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I. Introduction 

Mechanics may be based on two principles: the reaction principle and 
the principle of virtual power. The reaction principle (still cited in most 
books in its special Newtonian version, valid merely for pairs of material 
points) must be stated in the following general form: (1) Every force has 
its reaction. A force is called internal or external for a given system according 
to whether its reaction acts within it or without. (2) In any virtual state of 
motion corresponding to a rigid displacement of the system, the total power 
of the internal forces is zero. The principle of virtual power states that in 
any virtual state of motion (whether admissible or not) the total power of 
the internal, external, and inertia forces is zero. 

Applying these two principles to translations and rotations (particular 
cases of rigid motions), one obtains the theorems of linear and angular 
momentum. They are free of internal forces. 

In the case of a discrete system, composed of material points and/or 
rigid bodies, certain internal forces are usually known, whereas others 
(called reactions) are unknown. Applying the theorems of linear and angular 
momentum to the entire system, we may not obtain sufficient differential 
equations to determine its motion. However, if we apply the theorems to 
the various parts of the given system, obtained by successive subdivision, 
more and more internal forces become external, and the same process 
increases the number of differential equations until a complete set is obtained 
to determine the motion and the reactions. Integration of this set may be 
difficult. It can be facilitated, however, by applying the principle of virtual 
power to the real motion and to the most general admissible state of motion. 
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In this manner one obtains, respectively, the energy theorem and Lagrange’s 
equations. 

Let us note in passing that to formulate Lagrange’s equations (and in 
consequence analytical mechanics as a whole), one starts by choosing a set 
of generalized coordinates q,, together with the corresponding velocities q,,  
and proceeds to define the generalized forces QI by means of the expression 
for the virtual work or power. There is no way to invert this process: 
velocities and forces are inexchangeable. 

In the case of a continuum the system to be considered is the mass 
element, and the internal forces are by definition unknown. In place of the 
q, we have the coordinates determining position and orientation of the 
element plus a set of strains determining its state of deformation. In place 
of the q1 we have the linear and angular velocities of the element plus the 
material strain rates, and the Q, appear replaced by the resultant force and 
moment plus the stresses defined by the expression for the virtual work or 
power of deformation. The theorems of linear and angular momentum are 
still valid; however, they are insufficient to determine the motion. Since the 
internal forces are unknown, so is the connection between strains and 
stresses. Subdivision of the element is of no avail since it procuces elements 
with the properties of the orignal one unless the subdivision is carried to 
the point where the continuum loses its character and disintegrates into its 
molecules. 

There are two ways out of this impasse. The first has been followed in 
the past by continuum mechanics. Here, the observed response of given 
materials is modeled by constitutive relations connecting the stresses with 
the strains, the strain rates, or even the strain history. In cases where the 
history comes into play, an alternative-which will be preferred in this 
article-can be based on the introduction of internal parameters in the form 
of strains, in the definition of the corresponding internal stresses and in the 
inclusion of these entities in the constitutive relations. These approaches 
have been quite successful. However, they are semiempirical, different for 
each material, and not tied together by a general principle. 

The other way out of the dilemma consists in the attempt to explain the 
macroscopic response of a material in terms of its microscopic structure. 
Purely mechanical efforts in this direction have not been very successful. 
However, the example set by the kinetic theory of gases appears promising. 
Here, the thermodynamic behavior of the macrosystem (the mass element 
of the continuum) is explained by the mechanics of the microsystem (the 
total of the particles of which the element is composed). Since the micro- 
scopic motion eludes the macroscopic observer in its details, statistics must 
be used to interpret it on the phenomenological level. As the particles are 
in continuous motion, the temperature has to be introduced as a macroscopic 
measure of the microscopic kinetic energy, and the energy flux by micro- 
scopic exchange between particles within and outside the element while it 
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retains its shape must be interpreted phenomenologically as a heat flow. In 
short, the attempt to physically understand material response turns con- 
tinuum mechanics into thermodynamics. 

The reverse is true as well. As long as thermodynamics confined itself to 
gases, its connection with continuum mechanics remained concealed. Once 
it is applied to other materials, the molar volume has to be replaced by the 
strains and the pressure by stresses, and it becomes clear that thermody- 
namics and continuum mechanics become inseparable, forming one single 
branch of science. 

As a first consequence of this insight, the mechanical energy theorem 
is to be dropped. True, it still holds for the microsystem, but on 
the phenomenological level it must be replaced by the first fundamental 
law of thermodynamics. The next consequence is the recognition of the 
second fundamental law. Moreover, it is imperative that both laws be 
applied not to the entire continuum, but to its material elements. In 
other words, thermodynamics is to be conceived as a field theory in the 
same manner as continuum mechanics. Once this is recognized, the time- 
honored restriction to extremely slow processes becomes obsolete, and it 
becomes possible to treat reversible as well as irreversible processes with 
the same ease. It is clear, on the other hand, that exceedingly fast pro- 
cesses, where the macro- and microvelocities become comparable, have to 
be avoided, but then they are exceptions within the framework of continuum 
mechanics. 

In the vast majority of cases, deformation of a continuum is an irreversible 
process. So is heat conduction. Here, the fundamental laws are not sufficient 
to establish constitutive relations. The gap has been partially closed by 
Onsager (193 1) with his reciprocity relations. They establish the symmetry 
of the matrix connecting velocities and forces. In this function they are 
clearly restricted to linear processes and hence lack the status of a physical 
law, not to mention the fact that many processes in continuum mechanics 
are nonlinear. 

About a generation ago one of the present writers (Ziegler, 1958) proposed 
an orthogonality principle for irreversible processes, based on the dissipation 
function and including Onsager’s theory as a special case. He later showed 
(Ziegler, 1961) that orthogonality (which, incidentally, requires regular or 
at least regularized dissipation functions) is equivalent to a number of 
extremum principles. The most appealing of these (applicable also in cases 
of irregular dissipation functions) postulates that the irreversible process, 
subject to certain side conditions, always maximize the rate of entropy 
production. During the ensuing decades these principles were discussed in 
various publications and restricted to purely dissipative processes of the 
elementary and the complex types. (The first restriction precludes the 
presence of gyroscopic forces such as Coriolis forces or magnetic fields. 
Elementary processes are defined by velocities in the form of components 
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of a single vector or tensor; in the complex case more elementary processes 
may occur at the same time but must be coupled.) 

Continuum mechanics has proved to be the most fertile field of application 
of the principles mentioned. Here, they allow one to establish constitutive 
relations, deducing them from a single pair of scalar functions characterizing 
the material: its free energy and its idssipation function. The process and 
some of its results have been described in the first writer’s book on ther- 
momechanics (Ziegler, 1977), and some questions still open in the first 
edition have been elaborated in the second (Ziegler, 1983). In the meantime 
it has been possible to generalize and supplement the few applications 
treated in this book. Besides, more applications have been supplied by 
Houlsby (1979, 1980, 1981a,b) and by Germain et al. (1983). 

The writers feel that the time has come to present a systematic account 
of the leading functions providing constitutive relations. Such an account 
is the topic of this article. The principle of maximal rate of entropy produc- 
tion is quite general and can be applied with the same ease to small and 
large deformations. In spite of this, the review will be restricted, wherever 
the strain tensor becomes part of the development, to its first approximation, 
that is, to infinitesimal strains. The authors hope that the results may motivate 
future work extending the method to finite deformations. 

The next section presents a brief account of the theory. For its justification 
and for more details the reader is referred to the book (Ziegler, 1983), which 
will be cited for brevity as Z, followed by the number of the relevant section. 
Some of the mathematical tools needed are collected in an appendix at the 
end of the article. The rest of the article is devoted to a variety of materials. 
It will show that the response of most of the models in use can in fact be 
derived from their free energy and their dissipation function. It will also 
show that (and why) a few models do not fit into the pattern. 

11. Thermomechanical Theory 

A. THERMODYNAMICS 

Let us consider a mass element of a continuum (Z.4.3), and let us 
provisionally assume that its state can be described by the absolute tem- 
perature 6 > 0 and a set of mechanical parameters, the components of a 
strain tensor E,,. Let us further assume that d’ is a stress tensor and that 
the expression 

1 := (l /p)a”&,, ,  

where p is a density, the dot indicates material differentiation, and the sum- 
mation convention is used, representing the specific power of deformation. 
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Here and in what follows, “specific” will always mean “per unit mass.” In 
an expression like (2 .1)  it is customary in thermodynamics to refer to the 
d,] as velocities and to the a ” / p  as the associated (specific) forces. 

Macvean (1968)  has studied the various strain tensors proposed in the 
past. He has shown that only a few of them allow a representation (2 .1)  of 
the specific power and thus are thermodynamically acceptable. One of them 
is Green’s strain tensor, based on the so-called Lagrangean description of 
the deformation; it is associated with Kirchhoff’s stress tensor, and p has 
to be interpreted as the density in the reference state. 

It will be simpler for our purpose to use the so-called Eulerian approach, 
based on rectangular Cartesian coordinates, and to replace (2 .1)  by 

1 = ( l / p ) a , d , ,  (2 .2)  

where p is the instantaneous density; a,J is Euler’s stress tensor; and 
d ,  = (vl,l + v , , , ) / 2  is the deformation rate in the sense of Prager (1961) ,  with 
subscripts following a comma denoting partial differentiation with respect 
to the corresponding coordinate so that is the velocity gradient. It is 
true that d ,  cannot generally be interpreted as the time derivative of a strain. 
However, if we restrict ourselves, where necessary, to small deformations, 
we may write d,J = d,J, where F,, is the engineering strain and u,] the 
engineering stress, the dot indicates partial differentiation with respect to 
time, and p may be considered constant. 

The entities E,, and 6 will be considered as independent state variables. 
Functions of them are dependent state variables, also denoted as state 
functions. Examples are the specific internal energy u(E, , ,  a), the specific 
entropy s ( E , ,  6), and the specific free energy 

+(&,], 6) .= u - 6s. (2 .3)  

If we exclude radiation, the specific heat supply per unit time is - q , . , / p ,  
where q, is the vector of heat flow. The specific entropy supply per unit 
time is - (q , /  6 ) , , / p .  

The first fundamental law 

= ( l / p ) ( a , , d ,  - % , I )  ( 2 . 4 )  

states that the rate of increase of the specific internal energy is the sum of 
the specific power of the stresses and the specific rate of heat supply. The 
second fundamental law may be written 

7 (2 .5)  

- ( l / P ) ( q J O ) , ,  and S * ( l )  2 0. (2 .6)  

j = r * ( r )  + s*( i )  

where 
S * ( r )  = 

It states that the specific rate of entropy increase consists of a reversible 
and an irreversible contribution. The reversible contribution is the entropy 
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supply from outside; the irreversible contribution, to be interpreted as an 
entropy production within the element, is nonnegative. 

From (2.4) through (2.6) we deduce 

(2.7) 
p( - 6s) = a. .d . .  - 1-9 9. - pas*( ' )  

6 ,  ,'I 

or 

U..d.. = p ( a u  - - 6- as) d ,  + p (;; - - 6- as) 4 + 9 .  + p 6 ~ * ( " .  (2.8) 
a & ,  a&, a 6  6 'J V 

In the special case of pure heating (or cooling) the rate of deformation is 
zero and the element receives (or loses) heat, whereas no net flow of heat 
across the element takes place. Thus, d, = 0 and q, = 0 but ql,, # 0. Since 
the process is reversible and 8 is different from zero, it follows from (2.8) 
that 

a u / a 6  = 6(as/a6), (2.9) 

and since both sides of (2.9) are state functions and hence are independent 
of the particular process, this equation must be generally valid. Thus (2.8) 
reduces to 

a$, = p(a!b/aE,)dr, + (41/6).9, ,  + P 6 S * " ' ,  (2.10) 

where (2.3) has been used. 
Equation (2.10) suggests the subdivision of the stress tensor into two parts, 

u,, = U F )  + cry, (2.11) 

a ( 4 )  '1 = p(~ !b la&r , ) .  (2.12) 

in such a way that 

Since the u?' defined in this manner depend on a potential t,!~, which, 
however, is a function of the E , ~  and 6, we call them quasiconservative 
stresses, and we note that, on account of (2.3) and (2.9), Eq. (2.12) may be 
supplemented by 

s = -a$/as. (2.13) 

For the remainders a:) in (2.11), Eq. (2.10), together with the inequality 
(2.6), supplies the condition 

u f ) d ,  - (a,,/ 6 ) q ,  = p 6 ~ * ( ' )  2 0, (2.14) 

that is, the so-called Clausius-Duhem inequality. A glance at (2.2) shows 
that the a y )  correspond to specific forces a f ' / p ,  which appear in irrevers- 
ible deformations; they will be denoted as dissipative stresses. Heat flow q1 
across the element (in contrast to heat supply, determined by qr,z) is another 
irreversible process; the corresponding force is - 6. , /p6.  
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The case just discussed is particularly simple. In addition to and 6, 
most materials also require internal parameters for the description of their 
state. Let us assume, for example, that a single internal strain tensor a, is 
needed, and let us denote the associated force by p, /p .  Independent state 
variables are then E ~ ~ ,  aIJ, 6; the state functions depend on all of them, and 
the terms with d,J in (2.7) through (2.10) must be supplemented by the 
corresponding terms with hl,. Thus, (2.12) is to be supplemented by 

p y  = P(atCr /w,) ,  (2.15) 

and (2.14) must be replaced by 

U p d ,  + pIp’ci,, - (6,,/6)q, = p6s*“’ 2 0. (2.16) 

However, since the alJ are internal parameters, the p, do not appear in the 
first fundamental law, and if we exclude gyroscopic components (i.e., forces 
that depend on the velocities ci,, in such a manner that their power is always 
zero, as, e.g., the Lorentz force acting in a magnetic field or the Coriolis 
force in a rotating coordinate system), we have p, = 0 or equivalently 

pip' + p y ’  = 0. (2.17) 

The generalization for more than one internal strain tensor is obvious. 

B. ORTHOGONALITY 

The simplest materials dealt with in continuum mechanics are elastic. 
They may be defined (Z.5.1) by the conditions a,  = 0 and u:’ = 0. Thus, 
the first two terms in (2.16) are zero. In the isothermal or adiabatic case, 
the last term vanishes, too, and the deformation becomes reversible process. 
It is entirely determined by the specific free energy $ ( E , ) :  the specific 
entropy follows from (2.13), the internal energy subsequently from (2.3), 
and the only constitutive equation (2.12) connects the stresses with the 
strains. 

More general processes and those taking place in more general materials 
are irreversible and require more constitutive relations, connecting the 
dissipative forces a‘,d’/p, pbd’/p, and - b , , / p . i )  with the velocities d,, ci,, 
and q l .  So far, the only condition at our disposal is (2.16), 

‘+?)d, + P ( ? p ) ~ ,  - (6, , /6)q,  = Pcp 2 0,  (2.18) 

where cp is the specific dissipation function, 

cp := & * ( I ’  2 0, (2.19) 

q1 and generally also of which may be considered as a function of d, ,  
the state E,,, a,,, 6. 
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The constitutive equations we are looking for have been established 
separately for many idealized materials, and the corresponding dissipation 
functions are easily derived from them. As stated in Section I, however, 
these relations are not connected by a general law, as should be expected, 
and attempts to deduce them mechanically from the microstructure of the 
various materials have not been very successful. Once the microstructure 
becomes important, however, it is inevitable that statics and hence thermody- 
namics come into play, and the mechanical reasoning just described can in 
fact be replaced by an approach that is more in the spirit of thermodynamics. 

Let us note that, in the chain of reasoning leading from the fundamental 
laws to the inequality (2.14), the dissipation function (2.19) appeared already 
in (2.7), long before the dissipative stresses were introduced in order to 
interpret cp as a specific power. It therefore seems reasonable to invert 
(2.14.2) the conventional approach: instead of starting from the forces and 
interpeting cp as a special expression of the specific power and hence as a 
function of secondary importance, we accept cp as the primary function and 
propose to derive the dissipative forces from it. This is equivalent to 
postulating (as already at the end of Section II,A) that the forces have no 
gyroscopic components. If it is possible to deduce the dissipative forces 
from cp in a similar manner as the quasi-conservative forces from I,!J, each 
material is characterized by two scalar functions I,!J and cp. 

In the case of pure heat conduction, the velocities q, are the components 
of a vector. The same is true for the dissipative forces Fld’ := -a,,/@. The 
dissipation function cp(q,), assumed to be regular, may be described in 
velocity space by the dissipation surfaces cp = const. (Fig. 1) .  Equation 
(2.18) reduces to 

Fld’q, = cp(q,). (2.20) 

It determines the projection of the vector Fld’ onto ql ,  leaving, however, 
its direction free. If this direction is to be given by rp, it must, as has been 
shown in (Z.14.3), be determined by the gradient acp/aql of cp in velocity 
space and hence by 

F ( d )  I = v(acp/ast), (2.21) 

where v = c p [ ( d c p / d q k ) q k ] - ’  ensures that (2.20) is satisfied. 

pl=const 

FIG. 1.  Orthogonality in velocity space. 
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Geometrically, Eq. (2.21) may be interpreted as an orthogonality condition: 
the dissipative force Fld’ corresponding to a velocity q, is orthogonal to 
the dissipation surface cp = const passing through the end point of 4,. 

Equation (2.21) maps the velocity space onto the space of the dissipative 
forces. If this mapping and its inverse are single valued, it can be shown 
(2.14.5) that the dissipation surfaces are star shaped with respect to the 
origin, strongly convex, and ordered in the sense that each of them encloses 
those with smaller values of cp. It can even be demonstrated (2.15.3) that 
the orthogonality condition implies that both sides of (2.20) are nonnegative, 
so that the second fundamental law is automatically satisfied and the vector 
Fjd’ has the direction of the outward normal of the dissipation surface. 

All these results remain valid in the case of pure deformation without 
internal parameters or heat flow. Here, the velocities d ,  are the components 
of a symmetric tensor and so are the dissipative forces F‘,d’ := ‘+‘,d)/p. Both 
tensors may be represented as vectors in a six-dimensional space, together 
with the dissipation surfaces cp(dtf) = const. In place of (2.20) and (2.21) 
we now have 

(2.22) 

(2.23) 

where 

v = cp“W/dd,l) d k l l - ’ .  

The dissipation surfaces have the same properties as in  the case of heat 
conduction. Certain cases where cp is not regular will be treated in Sections 
VI and VII. 

If, finally, the ci,, are the only velocities-that is, in cases where heat flow 
and deformation are absent, whereas the internal parameters are still in the 
process of approaching their equilibrium values-the dissipative forces are 
F ( d )  ,, := P y ’ / p ,  and (2.22), (2.23) hold again provided that d,, is replaced 
by 4,. 

C. MAXIMAL RATE OF ENTROPY PRODUCTION 

In order to discuss a few more general results, let us denote the various 
velocities considered in Section II,B by ui and the dissipative forces by 
Fid’, where the number of velocity components is three or six according to 
whether ui is a vector or a symmetric tensor. 

It has been mentioned in Section II,B that, in general, the dissipation 
function depends not only on the velocities, but also on the independent 
state variables. If it is a function of the velocities alone, the results obtained 
in velocity space have their corollaries in force space. Let cp’(Fld’) be the 
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dissipation function in terms of the dissipative forces. Then, the corollary 
(2.14.3) of the orthogonality condition states that the velocity u, correspond- 
ing to a dissipative force Fid’ is orthogonal to the dissipation surface 
cp’ = const passing through the end point of Fld’ .  A particularly interesting 
example is the theory of the plastic potential (Section VI,A). 

If, on the other hand, the dissipation function p also depends explicitly 
on the independent state variables, the corollary need not hold. In soil 
mechanics, fro example, the theory of the plastic potential breaks down 
(Section VII). 

It can be shown (Z.15.1) that the orthogonality condition is equivalent 
to various extremum principles. Of particular interest is the principle of 
maximal dissipation rate: Provided that the dissipative force Fld’ is pre- 
scribed, the actual velocity u, maximizes the dissipation rate I ( d )  = F ‘ d ’ ~  I *  

subject to the side condition 

cp(u,) = Fjd’u,  = > 0. (2.24) 

It is obvious on account of (2.19) that this principle may also be stated 
as a principle of maximal rate of entropy production: Provided that the 
dissipative force Fid’ is prescribed, the actual velocity u, maximizes the 
rate of entropy production s*“) subject to the side condition 

s * l l ’  - - (l/-S)Fjd’u, > 0. (2.25) 

We note that these extremum principles are slightly more general than 
the orthogonality condition: they are still applicable in cases where cp 
exhibits irregularities corresponding to singularities like edges or corners 
in the dissipation surfaces. To treat such cases by means of orthogonality, 
edges or corners have to be smoothened; that is, the singularities must be 
considered as limiting cases of regular dissipation functions. 

It often happens that a dissipation function is quasi-homogeneous, satisfy- 
ing a functional equation of the type 

(2.26) 

where the function F(cp) is free except for the condition F ( 0 )  = 0. The 
corresponding dissipation surfaces are similar and similarly located with 
respect to the origin. Ziegler (1963) has proved that in this special case the 
dissipative forces may be derived from a potential, which is constant on 
dissipation surfaces in velocity space. It is easy to show that the inversion 
is true: representation of the dissipative forces by means of a potential 
requires that this potential (and hence the dissipation function) be quasi- 
homogeneous. This result, together with mathematical contributions by 
Moreau (1970), gave rise to a theory of “pseudo-potentials” by Germain 
(1973), which includes singularities like nonexistence of the gradient dcplau, 
for certain velocities (but excludes dissipation functions dependent on 
velocities and explicitly also on the independent-state variables). Since 
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quasi-homogeneous dissipation functions are special cases and since their 
potential has no physical significance, we will not pursue this line of thought. 

In (2.14.3 and 2.15 .1)  the orthogonality condition and the equivalent 
extremum principles have been established for velocities in the form of 
vectors or symmetric tensors. The corresponding applications in Section 
II,B were heat low, deformation, and relaxation of the internal parameters, 
each of these processes considered separately. In general, they occur simul- 
taneously, and the question arises how the orthogonality condition or the 
extremum principles are to be applied in this case. We obviously have two 
options (2.14.4). 

Case (a): If the various processes are independent, each of them is 
governed by its own orthogonality condition. There are three dissipation 
functions, p'"( d v ) ,  ( P ( ~ ) (  k,,), and (P'~'( 4,). Each of them may also depend 
on E ~ ,  a,, and 6. Using (2.21), (2.23) and inserting the proper dissipative 
forces, we obtain the constitutive equations 

where 

Since the entire dissipation rate is given by 

(2.28) 

(2.29) 

the superscripts of cp might be dropped in (2.27) but not in (2.28). 
Case (b): If, on the other hand, the various processes are coupled, we 

have no means of establishing the constitutive relations unless we postulate 
that the orthogonality condition holds in the 15-dimensional space of all 
velocities d,,  ai,, q,. The decomposition (2.29) does not hold, and (2.27) 
has to be replaced by 

where 

(2.31) 

Cases (a) and (b) confront us with an alternative. As observed in the 
conclusion of (Z), there is no continuous transition between them. In either 
case, the orthogonality condition ensures (see 2.15.3)  that the Clausius- 
Duhem inequality (2.16) is satisfied; the second law thus appears as a 
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consequence of the principle of maximal rate of entropy production. With 
our present knowledge there is no way to decide between the possibilities 
(a) and (b). 

The generalization of (2.27) through (2.31) for more internal strains is 
obvious. Incidentally, in the linear case, where cp is purely quadratic in the 
velocities and hence homogeneous of degree 2, all of the v’s are $, and one 
does not make a mistake using (2.30) in place of (2.27). In the applications 
to be discussed in the next few sections, it is not necessary yet to distinguish 
between cases (a) and (b). Later applications will be treated both ways or, 
where this does not seem necessary, according to case (a). 

In order to obtain the entire stresses (2.11), 

cry = u y  + ohd’, (2.32) 

the dissipative stresses just discussed have to be supplemented by the 
quasi-conservative stresses (2.12), 

u ( 4 )  y = P ( W / d E t I ) ,  (2.33) 

where $ is now a function of E ~ ,  a,,, and 6.  Similarly, we have (2.15), 

Pip' = P ( W / a a t l )  (2.34) 

and, according to (2.17), 

p! ! )  = -p !@ 
V ’  (2.35) 

Relations (2.27) through (2.35) permit us to derive the constitutive 
equations (or inequalities) of any material from its specific free energy rl, 
( E , ~ ,  cr,, 6 )  and its specific dissipation function cp (d l l ,  CU,, qt ,  E,,, a,,, 6 ) .  In 
many applications, particularly those where p may be considered constant, 
it is convenient to replace the functions $ and cp by 

?If= P*, a)= Pcpo, (2.36) 

that is, by the free energy and the dissipation function per unit volume. 

111. Heat Conduction 

Heat conduction without deformation is a purely dissipative process. Its 
velocity is the heat flow vector qi ; the corresponding dissipative force per 
unit volume is 

pFjd’  = - 6,i/ 6. (3.1) 

Since the quasi-conservative force is identically zero, and the free energy 
is constant and may be assumed to be naught. As regards the dissipation 
function, it is convenient to set the factor 1 / 6  in evidence. Thus, the most 
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general case is governed by the functions 

* = 0,  = P(P = (1 /8)y(qJ ,  (3.2) 

where y(q,) is a postiive definite function, possibly also dependent on 6. 
The orthogonality condition (2.21) supplies the constitutive equation 

a,# = - y(  4, ) [ ( a  y /  aqk ) qk ]-'(a y/a41). (3.3) 

If CP is quasi-homogeneous, we have 

(ay/aqk)qk = F ( y )  and hence 8.t = -[Y(qJ)/F(Y)l(dy/aq~)' (3.4) 

If CP is homogeneous of degree r, F ( y )  is equal to ry, and the constitutive 
equation becomes 

6.n = -(l/r)(aY/aq,). (3.5) 

@ = ( 1 / f i ) 7 ( q d ,  (3.6) 

where y(q(l,) is positive definite and q( l )  = qZ1 is the only basic invariant 
[see (A.l) in the Appendix] of the heat flow vector. On account of (A.6) 
the general constitutive equation (3.3) becomes 

In the case of an isotropic matrerial, @ has the form 

8.r = -CY(4~1,)/q~I,lqr. (3.7) 

a) = (1/6)y,q,q,, (3.8) 

where y!, is a symmetric tensor, positive definite and possibly dependent 
on 6. The dissipation function (3.8) is homogeneous of degree 2, and the 
orthogonality condition supplies the well-known differential equation of 
heat conduction in an anisotropic body, 

In the linear case, the general dissipation function (3.2) reduces to 

',Z = -y,qJ' (3.9) 

Here, it is particularly easy to see (2.15.4) that the orthogonality condition 
excludes gyroscopic forces, for an antimetric part of yo would represent 
gyroscopic terms. 
In a linear isotropic material we have 

= ( Y / 6 ) q ( l , ,  (3.10) 

where y is a positive scalar, possibly dependent on 6. The corresponding 
differential equation of heat conduction, 

fi,, = - 791, (3.11) 

is equivalent to Fourier's law (2.15.4). Let us stress that even this simple 
case, where the vectors qz and a,, have opposite driections, relies on 
orthogonality. To be sure, one is tempted to explain the collinearity of q, 
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and in an isotropic body by considerations of material symmetry. 
However, a gyroscopic term in the force - 6.i/ 6 (easily explained, e.g., in 
terms of the molecular motion with respect to the rotating earth or in its 
magnetic field) would be compatible with the isotropy of the material, but 
it would modify (3.11). 

IV. Elastic Solids 

A. LINEAR ELASTICITY 

As mentioned at the beginning of Section II,B, the elastic material may 
be defined by the absence of internal parameters and dissipative stresses. 
In the theory of elasticity it is customary to neglect thermal effects, assuming, 
for example, that the deformation are isothermal. Thus, not only the dissipa- 
tive stresses but also the dissipative force (3.1) corresponding to heat flow 
are zero. It follows that the dissipation function is naught and the deforma- 
tion is reversible. The density may be treated as constant (2.5.3). The 
independent state variables are the strains ey ; the velocities are the deforma- 
tion rates d,, = i,,, and the corresponding forces per unit volume are the 
stresses aI,. The most general case is governed by the functions 

@ = 0, q = P4(F,,), (4.1) 

where 4 is positive definite. According to (2.12) the only constitutive 
equation is 

= av ' / aE , J .  (4.2) 

(4.3) 

If the material is isotropic, v' assumes the form 

? ( & ( I )  9 E ( 2 )  3 %J, 
where = E,, ,  E ( ~ )  = E ~ E , ~ ,  E ( ~ )  = EyEJk&kl are the basic invariants (A.2) of 
the strain tensor. On account of (A.6) the general constitutive equation (4.2) 
becomes 

(4.4) 

In the linear case, the general expression (4.1) for the free energy reduces 
to 

q = L  ZCyklFtjFklr (4.5) 

where clJkl is a postivie definite tensor of order 4 obeying the symmetry 
conditions 

Cykl = C,ikl = Ctjlk = c k l y .  (4.6) 
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Here, (4.2) yields the well-known stress-strain relations 

In a linear isotropic material we have 

where A and p are Lami's constants, satisfying the inequalities 

p > 0, 3 A  + 2 p  > 0. (4.9) 

The stresses are now given by the generalization 

(+I, = A & ( l , a J  + 2 W l J  (4.10) 

of Hooke's law. 
The assumption of isothermal deformations is an idealization, useful if 

they are sufficiently slow. If they are fast, as, for example, in elastic 
vibrations, it is more realistic to treat them as adiabatic. It can be shown 
[see, e.g., (Z.5.3)] that in this case equations (4.1) through (4.10) remain 
valid with modified values of C,,k[ and A, provided that I,!I is interpreted as 
the specific internal energy, written as a function of E~ and s. Since, in the 
adiabatic case, entropy supply is zero as well as entropy production, s 
remains constant, and $ appears as a function of E~ alone. 

B. THERMOELASTICITY 

If the deformation of an elastic body is neither isothermal nor adiabatic, 
the strain tensor has to be supplemented by the additional independent state 
variable 6. There also appears an additional velocity q, with the correspond- 
ing force (3.1) per unit volume. Both leading functions 9(&,], 6) and @ ( q l )  
are now generally different from zero; the last one may also depend on 
and 8. The stress is still quasi-conservative and given by (4.2). Equation 
(2.13) may be used to obtain the entropy per unit volume, 

S = - av ' / a6 ;  (4.1 1) 

(2.3) supplies the internal energy, 

u = 9 + ss, (4.12) 

and heat conduction is governed by (3.3), where y ( q j )  is possibly also a 
function of E~ and 6. 

If the material is isotropic, T has the form 

W & ( I ) ,  E(21, & ( 3 ) ,  61, (4.13) 

and @ is given by (3.6), where y ( q ( , , )  may also depend on the arguments 
of v'. The stresses follow from (4.4), and heat conduction obeys (3.7). 
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In the linear case, it is convenient to start from a reference state where 
a, = 0, 6 = a0, and to measure E,, from this state. The free energy may be 
obtained by expanding q with respect to the small quantities E,,, 6 - 6, 
and by truncating the expansion after the second-order terms. We thus obtain 

PC 
q = 'PO - s o ( 6  - 6 0 )  + ;Ct,k[&,,&k[ - K,E,( 6 - 6,) - -( 6 - 60)2 ,  (4.14) 

2 6 0  

where the linear term in E , ~  alone is omitted for a reason that will be presently 
explained and where (2.7.4) the constants 'Po, So,  cgkl, K,,, c are in turn the 
free energy and the entropy in the reference state, the fourth-order tensor 
of elasticity constants introduced in Section IV,A, the tensor governing 
thermal stresses, and the specific heat capacity in the reference state. The 
dissipation function is given by (3.8). The stresses (4.2) become 

UZJ = CyklEkl - K , J ( ~  - 60). (4.15) 

Since (4.14) contains no linear term in E,, alone, a,, is zero as required in 
the reference state, and the two terms on the right of (4.15) represent the 
stresses due to deformation and to temperature increase, respectively. From 
(4.11) we obtain 

s = so + K,Ey + ( P C / f i 0 ) ( 6  - 60) ,  (4.16) 

and heat conduction obeys (3.9). 
In a linear isotropic material (4.14) has to be replaced by 

A 

2 
'P = 'Po - So(6 - 80) + + , u E ( ~ )  - ( 3 A  + ~ , u ) K E ( , ) ( ~  - 80) 

P C  - -( 6 - 60)2, 
2 6 0  

(4.17) 

where K is the coefficient of thermal expansion and (3.8) is to be replaced 
by (3.10). The stresses (4.15) become 

(4.18) Uij = [ A E ( l )  - (3A 2/.L)K(6 - 60)ISij + 2/.L&ij, 

the entropy (4.16) assumes the form 

(4.19) P C  

6 0  
s = s o  (3h ~,U)KE(I)  -(a - 601, 

and heat conduction is governed by Fourier's law (3.11). 
In the special case where the deformation is isothermal, 6 = a0, and 

(4.15), (4.18) reduce as expected to (4.7) and (4.10), respectively. If the 
deformation is adiabatic, S = So, and elimination of 6 - 6, by means of 
(4.16) or (4.19) yields 

uij = [ Cijkl+ ( 60/ P C )  KijKkf 1 Ekl (4.20) 



The Derivation of Constitutive Relations 199 

in place of (4.7) and 

Uij = [A + (3A + 2p)*(KZ6o/pC)]E(1)&j + 2p.8~ (4.21) 

in place of (4.10). The stress-strain relations are thus essentially the same 
as in the isothermal case, but the coefficients are modified as mentioned at 
the end of Section IV,A. For most elastic solids, the correction is of the 
order of a few percent (steel 2%, aluminum 5%). 

To shed some more light on Eq. (4.21), let us note that, on account of 
(4.17) and (4.19), the internal energy (4.12) of the linear isotropic material 
is 

where Uo is its value in the reference state. With (4.22) and (4.21) the first 
fundamental law (2.4), written in the form 

u = U..k.. V ‘ J  - q. A J 7  . 

q,,, = - ( 3 A  + 2p)K6&(1) - (pC/60)8&. 

(4.23) 

(4.24) 

yields 

Besides, it follows from (4.18) that 

(+ ( I )  = (3A + ~cL) [E( I )  - 3 ~ ( 6  - 6011. (4.25) 

The specific heat capacity of the material [see, e.g., (Z.8.1)] is defined as 
the ratio -q,,,/p&. With (4.24) it becomes 

- qj , j /p& = (c/eO)fi + ( 3 ~  + ~ C L ) ( K ~ / P ) ( & ( ~ ) / & ) -  (4.26) 

= 0, and (4.26) supplies the 

(4.27) 

If, on the other hand, the pressure is constant, we have = 0, hence, on 
account of (4.25), = 3 ~ &  and thus the specific heat 

Cp = [(C/Oo) + 3(3A + 2 p ) ( ~ ~ / p ) ] 6  = C,[l + 3(3A + 2 p ) ( ~ ~ 6 ~ / p C ) ] .  (4.28) 

Equation (4.21), valid in the adiabatic case, therefore becomes 

If the volume of the element is constant, 
specific heat 

c, = (c/ 6,) 6. 

Uij = {A + (A + ~/.“,/c,) - 11}.8(1)&j + 2Wij. (4.29) 

The factor cp/c, recalls acoustics, where it appears in the velocity of 
propagation of small disturbances. In fact, the velocities of irrotational and 
equivoluminal waves in an isotropic elastic solid [see, e.g., Kolsky (1963)l 
would be 

c1 = [ ( A  + 2p)/p]”* and c2 = ( p / ~ ) l ’ ~ ,  (4.30) 
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respectively, provided that the process was isothermal. In the more realistic 
adiabatic case A has to be replaced by the bracket in (4.29). Thus, c2 remains 
unchanged and c, becomes 

CI = {[A + 2p + ( A  + 2g/3)(cP/c,, - 1)]/p}1’2. (4.31) 

The inviscid liquid, to be treated in Section V,B, is obtained from the 
elastic solid by setting p = 0. The only possible waves are irrotational, and 
their velocity (4.31) assumes the well-known value 

c1 = [ ( A / ~ ) ( c , / c , , ) l ~ ’ ~ .  (4.32) 

V. Fluids 

A. GASES 

The fluids to be treated in this section will be assumed to be isotropic. 
They may be defined by the absence of internal parameters and the condition 
that the quasi-conservative stress be isotropic. Absence of internal para- 
meters and isotropy of the material suggest a free energy of the type (4.13). 
The quasi-conservative stress is thus given by (4.4), and since it is to be 
isotropic, V, is indpendent of and E ( ~ ) .  It follows that E ( , )  and 6 might 
be used as independent state variables. In a gas, however, all deformations 
are possibly large; hence is not a convenient variable. It is customary 
to replace it by the volume v of a mole. If m is the molecular mass, the 
specific volume is v l m ,  and since the specific power of the pressure p is 

1 = - ( p / m ) v ,  (5.1) 

the quasi-conservative force associated with u is - p / r n .  
In the case of an inviscid gas, the dissipation function is independent of 

the deformation rates and hence of the form (3.6). The specific leading 
functions are therefore 

* ( u ,  a), P = ( l /P6)Y(q( iJ ,  (5 .2 )  

where the function y may also depend on u and 6. In analogy to (2.12) 
and according to (2.13), we have 

- p / m  = a$/av, s = -a+/aa. (5.3) 

fig = - P&,, (5.4) 

The stress tensor is 

and heat conduction is governed by (3.7). 
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The ideal gas is characterized (2.8.1) by the molar free energy 

m * = I c , , d 6 - 6 I ~ d a - R 4 l n - ,  v 
m (5 .5 )  

where R is the gas constant and c,( 6) the molar heat capacity (in contradis- 
tinction to the heat capacities in Section IV,B, which were referred to the 
unit of mass). Applying the first equation (5.3) to $, we obtain the well- 
known equation of state 

p = R6/v. 

Heat conduction follows from the second equation 
The second equation (5.3) supplies the entropy per 

and (2.3) yields the molar internal energy, 

mu = 1 cud$+, 

dependent on temperature alone. 

(5.6) 

(5.2) and obeys (3.7). 
mole, 

In the case of a real gas, the molar free energy given in (5.5) has to be 
replaced by 

v - b  a 
m$ = I c,db - 8 I C"d6 - R6 In- -- 

6 m v' (5.9) 

where a and b are van der Waal's constants, measuring, respectively, the 
cohesion between the molecules and their proper volume. In place of (5.6) 
we now obtain the equation of state of van der Waals, 

p = R6/ (v  - b )  - a/v' (5.10) 

[compare, e.g., Hatsopoulos and Keenan (19691. The molar entropy 
becomes 

m s = I 5 d 8 + R l n - ,  V - b  
6 m 

and the internal energy 

mu = 1 c,d6 - 
a - 
v 

(5.11) 

(5.12) 

is now a function of 6 and v. 
For viscous gases, the quasi-conservative stress (5.4) must be supple- 

mented by a dissipative stress tensor, to be calculated as in the next section. 
For linear viscosity the total stress is given by (5.28) or (5.30), where d ,  is 
the deformation rate and p follows from (5.6) or (5.10). 
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In thermodynamics, inviscid gases have long played the preeminent role. 
As a consequence, the significance of the equation of state is often overrated, 
and this raises probems as soon as inelastic materials are to be considered. 
Once the fundamental significance of the governing functions $ and cp is 
recognized, these problems disappear and the equation of state becomes a 
mere accessory. The inviscid gases just treated are defined by their free 
energies, (5.5) and (5.9), respectively; their equations of state, (5.6) and 
(5.10), follow from I,!J by means of the first relation (5.3). For viscous gases, 
(5.6) or (5.10) yield merely the quasi-conservative part -pS,  of the stress, 
and Eqs. (5.28) or (5.30), dependent also on cp and supplying the total 
stress, are by no means equations of state. 

B. LIQUIDS 

In contrast to gases, the volume changes of liquids are small. Thus, the 
molar volume may be replaced as an independent variable by and p 
may be treated as a constant. The quasi-conservative stress is still isotropic 
and hence of the form -pS,. Its specific power (2.1) is 

= (l/P)(T#JE,J = -(P/P)slJEl] = - (P/P)&(l ) ;  (5.13) 

the only quasi-conservative force is thus -p/p, where p is the hydrostatic 
pressure. 

In an inviscid liquid, the leading functions are 

W & ( I ) ,  6), @ = (1 /8)Y(%l)) ,  (5.14) 

and 6. The stress, following from (4.2) where y may also depend on 
and (A.6), is 

= - P S , ~ ,  p = -aW/a&,, , .  (5.15) 

Heat conduction, determined by @, obeys (3.7), and the entropy might be 
obtained from (4.11). 

In the linear case, the free energy follows, as observed at the end of 
Section IV,B, from (4.17) by setting p = 0. We thus have 

A PC 
2 2 60 

9 = - So(6 - 6,) -k -.5;1) - 3hK&(,,(6 - 60) --(0 - a,)*. (5.16) 

The dissipation function is given by (3.10). The stress (4.18) becomes 

u.. = -pa.. r J ,  P = A[3K(6 - 6,) - &(,)I, (5.17) 

and heat conduction is governed by Fourier's law (3.11). 
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The incompressible liquid is obtained by letting + 0 and A + co. 
Together with 9, the hydrostatic pressure becomes indeterminate. 

In a viscous liquid the velocity q1 has to be supplemented by the deforma- 
tion rate d,, where d ( l ,  = &(,). Apart from the basic invariants d ( l , ,  d (2 , ,  
d ( 3 ) ,  and q ( l ) ,  defined by (A .2)  and (A. l ) ,  one generally also needs the 
mixed invariants (A .3 ) ,  m( l ,  = q,d,]q, and m(,) = q,dlldJkqk. The free energy 
per unit volume is still given by the first expression (5.14); the dissipation 
function (Z.15.4), however, becomes 

@ ' ( d ( , , ,  d w ,  dv, ,  q ( l ) ,  m(l,> (5.18) 

Two cases have to be distinguished, discussed already in Section II,C. 
If deformation and heat flow are coupled, the only way of establishing 

constitutive equations is to apply the orthogonality condition in the nine- 
dimensional space of the velocities d,] and 4,. The dissipative forces are 
given by (2.30) and (2.31), where the terms with &, are to be dropped since 
internal parameters are absent. The constitutive equations, obtained by 
means of (2.32) and Section X,B,2, are 

(5.19) 

where p is given by the second equation (5.15) and 

If, on the other hand, deformation and heat flow are independent, the 
orthogonality condition has to be applied to the two processes separately. 
The dissipative forces are given by (2.27) and (2.28), where the terms with 
CU, are again to  be dropped. The dissipation function, similar to (2.29), has 
the form 

@ = @l(d,l , ,  4 2 , ,  4 3 , )  + ( 1 / 8 ) , Y ( q ( l ) ) .  (5.21) 

The stresses become 
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where p is again given by the second equation (5.15) and 

For heat conduction one obtains (3.7). 
It has been observed in Section II,C that there is no way to decide at 

present between the two cases just presented. Let us add a few results for 
the case where the two processes are independent. 

If  the liquid last considered is free of bulk viscosity, @ has the form 

@ = @,(d;,,, d{3J + ( 1 / f i ) Y ( q , J ,  (5.24) 

where the primes designate the deviatoric part of the deformation rate. On 
account of (A.12) the corresponding stresses are 

where, according to (A.13), 

(5.26) 

The hydrostatic stress is still given by the second equation (5.15) and heat 
conduction by (3.7). 

The Newtonian liquid may be obtained as the linear case of (5.19), 
corresponding to quadratic functions and @, that is, to (5.16) and 

@ = W I ,  + 2P'42) + ( Y / 6 ) q ( l ) ,  (5.27) 

where A '  and p',  possibly dependent on F ( , )  and 8, determine the viscosity 
in a similar manner as LamC's constants determine the elasticity of a linear 
isotropic solid. Since the dissipation function (5.27) is of the type (5.21), 
deformation and heat flow are automatically independent. According to 
(5.23) v = 4, and (5.22) reduces to 

(+I, = ( - P  + A'd(l,)a, + 2p'd,,, (5.28) 

where p is given by the second equation (5.17). Heat conduction is governed 
by (3.11). 

If the Newtonian liquid is free of bulk viscosity, (5.27) has to be replaced 

(5.29) 
by 

and (5.28) reduces to 

@ = 2P'dl2, + ( Y / f i ) % l ) ,  

c,, = -pa , ,  + 2p'd:I, (5.30) 

with the second equation (5.17) and (3.11) still valid. 
Incompressible liquids will be treated in the next section. 
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C. INCOMPRESSIBILITY 

There are two ways of dealing with incompressible materials. To discuss 
them, let us assume isotropy, absence of internal parameters, and indpen- 
dence of deformation and heat flow. Heat conduction can then be treated 
separately by the methods of Section 111. 

The first approach disregards incompressibility, that is, the conditions 
E ( , ,  = 0, d ( l )  = 0,  as long as possible and introduces them only in the final 
results. Starting from the leading functions 

W&(,), &(a, Ei3), a), @(d,I , ,  4 2 ) ,  d(3))  (5.31) 

(where @ might also depend on the arguments of q) and applying the 
methods expounded in Section II,C, together with (A.6), one obtains 

and 

where 

(5.34) 

With + 0 the derivative d T / d ~ ( ~ ~  becomes indeterminate. The first term 
on the right of (5.32) may be written -p6 ,  and represents a hydrostatic 
pressure. Since it is indeterminate, subtraction of a term ( N / ~ E ( ~ ) ) E ( ~ ~ ~ ~  
does not affect the result. The modified equation (5.32) reads 

where the terms containing the derivatives of w are deviators. A similar 
reasoning, applied to (5.33), yields 

and 

(5.37) 

where an indeterminate hydrostatic term has been dropped since the prin- 
ciple of absent dissipative forces, established in (2.14.3) in connection with 
orthogonality, requires that dissipative forces whose corresponding 
velocities do not appear in @ are zero. Incidentally, (5.36) might also be 
obtained as the deviatoric part of (5.25) for d ( l ,  + 0. 
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The second approach recognizes the incompressibility conditions from 

W E ( * )  9 E(3) 3 a), Q,(h 9 4 3 ) )  (5.38) 

and introducing E ( ~ )  = 0, d( l )  = 0 as side conditions in the differentiations. 
Thus, 

(5.39) 

the beginning, starting from the leading functions 

u ( 4 )  = 
IJ (a /d&i j ) (Y  + y’E(l)), 

where y’ is a Lagrangean multiplier. By means of (A.6) we obtain 

u9) = 2 ( ’ 3 W / ’ 3 & ( 2 ) ) & ~  + 3(’3*/3&(3))Etk&k~ + y’sq. ( 5.40) 

The hydrostatic pressure becomes 

= - i u ( 4 )  3 I1 = -[Y‘ (a*/a&(3))&(*)I. (5.41) 

Solving this equation for y‘ and inserting the result in (5.40), we obtain 
(5.35). In a similar manner, the modified orthogonality condition 

( 5.42) u ( d )  = 
IJ 4a /ad l , ) (Q ,  + Y”d(1)) 

yields 

u ( d )  11 = V[2(a@/ad(2))d~~ + 3(’3@/’3d(3))dtkdk~ + ?“6~1,  (5.43) 

and the principle of absent dissipative forces, requiring uy) to be a deviator, 
leads back to (5.36) and (5.37). 

If the material just considered is a liquid, 9 is independent of E ( ~ )  and 
E ( ~ ) .  It follows from (5.35), (5.36), and (2.32) that 

where p is indeterminate and v is given by (5.37). Equation (5.44) represents 
a special liquid of the Reiner (1945)-Rivlin (1948) type, characterized by 
coefficients of d ,  and of the parenthesis that are coupled by the dissipation 
function. More general Reiner- Rivlin liquids, with independent coefficients, 
do not satisfy the orthogonality condition. As far as we know, there is no 
evidence for their existence. 

The often-used constitutive equation 

u, = -pa ,  + 2P‘(d,,), d,3))4 (5.45) 

defines the so-called quasi-linear liquid (2.9.4). If (5.45) is to be a special 
case of (5.44), the coefficient of the parenthesis in (5.44) must be zero. The 
orthogonality condition thus requires that Q, and hence pf depend on d ( 2 )  
alone. 

The incompressible Newtonian liquid is characterized by a quadratic 
dissipation function, that is, by 

@ = 2p‘d(,,. (5.46) 
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Here, (5.44) reduces to 

uy = -P&, + 2PL'd,,, (5.47) 

where p is still indeterminate. 
Quasi-linear and Newtonian fluids are examples of materials whose 

dissipation functions depend on the second basic invariant d(2) alone. We 
will encounter more materials of this type and note that here (5.36) and 
(5.37) reduce to the simple equation 

u ( d )  I, = [ @ ( d ~ * J / d d d , , .  (5.48) 

The process of specialization carried through in this section can be 
inverted: the incompressible Newtonian liquid can be generalized starting 
from the dissipation function 

= 2P'dO) + ( Y / 6 ) % , )  (5.49) 

and adding terms of successively higher degree in d, and qt, which are 
expressible in the basic invariants. This has been done elsewhere for 
independent (Z.16.1) and for coupled (2.16.3) processes. 

VI. Plasticity 

A. RIGID, PERFECTLY PLASTIC MATERIALS 

In this and the remaining sections we will assume that deformation and 
heat flow are independent. The dissipation function then consists of two 
parts, dependent, respectively, on deformation and heat flow. The second 
term may be dropped provided that one uses the appropriate results of 
Section 111 (with y possibly dependent on deformation and temperature) 
in order to obtain heat conduction. 

It has been shown by Houlsby (1979, 1980, 1981a,b) that the treatment 
of plastic materials such as ductile metals and even of soils may be used 
on appropriate function W and @. 

The dissipation function of an arbitrary material can be represented 
geometrically by means of dissipation surfaces @ = const in the space R 
of the principal deformation rates d,, . . . , or by surfaces @' = const in the 
space R' of the principal stresses u l r . .  . . If the mapping between the two 
spaces is one-one, both families of surfaces have the properties discussed 
for the cp surfaces in connection with the orthogonality condition in Section 
II,B. 

In the case of an incompressible liquid, d(l) = 0. Thus, @ is only defined 
in the deviatoric plane E (see Section X,B,4) of the space R. It may be 
represented by curves @ = const in E. Since a!:) is a deviator, (5.44) maps 
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these curves onto the deviatoric plane E ’  of the space R‘,  and addition of 
an arbitrary hydrostatic stress supplies surfaces @’ = const in the form of 
cylinders with axes perpendicular to E‘.  

The rigid, perfectly plastic material (2.17.2) may be defined as a special 
case of the incompressible liquid, characterized by a dissipation function 
(5.38) that is homogeneous of the first degree in d, (and independent of 
the state variables). Here, (5.37) yields v = 1, and (5.44) supplies the stress 
deviator 

a; = 2(a@,/ad,2,)dt, + 3(a@,/W,,)(d,,d,, - fd(,,S,), (6.1) 

whereas the isotropic part of the stress tensor remains indeterminate. 
Let us consider the values of @ on an arbitrary ray s emanating from the 

origin 0 in the plane E. Since the dissipation function is homogeneous of 
the first degree, @ increases proportional to the distance from 0 on any 
such ray. On account of (6.1) a; is the same for all points on s. It follows 
that the curves @’ = const in E’ coincide and define a yield surface in the 
shape of a cylinder with axis perpendicular to E‘ .  Since @ has been assumed 
to be independent of the state variables, the corollary (Section II,B) of the 
orthogonality condition holds. Thus, the cylinder, considered as the limiting 
case of a dense layer of @ surfaces, is convex, and the vector d representing 
the strain rate lies in its outward normal in the end point of the vector cr 
but is of indeterminate magnitude since a;, on account of (6.1), is 
homogeneous of degree 0 in d,,. The vector d thus obeys the so-called 
normality condition, and this is sometimes expressed by saying that it is 
associated with the yield condition, that is, with the equation of the yield 
surface. Convexity of the yield surface and the normality condition together 
represent (Z. 10.2) what is usually called the theory of the plastic potential. 

The simplest case is the u. Mises material, defined by a dissipation function 
that is independent cf d ( 3 ,  and hence of the form 

@ = k(2d(2, )1/2,  (6.2) 

where k is a scalar (possibly dependent on 9). The dissipation function 
(6.2) is constant, according to (A.14), on circles in E around the origin 0 
and proportional to their radii. The deviatoric stress (6.1) or (5.48) becomes 

and it follows that 

where (A.2) has been used. This equation evidently represents the yield 
condition. In the deviatoric plane of space R’ it is to be interpreted as a 
circle (Fig. 2 )  of radius k d ,  and the entire yield surface is the corresponding 
circular cylinder. Equation (6.3) (written in principal values) represents the 
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F I G .  2.  Yield loci of v. Mises and Tresca material. 

normality condition, and from (6.4) we finally conclude that k is the yield 
stress in simple shear. 

In the case of a Tresca material the dissipation function depends on d(*, 
and d (3 ) .  Since its structure is complicated, it is convenient to define it 
implicitly (2.17.2). However, in the deviatoric plane it allows the simple 
representation 

f 2kdI ( I ,  - I ) ,  

*2kd, ,  (11, - 11), (6.5) 
*2kd111 (111, - I I I ) ,  

where the roman numerals refer to the six sectors subdividing the entire 
plane of Fig. 3. On account of (A.15) the function @ is constant on regular 
hexagons, one of which is outlined in Fig. 3. In order to obtain the stresses 
we recall that, on account of (5.42), Eq. (6.1) is equivalent to the orthogonal- 
ity condition 

r h  = (a /ad i j ) (@ + ~ ‘ d ( l ~ ) >  (6.6) 

F I G .  3 .  Sectors corresponding to the six definitions of Q in (6.5). 
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where the Lagrangean multiplier y’ is to be determined so that the right-hand 
side is a deviator. In the open region I of Fig. 3, (6.6) supplies 

the interior of region I is thus mapped onto a single point I’ on the projected 
axis U ,  in Fig. 2. The other open regions in Fig. 3 yield the remaining corners 
of a regular hexagon with center 0‘. On the line dividing regions I and -11 
in Fig. 3 we have an additional side condition, d, + d,, = 0. Inserting it with 
a Lagrangean multiplier y” in the orthogonality condition (6.6), we obtain 

gi = f(4k -t y”),  = -f(2k - f’), a;,, = -!(k + 7” )  (6.8) 

in place of (6.7). Since these equations represent the straight line connecting 
the points I’ and -11’ in Fig. 2, the yield locus is a regular hexagon with 
sides parallel to the projected axes u,, . . . . If k is again the yield stress in 
simple shear, the Tresca hexagon, usually obtained by the condition that 
the maximal shearing stress be equal to k, circumscribes the v. Mises circle. 
The yield surface is the prism with the hexagonal cross section of Fig. 2. 

Tresca yield is an example of an irregular dissipation function. Its gradient 
is not defined on the boundaries between the six sectors of Fig. 3, and this 
corresponds to the corners of the hexagons on which @ is constant. However, 
any difficulties can be avoided by rounding the corners, that is, by consider- 
ing them as limiting cases of smooth curves. The correspondence between 
the points in Fig. 3 and those of the yield locus then shows that the Bow 
rule associated with the Tresca yield surface is satisfied. 

B. CONSTRUCTION OF THE DISSIPATION FUNCTION 

The connection with analytical mechanics pointed out in Section I and 
the fact (Section II,B) that orthogonality need not hold in force space show 
that the dissipation function @ in velocity space deserves priority over @’ 
and, in the present case, over the yield locus. Experimentally, however, it 
is easier to determine the yield locus than the dissipation function. It has 
been established, for example, that certain ductile metals are neither exactly 
v. Mises nor Tresca materials [see, e.g., Hill (1950)l. However, the analytical 
formulation of a more reliable yield condition is not easy, and the construc- 
tion of the corresponding dissipation function would present another prob- 
lem. We will confine ourselves, therefore, to the demonstration that the 
theory of the plastic potential, based on a prescribed yield condition, allows 
one in principle to construct the corresponding dissipation function. 

Let 
F(U:,) = 0 [ H O )  < 01 (6.9) 

be the equation of a yield locus in the plane E’, convex and star shaped 
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with respect to the origin, and let us forget for a moment that it might be 
expressed in the basic invariants cri2, and cri3). For a stress state at the yield 
limit the normality condition 

d ,  = V ( c 3 F / d ( T : I )  ( v  2 0) (6.10) 

describes the corresponding strain rates. Since v is arbitrary, each point on 
the yield locus (6.9) is mapped onto an entire ray s emanating from the 
origin in E. 

Let us first assume that the yield locus is strongly convex. If we let the 
stress point move along it in a prescribed sense, the outward normal rotates 
nonstop in the same sense, and so does the image s in the plane E. The 
value of the dissipation function in a given point of s is the scalar product 
of its own radius vector d and the radius vector u' of the corresponding 
point on the yield locus. Since the yield locus is convex and star shaped 
with respect to the origin Of, the product u' d is nonnegative. It increases 
proportional to the distance from 0; the dissipation function obtained in 
this way is thus homogeneous of the first degree. Since each ray s is the 
image of a single vector u' (even if the yield locus has corners), the 
dissipation function is single valued. 

If the yield locus is merely weakly convex, it contains at least one straight 
section. The stress points lying on it correspond to a single ray s in E. 
However, since s is orthogonal to the straight section, the scalar product 
u' - d, evaluated for a given point on s, is the same for all corresponding 
vectors a'; thus, CJ is still single valued. Incidentally, that the @ surfaces 
are convex and star shaped with respect to 0 has been shown elsewhere 
(Z. 14.5). 

C. ELASTIC, PERFECTLY PLASTIC MATERIALS 

If the initial response of an otherwise perfectly plastic material is elastic, 
we call it elastic, perfectly plastic. Its treatment requires a set of internal 
parameters in the form of an internal strain tensor aii. Provided that we 
identify it with what is usually called the plastic strain &$'I, the difference 
E . -  'J - E ( P )  ?I = 8:) is the elastic strain. If plastic volume changes can be 
excluded as in Section VI,A, aii = E $ ' )  is a deviator. 

Let us assume that the elastic part of the response is linear. The governing 
functions then follow from (4.8) and the second expression (5.38). They are 

(6.11) 

where ( E  - is the second basic invariant (A.2) of the tensor E~ - a,,, 
and where CJ is homogeneous of the first degree in ci,. The external stress 
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is quasi-conservative and given by 

u, = (a/as,,)(yr + Y’%) = A&(,$, + 2P(E,, - %J), (6.12) 

where y’ is a Lagrangian multiplier. Since E ( , )  = E : : ; ,  (6.12) supplies the 
expected connection (4.10), 

a,, = AE~;{S, + ~ P E ? ) ,  (6.13) 

between stress and elastic strain. Equation (6.12) can be decomposed 
according to 

a; = - @,), V(1) = (3A + 2P)E(1). (6.14) 

The quasi-conservative part of the internal stress is 

P?)  = (a/aa,)(* + y’ac,,) = -2P(E,, - a,) + 7’6,. (6.15) 

From (6.15) and the first equation (6.14) it follows that 

,, fl;, (6.16) p ( 4 ) ,  = - 

and by analogy with (6.1) we get the dissipative internal stress 

PP’ = 2(d@/d&,2,)&, + 3(dQ/c3&(3))(&&k, - :&(2)8,,). (6.17) 

Applying (2.35) to the deviatoric parts of p,,, we finally obtain the connection 

a; = 2 ( 8 @ / 8 & ~ ~ / ) & ~ )  + 3(d@/arjl,q’)(Et[’&L!) - f&{2q)SlI) (6.18) 

between stress and plastic strain rate. 

the dissipative function 
For an elastic, perfectly plastic material of the v. Mises type, (6.2) suggests 

@ = k(242q))1’2, (6.19) 

while the free energy is still given by the first expression (6.11), 

* = ( A / ~ ) E ; ; ; ~  + (6.20) 

(Houlsby, 1979). Thus, (6.18) reduces to 

a; = k ( $ & ; Z q ) ) - L / 2 & ( P )  ‘I 5 (6.21) 

which is analogous to (6.3). Yield surface is still the circular cylinder (6.4), 
and (6.21) represents the associated flow rule. 

In the case of a Tresca material the dissipation function is given by (6.5), 
provided that we replace d , ,  . . . , by iip), . . . . Yield surface is the prism 
with the hexagonal cross section of Fig. 2, and the plastic strain rate obeys 
the associated flow rule. 
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D. LINEAR HARDENING 

The simplest case of a hardening material corresponds to the governing 
functions 

q = (A/2)~:1) + P ( E  - a)(2) + c~‘a(2),  @ ( & ( 2 ) ,  & ( j l ) ,  (6.22) 

where @ is still homogeneous of the first degree in &,J. The external stress 
is again quasi-conservative and given by (6.12), and the connection between 
stress and elastic strain is (6.13). The decomposition (6.14) is still valid, but 
in place of (6.15) we obtain 

P F ’  = ( a / a a y ) ( q  + ~ ’ a ( 1 ) )  = - 2 ~ ( ~ y  - a y )  + 2 ~ ‘ a y  + 7’6, (6.23) 

for the quasi-conservative part of the internal stress. Instead of (6.16) we 
now have 

P ( Y )  = - u; + 2PI‘ylJ, (6.24) 

whereas the dissipative part of the internal stress is still determined by 
(6.17). By means of (2.35) we finally obtain the differential equation 

U; - 2p‘&‘,P’ = 2(d@/aii,q’)i‘,P’ + 3(a@/ai.{,q’)(E$’iif) - f~129’6,~) (6.25) 

connecting the stress and the plastic strain. 
For a hardening material of the v. Mises type, the functions (6.22) become 

Y = (A/~)E;;,’* + + P’E$‘;, @ = k(2&!5))”* (6.26) 

(Houlsby, 1979), and (6.25) reduces to 

- 2cLrEv) = k ( l  2 & ( 2 ) )  .(P) - 1 / 2 i ( P )  y . (6.27) 

It follows that 

((T’ - 2/.~’~(’))(2) = 2k2. (6.28) 

The yield locus (Fig. 4) in the plane E ‘  is the circle of radius k f i  with 

FIG. 4. Yield locus of hardening material. 
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center C given by the vector 2 p ’ ~ ‘ ” ’  = 2 p ’ ( ~ \ ” ’  , . . .). Yield surface is the 
cylinder with the circular cross section of Fig. 4, and (6.27) represents the 
associated flow rule. During plastic Bow, the cylinder moves in the direction 
of This corresponds to Prager’s hardening rule (1955), which coincides 
in this special case with the one of Ziegler (1959). It is remarkable that the 
functions 9 and Q, (together with the condition E::) = 0) determine not 
only the yield surface and the associated flow rule but also the hardening rule. 

The hardening material of the Tresca type is governed by the free energy 
given in (6.26) and by the dissipation function 

Q, = * 2 k & p ’  (1, -0,. . . 1  (6.29) 

in connection with Fig. 3, where d,, . . . , is to be replaced by i;”’, . . . . The 
yield locus follows from Fig. 4 provided that the circle is replaced, as in 
Fig. 2 ,  by a regular hexagon. The plastic strain rate is determined by the 
flow rule associated with the hexagonal prism, and the hardening rule 
corresponding to the functions and Q, used here is the one of Prager. It 
is doubtful whether a pair of governing functions can be found that yields 
Ziegler’s hardening rule. 

A slightly more general type of hardening has been mentioned by Germain 
et al. (1983). 

E. RATE-DEPENDENT YIELD 

Experiments by Manjoine (1944) have shown that the response of certain 
materials is nearly elastic, perfectly plastic except that the yield stress 
depends on the strain rate. Materials of this type can be characterized by 
the free energy (6.20) and a dissipation function like (6.19) or (6.5) with 
d, ,  . . . , replaced by &!”I, . . . , and with a factor k that is a function of the 
plastic strain rate. 

A simple extension of (6.19) is the function 

Q, = A[1 + B(E‘(29’)’/“](2&12)’’2, (6.30) 

where A, B, and n are constants. Since CP depends on it!; alone, the stress 
deviator is given by (5.48), where d, and v r )  are to be replaced, respectively, 
by i f)  and oh. We thus obtain the stress deviator 

(6.31) 

and the yield condition 

a(2) = 2A2[ 1 + B( i124))’/“I2, (6.32) 

dependent on the plastic strain rate. 
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In the case of uniaxial stress we have 

(6.33) - 2 
I - 3f f I .  

Furthermore, = i$,) = - E ( ’ , I / 2  and hence 

i.129’ = $ ( & i P ’ ) 2 .  (6.34) 

Thus, (6.31) yields 

a, = *A&[l + B ( ~ ) ’ / n ( i i p ) ) 2 / n ]  ( k i p )  S 0). (6.35) 

With the notations 

A a = :  a,, 2 / n  =: l /p,  B(:)’/“ =: D-llp,  (6.36) 

(6.35) becomes 

a, = ao[l + ( i ‘ I ” ’ / D ) ’ / p ]  (iip)> 0) (6.37) 

iip) = D ( c , / c T ~  - 1)’ ( f f ,  ’ uo). (6.38) 

This is the relation deduced by Cowper and Symonds (1957) and Bodner 
and Symonds (1962) from an analysis of Manjoine’s test results. 

In Fig. 5 ,  a,/uO is plotted against ii”’/D for a few values of p .  The 
parameter a. is the yield stress for vanishing plastic strain rate, and D is 
the value of E i P )  for which the yield stress becomes 2ao. Comparison of 

or 

FIG. 5. Rate-dependent yield in simple tension. 
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Figs. 5 and 11 shows that the material considered here might be characterized 
as elastic, viscoplastic. 

VII. Soils 

A. NONASSOCIATED FLOW 

The response patterns described in the preceding section are useful models 
for the actual behavior of ductile metals. One is therefore tempted to assume 
that normality in force space and, in particular, the flow rule associated 
with the yield condition of a plastic material, are necessary consequences 
of the orthogonality condition formulated, as in Section II,B, in velocity 
space. However, this is not the case. Counterexamples like soil and concrete 
have been known for a long time. Experiments by Richmond and Spitzig 
(1980) have shown that certain steels and polymers subjected to high 
pressure contradict associated flow. 

These examples do not invalidate maximal rate of entropy production. 
In fact, Houlsby (l979,1981a,b) has demonstrated that, for certain materials, 
the orthogonality condition, as formulated in Section II,B, supplies yield 
conditions and flow rules that are not associated. As shown elsewhere 
(Z.14.3), where the orthogonality condition has been established in velocity 
space, it implies normality in force space only under the condition that the 
dissipation function depends on the velocities alone. If it also depends on 
the independent state variables, normality in force space is not to be expected 
and, as a consequence, yield conditions and flow rules need not be associ- 
ated. As stated in Section I,  there is no general duality between velocities 
and forces. 

The elastic, perfectly plastic material of Section VI,C is distinguished by 
a dissipation function dependent on the internal strain rates alone. It hence 
obeys the associated flow rule. Materials like soils, on the other hand, may 
be characterized by governing functions of the type 

together with the conditions that the internal strain a,, = E:) be a deviator 
and that be homogeneous of the first degree in the internal strain rates. 
The only difference with respect to (6.1 1) is the dependence of the dissipation 
function on the dilatation This does not affect the reasoning leading 
from (6.11) to (6.18). On account of the second equation (6.14), however, 
the argument in the dissipation function (7.1) can be replaced by ( T ( ~ ) .  

It is therefore customary to talk of pressure-dependent yield. 
Quite a number of models have been proposed to describe the response 

of the materials in question. They have been collected, among others, by 
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Chen and Saleeb (1982). A few of them will be presently discussed, others 
in Section VII,B, and it will be shown that their response follows from 
leading functions of the type (7.1). 

Case 1: The simplest case (2 .17.6)  is the material with the free energy 
(7.1) and the particular dissipation function 

@ = A [ B  - f i ( A  + $ / L ) E , ~ ~ ] C ~ ~ ~ ~  = A [ B  - ( U ( ~ ) / & ) ] ( E ! ; ; ) ” * ,  (7.2) 

where A, B are positive constants and the inequality 

& ( A  + fip)Ei,, = u(~~/& 5 B (7.3) 

is to be repeated since @ is nonnegative. From (5.48) and (7.2) we obtain 
the stress deviator 

U; = A[ B - u( ,~/V?)(  ii;’)p1’2EF) (7.4) 

c12) = A ~ ( B  - (7.5) 

and the equation 

of the yield surface. In the space R’ it is a circular semicone with axis g 
(Fig. 13 later in chapter) and the longitudinal section of Fig. 6. The vertex 
is determined by B, and A is the tangent of the semiaperture. The yield 
stress in hydrostatic tension is uil) = B&; in simple shear it is k = A B / a  
(compare Section V1,A). In uniaxial stress ul we have a(1) = u, and = 

2u:/3. Thus, the yield stresses in simple tension or compression are 

u: = A B f i / ( f i  + A ) ,  u; = - A B & / ( f i  - A ) ,  (7.6) 

respectively. It follows that u: always exists and is smaller than B&, 
whereas a; only exists if A < a. The perfectly plastic material follows 
from (7.2) by letting B + co and A + 0 so that AB + k f i .  

The yield condition (7.5) is equivalent to the one proposed by Drucker 
and Prager (1952) for soils and confirmed by Richmond and Spitzig (1980) 
for certain steels and polymers under high pressure. Since = 0, the 

FIG. 6. Longitudinal section of Drucker-Prager yield surface. 
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tensor i?) is a deviator. The vector i(p) in Fig. 6 is therefore parallel to 
the deviatoric plane E’ and not normal to the yield surface as assumed by 
Drucker and Prager. In fact, the flow rule (7.4) is not associated with the 
yield condition (7.5). So far, the strongest support for normality in stress 
space have been Drucker’s postulates (1951). They are obviously not gen- 
erally valid. 

At the vertex of the semicone, (7.3) holds as an equation, and (7.4) yields 
ah = 0. The corresponding vector i(p) is still parallel to E ’ ,  but apart from 
this its direction is arbitrary. 

Case 2: Certain materials, such as cohesionless soils, respond similarly 
to the one just treated but cannot sustain stress states with a(,) > 0. One 
possibility of dealing with them, proposed by Houlsby (1979), is equivalent 
to using (7.2) with B = 0. The result is a yield cone with vertex at 0’ and 
again a nonassociated flow rule. 

Case 3: Another model, used extensively, is obtained by truncating the 
cone of Fig. 6 ,  keeping only the portion where u(,) < 0 and closing it by a 
circular area in the deviatoric plane. In this plane the normality condition 
breaks down since it requires, together with the deviatoric character of I?(’),  

that i(p) = 0. However, if we start from the functions 1I’ and @, restricting 
(7.2) to the domain a(1) 5 0 and setting A = 0 for a(,) = 0, Eq. (7.4) yields 
V C  = 0 for a(,) = 0, and the corresponding vector i(p) represents an arbitrary 
deviatoric strain rate. Here, no problem with normality arises in the plane 
E’, for the yield surface appears as a truncated semicone open at either 
end and complemented by a single point at the origin. 

B. VARIOUS MODELS 

A few models of soils are defined by the functions and @ used in 
Section VII,A. In order to discuss additional models, we retain the 
expressions (7.1) for the governing functions, the assumption that @ is 
homogeneous of the first degree and the postulate that the plastic strain is 
a deviator. We thus have a yield surface in stress space, a vector that 
is always parallel to the deviatoric plane E’, and in general no normality 
in stress space. 

Case 1: Let us start with the dissipation function 

@ = { A [ B  - (u(l)/J5)]i~!))}1/2, (7.7) 

where A, B are positive constants and 

From (5.48) and (7.7) we obtain the stress deviator 
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anc he equation 

4 2 ,  = A(B - %/m (7.10) 

of the yield surface. In the space R’ (7.10) represents a paraboloid of 
revolution (Fig. 7) .  The yield stress in hydrostatic tension is c l ~ ( ~ )  = B&; in 
simple shear it is k = d m  (compare Section V1,A). 

The cohesionless case of the material just considered can be obtained 
either by setting B = 0 or by restricting (7.7) to the domain 5 0 and 
setting A = 0 for a(,) = 0. 

Case 2: The dissipation function 

CD = A { [ B  - ( ( + ( 1 ) / ~ ‘ 3 ) ] ~  - ( B  - C)2}1’2(i)2q))1/2, (7.11) 

where C < B is another positive constant beside A and B and where 

( + ( I )  s cJ7 (7.12) 

is a generalization of (7.2). The corresponding stress deviator (5.48) is 

0; = A { [ B  - - ( B  - C)2}1’2($~2q))-1/2$~), (7.13) 

and the equation of the yield surface is 

(+ [2 )  = A2{ [B  - (~(~)/f i)]~ - ( B  - C)’}.  (7.14) 

In the space R’ (7.14) represents one of the two shells (Fig. 8) of a 
hyperboloid of revolution with the asymptotic cone of Fig. 6 .  The yield 
stress in hydrostatic tension is a(,) = C&; in simple shear it is k = 

The cohesionless case is obtained by setting C = 0 or by restricting (7.11) 

Case 3: Another dissipation function is 

A(BC - C2/2)1’2. 

to 5 0 and setting A = 0 for = 0. 

CD = +2[k - ( ( + ( I ) / & ) ] $ { ’ )  (1, -0,. . ., (7.15) 

FIG. 7. Longitudinal section of yield surface in case of VII,B. 
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FIG. 8. Longitudinal section of yield surface in case of VII ,B 

(7.16) 

and I, - I , .  . . , are the sectors obtained from Fig. 3 provided that the 
notations dl, . . . , are replaced by & i p ) ,  . . . . The reasoning following (6.5) 
now yields 

- 4 
I - 3[k - ( ~ ( i ) / f i ) I ,  uii = a l i i  = - $ [ k  - ( ( ~ ( i ) / & ) l ,  (7.17) 

that is, (6.7) with k replaced by the expression between parentheses. For 
( T ( ~ )  = 0, (7.17) reduces to (6.7); yield locus is therefore the Tresca hexagon 
of Fig. 2 .  For nonvanishing values of ( T ( ~ ) ,  (7.17) supplies yield hexagons 
whose linear dimensions are proportional to k - c(~)/&; yield surface is 
thus the regular hexagonal pyramid considered by Drucker (1953). Its axis 
is g ;  its intersection with the deviatoric plane E' is the hexagon of Fig. 2 ;  
and its vertex is the point u(l j/& = k on g, that is, the point with coordinates 
( k / f i ) ( l ,  1 , l ) .  

Case 4: Let us finally consider the dissipation function 

(7.18) 

where A', A", B are positive constants and where I ,  - I , .  . . , are sectors 
(Fig. 9) containing the projected positive and negative axes P : " " ,  . . . , respec- 
tively. Since 0 must be positive definite, we require 

f f (1)  5 BJ3, (7.19) 

and we further assume that 

A' < A", (7.20) 

a condition that will be motivated in connection with (7.30). On account 
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FIG. 9. Sectors corresponding to the six definitions of Q, in (7.18) 

of (A.15) @ is constant on hexagons in the deviatoric plane E, having three 
axes of symmetry. Their convexity requires that a , /2  < -u2, that is, 

( a , / 2 )  + a2 < 0. (7.21) 

Since must be continuous along the boundaries between the various 
sectors, for example, on Of‘, we have A’&‘,”’ = -A”&‘ , [ ’  along this boundary 
or, on account of (A.15), 

A ‘ a ,  + A”a2 = 0. 

It follows from (7.21) and (7.22) that 

2A’ > A”. 

Applying the orthogonality condition 

(7.22) 

(7.23) 

rh = ( d / d & r ’ ) ( @  + y ’& i r / )  (7.24) 

to the open sector I and determining the multiplier y’ by the condition that 
r:, is a deviator, we obtain 

(7.25) 1 - - 2 J ‘ ( B  - U ( ~ I / ~ ) ,  a;, = gill = - iA ’ (B  - u(, , /A).  
In sector - I ,  A‘ must be replaced by -A”. 

In the deviatoric stress plane (Fig. l o ) ,  (7.25) yields the single point I ‘  
as the image of sector I in Fig. 9. According to (A.15),  its distance from 0’ 
and the distance of the image -11‘ of sector -11 from 0’ are 

b ,  = J;AIB, -b, = J~AI~B,  (7.26) 

respectively. These points and the corresponding ones on the other projected 
axes define a hexagon with three axes of symmetry, convex since 

hl + (bJ .2 )  > 0 (7.27) 
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FIG. 10. Yield locus corresponding to Shield’s pyramid for u(~) = 0. 

on account of (7 .26)  and (7 .23) .  In order to see that the sides of the hexagon 
in Fig. 10 are the images of the rays dividing the sectors in Fig. 9 ,  we note 
that (7 .22)  may be interpreted as the equation of the ray OP. Using it as 
an additional side condition, we replace (7 .24)  by 

a$ = (d/ail,“’)[@ + y’i:!; + y”(A’E( IP)  + A ” i i f ’ ) ]  (7 .28)  

and obtain 

C T ~  = $ A ’ ( B  - a(l)/J5) + f y ” ( 2 A ’  - A ” ) ,  

= -fA’(B - CT(~)/&) + i y ” ( 2 A ”  - A ’ ) ,  (7 .29)  

a f r 1  = - i A ’ ( B  - ~ ( l ) / & )  - ;?“(A’ + A”) 

in place of (7.25). With a(,) = 0, (7 .29)  is the parametric representation of 
a straight line in Fig. 10, and by means of ( A . 1 5 )  it is easy to see that it 
contains points I’ for y” = 0 and -11‘ for y“ = -B. Yield locus for a(1) = 0 
is the hexagon of Fig. 10, having three axes of symmetry, and the yield 
surface for nonvanishing values of a(l) is the pyramid intersecting E ‘  in 
this hexagon and with vertex at a(1) = B& on the axis g. 

Let the constants in (7 .18)  be determined by 

2& sin cp’ 

3 - sin cp” 
A” = B = &c cot cp’, (7.30) 

2 d 3  sin cp’ 

3 + sin cp‘ ’ 
A’ = 

where c is a positive constant and cp’ an acute angle. With (7.30), the 
inequalities (7 .20)  and (7 .23)  for A’ and A” are obviously satisfied, and the 
yield surface becomes the pyramid proposed by Shield (1955)  as the only 
correct interpretation of Coulomb’s law. In fact, it is easy to see that, with 
(7 .30) ,  the total stresses corresponding to (7 .29)  satisfy the condition 

aI - aII + (ul + uI,) sin cp’ = 2c cos cp’, (7 .31)  

which represent Coulomb’s law 

r = c - u t a n c p ’  (7 .32)  
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on the straight line connecting the points I' and -11' in Fig. 10. For the 
other rays dividing sectors in Fig. 10 the proof is analogous. 

C. CONSTRUCTION OF THE DISSIPATION FUNCTION 

It has been noted that the materials considered in the two preceding 
sections do not satisfy the normality condition in stress space. However, 
they obey a restricted normality condition. 

In the space R', the hydrostatic stress a(1) is represented by a point P' 
on g. Once a(,) is prescribed, the end point of the vector u lies in a plane 
E" passing through P' and parallel to E'.  The deviator u' is the projection 
of u onto this plane. The yield surface intersects the plane E" corresponding 
to a(,) in a curve that may be considered the yield locus for the given value 
of In cases 1 through 3 of Section VII,A and cases 1 and 2 of Section 
VII,B, the yield surface is a surface of revolution with axis g; the yield 
locus in any plane E" is therefore a circle about P'. On account of Eqs. 
(7.4), (7.9), and (7.13), written in principal values, the vector i(p) has the 
direction of u' in all these cases and hence obeys the normality condition 
with respect to  the yield locus in the plane E". Comparison of Figs. 2 and 
3 and of Figs. 10 and 9 shows that the same is true in the remaining cases 
3 and 4 of Section VII,B. 

The models just mentioned are not the only ones proposed in literature. 
Other materials [see, e.g., Chen and Saleeb (1982)] pose the problem already 
discussed in Section VI,B: to find the dissipation function corresponding 
to a given yield condition. The solution is similar to the one given there. 

Let 

(7.33) 

be the equation of the yield surface, with cross sections that are convex 
and star shaped with respect to their points P'. Postulating that the plastic 
strain rate is a deviator and that it obeys the restricted normality condition 
in any plane E", we have 

& ( P I  ,~ = v ( d F / d a b )  ( u  2 0). (7.34) 

From here on the reasoning following (6.10), with E replaced by E" and 
d by i(p), shows that and how a single-valued function @(E{2q) ,  E l f ! ,  a(,)), 
homogeneous of the first degree in the plastic strain rates, can be constructed. 

D. COUPLED ELASTIC A N D  PLASTIC DEFORMATIONS 

In all of the models discussed so far in Sections VI and VII, it is possible 
to decompose the total strain into plastic and elastic contributions, E?)  = a,, 
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and = E,, - q,, respectively. In those cases where, as in (6.11), the free 
energy can be expressed in terms of the elastic strains and the dissipation 
function in terms of the plastic strain rates, it is obvious that the elastic and 
the plastic deformations are independent. In the case of the hardening 
material of Section VI,D the free energy (6.22) also contains the plastic 
strains. However, the connection between stress and elastic strain is still 
given by the generalized Hooke’s law (6.13), and (6.25) connects the stress 
with the plastic strain and its time rate. In the soils treated so far, the 
dissipation function contains also the (elastic) dilatation. However, Eq. 
(6.13) is still valid and allows one to replace by u(ll i n  the dissipation 
function so that the orthogonality condition supplies relations like (7.4), 
(7.9), and (7.13) connecting the stress with the plastic strain rate. It follows 
that in all these examples elastic and plastic deformations can be obtained 
separately. 

Houlsby (1979, 1981b) has pointed out that, in certain geological 
materials, the plastic deformation alters the elastic properties, so that the 
two types of deformations are coupled. As an example, he mentions the 
case where the shear modulus is a function of the elastic strain. 

The simplest model of this type is defined by the modification 

w = ( A / 2 ) 4 1 )  + ( P  + V % ) ) ( E  - .)[a (7.35) 

of the free energy (7.1), where v is a constant, and by the dissipation 
function (6.19). The external stress is quasi-conservative and given by 

a,, = A E ( l l 6 ,  + 2(P + Va(2J ) (Ey  - alJ) 

in place of (6.12). The generalization of Hooke’s law now reads 

u,, = he‘(:;6, + 2 ( p  + v e ~ $ : ) E ~ ~ ’ ;  
besides, (7.36) yields 

u; = 2(P + v a ( > l ) ( E ;  - a,). 

Plp’ = - 2 h  + va[Z))(&,, - alJ) + 2 4 E  - a h p y  + 7‘6, 

lJ a; + 2vF;;;E:;), p(4h = - 

Pip' = k ( F ( 2 ) )  y . 

The quasi-conservative part of the internal stress is 

in place of (6.15). From (7.39) and (7.38) it follows that 

and from (6.19) we obtain 
1 . ( P I  - I / z € ( P )  

Equation (2.35) now yields the relation 

u; = 2 v ~ ~ ~ ~ ~ I p ’  + k($€j24))-1’2i.Ip) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

(7.42) 
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and finally the yield locus 

The two constitutive equations (7.37) and (7.42) may be considered as 
generalizations of (6.13) and (6.21) or (6.27), respectively. Each of them 
contains a term that establishes coupling between the elastic and plastic 
deformations. 

Expression (7.35) seems to be equivalent to the free energy of Houlsby 
(1981b). In a former paper (1979) he used a slightly different expression 

v = (A/2+ P / ~ ) & : I )  -t ( P  V ~ ( Z ) ) ( &  - a ) ( * ) .  ( 7.44) 

In another publication Houlsby (1980) also derived the so-called “modified 
Cam-Clay’’ model of Schofield and Wroth (1968) from appropriate func- 
tions V and @. 

VIII. Viscoplasticity 

A. CREEP OF METALS 

Let us return to the material defined by the governing functions (6.11), 
dropping, however, the condition that @ be homogeneous of the first degree. 
Here, the internal strain tensor a,, becomes what is usually called the viscous 
strain F:’, and the difference F::’ = E,] - E:’ is again the elastic strain. 

The externl stress is quasi-conservative and given by (6.12). Stress and 
elastic strain are connected by (6.13) or (6.14), and the quasi-conservative 
part of the internal stress is supplied by (6.15). Equation (6.16) is still valid; 
combined with (2.35) it yields u; = By”. Since the dissipative internal 
stress obeys relations that are analogous to (5.36), (5.37), we have 

= v[2(a@/’3b(Z))b,, + 3 ( d @ / a b ( 3 ) ) ( & & k j  - 3b(?.1fi,)1, (8.1) 
where 

I/ = @(2(a@/ab(,))b,,, + 3(a@/ab(l,)cy(l,)’. (8.2) 

The simplest special case is the one where the dissipation function depends 
on a(2)  = &$; alone. In the deviatoric plane E of the system E ; ” ) ,  . . . , the 
function @ is then constant on circles about the origin. Equations (8.1) and 
(8.2) reduce to 

a; = 2v(a@/a&j;j)&!:”, v = @[2(a@/a&;;;)&;,;]-l (8.3) 

or, equivalently, to the single relation (5.48), 

u;, = ( @ / 6 y )  ’1 F,, . ( “ I  f (8.4) 
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Let us specialize further, assuming that 

@ = 2p'(&j;)y, (8.5) 

where p' is a coefficient (possibly dependent on 6). This dissipation function 
is homogeneous of degree 2n. With n = 1 it is analogous to the dissipation 
function (5.46) of the incompressible Newtonian liquid; with n = 4, a case 
we will exclude in what follows, it reduces to (6.19), that is, to the dissipation 
function of a plastic material of the v. Mises type. With (8.5) the deviatoric 
stress (8.4) becomes 

a:, = 2 c L ( ( & 3 - l & ( u )  '1 (8.6) 

and by comparison with (5.45) we see that the viscous response is the one 
of a quasi-linear liquid. From (8.6) we obtain 

and hence the inversion of (8.6), 

(q2CLf) .  (8.8) 
&(U) - ,2 l - n j 2 n - l  

t j  - ( u ; ~ , / ~ c L  1 

On account of (8.5) and (8.7), @' in the space R' is constant on circular 
cylinders with axis g ,  and (8.8), written in principal values, establishes 
orthogonality in R'. With 

(1 - n)/(2n - 1 )  =: rn - 1 and (2p')l'l-2n =: k (8.9) 

& ( a )  ZJ = k((T[2))m-1(Tk'  (8.10) 

(8.8) assumes the form 

This is Odqvist's equation (1934; see also 1966) for secondary creep of 
incompressible materials, a generalization of the so-called Norton's law 
(1929). 

Another special case is obtained if one replaces (8.5) by 

@ = A(E(IU)2)n ( I ,  - I ) ,  . . . , (8 .11 )  

where A is a positive scalar (possibly dependent on 6) and where the roman 
numerals I, - I , .  . . , refer to the six sectors of Fig. 3, provided that dl , .  . . , 
are replaced by &iU), . . . . The function @ is constant on the regular hexagons 
mentioned in connection with (6.5). In the open sectors I and -I  the 
deviatoric stress becomes 

gf = ~ A ( & $ u ) 2 ) n - ' & ~ u ) ,  ( ~ f ,  = gill = -fA(&(1u)2)"-1&iU). (8.12) 

The images of I and -I  are thus the projected axes (T~, -vl, respectively, 
in Fig. 2, and similar statements hold for the other sectors. The line dividing 
the sectors I and -11 in Fig. 3 is mapped onto the open sector between the 
projected axes (T, and -uI1 in Fig. 2, and in this sector, as well as the one 
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between the projected axes -uI and vII, (8.12) has the inversions 
i ( U )  - 

&!U) = -i'"' = ( 3 / 2 ~ )  ( u ; 2 ) l  - n / 2 n - l  4, 1 1 1  - 0. (8.13) 

In the remaining sectors in Figs. 3 and 2 similar expressions are valid. 

B. ELASTIC, VISCOPLASTIC MATERIALS 

The free energy and the dissipation function given by (6.11) may also be 
used to define elastic, viscoplastic materials. As shown in the preceding 
section, stress and elastic strain are connected by (6.13) or (6.14) and the 
stress deviator follows from (8.1) and (8.2). 

Let us first use the special form (8.5) of the dissipation function (2.17.1). 
It has been noted that it corresponds for n = 1 to a modified Newtonian 
liquid and for n = 4 to an elastic, perfectly plastic material of the v. Mises 
type. Elastic, viscoplastic materials may be characterized by an exponent 
n that is slightly larger than $. To show this, let us note that, in principal 
axes, (8.6) assumes the form 

(8.14) 

In the case of uniaxial stress uI we have af = (2/3)aI and &$'] = (3/2)d1"'2 
in analogy to (6.33) and (6.34). Thus, (8.14) yields 

uI = 21.'")"(&'1"'')"-'&ID'. (8.15) 

Figure 1 1 ,  which, for negative values of $Iu) ,  is to be reflected at the origin, 

u )  n 1 . ( u )  u; = 2 p ' ( & 9  - & I  , . . . . 

I 

m3 
FIG. 11. Response of viscoplastic materials in simple tension. 
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shows u1/2p’  as a function of i;’) for a few values of n, including the 
Newtonian and the perfectly plastic cases. For f < n < 1 the curves leave 
the origin with a vertical tangent. For n + they approach the vertical axis 
and the horizontal cr1/2p’ = m, that is, the perfectly plastic response. 

@ = 2aEr4’j’ + k(2d(,,) 

Another choice of the dissipation function is 

(8.16) ( 1 ’ )  1/2 , 

where a and k are scalars. The corresponding stress deviator (8.4) is 

(8.17) 

This is the constitutive equation proposed by Hohenemser and Prager (1932) 
for viscoplastic materials of the Bingham type (1922). 

Let us finally note that the dissipation function (6.30) exhibits a certain 
similarity to (8.5). This similarity appears also in Figs. 5 and 11. The principal 
difference is that the curves of Fig. 5 start from the point ul/uo = 1, whereas 
those of Fig. 11 start at the origin. Materials with rate-dependent yield thus 
have a definite yield stress for vanishing strain rate, whereas the stress of 
the material considered in this section tends to zero with &:L’) + 0. It is 
questionable whether this difference is practically observable. 

Germain el al. (1983) mention a few more general viscoplastic materials 
and an application to damage of ductile materials. 

Returning to Fig. 11 we observe that, for n > 1, the curves (as the one 
displayed for n = 5 )  leave the origin with a horizontal tangent. With increas- 
ing n they approach the horizontal axis and the vertical E i ’ )  = m. Thus, 
the dissipation function (8.5) may also be used for materials that tend to 
the locking material described by Prager (1957). 

1 .(I>) -1 /2 
u; = [2a + k ( i & ( Z ) )  Id‘,”’. 

IX. Viscoelasticity 

A. LINEAR VISCOELASTICITY 

The response in pure tension of the materials treated in Sections IV 
through VIII can be modeled by simple combinations of springs, dashpots, 
and other simple elements as described, for example, by Lee (1962). On 
the other hand, such models, suggested by the results of tension tests, may 
be used to establish the general response of more complicated materials. 

The description of viscoelastic materials can be based on the Maxwell 
grid (Fig. 12), where certain elements might be dropped but none of the 
Maxwell elements is to be replaced by a single dashpot if impact response 
is to be ensured (2.18.1). (The optional single spring allows modeling of 
solids as well as fluids.) To simulate the actual response in simple tension, 
it is usually necessary to introduce quite a number of internal parameters 
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FIG. 12. The Maxwell grid. 

, a '" )  besides the external extension F.  The generalization for a ( l )  a ( 2 )  

arbitrary deformations requires a set of internal strain tensors a!," ( r  = 

1 , 2 , .  . . , n) beside the external strain E,,. 

The linear case corresponds to quadratic functions w and @. If we confine 
ourselves to the isotropic case, readmitting thermal processes, the governing 
functions (2.18.2) are generalizations of (4.17) and (5.27). The free energy 
may be defined by 

1 , ' . .  

P C  
n+ I 

- ( 6  - 1 (3h'" f 2p'r')K'r)(& - a( ' )  ) ( I )  ---(a - ad2, 
r =  I 2 6 0  

(9.1) 
where p is constant and a!:+') = 0, and the dissipation function by 

(9.2) 

The entropy might be obtained from (9.1) by means of (2.13) and the 
internal energy subsequently from Eq. (2.3), modified by addition of the 
arguments a;) besides q, and 19. Since (9.2) does not contain i,,, the external 
stress is quasi-conservative and given by 

n + l  

- ( 6  - 6, , )6 ,  (3h'" + 2pCL(r')K'r). (9.3) 
r =  1 

The internal stresses are 
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(9.5) 

where the fact has been used that v = 

Application of the orthogonality condition to q, yields 
since @ is quadratic in b!,‘). 

(9.6) - 6,l/6 = ; ( w a s l )  = ( Y / 6 ) 4 ,  

and hence Fourier’s law (3.11). Equation (2.17), applied to the various 
internal stresses (9.4) and (9.5), supplies the differential equations 

,, - (3A‘” + 2 ~ ‘ ~ ) )  A ( r ) ’ b ( r ) 6 1 J  + 2p(r)r(y(r) = [ A ( r ) ( E  - a ( r )  
( 1 )  

x K‘”(6 - 60)]6, + 2p(r)(E, - a!,‘’). (9.7) 

The problem that remains is the elimination of the internal parameters 
from (9.3) and the n equations (9.7). To solve it, it is convenient to 
decompose these relations into their deviatoric and isotropic parts, obtaining 

f l + l  

u; = 2 c /P(&; - a:;)’), 
r = l  

and 

tL( r )~bt ) r  = /dry&; - at)’), 
K(r) ’b(r )  - - K ( ~ ) [ ( E  - a ( r ) ) ( l )  - 3 ~ “ ’ ( 6  - 6 ~ 1 ,  ( r  = 1 ~ 2 , .  . . , n )  (9.9) 

where 

and ~ ( r )  = A ( r P  + ;,,(r)i (9.10) 

are bulk moduli. If we differentiate the first equation (9.8) n times, expressing 
after each step in terms of E ;  - a!;)’ by means of the first equation 

(9.9), we obtain the time derivatives c+;, &,, . . . , u:)’ as linear functions 
of the i;, i;,. . . , E:)’ and the various E ;  - a:)’. Eliminating the n terms 
E ;  - a!;)’ from the resulting n + 1 equations [the first equation (9.8) and 
its n derivatives], we are left with a single tensorial differential equation of 
the type 

K ( r )  = A ( r )  +Z ( r )  
3 t L  

k(r)r 

q(0)tE. + q ( l ) t i ;  + . . . + q ( n ) r  ( n ) ’  u; + p(I)’c+L + * * * + p ( n ) t F ! , n ) f  = 
E ,  (9.11) 

between the strain and stress deviators. If we further differentiate the second 
equation (9.8) n times, expressing b!:;  after each step in terms of ( E  - 

- 3 ~ ( ‘ ) ( 6  - a0) by means of the second equation (9.9), we obtain 
the . . . , air] as linear functions o f i ( l )  - 3 ~ ( ~ ) 8 ,  .G(~) - 3 ~ ( ~ ) 8 , .  . . , 
&(n) (1) - 3K(r)6(n) ( r  = 1,2, .  . . , n + 1 )  and of ( E  - a ( r ) ) ( l )  - 31(“)(6 - a0) 
( r  = 1,2, . . . , n ) .  Elimination of the last n expressions from the n + 1 
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equations we dispose of leaves a single scalar differential equation of the type 

u( l )  + p%(,) + . . . + p'"'a;;; = q ( 0 ) E ( I )  + + f * . + q ( n ) E ; ; ) )  

+ r"'(6 - 8,) + r ( ' )& + . . . + r(n)a(n) 

(9.12) 

Except for the thermal terms, (9.1 1 )  and (9.12) are the differential equations 
commonly used in texts on viscoelasticity [e.g., Fliigge (1975)l. It is clear 
that the coefficients are not free but determined by the functions and @, 
that is, by A'", p( r ) ,  A"", P'~)', and K ( ~ ) .  A simple example and a generaliza- 
tion for nonlinear response are given elsewhere (2.18.2). 

The case where the material is free of bulk viscosity is obtained by 
introducing the internal strains a:) as deviators. The second equation (9.9) 
must then be dropped since the left-hand side becomes indeterminate. The 
second equation (9.8) reduces to 

n + l  

U(1) = 3 c K ' r ' [ E ( I )  - 3 K " ' ( 8  - a,)], (9.13) 

a degenerate form of (9.12), connecting the isotropic parts of E~ and uii 
with the temperature increase. The remaining equations (9.8) and (9.9) 
become 

, = I  

n f l  

u; = 2 c / d r y & ;  - a!;)), p('"&";' - - p ( r ) ( ~ ;  - a!)), (9.14) 
r = l  

and the process expounded following (9.10) supplies a differential equation 
of the type (9.11) for the deviatoric parts of E,, and uo. 

If thermal efects can be neglected, the terms with 6 - 6, in (9.1) and 
with q ( ] )  in (9.2) are to be dropped. Thus, the terms containing 19 - 8, 
disappear from (9.8) and (9.9) as well as (9.13), and the coefficients r"), 
r ( l )  

and the K ( ~ ) '  are zero, whereas the K ( ' )  
, . . . , r (")  in (9.12) become zero. 

become infinite. Thus, (9.13) reduces to 
In an incompressible material 

( + ( I )  = -3P, (9.15) 

where p is an indeterminate hydrostatic pressure, and Eqs. (9.14) can be 
written 

Elimination of the internal parameters now yields the differential equation 
(9.11), where the primes after E, ,  and its derivatives may be dropped. 
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B. RIVLIN-ERICKSEN LIQUIDS 

A class of isotropic materials proposed and discussed by Rivlin and 
Ericksen (1955) is defined by the condition that the stress depends alone 
on the gradients of the displacement, velocity, acceleration, and higher 
accelerations up to a certain order, so that thermal effects, in particular, 
are absent. In the special case where the material is an incompressible 
liquid, Truesdell and No11 (1965) present the constitutive equations in the 
form 

wv = - p a ,  + Fv(AF;, A:), . . . , A:'), (9.17) 

where A t '  ( r  = 1,2, .  . . , n) are the Rivlin-Ericksen tensors 

where v,,, is the velocity gradient and F, a deviatoric function. 
If we confine ourselves to small displacements and displacement 

gradients, the tensors A:' reduce to 2~:) ( r  = 1,2, .  . . , n ) ,  and the constitu- 
tive equation (9.17) reduces to (9.15) and 

0; = Fv(F,,, i,,, . . . , &I,"). (9.19) 

In view of Section IX,A it appears remarkable that the time derivatives of 
the strains are present in (9.19) up to the order n, whereas the stress 
derivatives are absent. In any event the question arises whether the Rivlin- 
Ericksen liquid can be obtained by the approach that has been quite 
successful in the preceding sections. 

Let us note that, in the approximation leading to (9.19), the density is to 
be treated (2.5.3) as constant. If we neglect thermal effects but retain the 
notion of internal parameters, we have to start from a free energy of the form 

V C ( E ~ ,  a:)) ( r  = 1,2, .  . . , n). (9.20) 

On account of the orthogonality condition and of (2.17), the dissipation 
function depends on the time derivatives of exactly those internal parameters 
that appear as arguments of 9. Besides, it may depend on e,,, a:) and 
possibly even on F y ,  so that 

(9.21) 

The quasi-conservative stresses obtained from (9.20) by means of (2.33) 
and (2.34) are functions of the arguments of VC. The dissipative stresses 
depend on the arguments of a, no matter whether we calculate them by 
means of (2.27), (2.28) or (2.30), (2.31). According to (2.32) the external 
stress deviator assumes the form 

@(iv, &!,'I, E , ,  a!,')) ( r  = 1,2, .  . . , n ) .  

(9.22) 
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and (2.35) yields n differential equations of the type 

In  order to arrive at (9.19) from (9.22) and (9.23) it must be possible to 
eliminate the internal parameters and their time derivatives. To do this, let 
us differentiate (9.22) and (9.23) n times with respect to time, obtaining 
altogether ( n  + 1)2 equations for F , , ~ ,  ipq,  . . . , EL+’), a::, cib;‘, . . . , a K f l ) ( r )  

and uL, (ib, . . . , ur ) ’ ,  that is, for ( n  + l ) ( n  + 3) unknowns. Eliminating 
the n(  n + 2) internal parameters including their derivatives, we are left with 
a single equation containing 2n + 3 unknowns, namely, ePq and a; with 
n + 1 and n derivatives, respectively. In other words, we obtain a differential 
equation of the type 

(9.24) 

That the order of the operator G, is one higher in E~~ than in uPq is due 
to the fact that, in the interest of generality and in contrast to Section IX,A, 
E, has been included as an argument of the dissipation function (9.21). 

The result (9.24) can be obtained without use of the orthogonality condi- 
tion. In fact, (9.22) and (9.23) and hence (9.24) follow from the mere 
assumption that the dissipative stresses depend on the (internal and possibly 
external) strain rates and strains. In the exotic case of dissipative stresses 
containing higher-order time derivatives of at;) and e,, an increased number 
of differentiations would lead to an equation of the type (9.24) with an 
operator of higher order. 

On the other hand, it is in general impossible to reduce (9.24) to (9.19). 
Even in the linear version (9.11) of (9.24) this is not possible. Already in 
the case n = 1, treated in (Z.18.2), the coefficient p“” of 6; does not vanish. 
It follows that the approach based on internal parameters and the constitu- 
tive equations proposed by Rivlin and Ericksen are incompatible whether 
the orthogonality condition be used or not. 

X. Conclusion 

The materials treated starting with Section I l l  confirm what was stated 
in the introduction (Section I ) :  an amazing number of constitutive relations 
of practical significance can be deduced from appropriately chosen 
expressions for the free energy and the dissipation function. 

Of particular interest is the fact that orthogonality in velocity space, which 
is essentially responsible for the results, does not necessarily imply orthogo- 
nality in force space since there is in general, as noted in Section I ,  no 
duality between the two spaces. As a consequence, orthogonality in velocity 
space is apt to explain the actual behavior of soils (Section VII), where the 
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theory of the plastic potential and its justification by Drucker (1951) break 
down. 

On the other hand, we have encountered a few cases where the orthogonal- 
ity condition restricts the form of the constitutive equations generally used. 
They are (Section V,C) the Reiner-Rivlin liquid, where the scalar functions 
multiplying d, and dikdkj - ( d ( 2 ) / 3 )  in (5.44) are not free but determined 
by the dissipation function, and the quasilinear liquid, where the viscosity 
function p' in (5.45) must be independent of d(3 ) .  

Another exception is the Rivlin-Ericksen liquid (Section IX,B). Here, 
the approach based on internal parameters supplies the constitutive equation 
(9.24) instead of (9.19) no matter whether maximal rate of entropy produc- 
tion is used or not. 

Appendix 

1 .  Let u, be a vector and t,, be a symmetric tensor of order 2 in an 
orthogonal Cartesian coordinate system. The only basic invariant of u, may 
be defined by 

U ( I )  = u,u,, ('4.1) 

the basic invariants of t,] by 

t ( l )  = tt,, t ( 2 )  = ' t j ' p ~  t ( 3 )  = tvqktki, (A .2)  

and the mixed invariants by 

m ( l ,  = ultvuj, rn(*) = Uitjjtjkuk. 

The invariants of the deviator 

('4.3) 

are 

Differentiating the invariants, one obtains 

2. In an isotropic material a function of q, and djk depends only on 
the invariants of qi and djk (and possibly on certain independent state 
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variables). Thus, @ has the form 

23 5 

(A.7) 

3. Let @ be of the form 

@(di2) ,  di3)) .  

According to (A.6) we have 

(A.lO) 

or, on account of (AS) and (A.4), 

FIG. 13. Vectorial representation t of a symmetric tensor r,,. 
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I t m  

FIG. 14. Deviatoric plane E I g. 

It follows that 

(A.13) 

4. A symmetric tensor t,, with principal values t i , .  . . , can be represented 
as a vector t = ( t I , .  . . ) in an orthogonal Cartesian coordinate system tI, 
. . . (Fig. 13). The istropic part t,,,6,/3 of t,] appears as the projection t , , ] / &  
of t onto the axis g including equal angles with the positive axes t , ,  . . . . 
The deviatoric part t ;  is represented by the projection t’ o f t  onto the plane 
E l g  passing through the origin 0. Its magntiude is 

It’l = ( t i 2  + . . . ) I 1 2  = ( t ; 2 , > ” * .  (A.14) 

The unit vector e, (Fig. 14) in the projection of the axis t l  onto the deviatoric 
plane E is equally inclined with respect to the axes t i ,  and t i l l .  Hence, 
e ,  = (2, -1 ,  - l ) /&,  and it follows that the projections a , ,  . . . , of t’ onto 
the projected axes t,, . . . , are 

a ,  = t . e ,  =J;t i ,  . . . .  (A.15) 
- 
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