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Materials may have different properties in different directions. As a result, they may
respond differently when subjected to particular conditions in one direction or another.
This aspect of material behaviour is called anisotropy. When modelling anisotropy,
distinction can be made between elastic anisotropy and plastic anisotropy. Elastic
anisotropy refers to the use of different elastic stiffness properties in different directions.
Plastic anisotropy may involve the use of different strength properties in different
directions, as considered in the Jointed Rock model. Another form of plastic anisotropy
is kinematic hardening. The latter is not considered in PLAXIS program.
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major joint
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Figure 4.1 Visualization of concept behind the Jointed Rock model

The Jointed Rock model is an anisotropic elastic perfectly-plastic model, especially
meant to simulate the behaviour of stratified and jointed rock layers. In this model it is
assumed that there is intact rock with an eventual stratification direction and major joint
directions. The intact rock is considered to behave as a transversly anisotropic elastic
material, quantified by five parameters and a direction. The anisotropy may result from
stratification or from other phenomena. In the major joint directions it is assumed that
shear stresses are limited according to Coulomb's criterion. Upon reaching the maximum
shear stress in such a direction, plastic sliding will occur. A maximum of three sliding
directions ('planes') can be defined, of which the first plane is assumed to coincide with
the direction of elastic anisotropy. Each plane may have different shear strength
properties. In addition to plastic shearing, the tensile stresses perpendicular to the three
planes are limited according to a predefined tensile strength (tension cut-off).

The application of the Jointed Rock model is justified when families of joints or joint
sets are present. These joint sets have to be parallel, not filled with fault gouge, and their
spacing has to be small compared to the characteristic dimension of the structure.

Some basic characteristics of the Jointed Rock model are:
* Anisotropic elastic behaviour for intact rock Parameters E|, E,, V|, V», G,
 Shear failure according to Coulomb in three directions, i Parameters c;, ¢; and (;

¢ Limited tensile strength in three directions, i Parameters o;;
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4.1 ANISOTROPIC ELASTIC MATERIAL STIFFNESS MATRIX

The elastic material behaviour in the Jointed Rock model is described by an elastic
material stiffness matrix, D*. In contrast to Hooke's law, the D*-matrix as used in the
Jointed Rock model is transversely anisotropic. Different stiffnesses can be used normal
to and in a predefined direction (‘plane 1'). This direction may correspond to the
stratification direction or to any other direction with significantly different elastic
stiffness properties.

Consider, for example, a horizontal stratification, where the stiffness in horizontal
direction, E,, is different from the stiffness in vertical direction, E,. In this case the
'Plane 1' direction is parallel to the x-z-plane and the following constitutive relations
exist (See: Zienkiewicz & Taylor: The Finite Element Method, 4th Ed.):

j V,0, j
£ 0. Y%, VO, (4.1a)
E, K E,
gyy - - V20, + Y % (41b)
E, E, E,
j V,0 j
£ =- Vi _ Y%y O (4.1c)
E, E, E
g
yxy - Xy (41d)
G,
yyz — O-yz (416)
G,
2(1 + V1 )d-zx

Por = E (4.19)
The inverse of the anisotropic elastic material stiffness matrix, (D*)", follows from the
above relations. This matrix is symmetric. The regular material stiffness matrix D* can

only be obtained by numerical inversion.

In general, the stratification plane will not be parallel to the global x-z-plane, but the
above relations will generally hold for a local (n,s,7) coordinate system where the
stratification plane is parallel to the s-t-plane. The orientation of this plane is defined by
the dip angle and dip direction (see 4.3). As a consequence, the local material stiffness
matrix has to be transformed from the local to the global coordinate system. Therefore
we consider first a transformation of stresses and strains:
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gnst = ég gxyz gxyz = §g’ gnst (428.)
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n, n, 0, s, S,, S, t, t, and t. are the components of the normalized n, s and t-vectors in
global (x,y,z)-coordinates (i.e. 'sines' and 'cosines'; see 4.3). For plane condition
n,=s,=1t =t,=0and ¢, =1.

It further holds that :
R =R R =R 4.5)

A local stress-strain relationship in (n,s,f)-coordinates can be transformed to a global
relationship in (x,y,z)-coordinates in the following way:

o =D ¢ O

Znst st Snst 0 .

gnSf = £n UXYZ B D 5(7 gx)’z = ant 58 gxyz (46)
E st = =, §Xyz O
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Hence,

o.=R'D R ¢ (4.7)

—Xyz o —nst —& —X)Z
Using to above condition (4.5):

o . =R"D R ¢ =D ¢_ o D =R D R 4.8)

= =z

—Xyz =& —nst —e¢ —XVZ =xyz —NZ =xyz =& =nst

Actually, not the D*-matrix is given in local coordinates but the inverse matrix (D*)™.

* 1 N
& st _Qnst = nst E r e -l T s -l
gnst :=(7 gxyz E . §xyz = 53 Qnst £r7 gx)’z - 5” 2’”[ £” QXyZ (49)
gnst = —¢ §xyz E
Hence,

1 w -l . w -l
D =R D R o D =SRD RE @0
=xyz =0 —=nst =0 =Xxyz a_(r —nst =0 E
Instead of inverting the (Q*ns,)'l-matrix in the first place, the transformation is

considered first, after which the total is numerically inverted to obtain the global
material stiffness matrix D ...

4.2 PLASTIC BEHAVIOUR IN THREE DIRECTIONS

A maximum of 3 sliding directions (sliding planes) can be defined in the Jointed Rock
model. The first sliding plane corresponds to the direction of elastic anisotropy. In
addition, a maximum of two other sliding directions may be defined. However, the
formulation of plasticity on all planes is similar. On each plane a local Coulomb
condition applies to limit the shear stress, [IT[l. Moreover, a tension cut-off criterion is
used to limit the tensile stress on a plane. Each plane, i, has its own strength parameters

Ci;(p[;w[ and o-t,l' .

In order to check the plasticity conditions for a plane with local (n,s,)-coordinates it is
necessary to calculate the local stresses from the Cartesian stresses. The local stresses
involve three components, i.e. a normal stress component, 0,, and two independent
shear stress components, 7, and T,.

g,=T' @ (4.11)
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where

g = (O-XX o-yy O-ZZ o-xy

(4.12a)

o, UZX)T (4.12b)

T T = transformation matrix (3x6), for plane i
=1

As usual in PLAXIS, tensile (normal) stresses are defined as positive whereas

compression is defined as negative.

y A

a4

a4

sliding plane

p X

Figure 4.2 Plane strain situation with a single sliding plane and vectors n, s

Consider a plane strain situation as visualized in Figure 4.2. Here a sliding plane is
considered under an angle a; (= dip angle) with respect to the x-axis. In this case the

transformation matrix 7" becomes:

O¢ 2 0  2s¢ 0 00

O O
7" =Us¢c -s¢c 0 _3#+2 0 00O
O O
E 0 00 0 ¢ -s H
where
s = sin a;
Cc=CoS o

(4.13)
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In the general three-dimensional case the transformation matrix is more complex, since
it involves both the dip angle and the dip direction (see 4.3):

2 2 2
O " e 2 nye ny 2, n 2 n n O
, 0
Z = Enx Sx Ny Sy Nz Sz Ny Sy+ny Sx Nz Sy+ny Sz Nz Sx+nx Sz E (414)

an tx ny ty nz tz ny tx+nx ty ny tz+nz ty nz tx+nx tz B
Note that the general transformation matrix, T T for the calculation of local stresses
corresponds to rows 1, 4 and 6 of R, (see Eq. 4.3).

After having determined the local stress components, the plasticity conditions can be
checked on the basis of yield functions. The yield functions for plane i are defined as:

fi=[T,|t0,tang; —¢; (Coulomb) (4.15a)

fi=0,-0,, (0,<c cot@) (Tension cut-off)  (4.15b)

Figure 4.3 visualizes the full yield criterion on a single plane.

Il
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Figure 4.3 Yield criterion for individual plane

The local plastic strains are defined by:

J ag]

Aeg? =)

—J

(4.16)

4-6 PLAXIS Version 8



THE JOINTED ROCK MODEL (ANISOTROPY)

where gj is the local plastic potential function for plane j:

=[t,|+0, tang, - ¢, (Coulomb) (4.17a)

g;=0,-0,; (Tension cut-off) (4.17b)

The transformation matrix, 7, is also used to transform the local plastic strain increments
of plane j, Ag ”;, into global plastic strain increments, Ag”:

Ag” =T, Ag? (4.18)

The consistency condition requires that at yielding the value of the yield function must
remain zero for all active yield functions. For all planes together, a maximum of 6 yield
functions exist, so up to 6 plastic multipliers must be found such that all yield functions
are at most zero and the plastic multipliers are non-negative.

T

T I . 9!
= f°-N <yi>Lep <f> 4.19
fo=1r. ,-Zl 7> § A T (199

< f Og! f
ie < j> _Jt ; c _ j> _Jt
=S z by TID T~ jzl <A
This means finding up to 6 values of 4, 2 0 such that all ;<0 and A;f;=0

When the maximum of 3 planes are used, there are 2° = 64 possibilities of (combined)
yielding. In the calculation process, all these possibilities are taken into account in order
to provide an exact calculation of stresses.

4.3 PARAMETERS OF THE JOINTED ROCK MODEL

Most parameters of the jointed rock model coincide with those of the isotropic Mohr-
Coulomb model. These are the basic elastic parameters and the basic strength
parameters.

Elastic parameters as in Mohr-Coulomb model (see Section 3.3):

E, : Young's modulus for rock as a continuum [KN/m?]

V| . Poisson's ratio for rock as a continuum [-]
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Anisotropic elastic parameters 'Plane 1' direction (e.g. stratification direction):

E, . Young's modulus in 'Plane 1' direction [kN/m?]
G, . Shear modulus in 'Plane 1' direction [KN/m?]
%) :  Poisson's ratio in 'Plane 1' direction [-]

Strength parameters in joint directions (Plane i=1, 2, 3):

e : Cohesion [kN/m?]
o . Friction angle [°]
1} . Dilatancy angle [°]
O, :  Tensile strength [kN/m?]

Definition of joint directions (Plane i=1, 2, 3):

n : Numer of joint directions (1 < n < 3)
a; :  Dip angle [°]
ay; :  Dip direction [°]

Jointed Rock model - <NoName>

General Farameters | Interfaces |

Stiffne rStrength

= LODCE+04 | Kiv/m® Plane 1 |Plane 2 | Plane 3]
vy ) 0.150 C:

2 i (phi} :
By L300E+04 | K/
w (psi)
v (L 0,150
Otl 5
G, 5000.000  kh/m? .
0(2 H

Number of planes: |3 Planes - Advanced...

et | Ok | Cancel | Help |

Figure 4.4 Parameters for the Jointed Rock model
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Elastic parameters

The elastic parameters E; and Vv, are the (constant) stiffness (Young's modulus) and
Poisson's ratio of the rock as a continuum according to Hooke's law, i.e. as if it would
not be anisotropic.

Elastic anisotropy in a rock formation may be introduced by stratification. The stiffness
perpendicular to the stratification direction is usually reduced compared with the general
stiffness. This reduced stiffness can be represented by the parameter E,, together with a
second Poisson's ratio, V,. In general, the elastic stiffness normal to the direction of
elastic anisotropy is defined by the parameters £, and V,.

Elastic shearing in the stratification direction is also considered to be 'weaker' than
elastic shearing in other directions. In general, the shear stiffness in the anisotropic
direction can explicitly be defined by means of the elastic shear modulus G,. In contrast
to Hooke's law of isotropic elasticity, G, is a separate parameter and is not simply
related to Young's modulus by means of Poisson's ratio (see Eq. 4.1d and e).

If the elastic behaviour of the rock is fully isotropic, then the parameters £, and V, can
be simply set equal to £ and v respectively, whereas G, should be set to 2E/(1+V,).

Strength parameters

Each sliding direction (plane) has its own strength properties ¢;, ¢; and 0, ; and dilatancy
angle (. The strength properties ¢; and ¢; determine the allowable shear strength
according to Coulomb's criterion and g, determines the tensile strength according to the
tension cut-off criterion. The latter is displayed after pressing <Advanced> button. By
default, the tension cut-off is active and the tensile strength is set to zero. The dilatancy
angle, {, is used in the plastic potential function g, and determines the plastic volume
expansion due to shearing.

Definition of joint directions

It is assumed that the direction of elastic anisotropy corresponds with the first direction
where plastic shearing may occur ('Plane 1'). This direction must always be specified. In
the case the rock formation is stratified without major joints, the number of sliding
planes (= sliding directions) is still 1, and strength parameters must be specified for this
direction anyway. A maximum of three sliding directions can be defined. These
directions may correspond to the most critical directions of joints in the rock formation.

The sliding directions are defined by means of two parameters: The Dip angle (a,) (or
shortly Dip) and the Dip direction (a,). Instead of the latter parameter, it is also
common in geology to use the Strike. However, care should be taken with the definition
of Strike, and therefore the unambiguous Dip direction as mostly used by rock engineers
is used in PLAXIS. The definition of both parameters is visualized in Figure 4.5.
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Figure 4.5 Definition of dip angle and dip direction

Consider a sliding plane, as indicated in Figure 4.5. The sliding plane can be defined by
the vectors (s,£), which are both normal to the vector n. The vector n is the 'normal' to
the sliding plane, whereas the vector s is the 'fall line' of the sliding plane and the vector
t is the 'horizontal line' of the sliding plane. The sliding plane makes an angle a; with
respect to the horizontal plane, where the horizontal plane can be defined by the vectors
(s*£), which are both normal to the vertical y-axis. The angle a, is the dip angle, which
is defined as the positive 'downward' inclination angle between the horizontal plane and
the sliding plane. Hence, o, is the angle between the vectors s* and s, measured
clockwise from s* to s when looking in the positive ¢-direction. The dip angle must be
entered in the range [0°, 90°].

The orientation of the sliding plane is further defined by the dip direction, a,, which is
the orientation of the vector s* with respect to the North direction (N). The dip direction
is defined as the positive angle from the North direction, measured clockwise to the
horizontal projection of the fall line (=s*-direction) when looking downwards. The dip
direction is entered in the range [0°, 360°].

In addition to the orientation of the sliding planes it is also known how the global (x,y,z)
model coordinates relate to the North direction. This information is contained in the
Declination parameter, as defined in the General settings in the Input program. The
Declination is the positive angle from the North direction to the positive z-direction of
the model.
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declingtio

Figure 4.6 Definition of various directions and angles in the horiziontal plane

In order to transform the local (n,s,f) coordinate system into the global (x,y,z) coordinate
system, an auxiliary angle o3 is used internally, being the difference between the Dip
direction and the Declination:

a; = a, — Declination (4.19)

Hence, a5 is defined as the positive angle from the positive z-direction clockwise to the
s*-direction when looking downwards.

From the definitions as given above, it follows that:

(2,0 [Fsina,sina;0]

n= %1},%= E cosq, B (4.20a)
B.H Bsina,cosa; H
3.0 [Fcosa,sina;[]

s = %y5= —-sinq, % (4.20b)
B.H

osa;[]

0 B (4.20¢)

Bina; H

Below some examples are shown of how sliding planes occur in a 3D models for
different values of a;, a, and Declination:
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ya

01:450
02:00 > X

Declination = 0°

z
Y S
a; =45° /
a, =90° s X
Declination = 0°
z
yp

a; =45°
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Figure 4.7 Examples of failure directions defined by a; , a, and Declination

As it can be seen, for plane strain conditions (the cases considered in Version 8) only a;
is required. By default, a, is fixed at 90° and the declination is set to 0°.
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