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 In ROS, we define a package for each robot that we want to model:
 Kinematic model: Static transformations between links/joints
 Dynamic model: Mass and inertia of links
 Visual representation: Detailed 3D representation of links
 Collision model: Simplified 3D representation for collision checking

 Normally this robot description package contains the next folders:
 /meshes: CAO files with 3D models (STL or DAE) of links
 /urdf: Models of the robot in URDF/xacro format
 /launch: Scripts for accessing and visualizing the robot model

 Create new package with these sub-folders and copy provided mesh files: 
catkin_create_pkg gripper_description roscpp tf geometry_msgs urdf rviz xacro

Robot description package
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 The ROS meta-package robot_model contains packages needed in robot 
modelling:
 urdf: An XML robot description format and parser
 kdl_parser: A parser to create kinematic and dynamic models from urdf
 robot_state_publisher: A publisher of tf for the 3D pose of each link
 resource_retriever: Loader of url-format data files into memory
 collada_urdf, collada_parser...: Transformation tools for other formats

 Additional packages for working with robot models:
 Rviz: 3D visualization tool for ROS that can load URDF files
● xacro: XML macros language for getting shorter and readable XML files

ROS packages in robot modelling
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 URDF (Unified Robot Description Format) is a XML format for 
representing robot models and sensors. It covers:

● Kinematic and dynamic description of the robot
● Visual representation of the robot
● Collision model of the robot

 The urdf package contains a C++ parser for reading files in URDF 
format and tools for verifying and visualizing these files.

 URDF presents several limitations:
● Only one robot per file. Multiple robots require the use of xacro.
● Only tree structures can be used. Parallel robots cannot be handled. 
● Only rigid links can be used. Flexible elements are not possible.
● Future improvements: URDF 2 or other formats (SDF- Gazebo-...).

Introduction to URDF
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 The description of a robot consists of a set of links connected by joints:
 <robot>: Root tag of the entire robot
 <link>: Definition of a link with inertial (centre of gravity), 

visual and collision frames
● <inertial>: origin, mass, inertia
● <visual>: origin, geometry, material
● <collision>: origin, geometry (shape/mesh)

 <joint>: Definition of a joint between two links 
with different types (revolute, prismatic,fixed)
● <parent link=”link1”/>
● <child link=”link2”/>
● <origin> (child frame wrt parent) and <axis>

XML Tags in URDF
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 Example of a 3-joint planar robot with links of 0.5m.
 Insert initial/end tags: <robot name=”planar_3dof”> </robot>
 Add a “virtual link” to represent the kinematic base frame of the robot:

<link name=”base_link”/>
 Add the first arm link: 

● Create the link tag: <link name=”link_1”> </link>
● Add inside the tag the visual data of the link (mesh and material):

<visual>
<geometry> 
<mesh filename=”package://gripper_description/meshes/visual/arm_link.stl”/>
<material name=”grey”> <color rgba=”0.7 0.7 0.7 1.0”/> </material>
</geometry>
</visual>

First URDF model

8



 Example of a 3-joint planar robot with links of 0.5m.
● Add inside the tag the collision data of the link (mesh):
<collision><geometry> 
<mesh 
filename=”package://gripper_description/meshes/collision/arm_link.stl”/>
</geometry></collision>

 Add the information of the joint (parent, child, origin, axis, limits):
<joint name=”joint_1” type=”revolute”>
<parent link=”base_link”> <child link=”link_1”/>
<origin xyz=”0 0 0” rpy=”0 0 0” /> <axis xyz=”0 0 1” />
<limit lower=”-1.57” upper=”1.57” effort=”0” velocity=”0.5” /></joint>

 Add two links (link_2 and gripper) and two joints (joint_2 and joint_3).

First URDF model

9



 Testing the elements of the URDF: check_urdf planar_3dof.urdf

robot name is: planar_3dof
---------- Successfully Parsed XML ---------------
root Link: base_link has 1 child(ren)
    child(1):  link_1
        child(1):  link_2
            child(1):  gripper

If the command is not available: sudo apt-get install liburdfdom-tools

 Visualizing URDF in pdf: urdf_to_graphiz planar_3dof.urdf
To view generated pdf file: evince planar_3dof.pdf 

Testing URDF with commands
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 Create a script (file “display.launch”) for visualizing URDF file in Rviz:
<launch>

<param name=”robot_description” textfile="$(find gripper_description)/urdf/planar_3dof.urdf"/>
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
<node name=”rviz” pkg=”rviz” type=”rviz” args="-d $(find gripper_description)/urdf/urdf.rviz" 
required=”true”/>

</launch>
If the package urdf_tutorial is not available: sudo apt-get install ros-indigo-urdf-tutorial

 This script (stored in the “launch” sub-folder) does 3 steps:
 Loads the URDF into the parameter “robot_description”
 Runs nodes to publish the robot state (robot_state/joint_state)
 Starts Rviz with a predefined config file and reads robot_description

● Firstly, rviz config file (urdf.rviz) is not available, create it and store it to urdf folder:
1. add “RobotModel” element in left tree of Rviz

                                                           2. add “TF” element in left tree of Rviz 
                                                           3. define Fixed Frame=”base_link” in “Global Options”

Testing URDF in Rviz
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 By convention, the URDF file of a robot should be stored as a the 
parameter “robot_description” in the parameter server for later use.

 The parameter server is a shared, multi-variable dictionary (pairs “name-
value”) stored inside the ROS master and accessible by ROS nodes. Since it 
is not optimized, it is used for static data (configuration parameters). 
 List all parameters: rosparam list
 Get one parameter value: rosparam get /robot_description
 Delete a parameter: rosparam delete /robot_description
 Set one parameter value (single, list, file, dictionary-as a namespace-): 

rosparam set /color “[150,55,210]” #List;
rosparam set /robot_description -t planar_3dof.urdf  # Contents of a file
rosparam set /gain/p 10 ; rosparam set /gain/i 20; rosparam set /gain/d 30;

 Store/load all parameters to YAML file: rosparam dump/load parameters.yaml

robot_description as parameter
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 The flexibility of URDF reduces with complex robot models. 
 Xacro (XML Macros) is an XML macro language that improves URDF by 

adding: 
 Simplicity: Xacro defines macros inside the robot description and reuses them. 

Thereby, the code is shorter, more readable and simpler.
 Modularity and reusability: It can include macros from other files so that the 

robot model can be organized in blocks that can be reused where necessary. 
 Programmability: xacro supports simple programming elements such as 

variables, conditional statements, constants and mathematical expressions.
 A xacro file will be read by the xacro program that will run all its macros and 

output the result (normally to a final urdf file):
rosrun xacro xacro.py model.xacro > model.urdf

Introduction to xacro
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 <xacro:include>: Import the content from another file.
<xacro:include filename="$(find gripper_description)/urdf/planar_3dof.urdf.xacro"/>

 <xacro:property>: Definition of constant values for later use.
 Definition of the property:
<xacro:property name="pi" value="3.1415926535897931" />
 Use of the property with ${property_name}, including math operations (+,-,*,/):
<limit lower=”${-pi/2.0}” upper=”${pi/2.0}” effort=”0” velocity=”0.5” />

 <xacro:macro>: Macro with parameters whose body will be replaced when used.
 Definition of the macro:
<xacro:macro name="default_inertial" params="mass">
  <inertial> <mass value=”${mass}”/> 
  <inertia ixx=”1.0” ixy=”0.0” ixz=”0.0” iyy=”1.0” iyz=”0.0” izz=”1.0” /> </inertial>
</xacro>

XML Tags in xacro (I)
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 <xacro:macro>: 
 Use of the macro by calling it with its name and filling the required parameters:
<xacro:default_inertial mass=”10”>

 <xacro:macro>: Even entire blocks can be used as parameters for macros.
 Definition: mark block parameter with * and insert it with <xacro:insert_block>:
<xacro:macro name="link_shape" params="name *shape">
    <link name="${name}">
        <visual>
            <geometry>
                <xacro:insert_block name="shape" />
            </geometry>
        </visual>
    </link>
</xacro:macro>
 Use: Expand the xacro by defining normal parameters and block parameters values:
<xacro:link_shape name="base_link">
    <cylinder radius=”0.42” length=”0.01”/>
</xacro:link_shape>

XML Tags in xacro (II)
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 Create a new xacro file (planar_3dof.xacro) in the urdf folder that includes: 
● Definition of xacro properties for: pi, link_length(0.5), base_height(0.1) and vel_max(0.5)
● Definition of xacro macro for link definition with 3 parameters: link_name, visual_mesh and 

collision_mesh

● Create a new launch file (display_xacro.launch) for this xacro by modifying the 
previous launch. Use the xacro.py program in order to translate xacro into urdf:
<launch>

<param name="robot_description" command="$(find xacro)/xacro.py '$(find 
gripper_description)/urdf/planar_3dof.xacro'" />

<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
<node name="rviz" pkg="rviz" type="rviz" args="-d $(find gripper_description)/urdf/urdf.rviz" 

required="true" />
</launch>

URDF simplification with xacro
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Determining robot state
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Following the robot state in ROS
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 joint_state_publisher:
 This package publishes sensor_msgs/JointState messages for a robot.
 This package reads the robot_description parameter, finds all non-fixed 

joints and publishes a JointState message with all those joints values.
 For controlling JointState with GUI sliders in simulation, define the 

parameter use_gui as true by adding this line in the launch file:
<param name="use_gui" value="true" />

 Set manually param if GUI is missing: rosparam set /use_gui true
 Verify joint_state with topic: rostopic echo /joinstates

 robot_state_publisher:
 It uses the URDF from robot_description parameter and the joint 

positions from the topic joint_states to calculate forward kinematics 
and publish it via tf.

 Tree of tf: rosrun tf view_frames
 tf between two frames: rosrun tf tf_echo base_link gripper



ROBOT CONTROL WITH 
ROS_CONTROL
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 ros_control packages are a rewrite of pr2_mechanism package 
to make generic controllers for all robots:
 Inputs: Joint state data of the robot (encoders) + Set point (goal).
 Outputs: Joint commands (Effort/Angle) for driving robot to goal.
 Basis: Control loop feedback (PID controllers) to generate output.

 Packages inside ros_control:
 control_toolbox: Common modules (PID and Sine) for controllers.
 controller_interface:  Interface base class for controllers.
 controller_manager: Manager to load/unload/start/stop controllers.
 controller_manager_msgs: Message and service definitions for controller manager.
 hardware_interface: Base class for hardware interfaces.
 transmission_interface: Interface classes for the transmission interface.

Introduction to ros_control
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ros_control



Architecture of ros_control
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 Goals:
 Reuse control code
 Abstraction of HW

for ROS
 Ready-to-use tools
 Common controllers

for real and simulation

 Sequence of events in ros_control:
 Planning tools ('navigation' in mobile and 'MoveIt!' in manipulators): Establish the 

goals (set points) for the controllers according to environment constraints.
 ROS controllers: Feedback mechanism (PID loop) which receives a set point and 

control the output (position, effort or velocity) using the feedback from actuators.
 Hardware interfaces: Mediator between ROS controllers and the real hardware or 

simulator. It is a software representation of the robot and abstraction of hardware.



ROS controllers
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 Sensor state reporting:
 joint_state_controller: Publishes sensor_msgs/JointState topics
 imu_sensor_controller: Publishes sensor_msgs/Imu topics
 force_torque_sensor_controller: Publishes geometry_msgs/Wrench topics

 Actuators and joints controllers in different control spaces:
 Effort controllers (fixing torques for joints):

joint_effort_controller, joint_group_effort_controller, joint_position_controller, 
joint_velocity_controller

 Position controllers (fixing angles for joints):
joint_position_controller, joint_group_position_controller

 Velocity controllers (fixing angular velocities for joints):
joint_velocity_controller, joint_group_velocity_controller, joint_position_controller

 Trajectory controllers (fixing joint-space trajectories on a group of joints).
 diff_driver_controller (differential drive wheel system with twist commands).



Hardware Interfaces
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 Abstraction of robot hardware:
 Resource: actuators, joints, sensors
 Interface: set of similar resources
 Robot: set of interfaces

 Allocation of resources 
for controllers, with corresponding
hardware interfaces:
 Read-only (Get states of resources): 

joint/actuator state, 
IMU sensor, 
force-torque sensor

 Read-write (Send commands to resources):
position joint/actuator,
velocity joint/actuator,
effort joint/actuator,

Communication between controllers 
and hardware interfaces

hardware
interface

resources



Controller manager
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 It provides the infrastructure to interact with 
controllers (as plugins) and change their states:
 load: load a controller (construct and initialize)
 unload: unload a controller (destroy)
 start: start a controller
 stop: stop a controller
 spawn: load and start a controller
 kill: stop and unload a controller
rosrun controller_manager controller_manager <command> <controller_name>

 The hardware interfaces and resources are accessible to the controller manager 
(cm) through a RobotHW class instance (robot):
In the control loop, at each step:

1. Read RobotHW state: robot.read()
2. Controller manager updates 

all running controllers: cm.update()
3. Write commands to RobotHW: robot.write()
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Gazebo+
ros_control



URDF extension for robot simulation in Gazebo
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 In order to simulate in Gazebo, the URDF-xacro has to be completed with :
 <inertial>: The dynamic model of each link (origin/mass/inertia) 
 <gazebo> with optional settings for links/joints (moved to rrbot.gazebo):

 <material>: gazebo material (standard URDF materials for Rviz are not applicable)
 <mu1/mu2>: friction coefficients for contact simulation with ODE ...(See gazebo doc for more).

 Add a “world” link with a fixed joint if the base should be ridigly attached.
 <inertial>
      <origin xyz="0 0 ${height1/2}" rpy="0 0 0"/>
      <mass value="${mass}"/>
      <inertia ixx="${mass / 12.0 * (width*width + height1*height1)}" 
                   ixy="0.0" ixz="0.0" iyy="${mass / 12.0 * (height1*height1 + width*width)}" 
                   iyz="0.0" izz="${mass / 12.0 * (width*width + width*width)}"/>
</inertial>
<xacro:include filename="$(find rrbot_description)/urdf/rrbot.gazebo"/>
 <link name="world"/>

  <joint name="fixed" type="fixed">
    <parent link="world"/>
    <child link="link1"/>
  </joint>

<gazebo reference="link2">
   <mu1>0.2</mu1>
   <mu2>0.2</mu2>
   <material>Gazebo/Black</material>
</gazebo>

rrbot.xacro

rrbot.gazebo



URDF extension for ros_control (I): transmissions
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 In order to use ros_control in a robot defined with URDF, we have to add 
<transmission> elements for linking actuators  joints that contain:↔
 <type>: Type of transmission: Simple Reduction Transmission, Differential Transmission, Four Bar 

Linkage Transmission. In Gazebo, only  “transmission_interface/SimpleTransmission”.
 <joint>: Name of the joint that the transmission is connected to.

 <hardwareInterface>: Specifies joint-space hardware interface (EffortJointInterface in Gazebo)
 <actuator>: Name of the actuator that the transmission is connected to.

 <mechanicalReduction>: (Optional) Mechanical reduction at transmission.
 <hardwareInterface>: Specifies joint-space hardware interface (not required after Gazebo-Indigo)

  <transmission name="tran1">
    <type>transmission_interface/SimpleTransmission</type>
    <joint name="joint1">
      <hardwareInterface>EffortJointInterface</hardwareInterface>
    </joint>
    <actuator name="motor1">
      <hardwareInterface>EffortJointInterface</hardwareInterface>
      <mechanicalReduction>1</mechanicalReduction>
    </actuator>
  </transmission> rrbot.xacro



URDF extension for ros_control (II): Gazebo Plugin 
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 A Gazebo plugin needs to be added 
in the URDF for : 
 Parsing the transmission tags 

from the URDF
 Loading the appropriate 

hardware interfaces in RobotHW 
(DefaultRobotHWSim)

 Loading controller manager
<gazebo>
  <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
    <robotNamespace>/rrbot</robotNamespace>
    <robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType>
  </plugin>
</gazebo> rrbot.gazebo



Complete ros_control-based package
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 PID gains and controllers settings 
are saved in a yaml file 
(config subfolder):

 Launch file:
 1. Load YAML
 2. Load controllers
 3. Load Robot State 

publisher (tf)

<launch>
  <rosparam file="$(find rrbot_control)/config/rrbot_control.yaml" command="load"/>

  <node name="controller_spawner" pkg="controller_manager" type="spawner" 
respawn="false" output="screen" ns="/rrbot" args="joint_state_controller 
joint1_position_controller joint2_position_controller "/>

  <node name="robot_state_publisher" pkg="robot_state_publisher" 
type="robot_state_publisher" respawn="false" output="screen"/>
   <remap from=”/joint_states” to=”/rrbot/joint_states” /> </node>
</launch>

rrbot:
  # Publish all joint states
  joint_state_controller:
    type: joint_state_controller/JointStateController
    publish_rate: 50
 # Position controllers
 joint1_position_controller:
   type: effort_controllers/JointPositionController
   joint: joint1
   pid: {p: 100.0, I: 0.01, d: 10.0}
... rrbot_control.yaml

rrbot_control.launch



Example of RRbot
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 3 Packages:
● /rrbot_description: URDF + xacro files.
● /rrbot_gazebo: worlds + launch files for Gazebo.
● /rrbot_control: YAML files + launch for controllers.

 Execute launch files to initialize system:
 Initialize Gazebo (loads URDF in param/Gazebo) :

roslaunch rrbot_gazebo rrbot_world.launch
● Initialize controllers (loads YAML, controllers and State Publisher) : 

roslaunch rrbot_control rrbot_control.launch
If controllers not found: sudo apt-get install ros-kinetic-ros-control ros-kinetic-ros-controllers ros-kinetic-gazebo-ros-control

 Send commands to controllers of joints:
rostopic pub -1 /rrbot/joint1_position_controller/command std_msgs/Float64 "data: 1.5"
rostopic pub -1 /rrbot/joint2_position_controller/command std_msgs/Float64 "data: 1.0"



Tuning PID control gains (I)
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 Start rqt_gui : rosrun rqt_gui rqt_gui
 Add 2 message publishers (Plugins/Topics) for commands of joints 1 and 2: 

/rrbot/joint1_position_controller/command            /rrbot/joint2_position_controller/command

 Change frequency to 50Hz and send 0 command to both joints
 Generate sinus command data for joint 1 → Expresssion: sin(i/50)*3.1415

sin(i/rate*speed)*diff + offset

i - the RQT variable for time
rate - the frequency that this expression 
is evaluated (50 Hz).
speed - how quick you want the join to actuate. 
Start off with just 1 for a slow speed
upper_limit and lower_limits - the joint limits 
(-pi and +pi).
diff = (upper_limit - lower_limit)/2
offset = upper_limit-diff



Tuning PID control gains (II)
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 Add plot for comparing command and state (Plugins/Visualization) 
/rrbot/joint1_position_controller/command/data            /rrbot/joint1_position_controller/state/process_value

 Add dynamic_reconfigure (Plugins/Configuration) for tuning pid gains : 



 Use pan/zoom tool of plot (after disabling “Autoscroll”) for improving scale

PID TUNING PROCEDURE

0. Fix small value for Kp (10) and 0 for Kd/i

1. Increase Kp as high as you can for 
matching command/state without inducing 
wild oscillation

2. Increase Kd to remove overshoot

3. Adjust Ki to remove any residual offset

GOAL: Get the loop to settle as quickly as 
possible with as little overshoot as possible
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