

BALANCE TERMICO DE INVIERNO

INSTALACIONES 2- ARQUITECTURA FACULTAD DE INGENIERÍA- U. N. CUYO

ING CECILIA MONTI

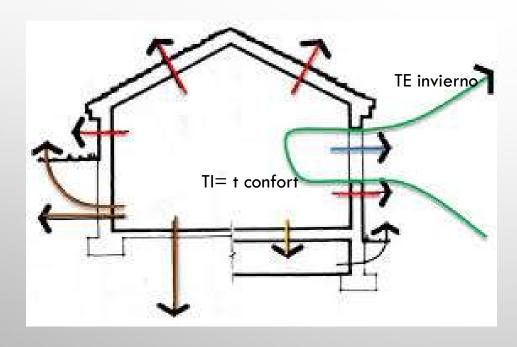
CONTENIDO

- CONCEPTOS FUNDAMENTALES
- FORMAS DE TRANSMISIÓN DEL CALOR
- CALCULO DE CARGAS
- COEFICIENTE K

CONCEPTOS FUNDAMENTALES

- ¿ QUE ES UN BALANCE TÉRMICO?
 - ES UN PROCEDIMIENTO DE CÁLCULO BASADO EN LAS FORMAS DE TRANSMISIÓN DEL CALOR.
- ¿QUÉ SE CALCULA EN INVIERNO?
 - SE CALCULA LOS FLUJOS DE CALOR O LAS PÉRDIDAS DE CALOR DE CADA UNO DE LOS LOCALES A ACONDICIONAR.
- ¿PARA QUE SE UTILIZA?
 - FUNDAMENTALMENTE PARA **DIMENSIONAR** LAS PARTES COMPONENTES DE LOS SISTEMAS DE CALEFACCIÓN
 - SIRVE TAMBIÉN PARA ANALIZAR LA MATERIALIDAD DE LAS CONSTRUCCIONES EN RELACIÓN A LAS PERDIDAS DE CALOR PARA PODER MEJORAR LA MISMA, ES DECIR, DISMINUIR LAS PÉRDIDAS DE CALOR Y POR CONSIGUIENTE GASTOS DE ENERGÍA.

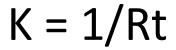
CONCEPTOS FUNDAMENTALES


- CONSIDERACIONES:
 - 1. LA TEMPERATURA INTERIOR ES LA TEMPERATURA DE CONFORT. ESTA ES FUNCIÓN DE LA ACTIVIDAD QUE SE DESARROLLA EN EL LOCAL
 - 2. LA TEMPERATURA EXTERIOR ES FUNCIÓN DEL CLIMA DEL LUGAR Y ADEMÁS ES CONSTANTE
 - 3. LA TEMPERATURA DEL SUELO DEPENDE DEL CLIMA Y TAMBIÉN ES CONSTANTE
 - 4. LA TEMPERATURA DE LOS LOCALES NO ACONDICIONADOS ES EL PROMEDIO ENTRE LA INTERIOR Y LA EXTERIOR.
 - 5. LOS ΔT POR LO TANTO SON CONSTANTES EN EL TIEMPO

2020

CONCEPTOS FUNDAMENTALES

• El calor fluye desde lugares de mayor temperatura a lugares de menor temperatura, es decir desde el interior al exterior , a locales no acondicionados o al suelo.


- CONDUCCIÓN: ENTRE PARTÍCULAS, POR CONTACTO
- CONVECCIÓN: MOVIMEINTO DE MASAS DE FLUIDOS DEBIDO A DIFERENTES DENSIDADES
- RADIACIÓN: ONDAS ELECTROMAGNETICAS

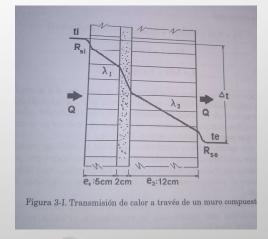
CALCULO DE CARGAS

		CONDUCCIÓN	Qc = K . A . ΔT	
CARGAS EXTERNAS	POSITIVAS (+)	K: coeficiente de transmitancia total [(Kcal/h)/ m2. °C]		
		A: área de la superfice de transferencia. [m2]		
		ΔT : diferencia de temperatura a ambos lados de la		
		superficie de transferencia		
CARGAS INTERNAS Qint.	NEGATIVAS (-)	OCUPANTES		
		ILUMINACIÓN	se caclulan en forma puntual, resultan	
		ARTEFACTOS	un aporte de calor en el interior de los	
		MOTORES	locales	
		ETC.		
CARGAS DE VENTILACION Q i/v	POSITIVAS (+)	CONVECCIÓN	Q i/v = 17 . Ca . ΔT	
		CAUDAL DE AIRE INGRESANTE: Ca [M3/min]	por infiltración (ventilación no controlada)	
			por ventilación mecánica para renovar el aire de los locales	
QT= ΣQc - ΣQ int + Q i/v				

[Kcal/h.m2.°C]

Rt = Rsi + Σ (ei/ λ i) + Rse

Rt: resistencia térmica total [h. m2. °C / (Kcal/h)]


Rsi e Rse: resistencias térmicas superficiales internas y

externas [h. m2. °C / (Kcal/h)]

ei: espesor de cada capa [m)]

λi: coeficiente de conductibilidad térmica (fc del

material) [(Kcal/h)/m. °C]

- Considera en forma sencilla el aporte de la radiación solar en los locales
- la corrección suma o resta un 5 % del total de cargas de externas por Conducción (transmisión en la bibliografía) a cada local según su ORIENTACION
- La Orientación (térmica) de los locales puede ser N- E- O S o ninguna, dependiendo de cual de ellas pierda más calor.
- Para locales orientados al N, NE o NO en el hemisferio sur debemos descontar un 5 % del valor de cargas externas al estar el local favorecido por el aporte solar
- Para locales orientados al S, Se, SO en el hemisferios sur debemos adicionar un 5 % del valor de cargas externas, por estar el local desfavorecido por el sol, es decir con sombra
- Para locales con orientación nula, por ejemplo piso, techo, no aplicamos ninguna corrección.

- Llamado también SUPLEMENTO POR INTERRUPCION DEL SERVICIO
- Consideramos la inercia térmica del sistema de del edificio cuando el régimen de calefacción es alterado, ya sea por detención del sistema durante algunas hora o por disminución de la temperatura
- Agregamos un porcentaje del total de las cargas en función del tiempo de detención del sistema.

		Suplemento
REGIMEN	Ininterrumpido con Ti cte	0%
	Ininterrumpido con disminución de Ti en la noche	7%
	Interrupción de 8 a 12 hs	15%
	Interrupción de 12 a 16 hs	25%

CARGAS INTERNAS: OCUPACIÓN

- Las personas entregan calor a los locales en función de la actividad que realizan
- Debemos calcular la cantidad de personas en cada local y multiplicarlo por la disipación por persona Fc de la actividad

CUADRO 12-I. DISIPACIÓN DE CALOR DE PERSONAS

Grado de actividad	Calor disipado (kcal/h)		Met (kcal/hm²)
	Sensible	Latente	(//////////////////////////////////////
Sentado inactivo	55	35	1
Sentado y trabajo muy liviano de oficina	55	45	1,2
Trabajo liviano	57	60	1,3
Trabajo pesado	80	160	2,7
Trabajo muy pesado	120	200	3,6

- La iluminación genera calor en el interior de los locales.
- Según el criterio del calculista puede o no considerar la iluminación como aporte de calor.
- Algunas actividades comerciales tienen una gran carga interna de iluminación en forma constante como farmacias, joyerías, etc.
- Se debe computar la potencia total de iluminación instalada en watts y transformarla en Kcal/h .

1000 W = 830 Kcal/h

- El aire que entra al local ya sea por infiltración en aberturas o por ventilación mecánica debe ser calentado desde la temperatura exterior a la temperatura interior, para mantener el confort.
- Debemos calcular primero la cantidad de aire exterior que ingresa Ca [m3/h]
 - Método de la rendija
 - Método de las renovaciones horarias
 - Requerimientos de aire exterior por persona, normativa o tabla de recomendaciones, por ejemplo Carrier recomienda en general 13 m3/h. p

CARGAS DE VENTILACIÓN

• Una recomendación:

CUADRO 15-I. REQUERIMIENTOS DE AIRE NUEV (m³/min persona) Aplicaciones	O MÍNIMOS
Lugares de trabajo en general	m³/min pers
Oficinas generales	0,5
Oficinas privadas	0,5
	0,6
Restaurantes y lugares afines (con personas fumando)	0,8
Oficinas privadas (con personas fumando)	0,8
Viviendas	0,5
Ceatros, cines, auditorios	0,6

CARGAS DE VENTILACIÓN

• Luego calculamos el calor que hay que agregarle a este aire exterior

$$Qi/v = 17. Ca. \Delta T$$

DIFERENCIAS ENTRE BT DE INVIERNO Y DE VERANO

INVIERNO	VERANO
La condición de confort es una sola Ti	Las condiciones de confort son dos TBSi y HR i
Se calcula solo Q Sensible	Se calcula Q sensible y C Latente
Los flujos de calor son desde el interior al exterior	Los flujos de calor son desde el exterior al interior
El calculo se realiza con una Te cte., para todo el día	El calculo se realiza con Tbse variable . Es decir la TBS varía a lo largo del día
La única carga externa es la <u>Conducción</u> (transmisión en la bibliografía)	Se incorpora la <u>radiación</u> como carga externa , y ésta es variable a lo largo del día para cada orientación
Se realiza el cálculo en un solo momento del día, cuando la temperatura es mínima	El cálculo de todas las cargas se realiza hora por hora, porque la variación de las cargas depende de la hora y de la orientación
Las cargas internas son NEGATIVAS . Constituyen una	Las cargas internas son POSITIVAS, también son aportes de
AYUDA, son un aporte de calor, pero contraria a los flujos	calor, constituyen una carga con el mismo signo que las
por conducción, es decir, se restan algebraicamente	cargas externas, es decir se suman algebraicamente

INSTALACIONES 2- ARQ. FACULTAD DE INGENIERIA- U N CUYO- ING. CECILIA MONTI