
Robot Modelling and Control in
ROS

Laurent Lequièvre
Juan Antonio Corrales Ramon

Institut Pascal – Clermont-Ferrand - France

ROBOT MODELLING WITH
URDF

2

Index
 Robot Modelling with URDF

 Robot description package
 First URDF model
 Rviz
 Modelling with xacro

 Determining Robot State
 Joint State Publisher
 Robot State Publisher
 tf

3

 In ROS, we define a package for each robot that we want to model:
 Kinematic model: Static transformations between links/joints
 Dynamic model: Mass and inertia of links
 Visual representation: Detailed 3D representation of links
 Collision model: Simplified 3D representation for collision checking

 Normally this robot description package contains the next folders:
 /meshes: CAO files with 3D models (STL or DAE) of links
 /urdf: Models of the robot in URDF/xacro format
 /launch: Scripts for accessing and visualizing the robot model

 Create new package with these sub-folders and copy provided mesh files:
catkin_create_pkg gripper_description roscpp tf geometry_msgs urdf rviz xacro

Robot description package

4

 The ROS meta-package robot_model contains packages needed in robot
modelling:
 urdf: An XML robot description format and parser
 kdl_parser: A parser to create kinematic and dynamic models from urdf
 robot_state_publisher: A publisher of tf for the 3D pose of each link
 resource_retriever: Loader of url-format data files into memory
 collada_urdf, collada_parser...: Transformation tools for other formats

 Additional packages for working with robot models:
 Rviz: 3D visualization tool for ROS that can load URDF files
● xacro: XML macros language for getting shorter and readable XML files

ROS packages in robot modelling

5

 URDF (Unified Robot Description Format) is a XML format for
representing robot models and sensors. It covers:

● Kinematic and dynamic description of the robot
● Visual representation of the robot
● Collision model of the robot

 The urdf package contains a C++ parser for reading files in URDF
format and tools for verifying and visualizing these files.

 URDF presents several limitations:
● Only one robot per file. Multiple robots require the use of xacro.
● Only tree structures can be used. Parallel robots cannot be handled.
● Only rigid links can be used. Flexible elements are not possible.
● Future improvements: URDF 2 or other formats (SDF- Gazebo-...).

Introduction to URDF

6

 The description of a robot consists of a set of links connected by joints:
 <robot>: Root tag of the entire robot
 <link>: Definition of a link with inertial (centre of gravity),

visual and collision frames
● <inertial>: origin, mass, inertia
● <visual>: origin, geometry, material
● <collision>: origin, geometry (shape/mesh)

 <joint>: Definition of a joint between two links
with different types (revolute, prismatic,fixed)
● <parent link=”link1”/>
● <child link=”link2”/>
● <origin> (child frame wrt parent) and <axis>

XML Tags in URDF

7

 Example of a 3-joint planar robot with links of 0.5m.
 Insert initial/end tags: <robot name=”planar_3dof”> </robot>
 Add a “virtual link” to represent the kinematic base frame of the robot:

<link name=”base_link”/>
 Add the first arm link:

● Create the link tag: <link name=”link_1”> </link>
● Add inside the tag the visual data of the link (mesh and material):

<visual>
<geometry>
<mesh filename=”package://gripper_description/meshes/visual/arm_link.stl”/>
<material name=”grey”> <color rgba=”0.7 0.7 0.7 1.0”/> </material>
</geometry>
</visual>

First URDF model

8

 Example of a 3-joint planar robot with links of 0.5m.
● Add inside the tag the collision data of the link (mesh):
<collision><geometry>
<mesh
filename=”package://gripper_description/meshes/collision/arm_link.stl”/>
</geometry></collision>

 Add the information of the joint (parent, child, origin, axis, limits):
<joint name=”joint_1” type=”revolute”>
<parent link=”base_link”> <child link=”link_1”/>
<origin xyz=”0 0 0” rpy=”0 0 0” /> <axis xyz=”0 0 1” />
<limit lower=”-1.57” upper=”1.57” effort=”0” velocity=”0.5” /></joint>

 Add two links (link_2 and gripper) and two joints (joint_2 and joint_3).

First URDF model

9

 Testing the elements of the URDF: check_urdf planar_3dof.urdf

robot name is: planar_3dof
---------- Successfully Parsed XML ---------------
root Link: base_link has 1 child(ren)
 child(1): link_1
 child(1): link_2
 child(1): gripper

If the command is not available: sudo apt-get install liburdfdom-tools

 Visualizing URDF in pdf: urdf_to_graphiz planar_3dof.urdf
To view generated pdf file: evince planar_3dof.pdf

Testing URDF with commands

10

 Create a script (file “display.launch”) for visualizing URDF file in Rviz:
<launch>

<param name=”robot_description” textfile="$(find gripper_description)/urdf/planar_3dof.urdf"/>
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
<node name=”rviz” pkg=”rviz” type=”rviz” args="-d $(find gripper_description)/urdf/urdf.rviz"
required=”true”/>

</launch>
If the package urdf_tutorial is not available: sudo apt-get install ros-indigo-urdf-tutorial

 This script (stored in the “launch” sub-folder) does 3 steps:
 Loads the URDF into the parameter “robot_description”
 Runs nodes to publish the robot state (robot_state/joint_state)
 Starts Rviz with a predefined config file and reads robot_description

● Firstly, rviz config file (urdf.rviz) is not available, create it and store it to urdf folder:
1. add “RobotModel” element in left tree of Rviz

 2. add “TF” element in left tree of Rviz
 3. define Fixed Frame=”base_link” in “Global Options”

Testing URDF in Rviz

11

 By convention, the URDF file of a robot should be stored as a the
parameter “robot_description” in the parameter server for later use.

 The parameter server is a shared, multi-variable dictionary (pairs “name-
value”) stored inside the ROS master and accessible by ROS nodes. Since it
is not optimized, it is used for static data (configuration parameters).
 List all parameters: rosparam list
 Get one parameter value: rosparam get /robot_description
 Delete a parameter: rosparam delete /robot_description
 Set one parameter value (single, list, file, dictionary-as a namespace-):

rosparam set /color “[150,55,210]” #List;
rosparam set /robot_description -t planar_3dof.urdf # Contents of a file
rosparam set /gain/p 10 ; rosparam set /gain/i 20; rosparam set /gain/d 30;

 Store/load all parameters to YAML file: rosparam dump/load parameters.yaml

robot_description as parameter

12

 The flexibility of URDF reduces with complex robot models.
 Xacro (XML Macros) is an XML macro language that improves URDF by

adding:
 Simplicity: Xacro defines macros inside the robot description and reuses them.

Thereby, the code is shorter, more readable and simpler.
 Modularity and reusability: It can include macros from other files so that the

robot model can be organized in blocks that can be reused where necessary.
 Programmability: xacro supports simple programming elements such as

variables, conditional statements, constants and mathematical expressions.
 A xacro file will be read by the xacro program that will run all its macros and

output the result (normally to a final urdf file):
rosrun xacro xacro.py model.xacro > model.urdf

Introduction to xacro

13

 <xacro:include>: Import the content from another file.
<xacro:include filename="$(find gripper_description)/urdf/planar_3dof.urdf.xacro"/>

 <xacro:property>: Definition of constant values for later use.
 Definition of the property:
<xacro:property name="pi" value="3.1415926535897931" />
 Use of the property with ${property_name}, including math operations (+,-,*,/):
<limit lower=”${-pi/2.0}” upper=”${pi/2.0}” effort=”0” velocity=”0.5” />

 <xacro:macro>: Macro with parameters whose body will be replaced when used.
 Definition of the macro:
<xacro:macro name="default_inertial" params="mass">
 <inertial> <mass value=”${mass}”/>
 <inertia ixx=”1.0” ixy=”0.0” ixz=”0.0” iyy=”1.0” iyz=”0.0” izz=”1.0” /> </inertial>
</xacro>

XML Tags in xacro (I)

14

 <xacro:macro>:
 Use of the macro by calling it with its name and filling the required parameters:
<xacro:default_inertial mass=”10”>

 <xacro:macro>: Even entire blocks can be used as parameters for macros.
 Definition: mark block parameter with * and insert it with <xacro:insert_block>:
<xacro:macro name="link_shape" params="name *shape">
 <link name="${name}">
 <visual>
 <geometry>
 <xacro:insert_block name="shape" />
 </geometry>
 </visual>
 </link>
</xacro:macro>
 Use: Expand the xacro by defining normal parameters and block parameters values:
<xacro:link_shape name="base_link">
 <cylinder radius=”0.42” length=”0.01”/>
</xacro:link_shape>

XML Tags in xacro (II)

15

 Create a new xacro file (planar_3dof.xacro) in the urdf folder that includes:
● Definition of xacro properties for: pi, link_length(0.5), base_height(0.1) and vel_max(0.5)
● Definition of xacro macro for link definition with 3 parameters: link_name, visual_mesh and

collision_mesh

● Create a new launch file (display_xacro.launch) for this xacro by modifying the
previous launch. Use the xacro.py program in order to translate xacro into urdf:
<launch>

<param name="robot_description" command="$(find xacro)/xacro.py '$(find
gripper_description)/urdf/planar_3dof.xacro'" />

<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
<node name="rviz" pkg="rviz" type="rviz" args="-d $(find gripper_description)/urdf/urdf.rviz"

required="true" />
</launch>

URDF simplification with xacro

16

Index
 Robot Modelling with URDF

 Robot description package
 First URDF model
 Rviz
 Modelling with xacro

 Determining Robot State
 Joint State Publisher
 Robot State Publisher
 tf

17

Determining robot state

18

Following the robot state in ROS

19

 joint_state_publisher:
 This package publishes sensor_msgs/JointState messages for a robot.
 This package reads the robot_description parameter, finds all non-fixed

joints and publishes a JointState message with all those joints values.
 For controlling JointState with GUI sliders in simulation, define the

parameter use_gui as true by adding this line in the launch file:
<param name="use_gui" value="true" />

 Set manually param if GUI is missing: rosparam set /use_gui true
 Verify joint_state with topic: rostopic echo /joinstates

 robot_state_publisher:
 It uses the URDF from robot_description parameter and the joint

positions from the topic joint_states to calculate forward kinematics
and publish it via tf.

 Tree of tf: rosrun tf view_frames
 tf between two frames: rosrun tf tf_echo base_link gripper

ROBOT CONTROL WITH
ROS_CONTROL

20

Index
 ROS controllers

 Architecture of ros_control
 Controller manager
 Sending commands

21

 ros_control packages are a rewrite of pr2_mechanism package
to make generic controllers for all robots:
 Inputs: Joint state data of the robot (encoders) + Set point (goal).
 Outputs: Joint commands (Effort/Angle) for driving robot to goal.
 Basis: Control loop feedback (PID controllers) to generate output.

 Packages inside ros_control:
 control_toolbox: Common modules (PID and Sine) for controllers.
 controller_interface: Interface base class for controllers.
 controller_manager: Manager to load/unload/start/stop controllers.
 controller_manager_msgs: Message and service definitions for controller manager.
 hardware_interface: Base class for hardware interfaces.
 transmission_interface: Interface classes for the transmission interface.

Introduction to ros_control

22

ros_control

Architecture of ros_control

23

 Goals:
 Reuse control code
 Abstraction of HW

for ROS
 Ready-to-use tools
 Common controllers

for real and simulation

 Sequence of events in ros_control:
 Planning tools ('navigation' in mobile and 'MoveIt!' in manipulators): Establish the

goals (set points) for the controllers according to environment constraints.
 ROS controllers: Feedback mechanism (PID loop) which receives a set point and

control the output (position, effort or velocity) using the feedback from actuators.
 Hardware interfaces: Mediator between ROS controllers and the real hardware or

simulator. It is a software representation of the robot and abstraction of hardware.

ROS controllers

24

 Sensor state reporting:
 joint_state_controller: Publishes sensor_msgs/JointState topics
 imu_sensor_controller: Publishes sensor_msgs/Imu topics
 force_torque_sensor_controller: Publishes geometry_msgs/Wrench topics

 Actuators and joints controllers in different control spaces:
 Effort controllers (fixing torques for joints):

joint_effort_controller, joint_group_effort_controller, joint_position_controller,
joint_velocity_controller

 Position controllers (fixing angles for joints):
joint_position_controller, joint_group_position_controller

 Velocity controllers (fixing angular velocities for joints):
joint_velocity_controller, joint_group_velocity_controller, joint_position_controller

 Trajectory controllers (fixing joint-space trajectories on a group of joints).
 diff_driver_controller (differential drive wheel system with twist commands).

Hardware Interfaces

25

 Abstraction of robot hardware:
 Resource: actuators, joints, sensors
 Interface: set of similar resources
 Robot: set of interfaces

 Allocation of resources
for controllers, with corresponding
hardware interfaces:
 Read-only (Get states of resources):

joint/actuator state,
IMU sensor,
force-torque sensor

 Read-write (Send commands to resources):
position joint/actuator,
velocity joint/actuator,
effort joint/actuator,

Communication between controllers
and hardware interfaces

hardware
interface

resources

Controller manager

26

 It provides the infrastructure to interact with
controllers (as plugins) and change their states:
 load: load a controller (construct and initialize)
 unload: unload a controller (destroy)
 start: start a controller
 stop: stop a controller
 spawn: load and start a controller
 kill: stop and unload a controller
rosrun controller_manager controller_manager <command> <controller_name>

 The hardware interfaces and resources are accessible to the controller manager
(cm) through a RobotHW class instance (robot):
In the control loop, at each step:

1. Read RobotHW state: robot.read()
2. Controller manager updates

all running controllers: cm.update()
3. Write commands to RobotHW: robot.write()

27

Gazebo+
ros_control

URDF extension for robot simulation in Gazebo

28

 In order to simulate in Gazebo, the URDF-xacro has to be completed with :
 <inertial>: The dynamic model of each link (origin/mass/inertia)
 <gazebo> with optional settings for links/joints (moved to rrbot.gazebo):

 <material>: gazebo material (standard URDF materials for Rviz are not applicable)
 <mu1/mu2>: friction coefficients for contact simulation with ODE ...(See gazebo doc for more).

 Add a “world” link with a fixed joint if the base should be ridigly attached.
 <inertial>
 <origin xyz="0 0 ${height1/2}" rpy="0 0 0"/>
 <mass value="${mass}"/>
 <inertia ixx="${mass / 12.0 * (width*width + height1*height1)}"
 ixy="0.0" ixz="0.0" iyy="${mass / 12.0 * (height1*height1 + width*width)}"
 iyz="0.0" izz="${mass / 12.0 * (width*width + width*width)}"/>
</inertial>
<xacro:include filename="$(find rrbot_description)/urdf/rrbot.gazebo"/>
 <link name="world"/>

 <joint name="fixed" type="fixed">
 <parent link="world"/>
 <child link="link1"/>
 </joint>

<gazebo reference="link2">
 <mu1>0.2</mu1>
 <mu2>0.2</mu2>
 <material>Gazebo/Black</material>
</gazebo>

rrbot.xacro

rrbot.gazebo

URDF extension for ros_control (I): transmissions

29

 In order to use ros_control in a robot defined with URDF, we have to add
<transmission> elements for linking actuators joints that contain:↔
 <type>: Type of transmission: Simple Reduction Transmission, Differential Transmission, Four Bar

Linkage Transmission. In Gazebo, only “transmission_interface/SimpleTransmission”.
 <joint>: Name of the joint that the transmission is connected to.

 <hardwareInterface>: Specifies joint-space hardware interface (EffortJointInterface in Gazebo)
 <actuator>: Name of the actuator that the transmission is connected to.

 <mechanicalReduction>: (Optional) Mechanical reduction at transmission.
 <hardwareInterface>: Specifies joint-space hardware interface (not required after Gazebo-Indigo)

 <transmission name="tran1">
 <type>transmission_interface/SimpleTransmission</type>
 <joint name="joint1">
 <hardwareInterface>EffortJointInterface</hardwareInterface>
 </joint>
 <actuator name="motor1">
 <hardwareInterface>EffortJointInterface</hardwareInterface>
 <mechanicalReduction>1</mechanicalReduction>
 </actuator>
 </transmission> rrbot.xacro

URDF extension for ros_control (II): Gazebo Plugin

30

 A Gazebo plugin needs to be added
in the URDF for :
 Parsing the transmission tags

from the URDF
 Loading the appropriate

hardware interfaces in RobotHW
(DefaultRobotHWSim)

 Loading controller manager
<gazebo>
 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
 <robotNamespace>/rrbot</robotNamespace>
 <robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType>
 </plugin>
</gazebo> rrbot.gazebo

Complete ros_control-based package

31

 PID gains and controllers settings
are saved in a yaml file
(config subfolder):

 Launch file:
 1. Load YAML
 2. Load controllers
 3. Load Robot State

publisher (tf)

<launch>
 <rosparam file="$(find rrbot_control)/config/rrbot_control.yaml" command="load"/>

 <node name="controller_spawner" pkg="controller_manager" type="spawner"
respawn="false" output="screen" ns="/rrbot" args="joint_state_controller
joint1_position_controller joint2_position_controller "/>

 <node name="robot_state_publisher" pkg="robot_state_publisher"
type="robot_state_publisher" respawn="false" output="screen"/>
 <remap from=”/joint_states” to=”/rrbot/joint_states” /> </node>
</launch>

rrbot:
 # Publish all joint states
 joint_state_controller:
 type: joint_state_controller/JointStateController
 publish_rate: 50
 # Position controllers
 joint1_position_controller:
 type: effort_controllers/JointPositionController
 joint: joint1
 pid: {p: 100.0, I: 0.01, d: 10.0}
... rrbot_control.yaml

rrbot_control.launch

Example of RRbot

32

 3 Packages:
● /rrbot_description: URDF + xacro files.
● /rrbot_gazebo: worlds + launch files for Gazebo.
● /rrbot_control: YAML files + launch for controllers.

 Execute launch files to initialize system:
 Initialize Gazebo (loads URDF in param/Gazebo) :

roslaunch rrbot_gazebo rrbot_world.launch
● Initialize controllers (loads YAML, controllers and State Publisher) :

roslaunch rrbot_control rrbot_control.launch
If controllers not found: sudo apt-get install ros-kinetic-ros-control ros-kinetic-ros-controllers ros-kinetic-gazebo-ros-control

 Send commands to controllers of joints:
rostopic pub -1 /rrbot/joint1_position_controller/command std_msgs/Float64 "data: 1.5"
rostopic pub -1 /rrbot/joint2_position_controller/command std_msgs/Float64 "data: 1.0"

Tuning PID control gains (I)

33

 Start rqt_gui : rosrun rqt_gui rqt_gui
 Add 2 message publishers (Plugins/Topics) for commands of joints 1 and 2:

/rrbot/joint1_position_controller/command /rrbot/joint2_position_controller/command

 Change frequency to 50Hz and send 0 command to both joints
 Generate sinus command data for joint 1 → Expresssion: sin(i/50)*3.1415

sin(i/rate*speed)*diff + offset

i - the RQT variable for time
rate - the frequency that this expression
is evaluated (50 Hz).
speed - how quick you want the join to actuate.
Start off with just 1 for a slow speed
upper_limit and lower_limits - the joint limits
(-pi and +pi).
diff = (upper_limit - lower_limit)/2
offset = upper_limit-diff

Tuning PID control gains (II)

34

 Add plot for comparing command and state (Plugins/Visualization)
/rrbot/joint1_position_controller/command/data /rrbot/joint1_position_controller/state/process_value

 Add dynamic_reconfigure (Plugins/Configuration) for tuning pid gains :



 Use pan/zoom tool of plot (after disabling “Autoscroll”) for improving scale

PID TUNING PROCEDURE

0. Fix small value for Kp (10) and 0 for Kd/i

1. Increase Kp as high as you can for
matching command/state without inducing
wild oscillation

2. Increase Kd to remove overshoot

3. Adjust Ki to remove any residual offset

GOAL: Get the loop to settle as quickly as
possible with as little overshoot as possible

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34

