TERCER ENCUENTRO. EJERCICIOS PARA EL TALLER Estructura atómica y tabla periódica

Ejercicios integradores:

1) Indique cuáles de estas especies son isoelectrónicas entre sí:

$$S^{-2}$$
, O^{-2} , F^{-} , K^{+} , Br^{-} , Li^{+} , Ar , Cl^{-} , Ne , Al^{+3} , Na^{+} , Ca^{+2}

2) Dadas las siguientes especies:

$$^{16}_{~8}B$$
 , $C^{+1}_{~~(grupo\ I_A,\ período\ 4\ y\ A=\ 39)}$ y $D_{~(A=59,\ Z=\ 27)}$

Nota: Las letras corresponden a una nomenclatura genérica de los elementos y no a sus símbolos químicos. **No utilizar la Tabla Periódica.**

- a) ¿Cuántos protones, neutrones y electrones posee cada una? Escribe la configuración electrónica para cada una de ellas.
- b) Para el electrón cedido por el elemento C, indique los cuatro números cuánticos que definen su ubicación
- c) Ubica los elementos en una Tabla Periódica genérica.
- d) ¿Cuáles son representativos, de transición y de transición interna?
- e) ¿Cuáles son metales, no metales o gases nobles?
- f) Ordénelos (como elementos neutros) según electronegatividad creciente y según radio atómico creciente.

g) ¿
$$_{25}^{59}E$$
 es isótopo de **D**?. ¿Y $_{27}^{57}F$?

h) ¿Cuál es el ión estable que forma $^{27}_{13}H$? Escribe su configuración electrónica. ¿A qué gas noble se asemeja al formar el ión? ¿Cuál tendrá mayor radio, H o su ión?

Idem para
$${}^{32}_{16}G$$
 .

i) Compare los radios iónicos de los iones estables de $^{32}_{16}G$ y $^{40}_{20}I$ con los radios de sus correspondientes átomos neutros.

3) Para el elemento con número atómico 47:

- a. Escriba su configuración electrónica en estado basal
- b. Indique los cuatro números cuánticos para el electrón diferencial
- c. Indique los cuatro números cuánticos para el electrón de valencia
- d. Escriba la configuración electrónica del ión más probable

4) Dadas las siguientes configuraciones electrónicas:

i.
$$1s^2 2s^2 2p^6 3s^1$$

ii.
$$1s^2 2s^2 2p^4$$

Sin utilizar la Tabla Periódica indica:

- a) Grupo y período al que pertenecen los elementos.
- b) Número de protones.
- c) ¿La electronegatividad, potencial de ionización y carácter metálico del elemento del inciso i. será mayor o menor que el del inciso ii?

5) Dado el siguiente esquema de la Tabla Periódica en forma genérica, <u>en la que las letras no representan los símbolos de los elementos</u>, encuadre la letra V si la proposición es verdadera y la F si es falsa:

	I	II										Ш	IV	V	VI	VII	0
1																	
2	Α	В										С			J	L	Q
3	D														К	М	R
4	E					Р			w							N	S
5	F	Z				X				Υ		Т					
6	G												Н	I			
7	U																

6) Los elementos con símbolos genéricos V, W, X, Y y Z responden a las siguientes características:

V: configuración electrónica 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹

W: pertenece al 2 do período grupo III A.

X: Z= 54

Y: configuración electrónica 1s² 2s² 2p⁶ 3s² 3p⁵

Z: es un alcalino térreo del cuarto período.

- a) Ubique los elementos en una Tabla Periódica genérica
- b) Ordene V, W, y Z según el orden creciente de electronegatividad.
- c) ¿Cuáles conducirán la corriente eléctrica?

Respuestas:

- 1- S²⁻, Ar, Cl⁻, K⁺,Ca²⁺
 - F⁻, Ne, Na⁺, O²⁻, Al³⁺

Br⁻

Li+

- 2- a. B= 8p, 8e,8,n $1s^2 2s^2 2p^4$
 - $C^{+}= 19p, 18e, 20n$ $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$ (el $4s^{1}$ lo perde al formar el ión)
 - D= 27p, 27e, 32n $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^8$
 - b. (4, 0, 0, +1/2)
 - c. B está en G VIA, período 2

C está en G IA, Periodo 4

D está en G VIIIB, Periodo 4

- d. B y C representativos; D de transición
- e. C metal alcalino; B no metal; D metal de transición
- f. EN: C<D<B

Radio atómico: B<D<C

- f. E no es isótopo de D; F si es isótopo de D
- g. H forma H³⁺; 1s² 2s² 2p⁶ 3s² 3p⁶ (4s²3d¹ los pierde al formar el ión), se asemeja al Ne; tendrá mayor radio H que H³⁺
- h. G forma G^{2-} ; $1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,4s^23p^6\,$ se asemeja al Ar; tendrá mayo radio G^{2-} que G
- i. Radio iónico de G²⁻ es mayor que el de G y el radio iónico de a I²⁺ es menor que el de I
- 3. a. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^1 4d^{10}$
 - b. (4, 2, 2, -1/2)
 - c. (5, 0, 0, +1/2)
 - d. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 4d^{10}$
- 4. a. i pertenece a G IA, período 3

ii pertenece a G VIA, período 2

- b. i tiene 11 p; ii tiene 8 p
- c. EN ii>i ; PI ii>i; caracter metálico i>ii
- 5. a. F
 - b. V
 - c. V
 - d. F
 - e. F
 - f. F

- g. F
- h. V
- 6. a. V pertenece al GIA, periodo 4; W ocupa el lugar del B; X pertenece al GVIIIA, periodo 5; Y pertenece al G VIIA, periodo 3;

Z ocupa el lugar del Ca

- b. V<W>Z
- c. V y Z sólo fundidos o en solución acuosa