60-70 µm. Se obtiene por atomización de una suspensión acuosa de la mezcla de los distintos constituyentes.


Promotores de combustión: A base de metales nobles (Pd o Pt) permiten asegurar una combustión total del CO en CO2 en el regenerador. Se utilizan en concentraciones de ppm en el inventario total de la unidad.

Captadores de SOx: Son óxidos metálicos que permiten fijar el SO2 en forma de sulfatos sobre el catalizador en el regenerador, transformándose en el riser en H2S que posteriormente es recuperado y no emitido a la atmósfera.

Trampas de metales: Contrarrestan el efecto nocivo del vanadio en el catalizador.

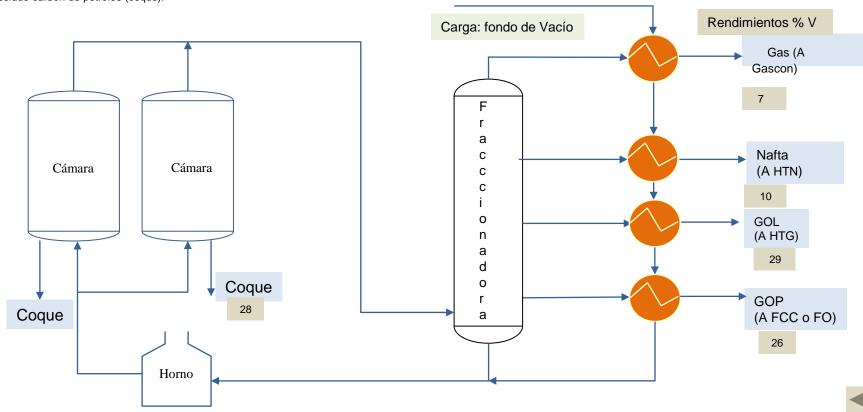
Promotores de octano: zeolitas ZSM-5, permite mejorar sensiblemente el índice de octano de la nafta favoreciendo el craqueo de componentes de bajo octano, olefinas y parafinas lineales o mono ramificadas, con el coste de una disminución en el rendimiento de nafta y aumento de olefinas.

YPF Hidrocraqueo

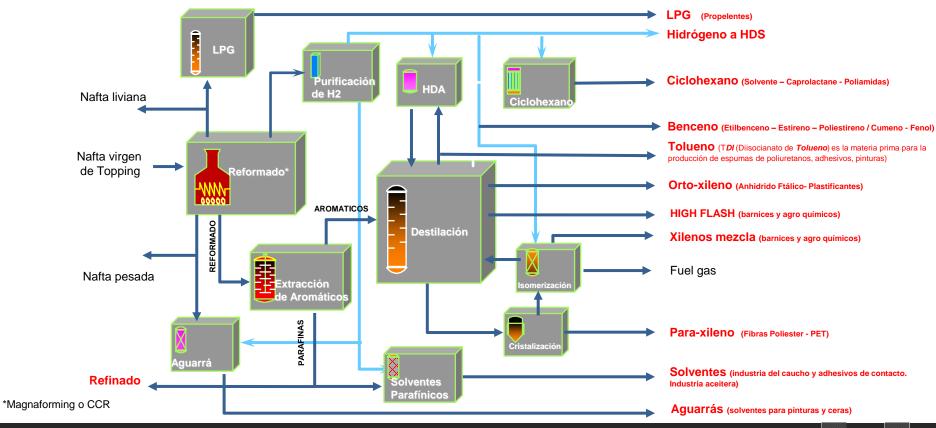
YPF Hidrocraqueo

Objetivo:

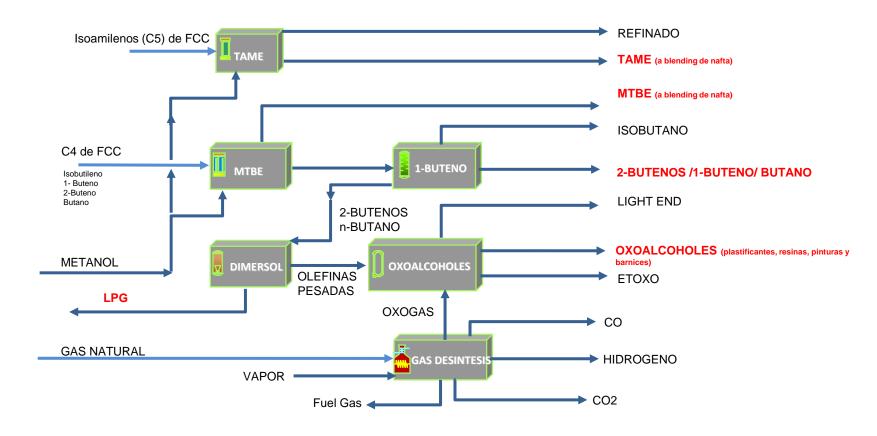
Transformación de cargas pesadas en gases, LPG, naftas (85 RON), gasoil desulfurado de alto cetano y residuo hidrogenado que puede ser usado como carga a FCC o Lubricantes..


Reacciones:

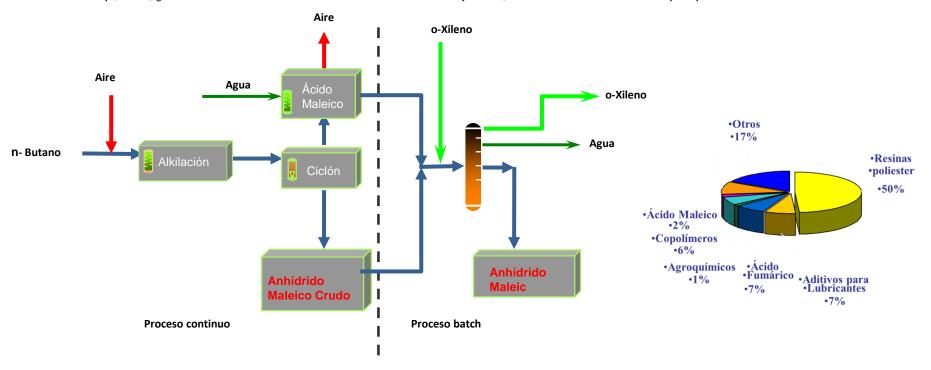
- La reacción de conversión catalítica se produce en lecho fijo a alta presión y en presencia de hidrógeno.
- Las reacciones fundamentales son de cracking.
- Se produce la saturación de aromáticos a nafténicos. Se elimina S y N.
- Los productos son limpios y saturados. Se caracterizan por bajo octano y alto cetano.



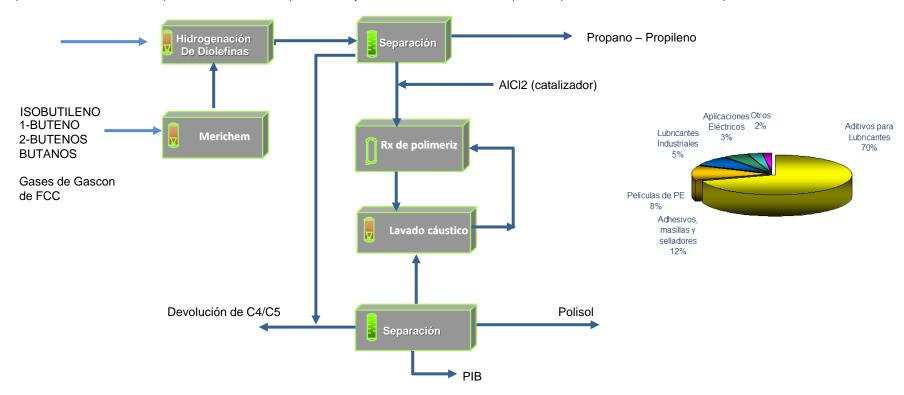
YPF Craqueo térmico: Coque


Objetivo: rotura de las moléculas (craqueo) del residuo de Vacío, mediante altas temperaturas con el fin de producir gases, LPG, naftas, GOL y GOP, quedando como residuo carbón de petróleo (coque).

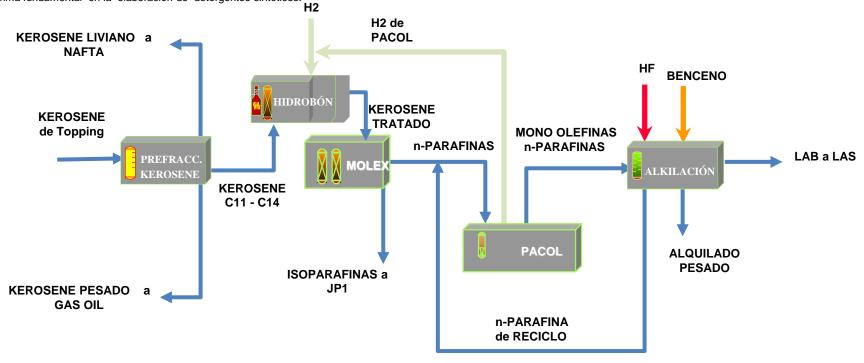
YPF Complejo Aromáticos: ARO



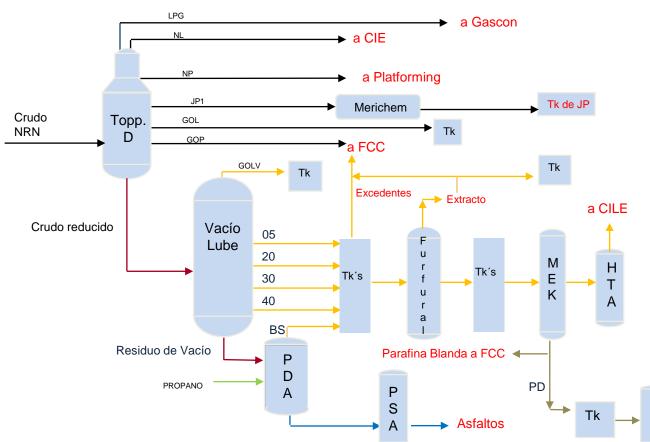
YPF Complejo Olefinas: PAO


YPF Planta de Anhídrido Maleico: MAN

El proceso industrial, está basado en la oxidación catalítica en fase de vapor del n-butano. El oxígeno necesario para la reacción, se obtiene inyectando aire al proceso. El n-butano, proveniente del tanque de almacenamiento, es vaporizado, sobrecalentado y mezclado con aire, en una concentración de 1.65 % molar. Dicha mezcla gaseosa, ingresa a un reactor tubular de lecho fijo, donde, gracias a un catalizador a base de óxidos metálicos de Vanadio y fósforo, se obtiene el **Anhídrico Maleico (MAN)**.


Planta de Poliisobutileno: PIB

El proceso PIB, basado en tecnología de Cosden Oil and Chemical Company, es una operación continua y consiste básicamente en una transformación guímica en la cual varias moléculas de un mismo producto se combinan entre sí para formar un nuevo compuesto de mayor estructura molecular llamado polímero que mantiene esencialmente la disposición de las moléculas bases


YPF Complejo Lineal Alquil Benceno: LAB

Su misión es alquilar (reaccionar) benceno con olefinas lineales provenientes de Pacol en presencia de HF como catalizador, para obtener el Lineal Alquilbenceno (LAB), que será la materia prima fundamental en la elaboración de detergentes sintéticos.

YPF Complejo Lubricantes

Desasfaltado P.D.A.

Separa las resinas asfálticas y otros componentes perjudiciales que afectan las propiedades de los aceites. Para lograr la separación se mezcla el producto de fondo de la torre de vacío con propano líquido, el cual provoca la separación del asfalto. Posteriormente se separa el propano del aceite y del asfalto, calentando cada mezcla separadamente y destilándolas en los sistemas recuperadores correspondientes.

Extracción con Furfural

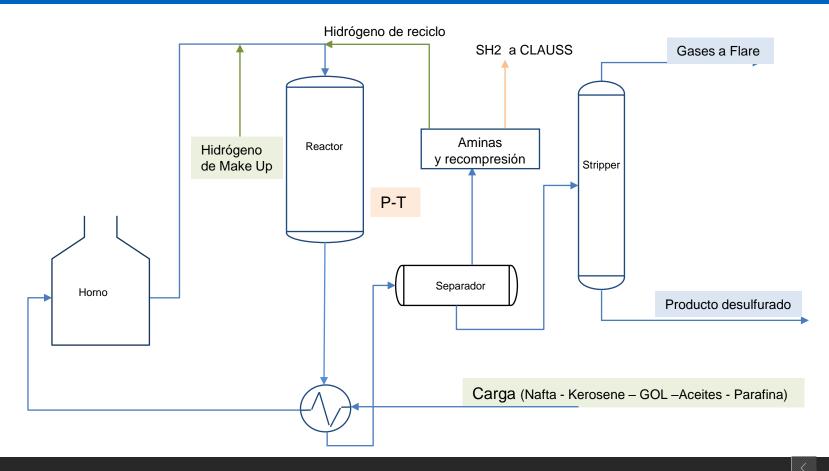
Elimina compuestos aromáticos indeseables de los diferentes destilados base, los que darían origen a resinas y lacas cuando el lubricante es sometido a condiciones severas de trabajo en los motores.

Al mismo tiempo este tratamiento sirve para obtener lubricantes de mayor índice de viscosidad.

Desparafinado con M.E.K.

Elimina las parafinas de los cortes bases refinados de la Unidad de Furfural por medio de solventes especiales y bajas temperaturas. Las parafinas deben eliminarse de los aceites con el objeto de que éstos se mantengan fluidos cuando trabajan a muy bajas temperaturas.

Hidrotratamiento de aceites: HTA


Este es el último proceso de la refinación de los aceites bases, por lo que también se lo llama "Hidroterminado".

Dado que los aceites ya han sido parcialmente purificados mediante la extracción con solventes, el principal objeto de esta unidad es la eliminación del azufre y el mejoramiento de la estabilidad y la resistencia a la oxidación.

YPF Hidrotratamiento: HTG / HTN / HTNC / HTA / HTP / Hydrobon /Unifining

Hidrotratamiento

Objetivo:

Eliminación de azufre y nitrógeno, mediante reacción con hidrógeno en presencia de un catalizador, saturación de olefinas. Simultáneamente se produce algo de craqueo.

Tipo de reacciones:

Sulfuros
$$\rightarrow$$
 R - S - R + H2 --> R - R + SH2

Posibles cargas:

Corte corazón de nafta para reformado, kerosene, gasoil, gasoil de vacío, productos de cracking catalítico y coque. Aceites lubricantes y parafinas.

Catalizadores de Hidrotratamiento

Los catalizadores de hidrotratamiento están compuestos por un soporte óxido (normalmente alúmina de gran área específica) y una fase activa bajo la forma de sulfuro de molibdeno o tungsteno (wolframio) promovido por cobalto o níquel.

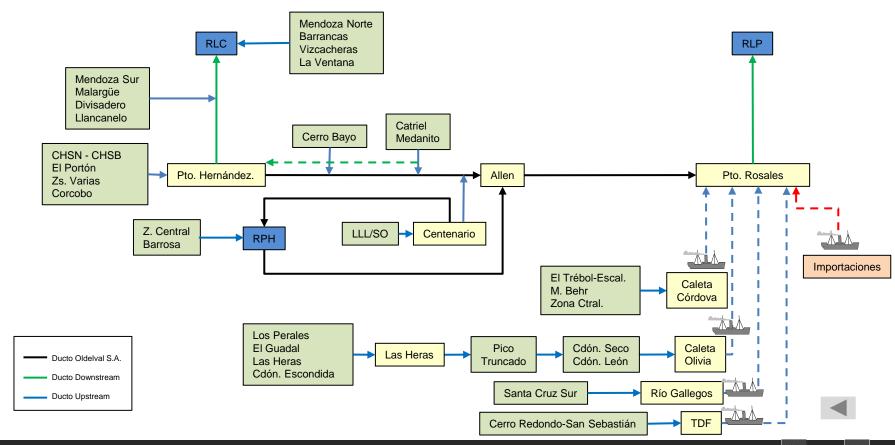
Las fórmulas comúnmente empleadas son las asociaciones Cobalto-Molibdeno (CoMo) y Niguel-Molibdeno (NiMo), la primera para hidro-desulfuración y la segunda para hidrogenación y des nitrificación.

Los contenidos de metal son del orden de 9-15 % de Mo y 2.5-5 % de Co o Ni.

Para procesos de saturación de aromáticos y di-olefinas se utilizan catalizadores de metales nobles como Paladio (Pd) y/o Platino (Pt) sobre un soporte de alúmina.

YPF Logística de Crudos

Buques


FCC

Oleoductos

Capacidad de transporte en ductos					
Puerto Rosales	La Plata	53.000 m3/d			
Allen	Puerto Rosales	35.000 m3/d			
Puesto Hernadez	Lujan de Cuyo	14.000 m3/d			

Capacidad de almacenaje en terminales marítimas				
Caleta Córdova - Chubut	230.000 m3			
Caleta Olivia - Santa Cruz	230.000 m3			
Punta Loyola - Santa Cruz	120.000 m3			
Cruz del Sur - Tierra del Fuego	55.000 m3			
Puerto Rosales - BaHía Blanca	385.000 m3			

Esquema simplificado de alimentación de crudos a las refinerías.

Infraestructura Logística

Barranqueras - Chaco

Monte Cristo - Cordoba

San Lorenzo - Santa Fe

Concepción del Uruguay - Entre Ríos

Luján de Cuyo - Mendoza

Villa Mercedes - San Luís

Junín - Buenos Aires

La Matanza - Buenos Aires

La Plata - Buenos Aires

Plaza Huincul - Neuquén

Comodoro Rivadavia - Chubut

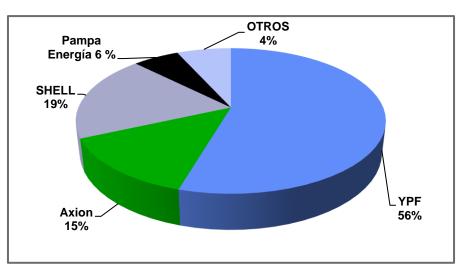
Río Gallegos - Santa Cruz

Orión - Tierra del Fuego

2 Oleoductos (12 Estaciones de Bombeo)	1.166 km		
2 Poliductos (11 Estaciones de Bombeo)	1.774 km		
2 Propanoductos (operación)	125 km		
1 JP ducto	11 km		
Terminales de Despacho y Almacenamiento	15 (9 con puerto)		
Aeroplantas	52 Terminales (128 unidades abastecedoras)		
Participación Accionaria	Oldelval (37%) Termap (33%) Olitanking Ebytem (30%) Oleoducto Trasandino (36%)		
Transporte marítimo	Crudos: 2 barcos Productos: 7 barcos		
Transporte fluvial	10 barcazas		
Transporte terrestre	1.000 camiones		

YPF Comercial. Red de Estaciones de Servicio

- 1500 Estaciones de servicios ubicadas a lo largo y ancho del País, 170 de las cuales son gestionadas directamente a través de OPESSA (100 % propiedad de YPF SA).
- Presencia en todos los canales de comercialización de Combustibles y productos derivados de hidrocarburos.

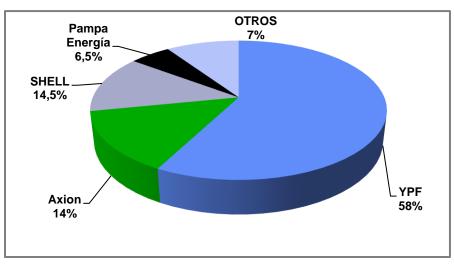


	Mercados			
Productos	EESS	Industria	Agro	Transporte
Gasoil	X	X	X	X
Naftas	X	X		
Kerosene	X			
Fuel Oil		X		X
Aerokerosene				X
GLP		X	x	
Base Lubricantes		X		
Lubricantes	X	X	X	X
Asfaltos		X		
Especialidades	X	X	X	
Bunker BN				X

Red Abanderada / Red Propia
Ventas Directas
Lubricantes y Especialidades

Participación de Mercado en Naftas y Gas Oil

Total Naftas

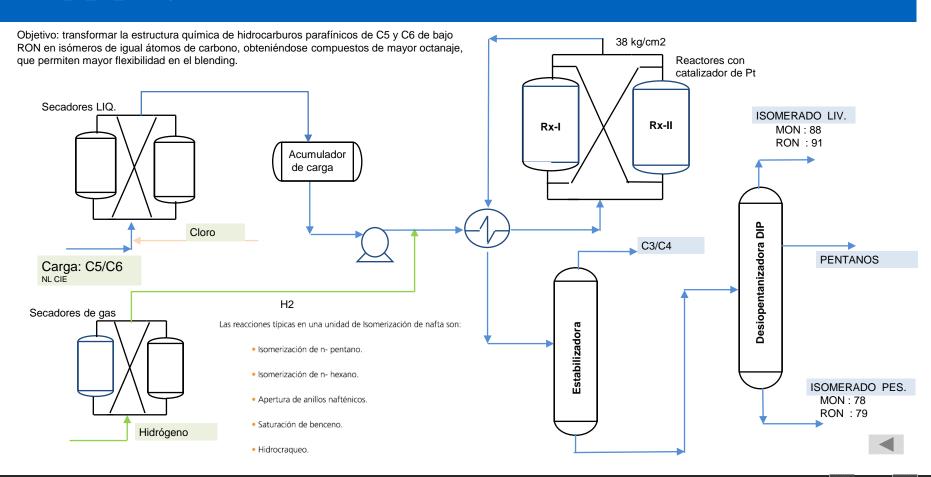


Otros: Incluye DAPSA, REFINOR, SOL, Oil.

Ventas YPF 2016: 4.760 Mm3

Total Mercado: 8.500 Mm3

Total Gas Oil


Otros: Incluye DAPSA, REFINOR, SOL, Oil.

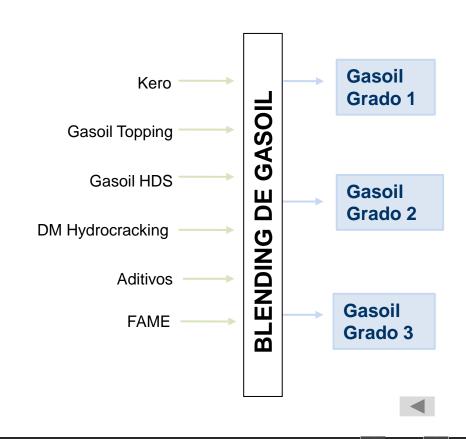
Ventas YPF 2016: 7.800 Mm3

Total Mercado: 13.500 Mm3

YPF Isomerización

YPF Blending de Gas Oíl

PRESTACIONES DEL MOTOR


- Número de Cetano
- Volatilidad
- Densidad
- Estabilidad a la oxidación

ALMACENAMIENTO Y MOTOR

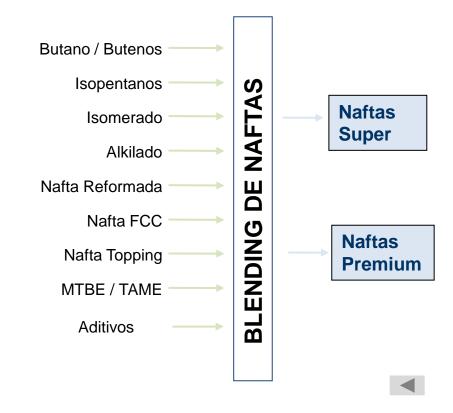
- Azufre
- Corrosión
- POFF
- Estabilidad a la Oxidación
- Punto Inflamación

EMISIONES (VOx, NOx, PM, CO2)

- Composición HC
- Azufre
- Volatilidad
- Destilación

YPF **Blending de Nafta**

PRESTACIONES DEL MOTOR


- Número de Octano
- Volatilidad
- Densidad
- Oxigenados
- Estabilidad

ALMACENAMIENTO Y MOTOR

- Azufre
- Corrosión
- Gomas

EMISIONES

- Composición HC
- Oxigenados
- Benceno
- Azufre
- Volatilidad
- Destilación

Muchas Gracias!