
Introduction to ROS

Laurent Lequièvre
Juan Antonio Corrales Ramon

Institut Pascal – Clermont-Ferrand - France

Index
 Introduction

 Definition
 History
 Robots
 Advantages
 Applications

 Basic components
 Nodes
 Topics
 Services

2

INTRODUCTION

3

 ROS (Robot Operating System) is a
software platform that is able to
build and execute code between
several computers and several robots.

 It provides services similar to an operating system for
working with robots:
 Hardware abstraction
 Device low level control
 Message-based communication
 Commands and utilities
 Package management

Definition of ROS

4

 Initially developed by Standford University in the “STAIR” project in 2007.
 From 2008 to 2013, its development continued mainly due to the contributions of Willow

Garage for their humanoid robot PR2 and the scientific community.
 From 2013, ROS depends on the Open Source Robotics Foundation and its development

continues.
 Exponential increase in the number of repositories (more than 170 in 2013).

History of ROS

5

 Exponential increase in the
number of packages
(more than 3500 in 2012).

 Use in more than 50 robots:
http://wiki.ros.org/Robots

Robots in ROS
https://www.youtube.com/watch?v=PGaXiLZD2KQ

6

 The main features of ROS are :
 Peer-to-peer: It consists of a group of processes, that can be in different systems,

are connected between them in a peer-to-peer topology.
 Multi-language: ROS packages can be implemented in different programming

languages (C++, Python, Octave y LISP). ROS messages are defined in a neutral
lenguage (IDL) that enables the automatic generation of code in different
languages.

 Tools-Based: Micro-kernel design with a high number of small tools. Bigger
stability and better complexity management are possible.

 Light: The ROS system is built in a modular way. All complexity is moved
towards external libraries: easy importation and exportation.

 Open-source: All source is available and most packages have BSD licence
(commercial and non-commercial projects).

Advantages

7

 Main goal of ROS:
 Reusing code and comparing results
 Having more time for research
 Less time for re-implementation
 Current Platform: > 150 People-Year.

Advantages

8

 Main applications of ROS in robotics:
 Visualization and simulation: rviz, stage (2D), gazebo (3D).
 Drivers: camera_drivers, laser_drivers, imu_drivers.
 3D processing: perception_pcl (PCL), laser_pipeline.
 Image processing (2D): vision_opencv (OpenCV), visp.
 Transformations: tf, tf_conversions.
 Navigation (odometry, ego-motion, SLAM): navigation.
 Controllers (position, force, speed, transmissions): ros_control.
 Robot modelling: urdf (XML description of robots).
 Motion planning: MoveIt! (library OMPL).
 Grasping and manipulation: GraspIt!, OpenRAVE.

Applications

9

Index
 Introduction

 Definition
 History
 Robots
 Advantages
 Applications

 Basic components
 Nodes
 Topics
 Services

10

BASIC COMPONENTS

11

 The basic concepts of ROS can be analyzed from 3 different levels:

 File-system level: Elements that are in the hard-drive
 Packages, manifests, meta-packages (stacks), message types (msg) and service types (srv).

 Execution level: ROS process that treat data in a peer-to-peer architecture
 Nodes, master, parameter server, messages, topics, services and bags.

 Community level: Resources for ROS (software and documentation) that are
shared between different groups of users.
 Distributions, repositories, ROS Wiki, mailing lists, ROS Answers and ROS Blog.

ROS Levels

12

 Packages are the basic unit that organize software in ROS.
 They can contain: processes (nodes), libraries, data, configuration files, etc.
 It is a folder inside ROS_ROOT (installation) or ROS_PACKAGE_PATH (workspace)

that contains a file package.xml
 Packages usually have the same structure:

include/: headers for libraries C++.
msg/: Types of messages (msg).
src/: Source code.
srv/: Types of services (srv).
scripts/: executable scripts (normally in Python).
CMakeLists.txt: Cmake file, necessary for compilation of the package.
package.xml: File with XML specification of package meta-data (Two versions → New: <package format="2">)
● <name>, <version>, <description>, <maintainer><license>: General information of the package.
● <build_depend>/<build_export_depend>(v.2): Dependencies for building the package or others based on it.
● <exec_depend>(v.2) /<run_depend>(v.1): Dependencies on other packages for execution of this package.
● <depend>(v.2): All types of dependencies (build, execution, export) on other packages.
● <export>: Definition of meta-packages or external tags (e.g.: inclusion of Gazebo plugins)
● rosdep command (rosdep install [package]) will use it for installing dependencies of the package.

● Command rospack (options 'find, depends, list') and command roscd.

Packages

13

 It is a folder for working with packages: modify, compile and install them.
 It is composed by 4 spaces:

- src: source code files (cpp/py) of packages
- build: intermediate files of CMake
- devel: output files from building process
(executables, libraries, msgs/service code...)
- install: installation of generated files

 Automatic generation of code: catkin
 Creation of catkin workspace:

1. mkdir -p ~/catkin_ws/src
2. cd ~/catkin_ws/src
3. catkin_init_workspace 4. cd ~/catkin_ws/
5. catkin_make 6. source devel/setup.bash

Workspace
workspace_folder/ -- CATKIN WORKSPACE
 src/ -- SOURCE SPACE
 CMakeLists.txt -- The 'toplevel' CMake file
 package_1/
 CmakeLists.txt – CMake file for package_1
 package.xml
 ...
 package_n/
 CMakeLists.txt
 package.xml
 ...
 build/ -- BUILD SPACE
 devel/ -- DEVELOPMENT SPACE
 bin/
 etc/
 include/
 lib/
 share/
 setup.bash
 ...
 install/ -- INSTALL SPACE

14

 ROS uses a text file in the IDL language for describing data types (messages) that are
publish by ROS nodes.

 This description is stored in .msg files inside the msg/ subfolder of a ROS package.

 There are two parts in a .msg file:
Fields (Data types that are sent inside the message):
 Field: data type + name. Example: int32 x
 Data types:

- Basic: bool, int32, float32, float 64, string, time, duration, etc.
- Arrays.
- Other messages. Example: geometry_msgs/PoseStamped.
- Header: ID, timestamp, frame ID.

Constants (Values for interpreting the fields):
 Constant: Type_constant name_constant= constant_value. Example: int32 X=123.

 Automatic generation of message through CmakeLists.txt and package.xml

Types of Messages

15

 ROS uses one text file in a descriptive language for indicating data types of the
request/response of a service.

 This description is stored in ficheros .srv files inside the srv/ subfolder of a ROS
package.

 There are two parts in a .srv file, separated by a line containing “---”:
 Request
 Response

#request
int8 foobar
another_pkg/AnotherMessage

#response
another_pkg/YetAnotherMessage
val uint32 an_integer

 Automatic generation of services through CmakeLists.txt and package.xml

Types of Services

16

 A node is a process that executes a computation task.
 Nodes communicate between them through: services, topics and parameters.
 ROS is composed in the execution level by a set of nodes that communicate between

them and that can be distributed in different machines.
 Nodes are programmed through client libraries: roscpp, rospy y roslisp.
 Command rosnode (options 'list, info, kill, ping') and command rosrun (ex: turtlesim).

Nodes

Master
 Program that enables localization between ROS nodes (similar to DNS).
 Once nodes are localized, the master does not participate and there is peer-to-peer

communication between them.
 It registers topics and services of every node.
 It is initialized by the command roscore.

17

 A topic is a bus with a name through which nodes interchange messages.
 It is a method of asynchronous communication between the nodes:

 Publishers: Nodes that publish messages in a topic.
 Subscribers: Nodes that receive messages through a topic.
 There can be several publishers and subscribers for a same topic.

 The initial connection between subscribers and publishers is done through the Master.
Later, their communication is peer-to-peer through TCP:
1. The publisher registers the topic in the Master.
2. The subscriber asks the topic to the Master.
3. The master gives the URI of the publisher to the subscriber.
4. The subscriber asks the publisher for a topic connection.
5. The publisher informs about the TCP setup.
6. The subscriber connects to the TCP data port.
7. Bidirectional communication of data through TCP is done.

Topics

18

 Example turtlesim:
 Execute publisher: rosrun turtlesim turtle_teleop_key
 Execute subscriber: rosrun turtlesim turtlesim_node
 Communication through topic /turtle1/command_velocity
 Command rqt_graph to see execution graph (nodes+topics):

 Command rostopic (options: list, echo, type, pub):
Examples: rostopic echo /turtle1/cmd_vel ; rostopic type /turtle1/cmd_vel
rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'
rostopic pub /turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

Topics

19

 A service enables a node to send a request (message request) and receive a response
(message response) from other node.

 It s a method of synchronous communication between the nodes (similar to RPC):
 Provider: Node that provides the service (it receives request and sends response).
 Client: Node that asks for the service (it sends request and receives response).

 The initial connection between providers and clients is done through the Master. Later,
the communication is peer-to-peer through TCP:
1. The provider registers the service in the Master.
2. The client asks the Master for the service.
3. The master informs the client about the TCP setup.
4. The client sends the request message to the provider.
5. The provider sends the response message to the client.

Services

20

 Command rosservice (Examples with turtlesim):
 list: List of active services.
 call: Execute the servie with the indicated parameters.
 type: Print the type of service (types request/response).
 find: Find the service.
 Examples: rosservice call clear ; rosservice call spawn 2 2 0.2 ""

 Command rossrv (Examples with turtlesim):
 show: Show the types of the request y response messages of the service.
 package: List the types of services defined in the srv folder of the package.
 Examples: rosservice type spawn| rossrv show

 Command rosmsg (Examples with turtlesim):
 show: Show the fields of the message.
 package: List the types of the messages defined in the msg folder of the package.

 Comando rostopic (opciones: list, echo, type).

Services

21

 Distribution: Group of packages of a version. It is similar to Linux distributions and
makes easy software integration (compatible libraries) and system stability (bugs
management).

 Repository: Web server with ROS packages generated by the same institution. They are
organised in a network where each institution keeps its own repository.

 ROS Wiki: Website with documentation and tutorials. It is the main source of ROS
information (http://www.ros.org/wiki/).

 ROS Blog: News (http://www.ros.org/news/).

 ROS Answers: Forum where users ask and answer questions (http://answers.ros.org).

Concepts of ROS community

22

http://www.ros.org/wiki/

PROGRAMMING EXAMPLES

 catkin_create_pkg [package_name] [depend1] [depend2]…: Command for
generating a new package (indicating name and dependencies). It creates
automatically the package structure (manifest, Cmakelists.txt, makefiles, etc.).

 Create a new package “tutorials” in the workspace:
cd ~/catkin_ws/src
catkin_create_pkg tutorials std_msgs rospy roscpp

 Compile the workspace with the command catkin_make:
1. Go to main folder of the workspace: cd ~/catkin_ws
2. Compile: catkin_make
3.a. Add workspace to ROS (only in current terminal): source ./devel/setup.bash
3.b. For all terminals: echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
 Change to the package folder : roscd tutorials
 If it doesn't work, update list of packages of system with: rospack profile

Create and compile a new ROS package

 Create a message that contains an 64bit integer in the folder /msg:
roscd tutorials
mkdir msg
Copy file positionAngle.msg into msg/ folder

 Update package.xml for generating messages:
<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend> (v2)
<build_export_depend>message_runtime</build_export_depend> (v2)
<depend>std_msgs</depend> DEPENDENCIES ON OTHER MSGS (v2)

 Update CmakeLists.txt for generating messages:
 find_package(catkin REQUIRED COMPONENTS... message_generation std_msgs)

 catkin_package(… CATKIN_DEPENDS message_runtime std_msgs)
 add_message_files(FILES positionAngle.msg …)
 generate_messages(DEPENDENCIES std_msgs)
 If you copy CmakeLists.txt, edit it so that Cmake is forced to compile it.

Create a message

● Copy the code of publisher (file publisher.cpp) in sub-folder /src:
roscd tutorials
cp ~/publisher.cpp ~/catkin_ws/src/tutorials/src/publisher.cpp

 EXPLANATION OF THE CODE OF THE PUBLISHER (publisher.cpp)
 #include “ros/ros.h”

 It includes the common libraries of the ROS system (including access to roscpp functionalities)
 #include “tutorials/positionAngle.h”

 It includes the message “tutorials/positionAngle” that we generated.
 This header was generated automatically from the file “positionAngle.msg”.

 ros::init(argc,argv,”position_publisher”);
 It initializes a ROS node, gives access to command line arguments and names the node (unique name).

 ros::NodeHandle n;
 It creates a handle for accessing the node.
 The first handle starts the node (ros::start()) and the destruction of the last handle finishes it (ros::shutdown()).

Create a topic publisher (I)

 EXPLANATION OF THE CODE OF THE PUBLISHER (publisher.cpp)
 ros::Publisher pub= n.advertise<tutorials::positionAngle>(“position”,1000);

 The node will publish messages of type “tutorials::positionAngle” in topic “/position”.
 The size of the buffer of messages is 1000.
 This method advertises the topic to the master and returns an object “ros::Publisher” that enables:

 Publishing messages of type “tutorias::positionAngle” in the topic “/position” by the method “publish()”.
 Removing topic from the master (unadvertise) when this object is destroyed.

 ros::Rate loop_rate(1);
 It specifies the execution frequency(in Hz) of the main loop of the node, as parameter for Rate::sleep().

 while (ros::ok())
 ros::ok() will return true while the node is active. It will return false in the next cases:

 When the node receives the signal SIGINT (Ctrl+C).
 If other node with the same name substitutes the current node.
 When “ros::shutdown()” is executed from other point of the application.

Create a topic publisher (II)

 EXPLANATION OF THE CODE OF THE PUBLISHER (publisher.cpp)
 tutorials::positionAngle msg;

msg.header.seq++; msg.header.stamp= ros::Time::now();
msg.angle= angle; msg.x= posX; msg.y= posY;
 Create a msg of type “tutorials::positionAngle” and set its fields.

 pub.publish(msg);
 It publishes the message. It is copied immediately in the topic queue and later it will be sent to subscribers.

 ros::spinOnce();
 It invokes all callbacks of the node that have received messages after the previous execution of this sentence.
 It is not required here since there are no callback functions to wait for (topic subscribers or service servers).

 ROS_INFO(“Published message %d: %f, %f, %f”,msg.header.seq, msg.x, msg.y,
msg.angle);
 Similar functionality to printf/std::cout in ROS (roscpp) for showing/storing log messages
 Several level of log messages: ROS_DEBUG, ROS_INFO, ROS_WARN, ROS_ERROR, ROS_FATAL.

Create a topic publisher (III)

 Copy code of subscriber (file subscriber.cpp) in /src folder
 EXPLANATION OF THE CODE OF THE SUBSCRIBER (subscriber.cpp)

void positionCallback(const tutorials::positionAngle::ConstPtr& msg)
{
ROS_INFO(“I heard message %d: [%f, %f, %f]”, msg-> header.seq, msg->x, msg->y,
msg->angle);
}
 Callback function that is invoked to treat each message received through the topic “/position”.
 When ros::spin() is used, the callback is invoked as soon as possible when one message is received.
 When ros::spinOnce() is used, callbacks of messages accumulated after the previous spinOnce are invoked.
 The message is passed as a “boost::shared_ptr” so that no additional memory management is required.

 ros::Subscriber sub= n.subscribe(“position”,1000, positionCallback);
 Subscription to 'position' topic with an input buffer of 1000 messages.
 The callback 'positionCallback' will be called to treat each message previously received and stored in the buffer.
 This method returns a “ros::Subscriber” object. When destroyed, the subscription to the topic will be cancelled.

Create a topic subscriber (I)

 EXPLANATION OF THE CODE OF THE SUBSCRIBER (subscriber.cpp):
 ros::spin()

 It generates an infinite loop that automatically invoke callbacks when messages are received.
 This loop ends in the same conditions when ros::ok() returns false.

 COMPILATION OF BOTH NODES (PUBLISHER AND SUBSCRIBER):
 Add these lines to CMakeLists.txt:

Paths to headers for build dependencies (include_directories) and to export to other packages (catkin_package)
include_directories(include ${catkin_INCLUDE_DIRS})
catkin_package(… INCLUDE_DIRS include …)
For each executable to be generated, indicate cpp files to compile (add_executable)

 add_executable(publisher src/publisher.cpp)
 # Dependencies on message generation targets of the current package and of other catkin packages
 add_dependencies(publisher ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

target_link_libraries(publisher ${catkin_LIBRARIES}) # link with libraries
 # The same 3 lines for subscriber...
 Compile the workspace that contains the package: catkin_make
 EXECUTION OF BOTH NODES: rosrun tutorials publisher

 rosrun tutorials subscriber

Create a topic subscriber (II)

● Create a service that performs the sum of two integers in the folder /srv:
roscd tutorials
mkdir srv
Copy file AddTwoInts.srv in srv subfolder

 Update package.xml to generate messages:
<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend> (v2)
<build_export_depend>message_runtime</build_export_depend> (v2)
<depend>std_msgs</depend> DEPENDENCIES ON OTHER MSGS (v2)

 Update CmakeLists.txt to generate messages:
 find_package(catkin REQUIRED COMPONENTS... message_generation std_msgs)

 catkin_package(… CATKIN_DEPENDS message_runtime std_msgs…)
 add_service_files(FILES AddTwoInts.srv …)
 generate_messages(DEPENDENCIES std_msgs)
 Verify that ROS finds the new service: rossrv show tutorials/AddTwoInts

Create a service

 Copy source file (add_two_ints_server.cpp) to the src/ subfolder of our package:
roscd tutorials
cp ~/add_two_ints_server.cpp
~/catkin_ws/src/tutorials/src/add_two_ints_server.cpp

 EXPLANATION OF THE SERVICE PROVIDER (add_two_ints_server.cpp):
 #include “tutorials/AddTwoInts.h”

 Include library automatically generated with file srv.
 bool add(tutorials::AddTwoInts::Request &req, tutorials::AddTwoInts::Response &res)

{
res.sum= req.a + req.b;
…
return true;

} Callback function that is invoked each time a request for the service “AddTwoInts” is received by the server

Create a service provider and client (I)

 EXPLANATION OF SERVICE PROVIDER (add_two_ints_server.cpp):
 ros::ServiceServer service= n.advertiseService(“add_two_ints”, add);

 It advertises the service “add_two_ints” to the master.
 The second parameter is the callback of the service that is called for receiving the request from the client and

generating and sending back the response.
 When all the copies of the ServiceServer are destroyed, the service is unadvertised and callback stops.

 Copy the code of the service client (file add_two_ints_client.cpp) in /src :
roscd tutorials
cp ~/add_two_ints_client.cpp ~/catkin_ws/src/tutorials/src/add_two_ints_client.cpp

 EXPLANATION OF SERVICE CLIENT (add_two_ints_client.cpp):
 ros::ServiceClient client= n.serviceClient <tutorials::AddTwoInts>(“add_two_ints”);

 Create a client of service “add_two_ints”
 The object “ros::ServiceClient” will be used to invoke the service (sending the request message to the server).

Create a service provider and client (II)

 EXPLANATION OF SERVICE CLIENT (add_two_ints_client.cpp):

 tutorials::AddTwoInts srv;
srv.request.a= atoll(argv[1]);
srv.request.b= atoll(argv[2]);
 We create an object from the class of the service: tutorials::AddTwoInts
 This object will contain two members (request y response). The request should be completed before calling the

service while the response will be completed later by the server after the execution of the service.

 if(client.call(srv))
 This method invokes the service: it sends the request to the service.
 It is blocking: the client will only continue its execution when the service call is done (with success or not).
 If the service is executed correctly:

 The method “call” returns true.
 The member “srv.response” will continue the response message from the server (provider).

Create a service provider and client (III)

 COMPILATION OF SOURCE CODE OF BOTH NODES:
 Add the next lines to the CMakeLists.txt of the package:

add_executable(add_two_ints_server src/add_two_ints_server.cpp)
add_dependencies(add_two_ints_server ${${PROJECT_NAME}_EXPORTED_TARGETS}
${catkin_EXPORTED_TARGETS})
target_link_libraries(add_two_ints_server ${catkin_LIBRARIES})
add_executable(add_two_ints_client src/add_two_ints_client.cpp)
add_dependencies(add_two_ints_client ${${PROJECT_NAME}_EXPORTED_TARGETS}
${catkin_EXPORTED_TARGETS})
target_link_libraries(add_two_ints_client ${catkin_LIBRARIES})

 Compile the workspace containing the package: catkin_make

 SERVICE EXECUTION:
 rosrun tutorials add_two_ints_server
 rosrun tutorials add_two_ints_client 1 3

Create a service provider and client (IV)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35

