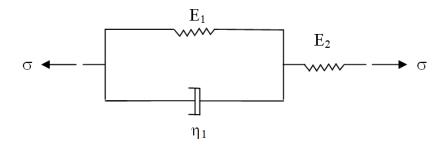
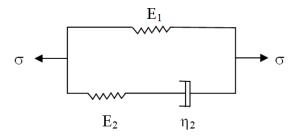
MATERIALES

Trabajo Práctico: Viscoelasticidad


Problema 1: Resumir en una tabla los resultados de los ensayos de Creep, relajación y velocidad de deformación constante, para los modelos de Maxwell y Kelvin. Indicar: ecuación diferencial, solución para cada ensayo y valores particulares para t=0 y t=∞.

Problema 2: Realizar una crítica breve de los resultados que se han resumido en el Problema 1.


Problema 3: Escribir las funciones de fluencia J(t) y relajación E(t) para los modelos de Maxwell y Kelvin.

Problema 4: Investigar y describir brevemente al menos una aplicación al modelado de materiales de los modelos reológicos viscoelásticos de: a) Maxwell, b) Kelvin, c) sólido lineal estándar, y d) Maxwell generalizado.

Problema 5: Para el sólido lineal estándar, cuyo esquema se indica en la figura, deducir la ecuación diferencial. Obtener la solución para los ensayos de Creep y Relajación. En ambos casos graficar la respuesta y particularizar para t=0 y $t=\infty$.

Problema 6: Para el modelo de Maxwell generalizado de 1 rama, cuyo esquema se indica en la figura, deducir la ecuación diferencial. Obtener la solución para los ensayos de Creep y Relajación. En ambos casos graficar la respuesta y particularizar para t=0 y $t=\infty$.

Problema 7: Para el modelo constitutivo del problema 5 calcular la respuesta para ϵ_0 = 0.01 para el intervalo t = [0, 20 seg.]. Utilizar E_1 = 4 N/mm², E_2 = 10 N/mm² y tiempos intrínsecos τ = 1, 5, 10 y 20 segundos, respectivamente. Graficar la respuesta y discutir los resultados obtenidos.

Problema 8: Repetir el análisis del problema 6 para una tensión inicial $\sigma_0 = 0.01$.

Problema 9: Utilizando el método de superposición, calcular la respuesta del modelo de Maxwell para una carga $\sigma(t) = \sigma_0$ en el intervalo [0,2] y $\sigma(t) = 2 \sigma_0$ en el intervalo [2,4]. Graficar la respuesta.