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Abstract 

The Jacobian matrix for machinery systems is challenging due to the kinematic structure, the machine behaviour, the machine configurations, 

and the singularity conditions. In the area of singularity, small velocities in the operational space may result in large velocities in the joint 

space. Therefore the control processes of machines may sometimes run into difficulties, since the inverse mapping from a Cartesian space to a 

joint space may cause problems. For solving the singularity of the kinematic structure, the development of the Jacobian matrix is the first 

priority.  All of the different methods used for the Jacobian calculation are complex and require mathematical tools for symbolic calculation. It 

is important to select the most appropriate method with the minimum complexity for quick and accurate Jacobian matrix calculation. Thus, the 

authors were motivated to choose different procedures for developing the Jacobian matrix. In this study, the most general reconfigurable 

machinery kinematic structure, a remodelled n-DOF Global Kinematic Model, CNC-R GKM, is selected for the Jacobian matrix computation 

analysis. Each joint represents a combination of either rotational and/or translational joints type with any joint positive direction, with total 

number of 36 possible configurations in one joint. Calculation of the Jacobian matrix for this highly complex reconfigurable kinematic model, 

gives a comprehensive and unique results. The selected methods for Jacobian calculation are recursive Newton-Euler method and Vector cross 

multiplication method. The symbolic mathematical tool MAPLE 16 has been used. The comparison between these two calculation procedures 

has been completed with respect to the calculation complexity, and the results have been validated using the new developed CNC-Robot Global 

Kinematic Model (CNC-R GKM). The kinematic model and Jacobian matrix calculation used in this study are applicable in reconfigurable 

robotic and machines in industry, space and health care. 
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1.   Introduction 

    In today's enormous changing world, we struggle with the 

need to adapt to the changes quickly. Industries and 

manufacturers are dealing with the variety and diversity of 

demand. Customers are more and more insisting on unique 

products, which will satisfy their needs.  For this to be 

accomplished, industries have to implement and employ 

reconfigurable systems, which will respond adequate and will 

be sustainable in today's inventive world [1].  

      Modelling a robotic system is a necessary premise to find 

appropriate control approaches. The kinematic of any 

mechanical system is primarily important. These systems, like 

industrial robots and CNC or rapid prototyping machines, 

usually have a problem with large displacements, and that is 

why they are experiencing large variations in geometric 

configuration when they operate even under normal 

conditions. The Jacobian matrix of any machine or 

http://www.sciencedirect.com/science/journal/22128271
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manipulator plays a key role in solving inverse kinematics 

problem, but unfortunately, it loses its full rank at 

singularities. Although there are many algorithms for solving 

Jacobian matrix, still problems arise when a singular 

configuration is encountered on the way to a prescribed 

location in the task space. Newton algorithms are commonly 

used to solve Jacobian matrix for non-redundant robots. The 

only effective approach to handle the singularities is to keep a 

current configuration far away from singular configurations. 

In recent years operating speeds have been increased, and 

consequently, there has been an increase in accelerations and 

inertia forces. In theory, robot manipulators are flexible and 

can be reprogrammed for new tasks, but each robot's 

configuration makes it capable for only a limited number of 

applications. 

     An n-DOF Global Kinematic Model (n-GKM) was 

previously developed [5] for any combination of either 

rotational or translational type of joints and it represents n-

DOF kinematic structure with either rotational or translational 

joints. This unified approach, in principle, can be extended to 

manipulator’s architecture by including the design parameters. 

In this study a remodelled 6-DOF Global Kinematic Model 

(CNC-R GKM) is selected for the Jacobian matrix 

computation analysis. In this case, instead of calculating 

Jacobian for every robot and solving singularities separately, a 

reconfigurable Jacobian matrix has been developed. This 

calculation depends on the complexity of the multibody 

system, and iterative methods will have to be employed in the 

most difficult cases. The selected methods for Jacobian 

calculation are recursive Newton-Euler method and Vector 

method. The emphasis is on the significance of DH 

parameters for designing and building reconfigurable 

multibody system for industry. The solutions can be applied 

to any industrial robot, CNC or rapid prototyping machine, for 

calculating singular condition, consequently optimizing the 

same, and granting sustainable solution for the machinery 

control.  

 

Nomenclature 

CNC-R GKM - CNC- Robot global kinematic model 

D-H - Denavit-Hartenberg parameters 

DOF- Degrees of freedom 

i

i A1
- Homogeneous matrices 

id - Link offset along previous Z to the common normal 

i - Joint angle about Z, from old X to new X 

ia - Link length of the common normal  

i - Twist angle about common normal, from old Z axis to 

new Z axis 

iR - Joints types control parameters 

iT - Joints types control parameters 

SiK - Twist angles sinus control parameter 

CiK - Twist angles cosines control parameter 

i

i 1 - Angular velocity vector 

i

i P1 - Linear velocity vector 

)(0

i

i  -Angular velocity 

)(0

i

i V -Linear velocity 

6

0 R -Rotational matrix  

T

iR )(0 -Rotational transpose matrix 

i

i P1 -Position matrix 

1iZ -Unit vector 

 J  - Jacobian matrix 

X   -End effector velocity 

q   - Joint Velocity 

m- number of independent equations 

n - number of links, number of joint variables 

 

1.1. Literature survey 

 

     The complexity in solving kinematics using direct 

computation is arising from the non-linearity of forward 

kinematics. Upon solving the kinematics for a system, the 

Jacobian matrix is the next priority, for determining singular 

configurations [2].  The Jacobian matrix calculation based 

methods are the most truthful, because they are giving the 

transformation between velocities in the workspace and the 

kinematic structure. Fast solutions can be obtained, due to the 

complexity for defining singularity configurations of 

reconfigurable structures. Different authors are offering 

unified approaches for Jacobian matrix calculation, but all of 

the methods differ in complexity and accuracy. In [5, 6] the 

authors developed the novel n-DOF Global Kinematic Model 

(GKM) for any combination of joints. The structure belongs 

to any of the three surfaces or eight sub surfaces. The total 

number of supported structures is
1)148(48  n

; for a 6DOF 

system, equals to 11,008,560,336 possible kinematic 

structures. The model is validated with 2DOF RR, RT, TR 

and TT structures. The same authors developed 

Reconfigurable Puma-Fanuc kinematic model [7]. The 

Jacobian matrices are calculated for all eight possible 

configurations of a 3 DOF kinematic structures and the 

comparison has been done according to the structures 

complexity in [4]. The proposed catalogue can be used as a 

design tool and for the validation of the reconfigurable based 

solutions. With complex configurations, the difficulty in 

calculation rises, thus beside the use of Maple Software, in 

most cases manual simplification is needed. Djuric et al [8] 

explained Newton-Euler Recursive method for Jacobian 

matrix calculation, also graphical approach for singularity 

analysis is included. Validation is conducted on Fanuc family 

robots, but this work can be extended for CNC-R GKM 

Jacobian matrix and singularity analysis, further to be 

incorporated in any robot configuration.  In [9] several 

Newton based algorithms for inverse kinematics are presented 

and compared. All of them include a Jacobian derivation as 

compulsory. An approximation to the Jacobian matrix is not 

recommended by the authors, because of its weight in further 

recursive computation and trajectory tracking. Duleba and 

Sasiadek [10] present modified Jacobian method of 

transversal passing through singularity configurations for both 

redundant and non-redundant manipulators, but the Jacobian 

in this case is extended, although it still has square form. The 

method is not applicable for hyperbolic singularities, only for 

common quadratic singularities. It enables passing through 

singularities with smooth velocities, without stoppages or 

jerking. The method is evaluated on 3DOF manipulators. 
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Abele et al [11] is describing a method for calculating 

Cartesian stiffness based on Jacobian matrix. Even this 

method allows calculating realistic values for position and 

orientation in the entire Cartesian workspace, it is only for 

industrial robots with three degrees of freedom, and it can 

increase complexity when the workspace is bigger. Kircanski 

[12] describes simple Stanford manipulator inverse kinematic 

solution, where Jacobian is decomposed in four sub matrices 

[3x3], similar like in the Newton-Euler method, which 

reduces computation complexity 5-6 times. The problem of 

Jacobian calculation can be managed with designing the 

manipulators in order to have closed-form of solutions, but 

that leads to significant limitations in their applications. If no 

close-form solutions are available, approximations are 

conducted. Lenarcic and Kosutnik [13] is introducing concept 

for Jacobian and inverse kinematics approximation, applicable 

in arc welding robots, and validated on 6DOF. The method 

has proven accuracy, but in specific cases may introduce 

unsolvable problems in real-time computation. In [14] control 

equations based on manipulator Jacobian matrix are 

presented, which highlights its importance in modelling, 

kinematics, dynamics and control of robotic multibodies. Also 

[15] is raising the importance of Jacobian matrix in dynamics, 

thus unified generation of sparse Jacobian matrix for complex 

multibody systems is obtained. Another approach is 

developed with rearranging the Jacobian matrix [16, 17], 

based on screw theory. The manipulators (Puma type of 

robots) are always in singular configuration, but still can track 

a trajectory. Methods like in [18, 19] are offering reduced 

complexity in computation of the inverse Jacobian matrices. 

A classification of singularity configurations is offered in 

[20], where the chosen model for validation is Kuka KR 15/2. 

After a comparison between Jacobian method and null space 

approach for trajectory tracking, the results are showing that 

Jacobian method is simpler. In all reviewed papers the 

Denavit–Hartenberg (D-H) parameters [3] are used for the 

kinematic modelling.  

 

2. Development of CNC-R GKM 

 

In serial link manipulators there are series of links, 

connecting the end-effector to the base, by actuated joints. 

The homogeneous transformation matrix 
i

i A1 , in the n-DOF 

GKM [5] is giving the relationship between two joints in 

Cartesian coordinate frame, and i  represents the number of 

joints (1, 2,...6). 





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6,5,4,3,2,1i                                         (1) 

     Because each joint has six different positive directions for 

rotations or translations, any joint’s vector can be in positive 

or negative direction in Cartesian space. Thus, this model 

requires development of its own Jacobian matrix. 
 

Rotational Joints:        0,1 
i

T
i

R                                       (2) 

Translational Joints:    1,0 
i

T
i

R                                      (3) 

 

     iR  and iT  are used to control the selection of joint type 

(rotational and/or translational). Their sinus and cosines are 

defined as the joint’s reconfigurable parameters and expressed 

in equations (4) and (5). 
 

isiK sin                            (4)                                                                    

iciK cos                                                                           (5) 

 

    The need of being able to combine any robot manipulator 

and any CNC machine D-H parameters (Fig 1) has resulted in 

development of CNC-R Global Kinematic Model, graphically 

presented in Fig 2. In the literature, there is no evidence of 

kinematic structure that unifies different joint types (rotational 

and translational), and their Jacobian matrix solutions. 

Combined joint types increase the model complexity, but 

provide the knowledge of many machines kinematic, which 

can be used as a design tool for new machine kinematic 

structure, and much more. 

 
Table a) Robot manipulator D-H parameters 

 

 

a) 

 Table b) CNC machine D-H parameters 

 

   

 

 

 

b) 

Fig. 1. Combination of CNC machine b) and robot manipulator a) kinematic 

structures 

        The CNC-R GKM has possible kinematic configurations, 

and each configuration can be modelled with one set of 

reconfigurable parameters, presented in Table 1 and 2. 

Compared to the initial 6-DOF GKM, which can have  
1)148(48  n

 configurations, this kinematic model cannot 

encompass all 11,008,560,336 structures, but includes 

446,071,500 kinematic configurations.  

    

Mitsubishi PA10-6C  D-H Parameters 

Joint Theta D A Alpha 

1 0 317 0 -90 

2 -90 0 450 0 

3 90 0 0 90 

4 0 480 0 -90 

5 0 0 0 90 

6 0 70 0 0 

CNC machine  D-H Parameters 

Joint Theta D A Alpha 

1 90 4715.22 0 90 

2 90 2714.59 0 90 

3 0 0 0 0 

4 180 -2664.68 0 -90 

5 0 0 0 90 

6 0 -281.25 0 0 
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Fig. 2. CNC-R Global Kinematic Model 

  The link twist angle i , in the full reconfigurable kinematic 

model, usually has five different values, and remains 

perpendicularity to the joint’s coordinate frames; however for 

the current CNC-R GKM the D-H parameters are presented in 

Table 1.  

Table 1.DH parameters for 6-DOF CNC-R GKM 

i  i  id  ia  i  

1 1111 DHTR    
1111 dTdR DH   

1a  90  

2 2222 DHTR    
2222 dTdR DH   

2a  0;90;180  
 

3 3333 DHTR    3333 dTdR DH   3a  0;90;180   

4 4DH  
4DHd  

4a  90  

5 5DH  5DHd  5a  90  

6 6DH  6DHd  
6a  0;90  

 

   The control values for CNC-R reconfigurable Global 

Kinematic Model parameters are presented in Table 2. 
 

Table 2.CNC-R GKM reconfigurable parameters 

Control Values    

Joint Sine Cosine Joint Sine Cosine   

1 11 SK  01 CK  4 14 SK  04 CK    

2 2SK  
2CK  5 15 SK  05 CK    

3 3SK  
3CK  6 16 SK  

6CK    

 

        Depending on the purpose of the system, some 

unnecessary postures should not be encountered, thus last tree 

joints are considered as rotational only, but first three either 

translational or rotational.  

   i  has five possible values only at second and third joint. 

This condition produce joint 3 the most complex joint in the 

model, which is named Branch Point. From joint 3 two 

branches are formed, one for group of robots named Robot 

Family Branch, and one for group of CNC machines named 

CNC Family Branch. See Fig 2. This issue results in the 

increase of the complexity in the system. It is extremely 

difficult to simplify or decouple the results in order to get 

optimal solutions.  

 

3. CNC-R GKM Jacobian Matrix  
 

    Differential kinematics describes the analytical relationship 

between the joint motion and the end-effector motion in terms 

of velocities, through the manipulator Jacobian matrix )( nmJ  . 

This Jacobian matrix J, also determines the relationship 

between end-effector velocities Ẋ and joint velocities q  

(equation 6).  
 

q

f
J




 ;   

dt

dx
X  ;   

dt

dq
q                                         (6)  

  
    Results derived from Table 1. and Table 2. are important 

for the development of the model's Jacobian matrix, in 

particular for its simplification. Besides nonlinearity in the 

position and orientation equations, the relationship between 

the joint velocity and the distal end is linear (equations 7). 
 

qJX nm 
)(                                                                   (7) 

 

     Equation (7) can be interpreted as a linear mapping from 

an m-dimensional vector space X, to an n-dimensional vector 

space q. In this case n is the number of joints, and equals to 6, 

also m equals to 6, and it represents the dimension of the end-

effector vector X,  which determines the size of the matrix,

)66( J .   

 

3.1. Newton-Euler recursive method 

 

     The recursive Newton-Euler (RNE) formulation can be 

written in terms of the Denavit-Harternberg parameter [21], 

which performs efficient algorithm computations. This 

method requires angular and linear velocity vectors 

computation. In the CNC-R GKM these vectors are defined 

like in equations (8) for angular and (9) for linear velocity. 

The first tree joints can be either rotational either 

translational, but the last three are rotational, so the linear 

velocity vector for joints 4, 5 and 6 will be zero vector matrix. 
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


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i
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i

d

P



 0

0
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

















0

0

0
1

i
i P 6,5,4i                        (9) 

 

     The original RNE equations for linear and angular 

velocities with respect to the matching joint needs to be 

adapted for this reconfigurable CNC-R GKM kinematic 

model. Angular and linear vector components need to be 
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added in the calculations, because of the complexity, also for 

accuracy, depending on the type of joints (equations 10, 11).  
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     Rotational matrices in these calculations, 1i
i R  are defined 

by the upper left [3x3] sub matrices from the homogenous 

transformation matrices 
i

i A1  (equation 1), correlated with 

each joint and equation (12) is presenting rotational transpose 

matrix. 
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     The position vectors i
i P1

, are defined by the upper right 

[3x1] sub matrices from the homogenous transformation 

matrices 
i

i A1 (equation 1), correlated with each joint. See 

equation (13). 
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     The Jacobian matrix calculated using the Newton-Euler 

method is relative to the end-effector frame. In order to get 

the Jacobian relative to the base frame, this matrix needs to be 

multiplied with the rotational matrix 6
0R . 

 

3.2. Vector cross multiplication method 

 

     The Vector method [22, 23] offers simpler results, 

especially if only kinematics computation is required. The 

method does not require velocities computation (does not 

involve differentiation too), and it is based on link 

transformation matrices found in forward (direct) kinematics 

(equations 14, 15).  
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     Although, 1iZ  unit (generating) vectors computation is 

needed (equation 16), along the motion of the joints expressed 

in base frame coordinates, also pose matrix nP , computation 

is required (equation 17).  
 

0ZRZ ii                                       (16) 

 

1
)

2
...)

1
)

11
(

2
(...(

2
(

1
pp

n
p

n
p

n
p

n
R

n
RRR

n
P 





                      

  6;6,,2,1  ni                                     (17) 

 

    The Jacobian matrix derived using the Vector cross 

multiplication method is relative to the base frame. 

 

4. Comparison of the Jacobian matrices derived by the 

two methods 

 

     The Jacobian matrices derived by the use of the both 

methods are dependant of the rotational and translational 

components, respectively. Because the CNC-R model is very 

complex 6DOF kinematic structure, the results are complex, 

also. Moreover manual decoupling is always necessary, 

especially in Jacobian matrix calculations in order to simplify 

the results derived using both, Newton-Euler and Vector 

methods. 

     The derived results in equations (18) and (19) are 

presenting unified solution for 6DOF CNC-R GKM; also, 

they clearly show the dependence of the joints, from 

rotational and translational components separately. 

    Equation (18) presents the Jacobian matrix NEJ  calculated 

using the Newton-Euler method. Equation (19) presents the 

Jacobian matrix VJ  calculated using the Vector method. 
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    The 6DOF CNC-R GKM kinematic model joints are 

represented using generalized coordinates (equation 20). 
 

iiiii dTandorRq   /                                                        (20) 
 

     By observing these two equations it is clear that they are 

different. These two methods are using two different reference 

frames in the calculation procedure, which generate their 



 Filiposka et al/ Procedia CIRP 00 (2014) 000–000 

differences. The Jacobian matrix calculated using the 

Newton-Euler method is relative to the end-effector frame, 

while the Jacobian matrix derived using the Vector cross 

multiplication method is relative to the base frame. 

  The relation between these two Jacobians is expressed in 

equation (21). 6

0 R  is the rotational matrix for the observed 

system between the base and end-effector frames. 
 

NEV JRJ 6

0                                                                            (21) 

 

 

Conclusion 

 

     With using the two methods, Newton-Euler and Vector 

method, a unified CNC-R GKM Jacobian matrix is derived. 

From Maple 16 calculations it is easy to spot that the 

calculation time is almost 2,5 times greater in Newton-Euler, 

than in Vector method, disregarding the manual 

simplification.  

    If only kinematic solutions are needed, it is concluded that 

for calculation of Jacobian matrix, the Vector method is less 

complex. It does not require computation of linear and 

angular velocities and it directly gives the Jacobian matrix 

relative to the base frame. In contrary, the Newton-Euler 

method gives the Jacobian relative to the end-effector frame, 

and in order to obtain it in base frame coordinates, additional 

computation of appropriate rotational transpose matrix is 

required.  

    However, if the problem requires dynamic computations, 

linear and angular velocities are mandatory, hence it is 

recommended using the Newton-Euler method, ignoring the 

complexity. The authors recommend using Vector method in 

Maple 16 calculation, and they find it more appropriate for 

calculating Jacobian matrix of complex reconfigurable 

multibody machinery systems. See Table 3. 
 

Table 3.Comparison between NE and Vector Method for Jacobian calculation 

 Newton-Euler Method Vector Method 

Consumed memory 260.5M 90.67M 

Calculation time 56.27s 22.26s 
Size of equations Big Medium 

Manual simplifications High Low 

Overall complexity High Medium 
Recommendation for 

Jacobian calculation 

Recommended only if there is 

need for toques/forces 

calculation 

Highly 

recommended 

 

   The next step is to find singular conditions for this complex 

model, and to use that result as a design tool for optimal 

selection of the kinematic stricture related to the desired 

applicant and layout design conditions. 
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