3.1- Una carga puntual q=-14 nC se mueve desde el punto P_1 : (-0,20;0,15;0,50) m, hasta el punto P_2 : (0,35;0,25;-0,10) m en una región donde el campo eléctrico es uniforme: $\mathbf{E}=(300~i-200~j+400~k)$ N/C. Calcular: a) el trabajo del Campo Eléctrico; b) la diferencia de potencial $V_{1\,2}$.

Rta. a) $W_{12} = 1.33 \mu J$; b) $V_{12} = -95.0 V$.

- 3.2- Tres cargas puntuales se encuentran sobre el eje x de un sistema cartesiano: q_1 = 2 μ C en (0 ; 0) cm ; q_2 = 3 μ C en (4 ; 0) cm y q_0 = 1 μ C en (1 ; 0) cm. Calcular el trabajo de la fuerza eléctrica para que la carga q_0 se desplace hasta el punto (4 ; 3) cm. **Rta**. W = 1,44 J
- 3.3- Desde muy lejos, una partícula con carga q=+2.0 nC y $m=2.0.10^{-18}$ kg se mueve directamente hacia otra partícula cargada con Q=+100 nC en estado de reposo. Cuando se encuentran a 20 cm de separación la rapidez es de $4.0.10^6$ m/s. Calcular: a) la distancia mínima de acercamiento de ambas partículas, b) qué rapidez alcanzará la partícula móvil alejándose hacia el infinito. **Rta.** a) d=14 cm b) $v=5.0.10^6$ m/s
- 3.4- Una partícula ionizada de masa m = $1,7.10^{-23} kg$ y carga q = $+1,6.~10^{-19} C$ se lanza de manera normal hacia un plano de carga, con σ = +5,0 nC/m². Si la partícula debe detenerse cuando se encuentre a 1,0 cm del plano, calcular su rapidez cuando esté a 20 cm del plano.

Rta. v = 1005 m/s.

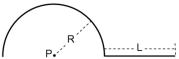
3.5- Dos cargas puntuales de 10 nC cada una, se encuentran estáticas en el eje x de un sistema cartesiano, en x = 0.01 m y x = -0.01 m. Un protón se mueve sobre el eje y positivo hacia el origen de coordenadas. Cuando se encuentra a 0.03 m del origen, lleva una velocidad de 6.10^5 m/s. Calcular: a) la posición a la que llega el protón cuando se detiene; b) la máxima rapidez que alcanza el protón luego de ser repelido.

Rta. a) x=0; y = 2,16 cm; b) $v = 1,2.10^6$ m/s.

3.6- Una línea uniformemente cargada, tiene forma de semicircunferencia con un radio R=0,10m. En el centro de curvatura se coloca una carga puntual $q=3,7~\mu C$. En tal situación la carga puntual experimenta una fuerza de repulsión de 74 mN. Calcular el trabajo de la fuerza eléctrica para alejar la carga hacia el infinito.

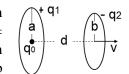
Rta. W = 1.16 mJ.

3.7- Una esfera maciza y cargada, de 5.0 cm de radio está centrada en un sistema de referencia. La diferencia de potencial entre dos puntos A y B es $V_{AB}=1500V$, estando el punto A a 15 cm del centro del sistema y el


punto B a 10 cm del mismo. a) Calcular la carga de la esfera. b) Si la esfera es aislante y está uniformemente cargada, calcular el potencial (respecto al infinito) en un punto a 3,0 cm de su centro.

Rta. a) Q = -50 nC b) $V_{3cm} = -11880 \text{ V}$

3.8- Un cilindro de material aislante muy largo tiene 2,0 cm de radio y está cargado con una densidad volumétrica de carga: $\rho = -60$ nC/m³. Calcular la diferencia de potencial entre la superficie y su eje.


Rta. $V_{0,02-0} = 0,68 \text{ V}$

3.9- La figura muestra una línea de carga formando una semicircunferencia de

radio R = 8,0 cm, conectada con un tramo recto de longitud L = 10 cm. Toda esta línea posee una distribución lineal de carga con λ = 3,0 nC/m. Calcular: a) el potencial resultante en el punto P, b) el lugar geométrico en el plano de la figura, donde poner una carga puntual q = -474 pC para que el potencial en P sea cero. **Rta**. a) Vp = 106,7 V; b) Circunferencia de radio 4 cm.

3.10- Un anillo de radio a = 3.0 cm posee una carga distribuida q1 = +10 nC. A una distancia d = 4.0 cm se encuentra otro anillo de radio b

= 2,0 cm, con carga q2 = -8,0 nC (figura). En el centro del primer anillo se libera una partícula de masa m = $3,6.10^{-15}$ kg, y carga q0 = +1,0 nC. Qué rapidez tendrá la partícula cuando pase por el centro del segundo anillo?

Rta. $v = 42.10^3 \text{m/s}$

3.11- Dos esferas conductoras de 2,0 cm y 6,0 cm de radio están suficientemente alejadas y unidas mediante un conductor delgado. Se le entrega al conjunto de esferas una carga de 40 nC. Considerando que el conductor delgado acumula una carga despreciable, calcular: a) la carga en cada esfera; b) el potencial en cada esfera; c) el campo eléctrico en la superficie de cada esfera.

Rta. a) $q_{(2cm)} = 10 \text{ nC}$; $q_{(6cm)} = 30 \text{ nC}$; b) $V_{(2cm)} = V_{(6cm)} = 4500 \text{ V}$; c) $E_{(2cm)} = 22,5.10^4 \text{ N/C}$; $E_{(6cm)} = 7,5.10^4 \text{ N/C}$

3.12- La función potencial eléctrico en cierta región del espacio es: $V=12\ x^2+12\ y^2-24\ z^2$. a) Encontrar el vector campo eléctrico en el punto P(0,4;0,2;0,3) m. b) Calcular el trabajo que realiza el campo eléctrico para trasladar una carga $q_0=1,0$ nC, desde el punto P hasta el origen de coordenadas.

Rta. a) $\mathbf{E} = (-9.6 ; -4.8 ; 14) \text{ N/C} ; b) \text{ W}_{P-0} = 240 \text{ pJ}.$