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4 THE JOINTED ROCK MODEL  (ANISOTROPY) 

Materials may have different properties in different directions. As a result, they may 
respond differently when subjected to particular conditions in one direction or another. 
This aspect of material behaviour is called anisotropy. When modelling anisotropy, 
distinction can be made between elastic anisotropy and plastic anisotropy. Elastic 
anisotropy refers to the use of different elastic stiffness properties in different directions. 
Plastic anisotropy may involve the use of different strength properties in different 
directions, as considered in the Jointed Rock model. Another form of plastic anisotropy 
is kinematic hardening. The latter is not considered in PLAXIS program. 
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Figure 4.1  Visualization of concept behind the Jointed Rock model 

The Jointed Rock model is an anisotropic elastic perfectly-plastic model, especially 
meant to simulate the behaviour of stratified and jointed rock layers. In this model it is 
assumed that there is intact rock with an eventual stratification direction and major joint 
directions. The intact rock is considered to behave as a transversly anisotropic elastic 
material, quantified by five parameters and a direction. The anisotropy may result from 
stratification or from other phenomena. In the major joint directions it is assumed that 
shear stresses are limited according to Coulomb's criterion. Upon reaching the maximum 
shear stress in such a direction, plastic sliding will occur. A maximum of three sliding 
directions ('planes') can be defined, of which the first plane is assumed to coincide with 
the direction of elastic anisotropy. Each plane may have different shear strength 
properties. In addition to plastic shearing, the tensile stresses perpendicular to the three 
planes are limited according to a predefined tensile strength (tension cut-off). 

The application of the Jointed Rock model is justified when families of joints or joint 
sets are present. These joint sets have to be parallel, not filled with fault gouge, and their 
spacing has to be small compared to the characteristic dimension of the structure.   

Some basic characteristics of the Jointed Rock model are: 

• Anisotropic elastic behaviour for intact rock Parameters E1, E2, ν1, ν2, G2 

• Shear failure according to Coulomb in three directions, i Parameters ci, ϕi and ψi 

• Limited tensile strength in three directions, i Parameters σt,i 



MATERIAL MODELS MANUAL  
 

 
 

4-2 PLAXIS Version 8 

4.1 ANISOTROPIC ELASTIC MATERIAL STIFFNESS MATRIX 

The elastic material behaviour in the Jointed Rock model is described by an elastic 
material stiffness matrix, D*. In contrast to Hooke's law, the D*-matrix as used in the 
Jointed Rock model is transversely anisotropic. Different stiffnesses can be used normal 
to and in a predefined direction ('plane 1'). This direction may correspond to the 
stratification direction or to any other direction with significantly different elastic 
stiffness properties. 

Consider, for example, a horizontal stratification, where the stiffness in horizontal 
direction, E1, is different from the stiffness in vertical direction, E2. In this case the 
'Plane 1' direction is parallel to the x-z-plane and the following constitutive relations 
exist (See: Zienkiewicz & Taylor: The Finite Element Method, 4th Ed.): 
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The inverse of the anisotropic elastic material stiffness matrix, (D*)-1, follows from the 
above relations. This matrix is symmetric. The regular material stiffness matrix D* can 
only be obtained by numerical inversion. 

In general, the stratification plane will not be parallel to the global x-z-plane, but the 
above relations will generally hold for a local (n,s,t) coordinate system where the 
stratification plane is parallel to the s-t-plane. The orientation of this plane is defined by 
the dip angle and dip direction (see 4.3). As a consequence, the local material stiffness 
matrix has to be transformed from the local to the global coordinate system. Therefore 
we consider first a transformation of stresses and strains: 
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nx, ny, nz, sx, sy, sz, tx, ty and tz are the components of the normalized n, s and t-vectors in 
global (x,y,z)-coordinates (i.e. 'sines' and 'cosines'; see 4.3). For plane condition 

0==== yxzz ttsn  and 1=zt .  

It further holds that : 
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A local stress-strain relationship in (n,s,t)-coordinates can be transformed to a global 
relationship in (x,y,z)-coordinates in the following way: 
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Hence,  
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Using to above condition (4.5): 
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Actually, not the D*-matrix is given in local coordinates but the inverse matrix (D*)-1. 
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Instead of inverting the (D*
nst)-1-matrix in the first place, the transformation is 

considered first, after which the total is numerically inverted to obtain the global 
material stiffness matrix D*

xyz. 

4.2 PLASTIC BEHAVIOUR IN THREE DIRECTIONS 

A maximum of 3 sliding directions (sliding planes) can be defined in the Jointed Rock 
model. The first sliding plane corresponds to the direction of elastic anisotropy. In 
addition, a maximum of two other sliding directions may be defined. However, the 
formulation of plasticity on all planes is similar. On each plane a local Coulomb 
condition applies to limit the shear stress,  τ . Moreover, a tension cut-off criterion is 
used to limit the tensile stress on a plane. Each plane, i, has its own strength parameters 

ψφ iii   ,  ,c  and σt,i .  

In order to check the plasticity conditions for a plane with local (n,s,t)-coordinates it is 
necessary to calculate the local stresses from the Cartesian stresses. The local stresses 
involve three components, i.e. a normal stress component, σn, and two independent 
shear stress components, τs and τt. 

σσ  T
ii T =  (4.11) 
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where 

( )Ttsni ττσσ =   (4.12a) 

( )Tzxyzxyzzyyxx σσσσσσσ =   (4.12b) 

T
i

T  = transformation matrix (3x6), for plane i  

As usual in PLAXIS, tensile (normal) stresses are defined as positive whereas 
compression is defined as negative. 
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Figure 4.2  Plane strain situation with a single sliding plane and vectors n, s  

Consider a plane strain situation as visualized in Figure 4.2. Here a sliding plane is 
considered under an angle α1 (= dip angle) with respect to the x-axis. In this case the 
transformation matrix TT becomes: 
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where 

 s = sin α1 

 c = cos α1 
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In the general three-dimensional case the transformation matrix is more complex, since 
it involves both the dip angle and the dip direction (see 4.3):  
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Note that the general transformation matrix, TT, for the calculation of local stresses 
corresponds to rows 1, 4 and 6 of Rσ (see Eq. 4.3). 

After having determined the local stress components, the plasticity conditions can be 
checked on the basis of yield functions. The yield functions for plane i are defined as: 

iinsi cφ=f −+ tanστ  (Coulomb)  (4.15a) 

itn
t
i  f ,σσ −=   ( iiit    c  φσ cot, ≤  ) (Tension cut-off) (4.15b) 

Figure 4.3 visualizes the full yield criterion on a single plane. 
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Figure 4.3  Yield criterion for individual plane 

The local plastic strains are defined by: 
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where gj is the local plastic potential function for plane j: 

jjnjj c = g −+ φστ tan  (Coulomb) (4.17a) 

jtn
t
j = g ,σσ −  (Tension cut-off) (4.17b) 

The transformation matrix, T, is also used to transform the local plastic strain increments 
of plane j, ∆ε  p

j, into global plastic strain increments, ∆ε p: 

p
jj

p T = εε ∆∆     (4.18) 

The consistency condition requires that at yielding the value of the yield function must 
remain zero for all active yield functions. For all planes together, a maximum of 6 yield 
functions exist, so up to 6 plastic multipliers must be found such that all yield functions 
are at most zero and the plastic multipliers are non-negative.  
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This means finding up to 6 values of λi ≥ 0 such that all fi ≤ 0 and λi fi = 0 

When the maximum of 3 planes are used, there are 26 = 64 possibilities of (combined) 
yielding. In the calculation process, all these possibilities are taken into account in order 
to provide an exact calculation of stresses.  

4.3 PARAMETERS OF THE JOINTED ROCK MODEL 

Most parameters of the jointed rock model coincide with those of the isotropic Mohr-
Coulomb model. These are the basic elastic parameters and the basic strength 
parameters. 

Elastic parameters as in Mohr-Coulomb model (see Section 3.3): 

E1  : Young's modulus for rock as a continuum   [kN/m2] 

ν1 : Poisson's ratio for rock as a continuum    [−] 
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Anisotropic elastic parameters 'Plane 1' direction (e.g. stratification direction): 

E2  : Young's modulus in 'Plane 1' direction    [kN/m2] 

G2 : Shear modulus in 'Plane 1' direction    [kN/m2] 

ν2 : Poisson's ratio in 'Plane 1' direction    [−] 

Strength parameters in joint directions (Plane i=1, 2, 3): 

ci : Cohesion       [kN/m2] 

ϕi : Friction angle      [°] 

ψ : Dilatancy angle      [°] 

σt,i : Tensile strength      [kN/m2] 

Definition of joint directions (Plane i=1, 2, 3): 

n : Numer of joint directions (1 ≤ n ≤ 3) 

α1,i : Dip angle       [°] 

α2,i : Dip direction      [°] 

 

Figure 4.4  Parameters for the Jointed Rock model 
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Elastic parameters 
The elastic parameters E1 and ν1 are the (constant) stiffness (Young's modulus) and 
Poisson's ratio of the rock as a continuum according to Hooke's law, i.e. as if it would 
not be anisotropic.  

Elastic anisotropy in a rock formation may be introduced by stratification. The stiffness 
perpendicular to the stratification direction is usually reduced compared with the general 
stiffness. This reduced stiffness can be represented by the parameter E2, together with a 
second Poisson's ratio, ν2. In general, the elastic stiffness normal to the direction of 
elastic anisotropy is defined by the parameters E2 and ν2. 

Elastic shearing in the stratification direction is also considered to be 'weaker' than 
elastic shearing in other directions. In general, the shear stiffness in the anisotropic 
direction can explicitly be defined by means of the elastic shear modulus G2. In contrast 
to Hooke's law of isotropic elasticity, G2 is a separate parameter and is not simply 
related to Young's modulus by means of Poisson's ratio (see Eq. 4.1d and e).  

If the elastic behaviour of the rock is fully isotropic, then the parameters E2 and ν2 can 
be simply set equal to E1 and ν1 respectively, whereas G2 should be set to ½E1/(1+ν1).  

Strength parameters 
Each sliding direction (plane) has its own strength properties ci, ϕi and σt,i and dilatancy 
angle ψi. The strength properties ci and ϕi determine the allowable shear strength 
according to Coulomb's criterion and σt determines the tensile strength according to the 
tension cut-off criterion. The latter is displayed after pressing <Advanced> button. By 
default, the tension cut-off is active and the tensile strength is set to zero. The dilatancy 
angle, ψi, is used in the plastic potential function g, and determines the plastic volume 
expansion due to shearing. 

Definition of joint directions 
It is assumed that the direction of elastic anisotropy corresponds with the first direction 
where plastic shearing may occur ('Plane 1'). This direction must always be specified. In 
the case the rock formation is stratified without major joints, the number of sliding 
planes (= sliding directions) is still 1, and strength parameters must be specified for this 
direction anyway. A maximum of three sliding directions can be defined. These 
directions may correspond to the most critical directions of joints in the rock formation. 

The sliding directions are defined by means of two parameters: The Dip angle  (α1) (or 
shortly Dip) and the Dip direction (α2). Instead of the latter parameter, it is also 
common in geology to use the Strike. However, care should be taken with the definition 
of Strike, and therefore the unambiguous Dip direction as mostly used by rock engineers 
is used in PLAXIS. The definition of both parameters is visualized in Figure 4.5. 
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Figure 4.5  Definition of dip angle and dip direction 

Consider a sliding plane, as indicated in Figure 4.5. The sliding plane can be defined by 
the vectors (s,t), which are both normal to the vector n. The vector n is the 'normal' to 
the sliding plane, whereas the vector s is the 'fall line' of the sliding plane and the vector 
t is the 'horizontal line' of the sliding plane. The sliding plane makes an angle α1 with 
respect to the horizontal plane, where the horizontal plane can be defined by the vectors 
(s*,t), which are both normal to the vertical y-axis. The angle α1 is the dip angle, which 
is defined as the positive 'downward' inclination angle between the horizontal plane and 
the sliding plane. Hence, α1 is the angle between the vectors s* and s, measured 
clockwise from s* to s when looking in the positive t-direction. The dip angle must be 
entered in the range [0°, 90°].  

The orientation of the sliding plane is further defined by the dip direction, α2, which is 
the orientation of the vector s* with respect to the North direction (N). The dip direction 
is defined as the positive angle from the North direction, measured clockwise to the 
horizontal projection of the fall line (=s*-direction) when looking downwards. The dip 
direction is entered in the range [0°, 360°]. 

In addition to the orientation of the sliding planes it is also known how the global (x,y,z) 
model coordinates relate to the North direction. This information is contained in the 
Declination parameter, as defined in the General settings in the Input program. The 
Declination is the positive angle from the North direction to the positive z-direction of 
the model.  
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Figure 4.6  Definition of various directions and angles in the horiziontal plane 

In order to transform the local (n,s,t) coordinate system into the global (x,y,z) coordinate 
system, an auxiliary angle α3 is used internally, being the difference between  the Dip 
direction and the Declination: 

α3 = α2 − Declination (4.19) 

Hence, α3 is defined as the positive angle from the positive z-direction clockwise to the 
s*-direction when looking downwards.  

From the definitions as given above, it follows that: 
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Below some examples are shown of how sliding planes occur in a 3D models for 
different values of α1, α2 and Declination:  
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α1 = 45º 
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Declination = 0º 
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Figure 4.7  Examples of failure directions defined by α1 , α2 and Declination  

As it can be seen, for plane strain conditions (the cases considered in Version 8) only α1 
is required. By default, α2  is fixed at 90º and the declination is set to 0º.  
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