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Introduction 
This p a p e r  is concerned wi th  elastic materials; these  are  subs tances  for which 

the  presen t  s tress  S on a ma te r i a l  po in t  depends  on on ly  the  presen t  local  
conf igura t ion  1 M of t ha t  po in t :  

S = S ( M ) .  (1) 

There  are  severa l  h igh ly  deve loped  branches  of physics  which rest  on special  
cases of the  cons t i tu t ive  a s sumpt ion  (1): Eu le r ' s  h y d r o d y n a m i c s  of perfect  
fluids, the  classical  t h e o r y  of inf in i tes imal  e las t ic  deformat ions ,  and  the  modern  
t h e o r y  of f ini te  e las t ic  deformat ions .  Our  present  in teres t  is no t  in the  solut ion 
of special  p rob lems  in these  subjec t s  b u t  r a the r  in the  t heo ry  of the  form of 
the  funct ion S i tself ;  here we inves t iga te  the  genera l  l imi ta t ions  p laced  on S 
b y  ma te r i a l  s y m m e t r y  and  t h e r m o d y n a m i c  considerat ions .  

Applicability o/the Theory 
Let  us consider  the  s i tua t ions  in which we expec t  a t h e o r y  based  on (I) to  

be useful. I t  is known t h a t  there  is a large, a lbei t  not  al l- inclusive,  class of 

1 In Sections I and 2 we explain more precisely some of the mechanical and 
kinematical  terms used in this Introduct ion with only abbrevia ted  and heuristic 
descriptions. 
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substances, called simple materials, whose behavior in general mechanical pro- 
cesses is described by  the assertion that  the stress at a material point is deter- 
mined by  a function of the history of the local configuration of the point: 

oo 
S =s~0 (MS). (2) 

Here M s denotes the local configuration s seconds ago, and | is a functional 
whose argument is the function M s, 0 ~ s < oo, and whose value is the symmetric 
tensor S. Most of the literature on continuum mechanics deals with simple 
materials. For examples we llave the theory of linear viscoelasticity, the hydro- 
dynamics of perfect, viscous and non-Newtonian fluids, and also recent general 
theories of materials with nonlinear memory. 2, 3 

Now, when we consider a material point which has been in its present local 
configuration at all times in the past, the function M s reduces to a constant, 

M' ~ M = c o n s t . ,  0 ~ s < o o ,  (3) 

and (2) yields the result that  S depends only on M: 

S = S (M). (4) 

Thus, the theory of elastic materials describes simple materials which have 
always been at rest. 

Suppose that  the material described by the functional | in (2) has a "fading 
memory",  i.e., that  | is continuous in such a way that  S is "more sensitive" 
to changes in the local configuration M s at small s (recent past) than to changes 
in the local configuration at large s (distant past). ~ Then, given any history M s, 
we can construct retarded histories M ~s, 0 < c ~ < t ,  and prove that  ~ 

oo 
lim s~o(M ~ s) _-- S (M~ (5) 
0r 0 = 

The function S in Eqs. (4) and (5) is the same function. 

Equation (5) tells us that  for every history M s there exists a retarded history 
M ~s, "essentially the same as M s but  slower", such that  the present stress cor- 
responding to M ~s is given, to as good an approximation as we wish, by S (M~ 
This result justifies, within the framework of the theory of simple materials, 
the use of the static stress-strain function S in the discussion of slow processes; 
i.e., it gives a motivation to the dynamic (as distinguished from the static) 
theories of perfect fluids and perfectly elastic solids. 

Thermostatic Inequalities 
In the theory of infinitesimal elastic deformations from a natural state (i.e. 

a state with zero stress), it is usually assumed that  the stress-strain function S 
is determined by  the gradient of a positive-definite ~rain-energy function a. 

z GREEN, A. E., & R. S. RIVLIN, Arch. Ra t iona l  Mech. Anal.  1, I (1957). 
z I~TOLL, W., Arch. Ra t iona l  Mech. Anal.  2, t97 (1958). 
4 This concept of "fading m e m o r y "  is made  precise in  reference 5 and  exploited 

fur ther  in  reference 6. 
5 COLEMAN, B. :D., & W .  ~NToLL, Arch .  R a t i o n a l  Mech.  Anal .  6, 355 (1960). 
e COLEMAN, B. D., & W. MOLL, Rev. Mod. Phys.  33, 239 (196t). 
7 The crucial step in proving (5) is Eq.  (3.21) of reference 5. 
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I t  has often been supposed tha t  the positive-definiteness of ~ should be justifi- 
able in terms of fundamental  principles in classical thermodynamics,  but  rigorous 
arguments to this effect have not come forth. Nor has classical thermodynamics 
told us how to extend this assumption on ~ (and hence on S) for infinitesimal 
elasticity to an assertion about S tha t  is in accord with experience in finite 
elasticity, s 

Yet, Eq. (3) tells us tha t  the function S must  be appropriate for those 
physical situations in which a simple material  can be regarded as having been 
forever at rest, and S must  therefore describe "equilibrium states."  Further- 
more, our thermodynamic intuition suggests tha t  an equilibrium state is one 
which maximizes an entropy or minimizes a free energy with respect to an 
appropriate class of disturbances, and this, in turn, suggests that  the function 
S should be subject to certain inequalities. The failure of classical thermo- 
dynamics to yield these inequalities is, in part,  due to the difficulty in deciding 
what  to include in the "class of disturbances". 

In  19599, l~ we proposed a theory of thermostatics which led to a general 
inequality on S. We refer to tha t  inequality as the T I  (Thermostatic Inequality). 
In  references 9 and t t consequences of the T I  were obtained for various types 
of materials. In the theory of infinitesimal deformations from a natural  state, 
the T I  reduces to the classical assumption of the positive-definiteness of o. The 
consequences of the TI  for finite elastic deformations seem to be in accord with 
all experience in solids. 

For example, consider a homogeneous deformation of an undistorted isotropic 
elastic cube in the direction of its three axes. The TI  then implies that  the 
greater stretch occurs always in the direction of the greater applied force. 9 

For fluids, the T I  is equivalent to the assertion tha t  the pressure be positive 
and tha t  the compression modulus be greater than two-thirds of the pressure. 
That  the pressure is positive seems to be in accord with experience. However, 
for a fluid whose critical point occurs at a high pressure there can be a range 
of densities at which the compression modulus is less than two-thirds of the 
pressure. 

Our T I  is equivalent to a requirement of stabili ty against homogeneous 
disturbances at fixed surface forces. Such a requirement should be appropriate 
for solids, because it is the surface forces that  are controlled in most measure- 
ments on solids. For fluids, however, it is usually pressure, and not surface 
force, tha t  is controlled. When the pressure is fixed during a deformation, the 
surface forces do not remain fixed but  change their direction so as to s tay 
normal to the surface and change their magnitude so as to compensate for the 
variation of the surface area. The familiar s ta tement  "that the compression 
modulus is positive can be derived from a requirement of stability against varia- 
tions in volume at fixed pressure. Such a requirement is suitable for fluids but  
does not yield adequate restrictions on the behavior of solids; it does not even 
yield the positivity of the shear modulus for isotropic infinitesimal elasticity. 

8 TRUESDELL, C., Z. angew. Math. u. Mech. 36, 97 (1956). 
9 COLEMAN, B. D., & W. NOLL, Arch. Rational Mech. Anal. 4, 97 (1959). 
10 A different formulation of the t959 theory is given in reference 11. 
1~ COLEMAN, B. D., Arch. Rational Mech. Anal. 9, 172 (1962). 

7* 
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I t  is still an open question whether it is possible to find a single inequality from 
which one can derive all thermodynamic restrictions on the static behavior of 
elastic materials, whether they be fluids, solids, or neither. 

In this article we make a detailed s tudy of implications of the TI,  stating, 
without proof, some of the known theorems and presenting several new theorems. 
Proofs are supplied for all new theorems stated. 

Throughout the present discussion we ignore the dependence of the stress 
on a thermodynamic parameter,  such as the temperature or the entropy density. 
Furthermore, we follow the procedure of a recent article by  TRUESDELL & 
TOUPIN 19, and, whenever possible, we work with a generalization of the TI,  
called the WTI  (Weakened Thermostatic Inequality) which can be expressed 
directly in terms of the stress-strain function S without recourse to mention 
of internal energy or free-energy functions. This deliberate suppression of men- 
tion of thermodynamic variables is done to emphasize the mechanical signifi- 
cance of our thermodynamic considerations. 

Before going into the theory of the TI,  we discuss the characterization of 
material  symmetry  in terms of stress-strain functions, giving simplified proofs 
of some known propositions and presenting several new results. 

On Notation 
The term tensor is used here as a synonym for linear transformation of a 

vector space into itself. We denote tensors by  Latin majuscules: F, U, Q, R, I .  
We reserve the symbol X, however, to represent material points of a physical 
body. For the trace of a tensor F we write tr  F, and for the determinant of 
F we write det F. We say that  F is invertible if F has an inverse F -1, which 
is the case if and only if det F ~ 0 .  The transpose of F is denoted by  FT; F is 
symmetric if FT-~F and skew if F T =  - - F .  The "unit  tensor" (i.e. the identity 
transformation) is denoted by I .  If  QQ~'= QTQ=I, then Q is orthogonal. If 
Q is orthogonal and such that  det Q - - +  t, then Q is proper orthogonal. If the 
inner product v .  Uv  is strictly greater than zero for all nonzero vectors v, 
then we say that  the tensor U is positive-definite. If  U is symmetric,  then a 
necessary and sufficient condition tha t  U be positive-definite is tha t  all the 
proper numbers of U be positive. 

1. Mechanical Preliminaries 

For convenience, we briefly summarize some definitions and general results 
of continuum mechanics which are prerequisite to the present paper. Since 
detailed axiomatic t reatments  of this material  have been given elsewhere, 3,13,14 
the results stated here are asserted without proof. 

IS TRUESDELL, C., & 1~. A. TOUPIN, Arch. Rational Mech. Anal. 12, t (1963). The 
inequality which we here call the "WTI"  is called the "GCN condition" by TRUESDELL 
& TOOPIN. 

la NOLL, W., in : Proceedings of the Berkeley Symposium on the Axiomatic Method, 
pp. 266--281. Amsterdam: North Holland. 

14 Another brief summary is given in w w I and 5 of reference 9. For a thorough 
exposition of the foundations of continuum mechanics see C. TRUESDELL & R.A. 
TOUPIN, in: Encyclopedia of Physics, Edited by S. FLf3GGE, Vol. 111/1. Berlin- 
GSttingen-Heidelberg: Springer 1959. 
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Kinematics 
A body ~ is a smooth manifold whose elements X are called material points. 

A con/iguration [ of ~ is a one-to-one mapping of ~ onto a region 9~ in a three- 
dimensional Euclidean point space 8. The point x = [ ( X )  is called the position 
o / X  in the configuration [, and ~ = / ( ~ )  is called the region occupied by  ~ in / .  
The mass distribution m of ~ is a measure defined on subsets of ~ .  To each 
configuration [ of ~ corresponds a mass density ~. 

If we have two configurations [1 and /2  of the same body ~ ,  we can con- 
sider the composition g2,1 of [2 with the inverse [~1 of Ill; g2,1 is defined by 

Clearly, g2,1 is a mapping of the region ~1 occupied by ~ in the configuration 
/1 onto the region ~2 occupied by  ~ in the configuration [2. The class of ad- 
missible configurations [ is assumed to be such that  for any two configurations 
[1 and [2, g, , l  is a smooth homeomorphism 15 of 9? 1 onto ~2. Now, since g2,1 
is a mapping of one region of ordinary Euclidean space onto another, there is 
no difficulty in computing the gradient of g2,1, grad g2,1- Because/1 is one- 
to-one, grad g2,1 can be regarded as either a field over ~1 or as a field over 
the manifold ~ .  Here it is convenient for us to take the latter point of view. 
We denote the values of gradg2,1 by F2,1(X ). Of course F2,1(X ) is a tensor; 
it is called the de/ormation gradient (at the material point X) o/the con/iguration 
[2 computed taking the con/iguration [1 as re/erence. Because the function g2,1 
is one-to-one, the tensors F2,1(X ) are invertible. 

If we have three configurations [1, [2,/3 of the same body ~ and compute 
the three deformation gradients Fz,I(X ), Fs,2(X ) and F3,1(X ), then it follows 
from the chain rule for differentials of vector functions that  

F~, 1 (X) = F~, 2 (X) F~,l (X). (t. t ) 

If G, 1 is independent of X, we say that /1  and/2 are related by a homogeneous 
deformation. If, in this case, F2,1 is a proper orthogonal tensor, then F2,1 is 
said to characterize a rigid rotation. If F2,1 is orthogonal (with no restriction 
on the sign of det F2,1), then F2,1 is said to correspond to an orthogonal trans- 
/ormation, i.e. a combination of rigid rotations and reflections. If F2,~ has the 
form ~ Q, where ~ is a scalar and Q is orthogonal, then F2,1 describes a similarity 
trans/ormation, i.e. a combination of an orthogonal transformation and a uni- 
form expansion by the factor ~. If F2,1 is a positive definite symmetric tensor, 
t he n /2  is said to be obtained from [1 by  a pure stretch; the proper vectors of 
F2,1 then give the principal directions o/ stretch, and the proper numbers of 
F~, 1 are the principal stretches. 

Let us return to deformations which are not necessarily homogeneous; such 
deformations can still be regarded, in a sense which we shall now make precise, 
as homogeneous on a "local level". 

If, at a particular material point X, F2,1(X ) is the unit tensor I,  then we 
say that  [1 and /2  give rise to the same local configuration at X. To state this 

16 A smooth homeomorphism is a one-to-one function g such that both g and 
its inverse g-1 are continuously differentiable. 
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more formally, we observe that  for each fixed X we can define an equivalence 
relation "--~" among all the configurations [ of ~ by the condition that  [1"~]'2 
if F2,1(X)=I; the resulting equivalence classes of configurations are the local 
configurations M of X. If M1 is the equivalence class of [1 at X and if M 2 is 
the equivalence class of 12 at X, then F2,1(X) depends only on M1 and Ma; it 
is also true that  M 2 is uniquely determined by ~,1 (X) and M 1. Hence we can 
call F2,1 (X) simply the deformation gradient from 311 to M2. Dropping the symbol 
X in F2,1 (X), we write 

M~= F~,~ M1. (1,2) 

If we denote the mass densities at X corresponding to the local configurations 
M1 and M s by el and 9s, respectively, then 

t 
ez=- idetF2,t I el. (1"3) 

I t  is often convenient to employ a fixed local reference configuration M o and 
to characterize all other local configurations 

M = F M  o (t.4) 

by their deformation gradients F from Mo. I t  follows from (I.1) that  if 

MI = F1Mo , Ms = F~ Mo , (1.5) 

then the deformation gradient H from M1 to M2 is given by 

H = G Ff -1, F~= H F~ . (1.6) 

A theorem of algebra, called the polar decomposition theorem, states that  
any invertible tensor F can be written in two ways as the product of a symmetric 
positive-definite tensor and an orthogonal tensor: 

F = R U ,  (1.7) 

F = V R .  (t.8) 

Furthermore, the orthogonal tensor R and the symmetric positive-definite tensors 
U and V in these decompositions are uniquely determined by F and obey the 
following relations: 

Us = F r  F,  (1.9) 

V 2 = F F  T, (t .10) 

U = R r V R .  (t.1t) 

Equations (t.7) and (1.8) have the following significance in kinematics: Any 
deformation gradient F may be regarded as being the result of a pure stretch 
U followed by an orthogonal transformation R, or an orthogonal transformation 
R followed by a pure stretch V. These interpretations uniquely determine the 
pairs R, U and R, V. The orthogonal transformations entering these two inter- 
pretations are the same; however, the pure stretches U and V can be different. 
I t  follows from (IAl) that  although U and V may have different principal 
directions, they must have the same proper numbers ui. We call the orthogonal 
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tensor R the rotation tensor 1~ and the tensors U and V, respectively, the right 
and left stretch tensors. I f  M2----FM1, then we call U and V, respectively, the 
right and le]t stretch tensors [rom M 1 to M2, and the proper numbers u i of U and 
V are called the principal stretches ]rom M 1 to M2. 

Stress 

One distinguishes between contact forces and body forces. On assuming the 
principle of linear momentum and the principle of angular momentum,  one can 
show, after laying down some strong continuity assumptions, tha t  the contact  
force de  across an oriented surface element with unit normal n and area dA 

is given by  d e =  SndA ,  (t.12) 

where S is a symmetr ic  tensor called the stress tensor. ~ 

A proper vector of S is said to determine a principal axis of stress. Proper 
numbers of S are called principal stresses. 

Since we are here interested in only "local phenomena",  we ignore body 
forces throughout our discussion. 

Changes o/ Frame 

A change o/[rame is the mathematical  embodiment of the physical concept 
of a change of observer. 

In this paper  we assume that  the stress tensor S at a material  point X is deter- 
mined by  the present value of tile local configuration M at  tha t  point. I t  follows 
that ,  for our present purposes, we can define a change of frame to be the follow- 
ing simultaneous transformation of the local configuration M x and the stress 
Sx at each material  point X of a body:  

Mx~ QMx, (t.t3 a) 
Sx-+QSxQ-I; (1.13 b) 

here Q is an orthogonal tensor independent of X. The change of f lame (1.13) 
is said to be characterized by  Q. 

In other words, a change of frame is a simultaneous orthogonal transformation 
of both  the present configuration of ~ and the present force system acting on ~ .  

The principle o/ material obiectivity is a mathematizat ion,  for classical me- 
chanics, of the physical idea tha t  tile behavior of a material  should be inde- 
pendent of the observer. In our present theory this principle reduces to the 
s ta tement  tha t  the dependence of the stress on the local configuration must  
be invariant  under changes of frame; i.e., this dependence must  be such tha t  
if M is changed from M to QM, where Q is any orthogonal tensor, then the 
stress S corresponding to M must  change to Q S Q-1. 

2. The Response Funct ion  and the Isot ropy Group 

We are now prepared to state formally our 

Fundamental Constitutive Assumption. To each local configuration M there 
corresponds a unique value of the stress tensor S. 

le In applications R is usually proper orthogonal. 
17 For details, see reference 13. 
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Such a correspondence between S and M is called an elastic material (or, 
simply, "a material"). Since the behavior of a material should be independent 
of the observer, we also lay down an 

Assumption o[ Material Objectivity. The dependence of the stress S on the 
local configuration M is such that  if M 2 = QM 1 where Q is any orthogonal tensor, 
then $2=  Q S 1 QT where $1 and S 2 are the stresses corresponding to 3/1 and 
M 2, respectively. 

We follow standard procedure and express the dependence of S on M by 
picking a local reference configuration 3/io, characterizing all local configurations 
by  their deformation gradients F from M o in accordance with (1.4), and then 
regarding S as a function g of F:  

S=~(F) .  (2.t) 

The function g is called the response ]unction, of our material, taken relative 
to Mo. 

I t  follows from our Assumption of Material Objectivity that fl must obey 
the identity 

( Q F) = Q ~ (F) Q-1 (2.2) 

for all tensors F and all orthogonal tensors Q. Using Eqs. (2.2) and (t.7), we 
infer that  Eq. (2.1) is equivalent to 

S = R g ( U )  R-L (2.3) 

The function fl depends on the choice of the reference configuration Mo. 
To exhibit the nature of this dependence of ~ on Mo, we note that  it follows 
from (1.5) and (t .6) that  if F and F' are two deformation gradients characterizing 
the same local configuration M with respect to two different local reference 
configurations M o and M',  i.e. 

M = F M o = F ' M ~ ,  
and if 

M;=GMo, 
then 

F-~F'G.  

If the response functions relative to M o and Mo' are denoted by  ~ and g', 
respectively, we infer 

S = g (F) = ~'(F') = ~'(FG-1). 
This proves 

Proposition 1. I] ~ and g' are the response ]unctions ]or the same material 
but taken rdative to diHerent local conjigurations Mo and 21/Io, with Mo=GMo, 
then 

g (F) ---- g'(FG -x) (2.4) 
]or all F. 

For a given material it may  turn out that g remains the same function if 
the local reference configuration M o is changed to another local reference con- 
figuration M ' = H M o  with the same density, i.e., that  

g (F)---- g'(F) (2.5) 
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for all F. (The physical interpretation of the identity (2.5) is that  the two con- 
figurations Mo and Mo must be equal in their response to equal deformations, 
i.e., that  the classes of reference configurations for which the identity (2.5) 
holds must characterize the isotropy of the material under consideration.) Now, 
it follows from (2.4) that  if (2.5) holds for Mo and M~=HMo, then g satisfies 
the identi ty 

g (F) = g (FH -x) (2.6) 

for all F. Since we are here assuming that  M" and M o have the same density, 
it is clear that  IdetH[----1; i.e., H is here a unimodular transformation. If the 
identity (2.6) holds for H -1, it holds also for H;  furthermore, the set of unimodular 
transformations H for which the identity (2.6) holds forms a group. Let us now 
state the following important formal definition whose physical motivation should, 
we feel, now be clear. 

Definition. The group J of unimodular tensors H for which the identity 

g (FH) = g (F) (2.7) 

holds for all F, where g is the response function relative to the reference con- 
figuration M o, is called the isotropy group rdative to M o. 

J depends on 21//o, but  we shall see that  for a given material the isotropy 
groups J and J '  relative to two distinct local reference configurations 21/I 0 and 
21/o are conjugate and hence isomorphic. In fact, combination of (2.4) and (2.7) 
shows that  

g' (V G -1) = fl'(F H G -1) (2.8) 

for all F. If we put H ' = G H G  -1 and F ' = F G  -1, then F H G - I = F ' H  ', and (2.8) 
becomes the assertion that  

g'(F') = g ' (F 'n ' )  (2.9) 

for all F', but  this simply says that  H' is in ~r Hence we have 

Proposit ion 2. I /  G is the de/ormation gradient [rom M o to Mo, then H belongs 
to ,~ i/ and only i/  GHG -~ belongs to J ' ,  where J and J '  are, respectively, the 
isotropy groups relative to M o and M2. 

J = J '  would mean that  the change of reference configuration G does not 
affect the isotropy group. By Proposition 2 this is tile case if and only if G-IHG 
belongs to J .  In the language of group theory, this condition states that  G 
must belong to the normalizer group of J within the full linear group X'. Thus 
we have 

Proposition 3. A change o/re/erence configuration [rom M o to GM o leaves the 
isotropy group J unchanged i/ and only i/ G belongs to normalizer o/ J in .W. 

Suppose Q is orthogonal and belongs to J ;  then we can combine the identi ty 
(2.6), with H =  Q, and the identity (2.2), to obtain 

Proposit ion 4. An orthogonal tensor Q belongs to the isotropy group J i/ and 
only i/ 

Og (F) Q-~= g (QF @1) (2.10) 
/or all tensors F. 
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Defini t ions.  If  an elastic material  has a local configurat ion Mo such tha t  
the corresponding isotropy group is either the or thogonal  group 0 or a group 
which contains 0 as a subgroup, then we say tha t  the material  is isotropic, and 
Mo is called an undistorted local configuration. I f  a material  is such tha t  for 
some 3/0, J is a subgroup (which need not  be proper) of d~, then we say tha t  
the material  is a solid, and we again call M o undistorted. Hence for the un-  
distorted configurations Mo of an isotropic solid J - ~  0. In  general, we say tha t  
a configurat ion M o is undistorted if J is comparable  to 0 ;  i.e. if J either is itself 
a subgroup of 0 or contains 0 as a subgroup. We say tha t  a material  is a fluid 
if J is the full unimodular  group ~r Since 0 is a subgroup of ~ ,  an elastic 
fluid is isotropic. I t  follows from Proposit ion 2 tha t  if J =  ~//for one local con- 
figuration 3//o, then J ' - - - - ~  for every other  local configurat ion Mo'; hence, every  
configuration of a fluid is undistorted.  

Note. Continuum mechanics does not yet  have a standard terminology for the 
various mathematical concepts behind the intuitive notion of "isotropy". The parti- 
cular definitions we give here are specializations to elastic materials of the definitions 
given by NOLL 8 for general simple materials. The reader is cautioned that, whereas 
we use isotropic as a quality of a material, other writers regard isotropic as a quality 
of both a material and a con/iguration. When these writers say that  "the material 
is isotropic in the configuration M",  we say that  "M is an undistorted configuration 
of the isotropic material". 

The following proposit ion is an immediate  consequence of Proposi t ion 4. 

P ropos i t ion  5. The response ]unction ~ o] an isotropic material, when taken 
relative to an undistorted state, obeys the ]ollowing identity /or all tensors F and 
all orthogonal tensors Q: 

g(QF Q -1) = Qg (F) Q-1. (2.11) 

Tensor-valued functions obeying (2.1t) are called isotropic ]unctions. 

The next  three propositions illustrate some of the physical  mot iva t ion  behind 
our formal definitions. 

P ropos i t ion  6. The stress on an undistorted state o/ an isotropic material is 
always a hydrostatic pressure. 

This proposi t ion states t ha t  if J contains d~ as a subgroup (properly or im- 
properly),  then ~ (I) ---- - -  p I .  

Proof .  B y  hypothesis  and Proposit ion 5 we have 

Q g (I) Q-1 = ~ (Q I Q-l) = ~ (I) 

for all or thogonal  tensors Q; i.e., g (I) must  commute  with all or thogonal  tensors. 
This is possible only if g (1) is a scalar multiple ( - - p I )  of the unit  tensor I, q.e.d. 

Propos i t ion  7. The stress on an elastic fluid is always a hydrostatic pressure 
- - p I  which depends on only the density ~. 

In  other words, /or a simple fluid, 

(F) = - -  p (0) I (2.12) 
where 

1 
q - - [ d e t F [  qo, (2.t3) 
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being the density o] the present local con]iguration F M and Qo the density o] 
the local re]erence configuration M o. 

Proof.  For any given tensor F, the tensor H----]det F IF  -1 is obviously uni- 
modular and hence belongs to the isotropy group J-- - -~ of the fluid. There- 
fore, by  (2.7), 

~(F)----g(FH)=g(idet F [ I) 

depends only on ] det F] or, equivalently, on the density e. That  ~ (F) is a hydro- 
static pressure for all M and F is a consequence of Proposition 6 and the fact 
that  a simple fluid is an isotropic material all of whose configurations are un- 
distorted. 

Proposition 8. Two undistorted local configurations o] an isotropic solid can 
diHer by only a similarity trans[ormation. 

Proof.  By definition, the isotropy group of an isotropic solid, relative to 
an undistorted reference configuration, is the orthogonal group d~. Hence, by  
Proposition 3, a change G from one undistorted reference configuration to an- 
other must belong to the normalizer of $ in oW. But it is a known result in group 
theory that  the normalizer of d~ is the group of all similarity transformations, is 
q.e.d. 

3. Undistorted States of Aeolotropie Solids 
Proposition 6 of Section 2 shows that  the stress on an undistorted local con- 

figuration of an isotropic material (solid or not) must be a hydrostatic pressure. 
Here we investigate the limitations material symmetry imposes upon the stress 
on undistorted configurations of various types of aeolotropic solids. We also 
extend Proposition 8 of Section 2 to obtain limitations on the possible strains 
which can relate undistorted states of general solids. 

As far as purely mechanical behavior is concerned, the symmetry  of an 
elastic solid is characterized by  a corresponding " t y p e"  of isotropy group ~'. 
By our definition of the term solid, J will be a subgroup of the orthogonal group $ 
if an undistorted local configuration M o is used as a reference. If M" =GMo 
is another undistorted reference configuration, then the isotropy group J '  cor- 
responding to Mo will also be a subgroup of the orthogonal group. Moreover, 
according to Proposition 3 of Section 2, J '  will be the conjugate J ' - - - -GJG -~ 
of J under G; i.e., every transformation Q' in J '  will be of the form 

Q ' = G Q G  -~ (3.t) 

where Q is a member of J .  Let 

G = R U (3-2) 

be the polar decomposition of G, so that  U is the right stretch tensor and R 
the rotation tensor of the deformation carrying M o into Mo'. Combining Eqs. (3.t) 
and (3.2), we find 

Q'G-~GQ, (3-3) 
O'R U=R UQ= (R O) (Q-~ U 0). 

18 C[. H. WEYL, The Classical Groups, p. 22. Princeton 1946. 
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Since both Q'R and RQ are orthogonal tensors while U and Q-1UQ are both 
positive-definite and symmetric,  (3.3) gives two polar decompositions of the one 
tensor Q'G. Therefore, the uniqueness of a polar decomposition implies that  

Q ' R : R Q  and U=Q-1UQ. (3.4) 

The first of the Eqs. (3.4) shows that  every member  Q' of or is of the form 

Q ' = R Q R  -1, (3.5) 

i.e., that  or is actually a coniugate J ' = R J R  -1 o / J  within the orthogonal group. 
We say that  two subgroups of the orthogonal group are o/ the same type if they 
are conjugate in this sense. The isotropy group of a solid depends on the choice 
of reference configuration, even when this configuration is restricted to be un- 
distorted. The type to which this group belongs, however, represents an in- 
trinsic property of the material. 

Crystalline solids are classified into thir ty-two classes, each of which is char- 
acterized by  a certain type of symmet ry  group. The symmet ry  groups are finite 
subgroups of the orthogonal group. On putt ing Q = - I  in (2.2) we see tha t  

g (F( - -  I))  = (--  I) ~ (F) (--  I) ----- g (F), (3.6) 

which shows tha t  the inversion - - I  is always a member  of the isotropy group. 
This inversion, however, does not belong to the symmet ry  group of some of 
the crystal classes. 19 The following assumption seems to be natural:  

Hypothesis on Crystalline Solids. Consider a crystal which, relative to some 
undistorted state M o, has the crystallographic symmet ry  group (i.e. point 
group) (~. The isotropy group Jr of this crystal, relative to M o, is assumed to 
be the group generated by  W and the inversion - - I .  

The 32 types of symmetry  groups 2~ give rise to only 11 types of isotropy 
groups. In describing a group J we need not list all the elements of J but  
only a set of generators of J ,  i.e. a set of members of J which, when they and 
their inverses are multiplied among themselves in various combinations, yield 
all the elements of J .  For an isotropy group relative to an undistorted state 
of a solid it is always possible to find a list of generators - - I ,  Q~ . . . . .  Q,~ such 
that  each Qi is proper orthogonal. We denote by  R~ the right-handed rotation 
through the angle % 0<q~<2et ,  about an axis in the direction of the unit 
vector n. Each proper orthogonal transformation # I is a rotation of the form R~. 
Table I gives a description of the l t types of isotropy groups for crystals. In 

t (i + j  +k) .  this table, i, j ,  k denotes a right handed orthonormal basis and d = ]/3- 

A change from one group to another of the same type corresponds merely to 
a change of the orthonormal basis i, j ,  k. 

19 If we were dealing here with vector phenomena, as in electromagnetic theory, 
then we should not automatically have --1 in or and we should have instead J = ~ .  
In other words, it is because our present theory involves only tensors of order two 
that our isotropy groups are sometimes bigger than the crystallographic point groups. 

20 Complete lists of members for all these groups are given by G. F. SMITH & 
R. S. RIVLIN, Trans. Am. Math. Soc. 88, 175 (1958). The names we employ for the 
various crystal systems and classes are those used by SMITH & RIVLIN, who, in turn, 
state that they come from the t952 Edition of DANA'S Textbook of Mineralogy, 
revised by C. S. HURLBOT (New York: John Wiley). 
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Ref. 
No. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

1t. 

Table 1. Isotropy Groups for the Various Crystal Classes 

Crystal Class 

Trielinic System 
all classes 

Monoclinic System 
all classes 

Rhombic System 
all classes 

Tetragonal System 
t etragonal-disphenoidal ) 
tetragonal-pyramidal } 
tetragonal-dipyramidal J 
tetragonal-scalenohedral } 
ditetragonal-pyramidal 
tetragonal-trapezohedral 
ditetragonal-dipyramidal 

Cubic System 
tetratoidal 
diploidal } 
hextetrahedral | 
gyroidal } 
hexoctahedral J 

Hexagonal System 
trigonal-pyramidal 
rhombohedral } 
ditrigonal-pyramidal ) 
trigonal-trapezohedral } 
hexagonal-scalenohedral J 
trigonal-dipyramidal } 
hexagonal-pyramidal 

. hexagonal-dipyramidal 
' ditrigonal-dipyramidal } 
dihexagonal-pyramidal 
hexagonal-trapezohedral 
dihexagonal-dipyramidal 

Proper Orthogonal 
Generators o f J  

R~, 

R~, Rj' 

R?, ~, R'l 

R~, R], R~ ~/~ 

R'I~L Rp 

R~ n/a, R~ 

RT,/3 

R~,", R'l 

Number of 
Elements 

in J 

t6 

24 

48 

12 

12 

24 

With respect to their elastic behavior alone, crystals can show only the 
t t types of symmetry characterized by the t t types of isotropy groups. 

A type of symmetry appropriate not to crystals but to materials with a 
bundled or laminated structure or to drawn fibers is transverse isotropy. It  is 
defined by the assumption that the isotropy group consists of 4 - I  and 4- R~, 
for some fixed unit vector k, and all angles ~, 0 < 9 < 2 ~ .  

Consider an elastic solid and a particular undistorted reference configuration 
M o. Denote the corresponding response function by  g and the corresponding 
isotropy group by  J .  The stress on M o is given by 

so-- ~ (x). (3.7) 
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The following is an immediate consequence of Eq. (2.t0) for F----I: 

Proposition 1. The stress S O on an undistorted local configuration M o o] a 
solid commutes with every member o/the isotropy group J / o r  Mo; i.e. 

Q So~ So Q (3.8) 
holds/or all Q in J .  

It  is easily seen that (3.8) holds for all Q in J if it holds for all rotations Qi, 
i - - t  . . . . .  m in a list - I ,  Q1 . . . . .  Qm of generators of J .  Therefore, the problem 
of finding the possible stresses S O on an undistorted state reduces to the problem 
of finding those symmetric tensors that commute with a certain set of rotations 
of the form R~. For each of the t I cases given in Table t and for the case of 
transverse isotropy, this problem can easily be solved with the help of the follow- 
ing 

Commutat ion Theorem 2I. The symmetric tensor S commutes with the ortho- 
gonal tensor Q i] and only i[ Q leaves each o] the characteristic spaces o] S invariant, 
i.e., i / i t  maps each characteristic space into itsd]. 

Here, a characteristic space of S is defined to be a maximal subspace (of 
the ordinary three-dimensional vector space) consisting of only proper vectors 
of S. If S has three distinct proper numbers, then it has three one-dimensional 
characteristic spaces. If  S has only two distinct proper numbers, then it has 
two characteristic spaces, one of which is one-dimensional and the other two- 
dimensional. In this case, S must be of the form 22 

S = -- p I  + q n Q n ,  (3-9) 

where - - p  and q - - p  are the proper numbers of S and n is a unit vector which 
generates the one-dimensional characteristic space. If the three proper numbers 
of S coincide, then the entire three-dimensional vector space is the only char- 
acteristic space of S, and S is of the form 

S =  - - p I .  (3.t0) 

Now if q0 ~= ~, the only spaces left invariant by the rotation R~ are the one- 
dimensional space of all multiples of n the two-dimensional space of all vectors 
perpendicular to n, and the entire three-dimensional vector space. The rotation 
R~, leaves invariant, in addition, each one-dimensional space generated by a 
vector perpel~dicular to n. 

Proposition t, Table t, and the results from geometrical linear algebra just 
described enable one to establish easily the results collected in Table 2. In this 
table, i, j, k is the same orthonormal basis as is used for the isotropy groups 
in Table 1. Recall that  a proper vector of the stress So determines a principal 
axis of stress. 

Let us now return to Eqs. (3.4). It  follows from the second of these equations 
that Q U =  U Q, which is the content of 

.ol This theorem is a corollary to Theorem 2, p. 77, and Theorem 3, P. 157, of 
P. ~{. HALMOS, Finite-Dimensional Vector Spaces. Princeton : Van Nostrand, 2rid ed., 
1958. 

~ The symbol | denotes a tensor product; i.e., n | is the tensor with the property 
that (n | v = n (n .v) for all vectors v. 
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Proposition 2. Let Me and M~ be two local re/erence con/igurations o / a  solid, 
and let J be the isotropy group rdative to M o. I / M e  is undistorted, then M o is 
undistorted i/  and only i/ the right stretch tensor U ]rom M o to M o commutes with 
every member el J .  

Table 2. Restrictions on the Stress [or Undistorted States o/Aeolotropic Solids 

Ref. No. 
Type of Isotropy in Table I Restriction on So 

Triclinic system 
Monoclinic system 
Rhombic system 
Tetragonal system 
Hexagonal system 
Transverse isotropy 
Cubic system 

t 
2 
3 

4,5, 
8, 9, 10, 1t 

6,7 

no restriction 
k is a proper vector of S O 
i, j, k are proper vectors of S O 

S o = - - p I + q k |  

S o = - -p  I 

I t  follows from this proposition that  if M o is an undistorted configuration 
of a solid with the symmetry listed in the first column of Table 2, then a necessary 
and sufficient condition that  M~ be an undistorted configuration of that  solid 
is that  the right stretch tensor U relating M" to M o obey the restrictions listed 
for S O in the second column. 

4. Thermostatic Inequalities 
As we mentioned in the Introduction, there are reasons, whose origins lie 

outside of mechanics, for believing that  stress-strain functions used in physical 
applications should be subjected to restrictions beyond those following from 
Material Objectivity. These restrictions should have the form of inequalities 
and, we believe, should follow from a properly formulated theory of the thermo- 
dynamics of continuous media. 

The inequalities we wish to consider here can be most simply expressed 
through use of the first Piola-Kirchhoff stress tensor, T, defined by  

T ---- I de tF]  (F -1 S) T = q o SFr- , ,  (4.t) 
0 

where S is the ordinary stress and F the deformation gradient. The definition 
of T depends on the choice of the reference configuration. T need not be sym- 
metric. We denote the relation between T and F by  

T---- ~ (F), (4.2) 

where the response function ~ is related to the response function g of Eq. (2.1) by  

(F) = ]det F [ g  (F)F  T-1. (4.3) 

When the equation of material objectivity (2.2) is expressed in terms of ~, it 
reads 

t) (QF) = Q~ (F) . (4.4) 
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Using Eqs. (4.4) and (t.7), we see t h a t  Eq.  (4.2) is equivalent  to 

T = R ~ ( U ) ,  (4.5) 

where R is the ro ta t ion  tensor  and  U the  right s t re tch  tensor  corresponding to F.  
In  a work  on the foundat ions  of thermos ta t ics  9 we have  laid down postula tes  

which, in our present  theory,  are equivalent  to the  following 

Thermostatic Inequali ty (TI). There  exists a (scalar-valued) energy /unction 
a such t ha t  

a (F*) - -  a (F) - -  t r  {(F* - -  F) [) (F)T} > 0 (4.6) 

for all pairs of deformat ion  gradients  F,  F*  such t ha t  F*  =~F and F * F  -1 is posit ive- 
definite and symmetr ic .  

The  energy funct ion a(F) in (4.6) can be in te rpre ted  as ei ther  the internal  
energy densi ty  (per uni t  vo lume in the reference configuration) or the  Helmhol tz  
free energy density,  depending on whether  one regards the en t ropy  densi ty  or 
the t empera tu re  as the t h e r m o d y n a m i c  quan t i t y  being held fixed, and then 
suppressed,  in defining g. 

In  reference 9 it is shown tha t  (4-.6) implies 

(F) T = gradF a (F). (4.7) 

Once (4.7) is established, our assumpt ion  of Material  Object ivi ty ,  i.e. (2.2), is 
equivalent  to the assert ion t ha t  a in (4.6) obey the ident i ty  

a(QF)  = a (F) (4.8) 

for all F and all or thogonal  Q. 2a 

An a l te rnat ive  formulat ion of our T I  is the following assertion. 24 Consider 
the Class ~ of cont inuous rectifiable curves Fe in the space of all invert ible tensors F,  
and  let the p a r a m e t e r  t for these curves v a r y  f rom 0 to 1. Le t  if' be the set of 
all curves F t in (s for which F 1 =4= F 0 and  F1F~-0 i is bo th  symmet r i c  and posit ive- 
definite. Then,  the  following inequal i ty  mus t  hold for curves F, in ~ ' :  

F1 
f t r { ~  (Ft) r d  Ft} > tr  {(F~ - -  170)[)(F0) T}. (4.9) 

F, 

The integral  on the left in (4.9) is to be in te rpre ted  as a line integral  along the 
curve F t f rom t = 0  to t = 1 .  

The quant i t ies  appear ing  on each side of (4.9) represent  work, per  uni t  volume 
in the reference configuration,  done against  contac t  forces a t  a mater ia l  point  
X as the local configurat ion of X is deformed along p a t h  FtM o, 0<=t =<1. The 
quan t i t y  on the left in (4.9) gives the " t r u e "  work  done, i.e. tile work done 
assuming tha t  a t  each t the contac t  forces on each mater ia l  surface at  X are 
those which one calculates using the stress tensor  S = g (F,) and  the ac tual  

,z In essence, the proof of (4.8) is given in Theorem I of W. NOLL, J. Rational 
Mech. Anal. 4, 3 (1955); see also w I of reference 11. 

24 The proof that  (4.9) is equivalent to the assertion tha t  a exists and obeys 
(4.5) is given in reference 11. In writing (4.9) we have made use of the fact tha t  
g(F) is symmetric. This enables us to simplify Eqs. (1.4) and the inequality (2.3) 
of reference 11. 
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configuration of the surface at time t; the quanti ty on the right in (4.9), however, 
gives the work which would be done along the path F~Mo if the contact forces 
were to remain fixed at their initial values. ~5 Thus, (4.9) states that  ~ must 
be such that  contact forces always change in a process which results in a pure 
stretch, and, furthermore, they always change in such a way that  the work 
done against them is greater than that  which would have been done had they 
remained fixed. 

Let us now return to (4.6). Of course, when F*F -1 is symmetric and positive 
definite, so is FF*-I,  and we can interchange F and F* in (4.6). If we do this 
and add the resulting inequality to (4.6), the terms involving a cancel, and 
we get, as do TRUESDELL (% TOUPIN 12, 

t r  {(F* - -F)  [~ (F*) -- ~ (F)] r} > O. (4.10) 

We now state the 

Weakened Thermostatic Inequality WTI. The response function 1~ is such that,  
for all pairs of tensors F*, F for which F* @ F  and F*F -1 is positive-definite and 
symmetric, we have the inequality (4.10). 

The WTI is equivalent to demanding that  

t r{(U -- I) F[~ (UF) -- ~ (F)] T} > 0 (4.t 1) 

for all F and all positive-definite symmetric U:#=I. Since the reference con- 
figuration can always be chosen such that  F = I ,  the WTI  is also equivalent 
to the requirement that  

tr{(U-- I) [~ (U) -- ~ (I)]) > 0 (4.12) 

for all positive-definite symmetric U, no matter what reference configuration is 
used in defining the response function ~. 

Of course the TI implies the WTI; the WTI does not imply TI. It is possible 
to find (theoretical) materials obeying our WTI but yet such that ~ is not derivable 
from an energy function a through (4.7). 

Remark. To say that a material obeys the TI is equivalent to the assertion 
that the response function ~ is such that (4.9) holds for all curves F, in ~. To 
say that a material obeys the WTI, however, is to assert only that ~ is such 
that (4.9) holds for those curves F~ in ~' which are straight lines, zs 

It follows from these observations that any special result derived from the 
WTI inequality (4.10) will also hold for materials obeying the TI inequality 
(4.6). Since most of the known implications of the TI, and also the implications 
of the TI which we wish to report here, can hold also under the weaker (i.e. 
more general) assumption of the WTI, we shall base our present discussion of 
thermostatics upon the WTI. Throughout the rest of this paper, if the WTI 
is not mentioned in the statement of a proposition, it is to be understood to 
be present as an axiom. 

25 Note that, when the configuration of a surface is changing, keeping contact 
forces fixed is not equivalent to keeping the stress tensor S fixed; rather, it is equi- 
valent to keeping the Piola-Kirchhoff tensor T fixed. 

26 BRAGG, L .  E . ,  ~: t3. D .  COLEMAN, J .  Math. Phys. 4, 1074 (t963). 
Arch. Rational Mech. Anal., Vol. t5 8 
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5. States of Pressure 

Here  we obtain  some results which show tha t  the W T I  places l imitat ions 
on the propert ies  of local configurat ions which give rise to a hydros ta t i c  pressure. 
Our main  new result  is Theorem 3, which tells us, among  other  things, t ha t  
the stress tensor  can vanish  only in an undis tor ted  configurat ion of a solid. 

L e m m a .  Consider two local con/igurations M 1 and M 2 o / the  same material, 
and suppose that they both correspond to hydrostatic pressures: 

S I = - - p l I ,  (5Aa) 

$2 = -- P2I. (5.1 b) 

Here Pl may or may not equal P2. Consider the right stretch U [rom M 1 to M2; 
i.e., put 

M 2 = F M  ~, F = R U ,  (5.2) 

where R is orthogonal and U positive-de[inite and symmetric. Then, the/ollowing 
inequality must hold whenever U ~ I:  

Pl (tr U --  3) + P2 (det U) (tr U -1 - -  3) > 0. (5.3) 

Proof. We use M I = M  o as the  reference configuration.  B y  Eqs. (4.t), the 
Piola-Kirchhoff  tensors corresponding to M 1 and M 2 are 

T~= SI = - - p l  I ,  (5.4a) 

r 2 = I det  F[ (/7 -1 S2) r = - -  p2 (det U ) R  U -1. (5.4b) 

Hence,  b y  (4.5), we obta in  

~ ( I ) =  - - p , I ,  O ( U ) =  - -  p= (det U) U-L (5.5) 

Subst i tu t ion  of Eqs. (5.5) into the form (4.12) of the W T I  gives 

t r { (U  - -  I)  [ (--  P2) (det U) U -x + P , / l } > 0 ,  (5.6) 

whenever  Uq=I; (5.6) is equivalent  to (5.3), q.e.d. 

Theorem 1. Suppose that two local con/igurations M~ and M 2 o/ a material 
correspond to the same hydrostatic stress - - p I  with p > O. Suppose [urther that 
M 1 and M s di//er by more than an orthogonal trans/ormation, i.e., that the principal 
stretches ui, i = 1, 2, 3 ]rom M 1 to M s are not all 1. Then the/ollowing two situa- 
tions are both impossible: 

ui>=l [or all i ,  (5.7a) 

u i<=t /or all i. (5.7b) 

Proof. We use the Lemma,  pu t t ing  P l = P ~ = P  in (5.t). Of course, the u i 
ment ioned  here are just  the proper  numbers  of U defined in (5.2). Now the 
inequal i ty  (5.3) s ta tes  t ha t  if U4=I, i.e. if the u i are not  all t ,  then  

pg> o, (5.8) 
where 

g = (tr U --  3) + (det U) (tr U -1 - -  3) (5.9) 

= (Ul ~-  US -~- U3 - -  3) ~-  (U2U3 -~ UlU3 -~ U2U3 - -  3 ~'1 U2 U3) " 
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Since, by  hypothesis, p > 0, the inequality (5.8) implies 

g > o .  (5.1o) 

Differentiation of Eq. (5.9) yields equations of the type 

~g --Uk + U l +  l - -3UkUl ,  (5.1t) 

where/', k, and l are all distinct. Suppose now that the inequalities (5.7a) hold. 
We then also have inequalities of the form 

ukuz ~ uk+ul+l  k ~ l ,  (5.t2) 
3 

and hence, by Eq. (5.11), 

~g <o,  i = t , 2 , 3 .  (5.13) 
~u i -- 

Since g reduces to 0 when u l = u 2 = u s = l ,  it follows from (5.13) that  g--<0 when 
(5.7a) holds, which contradicts (5 A0). Hence the inequalities (5.7a) are impossible. 
To show that the inequalities (5.7b) are also impossible, we need only interchange 
the roles of the configurations M: and M 2, q.e.d. 

Corollary. Suppose two local configurations 3/I: and M 2 give rise to the same 
positive hydrostatic pressure p and differ only by a similarity transformation 
F=o~Q, Q orthogonal, ~ > 0 .  Then ~ = I ;  i.e., M: and M 2 must have the same 
density and can differ by only a rotation or reflection. 

Theorem 2. Suppose that, for a given material, 3/1: and M 2 are two local con- 
figurations which have the same density and give rise to hydrostatic pressures p: 
and P2, respectively, so that Eqs. (5.1) hold. I[ p:--<_0 and p2<=O, then 31: and 
M 2 can differ by only an orthogonal transformation, and we must have p:=-p~. 

Proof. Since here 3/2": and M s have the same density, the right stretch tensor 
U of (5.2) satisfies 

det U = d e t  U - : =  1. (5.t4) 

Thus, if U~=I, the inequality (5.3) becomes 

p: (tr U - -  3) + P2 (tr U-: -- 3) > 0. (5.15) 

The arithmetic mean of a set of positive numbers is strictly greater than 
the geometric mean unless the numbers are all equal to one. Applied to the 
proper numbers of a positive-definite, symmetric tensor A, this observation 
states that 

trA if A =~I. (5.t6) 
~ / ~ <  3 

On putting A----U and A----U-: in (5.16) and using (5A4), we obtain 

t r U - - 3 > 0 ,  t r U - : - - 3 > 0 ,  (5.t7) 

whenever U=~I. If p:=<0 and p2=<0, the inequalities (5.15) and (5A7) are 
inconsistent. Hence U = I ,  which means that M: and Ms can differ only by 
an orthogonal transformation F----R (see Eq. (5.2)). Moreover, using Eqs. (2.t) 

8* 
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and  (2.2) with M 1 as the reference configuration, F = I  and Q=R,  we find 

s l  = - p l z  = (x), (5.18a) 

S 2 = - - p g I = g ( R  ) = R ~ ( I ) R - ~ - ~ R ( - - p ~ I ) R - I = - - p x I ;  (5A8b) 

i.e. Pl=P2, q.e.d. 

Corollary.  / /  g ( H ) =  g ( I ) = -  p I where H is unimodular but non-orthogonal, 
then p >  O. 

T h e o r e m  3. I[ there exists a local configuration M o such that the corresponding 
stress S O vanishes or is a negative hydrostatic pressure, then the material under 
consideration is a solid, and M o is an undistorted configuration. 

The theorem states t ha t  if S o = -  pI ,  with p ~ 0 ,  then the isotropy graup J 
relative to M o is a subgroup of 0. 

Proof. By the definition of J ,  if H is in J ,  then ]det H I ----1 and  fl (H)---- 
g (I)----S o. Since we here have S o = - - p I  with p=< 0, the Corollary to Theorem 2 
shows tha t  H mus t  be orthogonal,  q.e.d. 

Let us now consider elastic fluids. On turning back  to Proposit ion 7 of 
Section 2 and observing tha t  the stress in a fluid is characterized b y  a scalar- 
valued function p of a scalar ~, we see tha t  our W T I  is equivalent  to our T I  
for a fluid. 97 I t  follows from Theorem 3 tha t  p(0) in (2.12) is always positive. 
Fur thermore,  it follows from Theorem I tha t  p (0) is an invertible function. 
These observations are sharpened in the following theorem, n 

T h e o r e m  4. For an elastic fluid, a necessary and su[[icient condition [or the 
W T I  (and hence also/or the TI )  is that the [unction p (~) in (2.t2) obey the/ollow- 

ing inequalities/or all e: p (Q) > 0, (5.19) 

dp (0) 2 __> (5.20) 

In  (5.20) it is to be understood that equality holds on only a nowhere dense set o/ 
values o/e .  

Theorem 4 has the same content  as Theorem 6 of reference 9, as is easily seen 
b y  observing tha t  (5.20) is equivalent  to  the s ta tement  t ha t  the internal energy 
densi ty  in a fluid is a convex function of the cube root  of the specific volume. 99 

Various implications of the W T I  for isotropic materials are derived by  
COLEMAN & NOLL 99, TRUESDELL & TouPIN x2, BRAGG & COLEMAN 30, and NOLL 
~r TRUESDELL31, 99. 

27 This is not  the case when thermodynamic variables such as the temperature 
or entropy density are considered. 

,s An extension of the inequality (5.20) to a statement about the mean pressure 
on arbitrary states of strain in general elastic materials is given in reference 26. 

~9 Section 12 of reference 9. 
30 BRAGG, L. E., & B. I). COLEMAN, J. Math. Phys. 4, 424 (t963). 
Sl MOLL, W., & C. TRUESDELL, in: Encyclopedia of Physics, Edited by S. FLUGGE, 

VO1. 111/3. Berlin-G6ttingen-I-Ieidelberg: Springer (forthcoming). 
32 For its discussion of inequalities in isotropic materials the article of TRUESDELL 

& TOUPIN lz is the most exhaustive currently in print. I t  also contains some interest- 
ing remarks on uniqueness questions for boundary value problems in materials of 
arbitrary symmetry. 
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6. Differential Inequalities 
We assume now that the response function g of Eq. (2.1) or, equivalently, 

the response function ~ of Eq. (4.2) is continuously differentiable and investigate 
the restriction that  the WTI imposes on the gradients of g and 0. 

Let D be an arbitrary non-zero symmetric tensor, and consider 

U = I  + zD,  (6.t) 

where ~ is a real parameter ~ 0. It  is clear that  when ]z] is sufficiently small 
the tensor U given by  Eq. (6.t) is not only symmetric but  also positive-definite 
and :4: I. Let us make the abbreviation 

] (~) = tr  {D ~ (I + zD)T}. (6.2) 

Starting with (4.12) and letting U be given by  (6.1), we find that  the WTI 
may be written 

~[1(~) -1(o)1>o. (6.3) 
Dividing (6.3) by  ~ and taking the limit z-->0, we obtain 

/(0) -->_ O, (6.4) 

where the superimposed dot denotes the derivative. The directional derivative 
VO [D] of ~ at I, in the direction of the tensor D, is defined by  

d "rD) ~=o ~ I ] ( I +  = V~[D]. (6.5) 

Here V~, the gradient of ~ at I, is a linear transformation of the six-dimensional 
space of symmetric tensors D into the nine-dimensional space of arbitrary tensors. 
We now define a quadratic form s on the six-dimensional space of all symmetric 

tensors D by  s (D) ----tr{D (V~ [D])T}. (6.6) 

Equations (6.2), (6.5), and (6.6) show that the inequality (6.4) states that 
s (D) >_ 0. Thus we have 

Theorem 1. In order ]or the W T I  to hold it is necessary that the quadratic 
]orm s defined by (6.6) be positive-semidefinite, i.e. that 

s (D) > 0 (6.7) 
]or all symmetric tensors D. 

Of course, the response function ~ and hence the quadratic form s depend 
on the choice of the reference configuration; s must be positive semi-definite 
for every such choice. 

To cast (6.7) into a more transparent form we consider a smooth one- 
parameter family of deformation gradients F(T) such that F ( 0 ) = I .  The cor- 
responding rotation tensors are denoted by  R (z) and the corresponding right 
stretch tensors by  U(z). We then have R (0)= U(0 )= I .  If we put 

f~ (0) = W, U(O) = D, (6.8) 

we find, by  differentiating Eq. (t.7) with respect to $ and then putting $----0, 
that  

/ ~ ( 0 ) = W + D .  (6.9) 
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Moreover, it is clear that  D is symmetric and it is easy to show that  W is skew 
(by differentiating RTR----I). 

Let S (z) and T(z) be the stress and the Piola-Kirchhoff tensor, respectively, 
corresponding to F(z). Equation (4.t) shows that  T(0)=S(0).  We use the 
notation 

S (0)= T(O)= S o, S (0) = So, J'(0) = To. (6.10) 

On differentiating (4.5) we find 

~'o= W~ ( I ) +  V D[D], (6.1t) 

where VI~ is the gradient of 1) at I and where the notations (6.9) and (6.10) have 
been used. Since So~-~(I ), Eq. (6.tl) is equivalent to 

To-- WSo= V~ IDi. (6.12) 

Let us denote the density of the local configuration corresponding to F(z) by 
~(z) and use the notation ~o=0(0), ~o=~(0). If we differentiate Eq. (4.1) with 
respect to ~ and then put T=0,  we find, using (6.8)--(6A0), 

o~So=~oSo + 9oSo(D -- W) + ooT o. (6.13) 

The equation of continuity aa implies 6o = -- (trD) ~o, hence (6.t 3) is equivalent to 

So= -- So(trD ) + So(D -- W) 4- "i~o. (6.t4) 

Combining Eqs. (6.6), (6.12), and (6A4), we find 

~(D)=tr{ (So+ SoW--WSo)D)+trDtr(SoD)-- tr(SoD2).  (6.15) 

If we differentiate Eq. (2.3) with respect to z and then put z = 0 ,  we find 

So+ SoW--WSo=Vg[D] ,  (6.t6) 

where Vg is the gradient of the response function fl at the tensor I.  We may 
regard Vg as a linear transformation of the six-dimensional space of symmetric 
tensors into itself. When components are used, the matrix of Vg has 36 com- 
ponents, which are the elastic coefficients for an infinitesimal deformation from 
the reference configuration. Of course, these elastic coefficients depend on the 
choice of the reference configuration. 

I t  follows from Eqs. (6.15) and (6.t6) that  the quadratic form ~(D)  may 
be expressed in terms of V g by 

(D) ~- tr {D Vg [DI} + (trD) tr (SoD) -- tr (SOD2). (6.17) 

We call a one-parameter family M =  M(t) of local configurations a dejorma- 
tion path. If we define F(v) by M(t+r)=F(~)M(t) ,  the tensors D and W are 
called the stretching and the spin of the deformation path. In the notation of 
Ebs. (6.10)--(6.t7) the stress corresponding to M(t) is S o. We now omit the 
subscript o and note that  Eq. (6.t5) and Theorem I yield 

Theorem 2. In order/or the W T I  to hold it is necessary that/or every de/or- 
mation path 

t r ( S * D ) ~ 0 ,  (6.18) 

33 Or, equivalently, (1.3). 
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where D is the stretching, and S* is the invariant stress rate de/ined by 

S*---- S + S W - -  W S + S t r D - - � 8 9  + D S). (6.19) 

In  (6.19) S is the stress and W the spin. 

In  his "Reche rches  sur  l '61asticit6," P. DUHEM 34 makes  the  following assert ion.  

"Consid6rons d 'abord  un syst~me d6fini par  un certain nombre de variables 
normales a, fl . . . . .  A, hors la temp6rature  absolue T. Supposons qu 'k une certaine 
tempera ture  T, le syst~me prenne un 6tat d '6quilibre lorsqu'on le soumet aux actions 
ext6rieures A, B . . . . .  L, et  que cet 6tat d'6quilibre varie d 'une mani~re continue 
lorsque, sans faire varier  la temp6rature  T, on fait  var le t  les valeurs A, B . . . . .  L 
des actions ext6rieures. Si les actions A, B . . . . .  L 6prouvent des variations infiniment 
pet i tes  dA, dB . . . . .  dL, que nous nommerons des actions perturbatriees, les valeurs 
des variables ~,/5 . . . . .  A qui conviennent k l '6quilibre 6prouvent des variations 
da, d/5 . . . . .  d A, que nous nommerons des perturbations; l 'expression 

dAdo~+dBdf l+. . .+dLdA 
sera nomm6e le travail perturbateur isothermique. 

"Dire  qu 'un t ravai l  per tu rba teur  est positif, c 'est  dire, sous une forme math6- 
mat ique pr6cise, que la per turbat ion  se produi t  dans le sens vers lequel tendent  les 
actions perturbatr ices.  I1 est clair que les syst~mes que la nature nous o//re seront 
tels, en gdndral, que tout travail perturbateur isothermique, aceompli h partir d'un d/at 
d'dquilibre, soit posit@ C'est ce que nous experimerons en disant  qu'ils sont soumis 
k la loi du ddplacement isothermique de l'dquilibre." 

Our Theorem 2 above  furnishes a precise m a t h e m a t i z a t i o n ,  for e las t ic  mater ia l s ,  
of DUHEM'S " l aw  of i so the rmal  d i sp lacement  of equ i l ib r ium" .  

Isotropy 

W e  now seek the  l imi ta t ions  which  the  W T I  places  on the  e las t ic  coefficients 
cha rac te r i z ing  the  response of an i so t ropic  m a t e r i a l  to an in f in i t e s ima lde fo rma t ion  

f rom an  u n d i s t o r t e d  s ta te .  

Tak ing  the  g rad ien t  of Eq.  (2 . t l )  wi th  respec t  to  F a t  F = I ,  we f ind t h a t  

Vg [QD Q-l] = Q Vg [O] Q-1 (6.20) 

holds  for al l  o r thogona l  tensors  Q in the  i so t ropy  group  and  all  s y m m e t r i c  
tensors  D. Here  we assume t h a t  g is the  response funct ion  for an  und i s to r t ed  
conf igura t ion  of an  i so t ropic  ma te r i a l ;  i t  then  follows t h a t  Vg[D] is a l inear  
i so t ropic  tensor  funct ion  of D. I t  is a consequence of th is  r e m a r k  t h a t  Vg has  

t he  r ep resen ta t ion  35 Vg [D] = 2 ( t r D ) I  + 2/~D, (6.21) 

where  ~ a n d / z  (the Lain6 coefficients) are  e las t ic  coefficients which depend  on 
the  reference conf igura t ion .  B y  Propos i t ion  6 of Sect ion 2, the  s tress  So on the  
u n d i s t o r t e d  reference conf igura t ion  mus t  be  of the  form 

So= -- p I .  (6.22) 

Subs t i t u t i on  of Eqs.  (6.2t) and  (6.22) in to  (6.17) gives 

K~ (D) = (4 - -  p) ( t rD)  2 + (2# + p) t r D  2. (6.23) 

34 DUHEM, P., Ann. l~cole Norm. 22, t 4 3 - - 2 t 7  (1905), p. 193. 
36 C/. A. E. H. LovE, A Treatise on the Mathematical  Theory of Elas t ic i ty  (Cam- 

bridge, 4th Edition,  1927), w167 106--1t0.  LovE's  assumption of the existence of a 
strain energy function does not  affect the generali ty of his results for isotropic materials  
or cubic crystals. 
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Now, quadratic forms of the type 

q = a (dl + d~ + d3) ~ + b (d~ + d~ + d]) (6.24) 

are well known. A necessary and sufficient condition that  q be positive semi- 
definite in the triple (all, d~, ds) is that  both  

b_>--0 and 3 a + 2 b > - - 0 .  (6.25) 

I f  we take a = 2 - - p ,  b = 2 # + p ,  and d i to be the proper numbers of D, the 
quadratic form (6.24) reduces to (6.23). Therefore, a necessary and sufficient 
condition tha t  IZ (D) be positive semi-definite is tha t  

2# + p_--__ 0 and 3 (2- -  p) + 2 (2/~ + p) >-- 0. (6.26) 

From Theorem 1 we now obtain the following result. 

Th e o r e m  3. The W T I  implies that /or each undistorted configuration o/ an 
isotropic material the/ollowing inequalities hold: 

#=> - - ~ p ,  (6.27a) 

z=>w (6.27b) 

here p is the pressure, # the shear modulus, and ~ = 2 + w the compression modulus; 
o/ course p, /~, and ~ can all depend on the choice o/the re/erence con/iguration. 

If  p = 0 ,  i.e., if the reference configuration is a natural  state of an isotropic 
solid, then Theorem 3 yields the familiar assertion tha t  

/~__0 and ~ 0 .  (6.28) 
For an elastic fluid we have #---- 0 and x = e dp (e)/d 9, and hence Theorem 3 yields 

dp(O) 2 p>-_o, e-~->~p.  
This condition is just a bit weaker than the necessary and sufficient condition 
for the W T I  stated in Theorem 4 of Section 5, for our present Theorem 3 does 
not contain the precious result tha t  p = 0 is impossible in a fluid. Yet we think 
Theorem 3 to be not without interest. Through its conclusion (6.27a) it yields 
a condition on/~ for a particular negative pressure p to be possible: I f  the con- 
figuration is varied among undistorted configurations in such a way that  p 
decreases and becomes negative, /~ must  always remain greater than 1 - -~-p ,  

otherwise the material  will not support  the negative pressure, a6 

Cubic Symmetry 
When the material  has cubic symmet ry  and the reference configuration is 

undistorted, it follows from (6.20) tha t  there exists an orthonormal basis h~ 
such tha t  the components of Vg~D~ and D are related by  8~ 

V 9 ~D]~----o~D~i + fl (Dj j + Dkk ) , (6.29 a) 

V~ [D]ii=2),Dii. (6.29b) 

86 We take this to mean that cavitation will occur, as seems to be the case with 
fluids. 

8~ The result is essentially given in LovE's treatise. 85 The three coefficients 
~,/3, ~, are related to those on p. t 60 of reference 3 5 by Cx 1 = co, Cx 2 =/3, C44 ~ ~- 
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No summation convention is used here, and i, i, k is any permutation of t ,  2, 3. 
I t  follows from the last entry in Table 2 that  the stress S O in the reference con- 
figuration must be a hydrostatic pressure: 

So= - - p I .  (6.30) 

Substitution of (6.29) and (6.30) into (6.t7) yields 

n 3 3 

S2(D) = ~ F ,D~,+ 2(/~-- p) ~ O,,Dji + (47 + 2 p )  Y D~. (6.3t) 

~ > $  i t>*  

Thus ~2 (D) is the sum of the two quadratic forms 

3 3 

g~l (D) = ~ F, D~, + (2fl -- p) F. D,, Dji,  (6.32 a) 
i = 1  i , i = l  

i>i  
and 

3 

~2(n)  = (47 + 2p) F, D~j. (6.32b) 
i , i=l  

i>i  

The form ~1 (D) involves the three diagonal components of D, which can be chosen 
at will, while the form ~2 (D) involves only the three off-diagonal components 
of D, which also can be chosen at will Hence, in order for ~ (D) to be positive- 
semidefinite it is necessary and sufficient that  both of the forms (6.32) be positive- 
semidefinite. 

I t  is clear that  the form ~2(D) of (6.32b) is positive-semidefinite if and only 
if 47+2p>__0. The form ~I(D) of (6.32a) is of the type (6.24) when we put 
a+b=o% 2a=2f l - -p ,  and di=Dii,  i = t ,  2, 3. Using (6.25), it follows that  the 
form ~ (D) of (5.3t) is positive-semidefinite if and only if the three inequalities 

2 ~ + p = O ,  ~--/5 + ~ p  ~>_0, / ~ + 2 ~ - - � 8 9  >=0 (6.33) 

hold. We summarize: 

Theorem 4. The W T I  implies that /or each undistorted con/iguration o/ a 
material with cubic symmetry, the elastic coe//icients 0% fl, 7 and the pressure p 
obey the inequalities 

7>  1 - -~p,  o~--fl> - -~p,  f l+ 2a>={p. (6.34) 
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