

Facultad de Ingeniería - Universidad Nacional de Cuyo P1- PROGRAMA DE ASIGNATURA						
Asignatura: Arquitecturas Distribuidas						
Profesor Titular:	Osvaldo Marianetti					
Carrera:	Licenciatura en Ciencias de la Computación					
Año: 2023	Semestre: 5	Horas Semestre: 64	Horas Semana: 4			

EXPECTATIVAS DE LOGRO

Al acreditar el espacio curricular, las y los estudiantes serán capaces de:

- Describir la estructura y organización de arquitecturas multihilos, multinúcleo y multiprocesador para comparar dichas arquitecturas en función de sus especificaciones
 - y seleccionar la arquitectura adecuada a distintas aplicaciones de referencia.
- Seleccionar componentes comerciales de sistemas computacionales para determinadas aplicaciones, fundamentando dicha selección en función de la eficiencia, escalabilidad, la confiabilidad y la relación costo/beneficio.
- Caracterizar plataformas de hardware para procesamiento paralelo y procesamiento distribuido en aplicaciones de computación de alto rendimiento y en condiciones de alta disponibilidad.

CONTENIDOS MÍNIMOS

Microprocesadores. Unidades funcionales. Conjunto de instrucciones y extensiones. Arquitecturas multinúcleo y multihilo. Procesadores híbridos. Redes de interconexión. Almacenamiento compartido y distribuido. Seguridad de hardware. Superficie de ataque. Confiabilidad en el hardware de los sistemas computacionales. Computación cuántica. Conceptos y fundamentos

OBJETIVOS

- Distinguir los diferentes paradigmas de programación de arquitecturas de altas prestaciones.
- Relacionar los paradigmas de programación con el hardware que lo implementa.
- Reconocer y utilizar eficientemente los diferentes tipos de herramientas de programación de plataformas paralelas y distribuidas y asociar herramientas de programación con su tipo.
- Distinguir entre procesamiento paralelo y procesamiento distribuido y asociarlo a las herramientas de programación que se utilizan para implementarlo.
- Explicar los conceptos de escalabilidad y eficiencia.
- Estudiar la escalabilidad de un sistema.
- Distinguir y reconocer conceptos habituales en computación de altas prestaciones (ganancia en velocidad, ganancia escalable, etc).

CONTENIDOS

UNIDAD 1: Modelos y Arquitecturas Escalables

1.A. Modelos y Arquitecturas Escalables:

1.A 1. Evolución de las arquitecturas. Arquitecturas Multiprocesador. Arquitecturas Multicore. Hilos. Clusters Beowulf. GPGPU. 1 A. 2. Modelos de arquitecturas paralelas. 1.A.3. Principios de diseño escalable. 1.A.4. Análisis de rendimiento y escalabilidad. Herramientas y servicios.

UNIDAD 2: Redes de Interconexión

2.A. Tipos de redes de interconexión:

2.A.1 Encaminadores: Conmutación, control de flujo y encaminamiento. 2.A.2. Asistentes de comunicación. 2.A.3.Redes para arquitecturas distribuidas. Problemas de Paralelismo y Concurrencia.

UNIDAD 3: Almacenamiento Distribuido

3.A. Necesidades de los datos masivos:

3.A.1. Modelos de almacenamiento compartido. 3.A.2. Almacenamiento Distribuido. 3.A.3. Clusters. Arquitectura de un cluster. Redes para clusters. 3.A.4. Software intermedio. Nociones de MPI y OpenMP 3.A.5. Computación Grid y Cloud. Arquitectura y diseño. 3.A.6. Software intermedio. Virtualización

METODOLOGÍA DE ENSEÑANZA

Exposición presentando el esquema general de contenidos y su organización.

Estudio de casos.

Demostración indirecta.

Resolución de problemas.

Recursos y materiales:

Computadoras personales, software de simulación. Software de información de configuraciones de arquitecturas y de procesadores multinúcleo. Proyector multimedia, textos, guías y material mediado

Actividad	Carga horaria por semestre	
Teoría y resolución de ejercicios simples	48	
Formación Práctica		
Formación Experimental – Laboratorio	16	
Formación Experimental - Trabajo de campo		
Resolución de problemas de ingeniería		
Proyecto y diseño		
Total	64	

BIBLIOGRAFÍA

Bibliografía básica

Autor	Título	Editorial	Año	Ejemplares en biblioteca
Wilians Stallings	Arquitectura y Organización de Computadoras	Prentice Hall	2012	5

Bibliografía complementaria

215/10grana comprenditaria					
Autor	Título	Editorial	Año	Ejemplares en biblioteca	
David Patterson	Computer Organitation and Design MIPS	Morgan Kaufmann	2015		
Murdoca, Heuring	Principles of Computer Architecture	Prentice Hall	2006	2	
K. Hwang, Z. Xu	Scalable Parallel Computing : Technology, Architecture, Programming	McGrawHil I	1998		

EVALUACIONES (S/ Ord. 108-10_CS)

Indicar el sistema de evaluación de la cátedra, en el que se contemplen por ej., metodologías de evaluación, cantidad y calidad de las evaluaciones parciales de proceso y evaluación final (examen oral o escrito, práctica integradora, presentación de trabajos, monografías, coloquios, etc.); **condiciones para la acreditación:** examen final o promoción directa; y otras instancias de evaluación, tales como parciales, presentación de monografías, coloquios, etc.; posibilidad de recuperar algunas instancias de evaluación, cuántas y cuáles y, fundamentalmente, **explicitar los criterios de evaluación**, en concordancia con la Ordenanza 108-10 CS,

Criterios de evaluación:

Para alcanzar la promoción directa o la regularidad el alumno deberá:

- ♦ Cumplir con el 80 % de asistencia.
- ♦ Aprobar los exámenes parciales

Se tomarán TRES exámenes parciales (Los parciales se aprueban con el 70%)

Quienes aprueben esos tres exámenes parciales obtendrán la promoción directa de la signatura.

 Quienes no aprueben los parciales acceden a un examen global recuperatorio al finalizar el cursado. Aprobando este examen se alcanza la regularidad. Quienes regularicen deben rendir un examen final según el programa de examen.

Evaluación de proceso:

- Presentaciones con observación de la conducta.
- ◆ Informe/documentación (ej.: informe procedimental de trabajo)
- Cuestionario para verificar conocimientos
- Evaluación de resultado (exámenes parciales y examen recuperatorio)
- ♦ Test/examen/prueba escrita. Solución de casos.

Criterios de evaluación alumnos libres:

Previo al examen final se rinde un examen escrito con presentación y descripción de un caso de arquitectura paralela.

Rinde un examen final según el programa de examen

Programa de examen

Tema 1: Capítulos 1,2
Tema 2: Capítulos 2,3
Tema 3: Capítulos 3,1

27 de julio de 2023 Osvaldo Marianetti FECHA, FIRMA Y ACLARACIÓN TITULAR DE CÁTEDRA

fue