

	OPERACIONES UNITARIAS	
TP N° 2a	Propiedades de mezclas	

1-. Dados los resultados del siguiente ensayo ASTM obtener la curva corregida:

% recuperado	Temperatura
IBP	85
5	89
10	95
15	103
20	125
30	145
40	155
50	160
60	168
70	173
80	195
85	200
90	203
EP	205

Presión atmosférica observada: 97,26 kPa (730 mm Hg)

% recuperado 96,2; % Residuo: 1,1; % pérdidas: 2,7

2- Consideremos dos curvas ASTM de dos mezclas de composición conocida. Demuestre por qué no se puede extrapolar la curva para obtener el IBP cuando la misma se corrigió por pérdidas. Considere que el componente que no se puede recuperar es pentano (temp ebullición 36,3 ° C).

	Volumen	Temp.ebullición
Componente	(%)	(°C)
hexano	10	69
heptano	45	98,4
octano	65	125,7
nonano	95	150,75

	Volumen	Temp.ebullición
Componente	(%)	(°C)
hexano	10	69
octano	25	125,7
nonano	45	150,75
decano	65	174
dodecano	75	214
hexadecano	95	287,5

3). Consideremos la curva ASTM obtenida del primer ejercicio. A partir de los datos corregidos obtener la curva TBP por el método gráfico de Nelson y por un método analítico (Riazi).

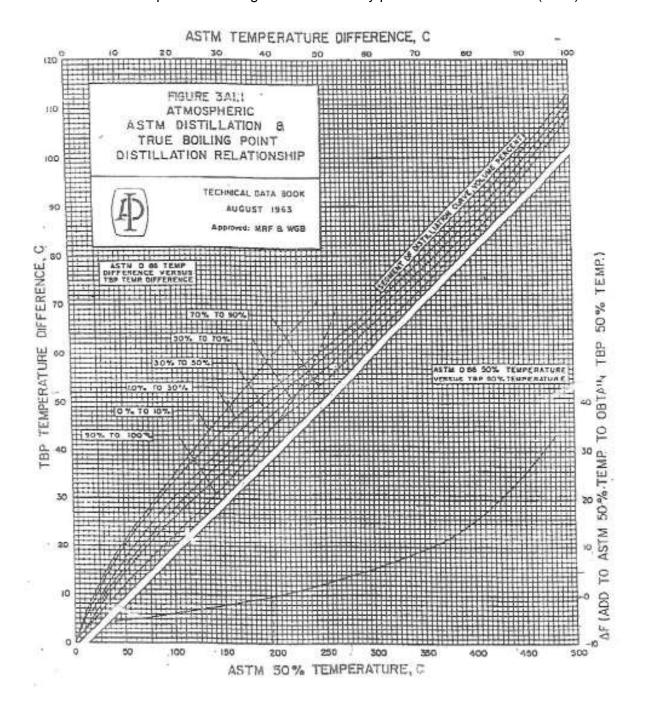


Figura 3.A.1: conversión de ASTM D 86 a TBP

3.2. Método analítico

% distilled volume	Coefficient a	Coefficient b	Temperature D 86, °C	Temperature TBP, °C
0	0.9177	1.0019	36.5	14
10	0.5564	1.0900	54.0	33
30	0.7617	1.0425	77.0	69
50	0.9013	1.0176	101.5	102
70	0.8821	1.0226	131.0	135
90	0.9552	1.0110	171.0	181
95	0.8177	1.0355	186.5	194
			example	

4.5a Conversion of D 86 Test results into an atmospheric TBP (Riazi's method).

4. Estimar Tc y Pc para dodecano usando el método de contribuciones de grupo

Aliphatic groups	d <i>T_{c,}</i>	d₽ _{c₁}
- CH ₃	0.020	0.227
- CH ₂ -	0.020	0.227
> CH -	0.012	0.210
>C<	0.000	0.210
= CH ₂	0.018	0.198
= CH -	0.018	0.198
= C <	0.000	0.198
= C =	0.000	0.198
≖ CH	0.005	0.153
= C -	0.005	0.153