
CAMBIOS RESPECTO DEL MÉTODO AASHO '72

Los cambios respecto del método AASHO `72 son:

1. El valor soporte de la subrasante (CBR de SR), es reemplazado por el MR (módulo resiliente). Este se obtiene de ensayos. Se usa una probeta igual a la del ensayo triaxial de resistencia al corte, confinada lateralmente para simular las condiciones en el terreno. Se aplica una carga de compresión dinámica de función sinusoidal aplicando pulsos de carga y descarga, graficando los resultados.

CAMBIOS RESPECTO DEL MÉTODO AASHO '72

Durante pruebas de carga repetida se observa que después de un cierto número de ciclos de carga, el módulo llega a ser aproximadamente constante y la respuesta del suelo puede asumirse como elástica. Al módulo que permanece constante se le llama módulo de resiliencia. Este concepto aplica tanto para suelos finos como para materiales granulares. Así entonces, el concepto de módulo de resiliencia está ligado invariablemente a un proceso de carga repetida.

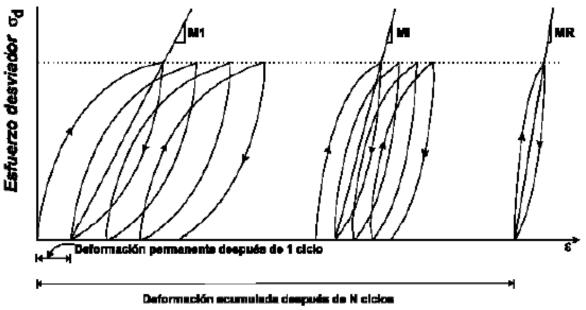


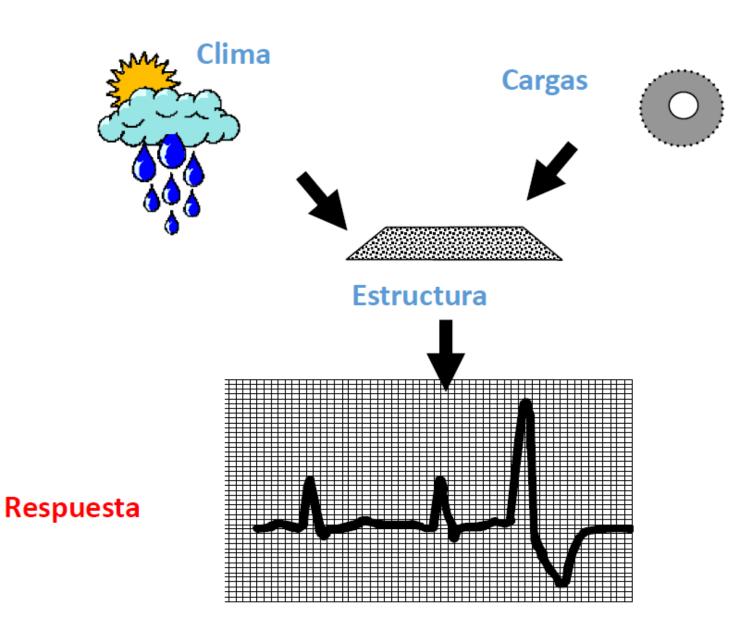
Figura 2. Mecanismo de deformación permanente en los firmes

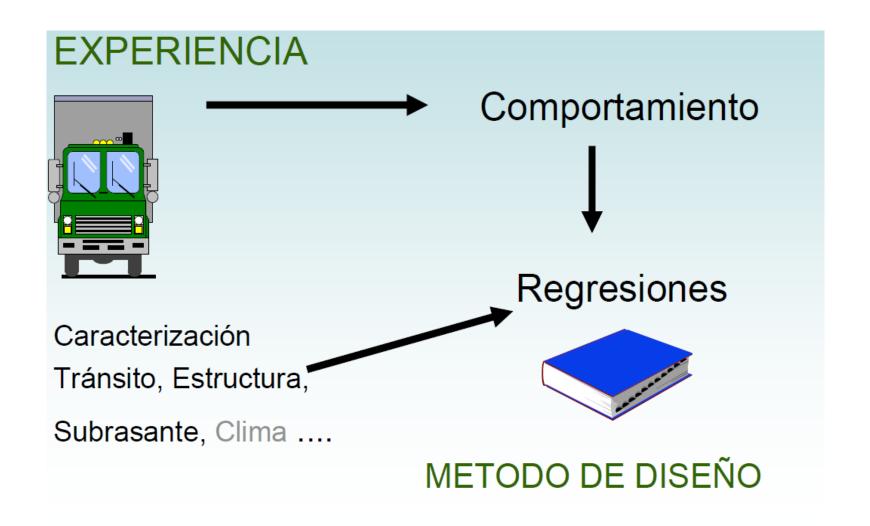
CAMBIOS RESPECTO DEL MÉTODO AASHO '72

CAMBIOS RESPECTO DEL MÉTODO AASHO '72

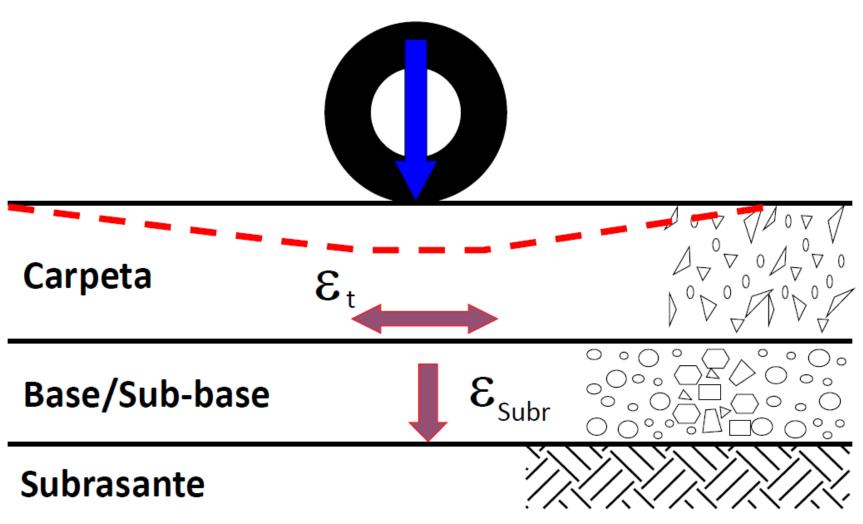
Este ensayo se realiza para las distintas **condiciones de humedad** que tiene el suelo en el año, **y se pondera** \rightarrow **MR**.

Si no se puede hacer este ensayo debido a su alto costo, existen curvas que relacionan un CBR con el MR (para CBR < $10\% \rightarrow MR = 105$ CBR).


El MR tiene en cuenta las modificaciones que se producen en el suelo de fundación con el tiempo, debido principalmente a los cambio de humedad.


2. Se introduce en la fórmula del número estructural, SN, un coeficiente de drenaje (m_i). Estos se obtienen de una tabla en función de las características de drenaje de cada capa. Cuanto mejor es el drenaje, mayor es m_i y menores los espesores D_i.

$$SN_c^3 = a_1 \cdot D_1 + a_2 \cdot D_2 \cdot m_2 + a_3 \cdot D_3 \cdot m_3$$

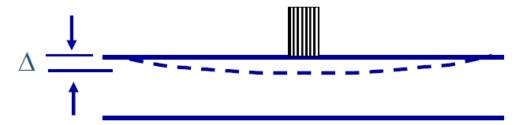

CAMBIOS RESPECTO DEL MÉTODO AASHO '72

- 3. Se deja sin efecto el FR (factor regional de clima). En realidad la influencia del clima se tiene en cuenta al obtener el MR ponderado de todo el año y al considerar las condiciones de drenaje con los m_i.
- 4. Se considera la **pérdida de serviciabilidad** en función de los **efectos ambientales** (hinchamientos o la acción de las heladas) y de los **efectos del tránsito.**
- 5. Se introduce el concepto de **CONFIABILIDAD (R).** En el método **AASHO '72** los resultados correspondían a condiciones medias de la experiencia y por lo tanto se podría **suponer una confiabilidad del orden del 50%.**
 - Con este método se puede trabajar con mayores grados de confiabilidad (90% 95%), es decir que solo el 10% o el 5% del pavimento tendrán un IS inferior al admisible al fin de la vida útil.

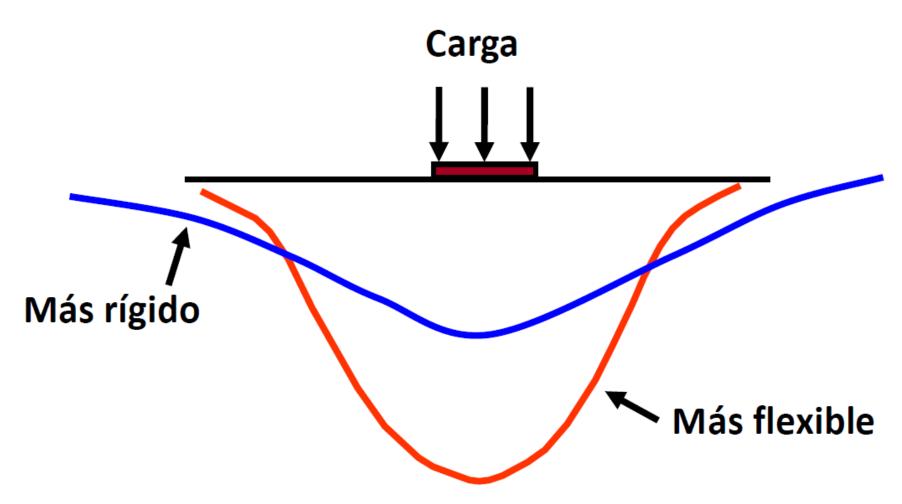
RESPUESTA BAJO CARGAS

RESPUESTA BAJO CARGAS

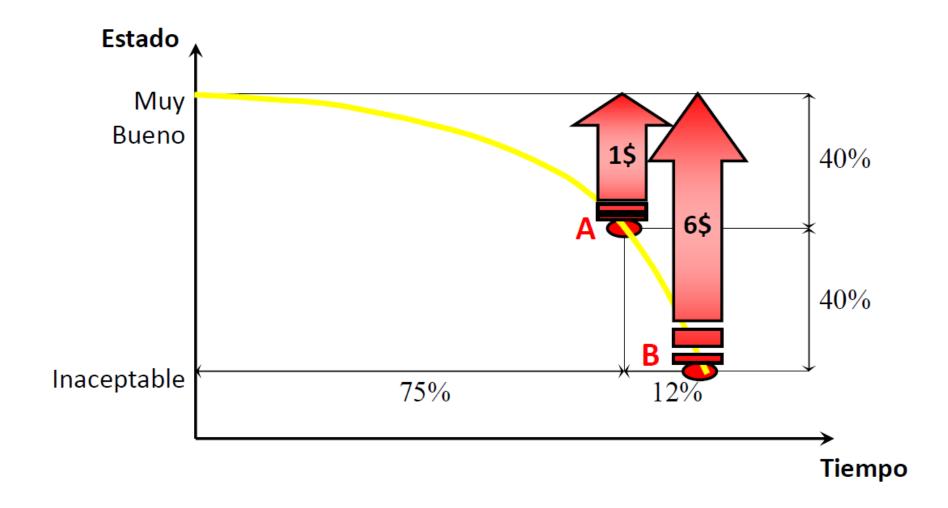
- Tensión
 - Fuerza por unidad de superficie (MPa, psi)
 - Flexión, corte, axial

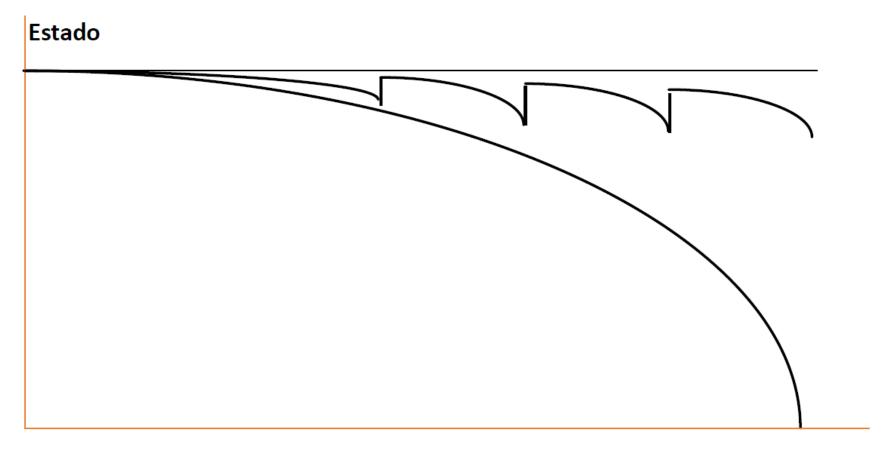

$$\sigma = \frac{P}{S}$$

- Deformación Unitaria
 - Deformación respecto a la longitud original (adimensional)
 - En el rango elástico de deformaciones:

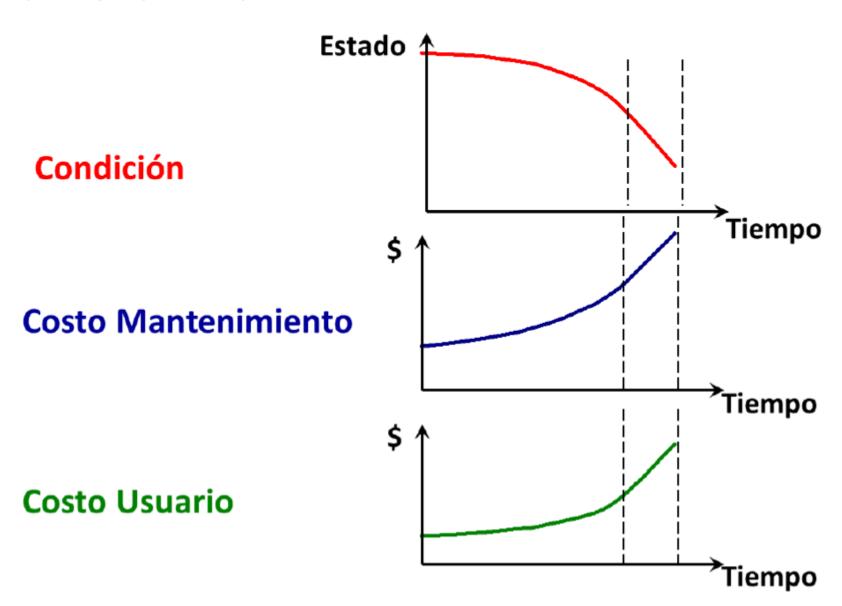

$$\sigma = E \epsilon$$

$$\varepsilon = \frac{\Delta L}{L}$$


- Deflexión
 - Cambio en la longitud, deformación (mm, micrones, mils)


RESPUESTA BAJO CARGAS

ESTADO VS VIDA ÚTIL



ESTADO VS VIDA ÚTIL

Tiempo (años)

ESTADO VS VIDA ÚTIL

EVOLUCIÓN DEL CONOCIMIENTO

• El diseño de pavimentos ha evolucionado en forma gradual, desde **ARTE** hacia **CIENCIA**. Sin embargo, el **EMPIRISMO** aún continúa jugando un rol muy importante.

Métodos de diseño

- Empírico
 - Solo experiencia: sin ensayos de capacidad portante de subrasante
 - Con ensayos de capacidad portante de subrasante
 - Ecuaciones de regresión (basadas en comportamiento de pavimentos en servicio o pistas de ensayo)
- Con criterio de falla por corte
- Con criterio de falla por deflexión
- Racional
- Racional Empírico (M-E: Mechanistic Empirical)

EVOLUCIÓN DEL CONOCIMIENTO

	1885 Primer vehícul	o a comb	ustión interna
	Métodos Empíricos		Métodos Racionales
1938	CBR (1938 - 1975)	1882	Boussinesq
	Deflexión	1943	D. Burmister
	1959 Ensayo AASH	1955 ГО	Ábacos tricapa
1961	AASHTO.	1963	SHELL
		1978	SHELL
\wedge		1980	Programas PC
	1980 Aspectos esta	dísticos	
1986	AASHTO.	1985	adenda SHELL
1993	AASHTO.	Divers	os programas

Métodos Empírico mecanicistas

2007 1.0 MEPDG NCHRP 1-40D

EVOLUCIÓN DEL CONOCIMIENTO

- Método CBR (empírico)
 - 1950

California Highway Department (Porter), introducen el ensayo de capacidad portante de la subrasante (CBR).

Uso extensivo del método por el U.S. Corps of Engineers durante la 2da. Guerra Mundial.

Se transforma en un método popular luego de la Guerra. Aplicable solo bajo determinadas condiciones de entorno (ambiente-clima, materiales, condiciones de carga)

• Con criterio de falla por corte

Con el aumento de velocidades y volúmenes de tránsito, los pavimentos comienzan a diseñarse más por comportamiento, en lugar de solo para prevenir la falla por corte.

EVOLUCIÓN DEL CONOCIMIENTO

Con criterio de falla por deflexión

El espesor debe ser tal que no exceda una cierta deflexión admisible.

• 1947

Kansas State Highway Commission modifica la ecuación de Boussinesq (1885) y limita la deflexión a 0,1" (2,54 mm).

• 1953

U.S. Navy aplica la teoría bicapa de Burmister (1943) y limita la deflexión en superficie a 0,25" (6,35 mm).

Presenta la ventaja de poder medir – de manera relativamente sencilla – la deflexión in situ. (La viga Benkelman)

Sin embargo, la falla de los pavimentos se debe a tensiones y deformaciones excesivas (depende de los estados de tensiones y deformaciones), y no al nivel de deflexiones.

EVOLUCIÓN DEL CONOCIMIENTO

Basados en el comportamiento (performance)

Se trata de metodologías empíricas basadas ecuaciones de regresión, obtenidas a partir de la observación del comportamiento de pavimentos.

AASHTO

Es uno de los principales. Basado en pistas de ensayo. En este caso con ecuaciones basadas en la observación de pavimentos en servicio.

Desventaja: las ecuaciones de regresión resultan válidas dentro del ámbito de las condiciones para las que fueron desarrolladas. Para otras condiciones, es necesario modificar las mismas, a partir de principios teóricos o experiencias específicas.

EVOLUCIÓN DEL CONOCIMIENTO

Basados en el comportamiento (performance)

Se trata de metodologías empíricas basadas ecuaciones de regresión, obtenidas a partir de la observación del comportamiento de pavimentos.

AASHTO (Caso de refuerzo de pavimentos)

En el caso del estudio de pavimentos en servicio, los materiales y metodologías constructivas pueden no haber sido controlados adecuadamente, por lo que resultan esperables mayores dispersiones y errores asociados. Si bien estas ecuaciones permiten explicar la relaciones causa-efecto de ciertos comportamientos, su nivel de incertidumbre limita la utilización con fines de diseño.

EVOLUCIÓN DEL CONOCIMIENTO

Método Racional

Está basado en principios de la mecánica de calzadas. Relaciona ciertas solicitaciones del sistema (ej.: carga por rueda) con las correspondientes respuestas en el pavimento (ej.: tensiones y deformaciones específicas).

1963

Dormon y Metcalf presentan los conceptos anteriores, como criterios de falla para el diseño de pavimentos flexibles. Método Shell '63

1978

Claussen adoptan esos dos criterios para el método de diseño de la Shell Petroleum International. Método Shell '78

1980

Shook adoptan esos dos criterios para el método de diseño del Asphalt Institute.

EVOLUCIÓN DEL CONOCIMIENTO

La teoría de mecánica de calzadas, por sí sola, no resulta suficiente para diseñar pavimentos de manera confiable (discrepancias entre modelos teóricos y la realidad).

Estos métodos **mejoran la confiabilidad del diseño**, brindando la posibilidad de **extrapolar resultados** a partir de un **número limitado** de **observaciones** de campo y **ensayos** de laboratorio.

Método Racional–Empírico (M-E Mechanistic – Empirical)

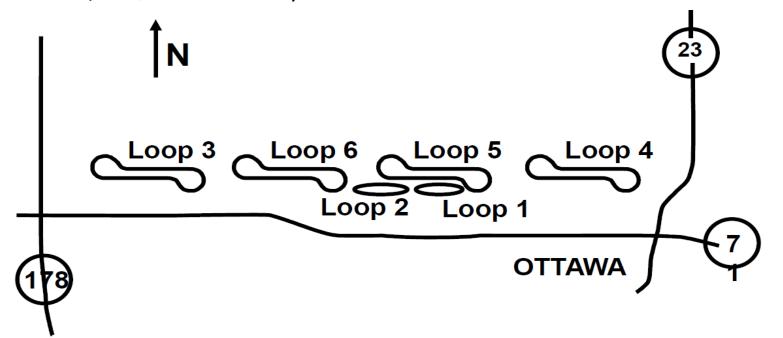
Está basado en principios de la mecánica de calzadas. Relaciona ciertas solicitaciones del sistema (ej.: carga por rueda) con las correspondientes respuestas en el pavimento (ej: tensiones y deformaciones específicas). Los valores de esas respuestas se utilizan luego para predecir deterioros, a partir de ensayos de laboratorio y datos de campo sobre comportamiento de pavimentos.

DISEÑO DE PAVIMENTOS

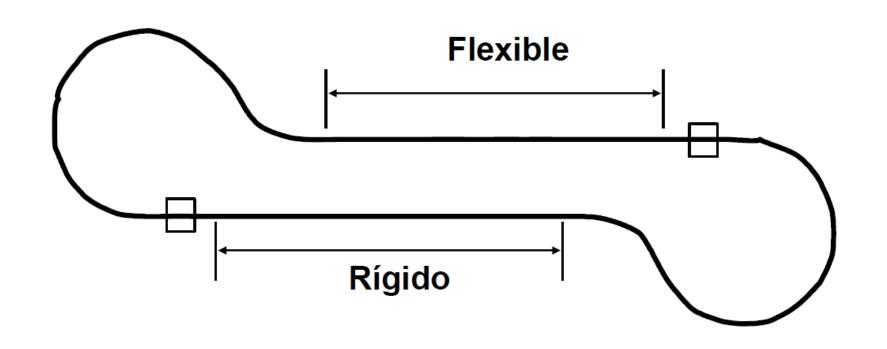
Factores que afectan el diseño

Tránsito

- Carga total y presión de inflado
- Repetición de cargas
- Radio de la carga
- Velocidad de aplicación
- Ejes y configuración
- Distribución transversal de las cargas


Clima

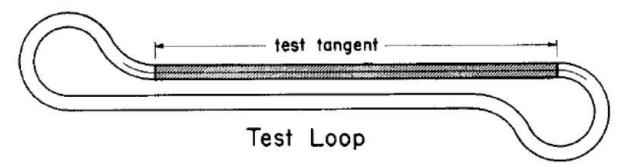
- Régimen de lluvias
- Congelamiento
- Deshielo
- Contracción e hinchamiento de los suelos
- Temperatura

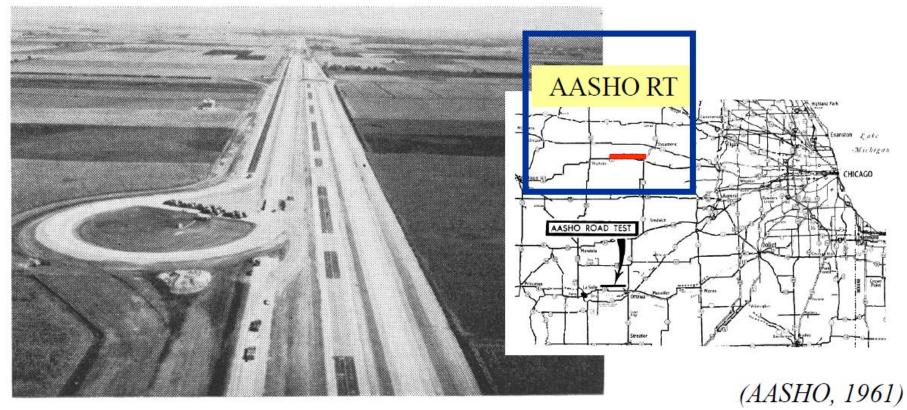

- Factores que afectan el diseño
 - Perfil transversal y posición
 - Sección en desmonte o terraplén
 - Profundidad de la napa freática
 - Deslizamientos o asentamientos
 - Construcción y mantenimiento
 - Compactación de subbase y bases
 - Deformación de subrasantes, subbases y bases

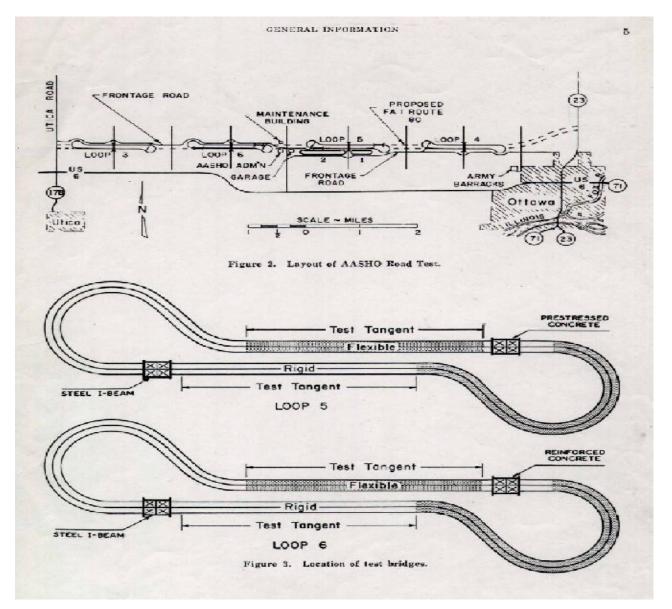
- Camino Experimental AASHO ejecutado en Ottawa, Illinois Años 1958-1959-1960.
- 6 Circuitos, 1 sin tránsito y 5 con tránsito con distintas cargas por eje que no se mezclaban.
- Diferentes niveles de diseños (desde insuficientes hasta sobredimensionados)
- 468 combinaciones de pavimento flexible.
- 368 combinaciones de pavimento rígido.
- Factorial 3x3x3, 3 espesores de Subbase, 3 de Base y 3 de Capa Asfáltica.
- Cerca de Otawa (Illinois 128 Km al SO de Chicago)
- Objetivo: determinar relaciones significativas entre el número de repeticiones de una carga por eje específica (diferentes magnitudes y configuraciones), y el comportamiento de diferentes espesores de pavimentos (HRB, 1962).

- 4 grandes loops (# 4, 5, 6) y 2 más pequeños (# 1, 2)
- Cada loop: 2 tangentes (610m a 2070m cada una, según el loop). Una de las tangentes (Norte): pavimento flexible (sucesión de diferentes secciones estructurales; corta longitud cada una).
- Inicio de la construcción 1956; inauguración 15 de Octubre de 1958; operación hasta 30 de Noviembre de 1960 (1.114.000 ejes aplicados; US\$ 27.000.000)

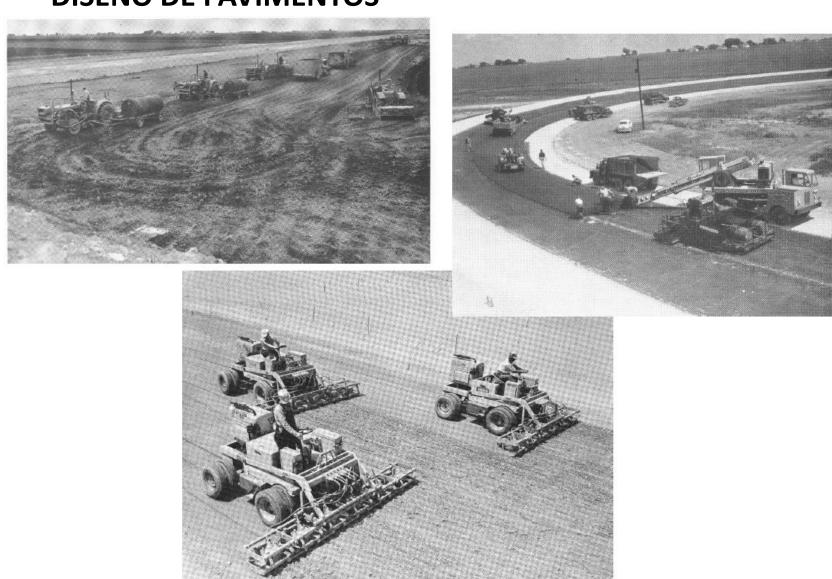
DISEÑO DE PAVIMENTOS

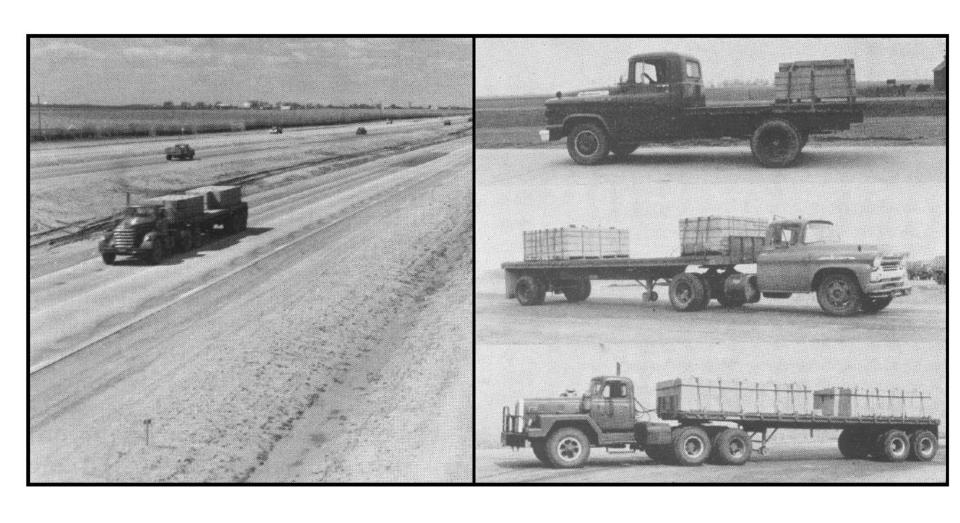

Loop 5


DISEÑO DE PAVIMENTOS


AASHO Road Test (1958-1960)

- Tercer ensayo a gran escala en pavimentos.
- Se evaluaron secciones de pavimento rígido y flexible.
- Se evaluaron distintas configuraciones de carga, espesores de calzada y subbase.
- Se estudiaron secciones de pavimentos de hormigón simple y reforzado.
- Objetivo central: desarrollar relaciones entre cargas de tránsito pesado aplicadas, estructura del pavimento y pérdida de Serviciabilidad.



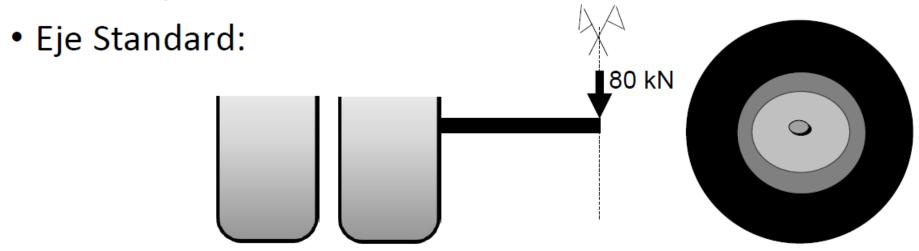


Loop 1	Loop 2	Loop 3	Loop 4	Loop 5	Loop 6
Axle Load	Axle Load				
Lane I Lane 2 None None	Lane 1 Lane 2 2,000-S 6,000-S	Lane 1 Lane 2 12,000-S 24,000-T	Lane I Lane 2 18,000-S 32,000-T	Lane I Lane 2 22,400-S 40,000-T	30,000-S 48,000-T
Main Factorial Design Design 1	Main Factorial Design				
Sour dace see see see see see see see see see s	Surface Surfac	Service Servic	Surface Surfac	Surface Thickness Thickness Surface Thickness Tother is a second of the	Surface Surfac
O 857 858 8 867 868 16 833 834 16 841 842 O 827 828 6 8 847 848 16 839 840	0 0 721 722 4 727 728 3 0 743 744 4 717 718 6 0 755 756 4 719 720 0 771 772	2 3 4 2 135 134 2 13 14 114 2 1 13 13 13 14 2 1 13 13 13 14 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 8 2 607 608 8 2 607 608 12 3 571 572 12 3 569 570 3 8 3 573 574 3 8 3 573 574 12 1 617 618	3	4 6 12 1 323 324 4 6 16 3 253 324 4 6 16 3 253 325 4 254 4 6 16 3 253 325 4 254 4 6 16 3 253 255 4 254 4 16 3 253 255 4 254 4 16 3 253 255 4 254 4 16 3 253 255 4 255 4 16 3 253 255 4 16 3 253 255 4 16 3 255 255 4 16 255 255 255 4 16 255 255 255 4 16 255 255 4 16 255 255 255 4 16 255 255 255 4 16 255 255 255 255 255 255 255 255 255 25
0 859 860 863 864 869 870 8 829 830 16 837 838 825 826	2 4 729 730 0 759 760 731 732 4 741 742 709 710	6 2 127 128 4 1 157 158 8 3 111 112 0 2 137 138 0 4 1 163 164 8 3 109 110	6 8 1 623 624 12 2 601 602 4 3 583 584 0 8 1 619 620 12 2 603 604	9 8 1 471 472 12 2 441 442 4 3 411 412 3 8 1 481 482 12 2 443 444	9 8 1 321 322 12 3 267 268 16 2 309 310 8 1 319 320 12 3 261 262 16 2 315 316
6 825 826 8 851 852 8 875 876 819 820 16 821 822 0 823 824	6 0 7/5 7/58 757 758 4 737 738 711 712 0 769 770 4 739 740	3 3 4 3 107 108 3 115 116 8 2 129 130 0 3 117 118	4 1 627 628 8 2 589 590 2 597 598 12 3 575 576 4 2 595 596 6 8 3 577 578	4 1 473 474 8 2 455 456 2 455 454 12 3 425 426 4 2 437 438 9 8 3 417 418	5 6 8 3 259 260 12 2 307 308 2 305 306 16 1 327 328 8 2 313 314
5 0 8 865 866 16 877 878 0 871 872 8 849 850 16 879 880 16 873 874	3 3 0 773 774 4 745 746 6 0 749 750 4 763 764 Surface Treatment Study	6 4 2 131 132 8 1 155 156 0 3 119 120 0 4 2 141 142 8 1 153 154 0 2 145 146	12 1 625 626 4 2 605 606 0 8 3 587 588 12 1 621 622 4 3 579 580	3 8 3 421 422 12 1 479 480 4 3 423 424	16 3 265 266 8 2 297 298 3 12 1 335 336 16 3 255 256 8 1 325 326
Subsurface Studies Design 5	Design 6 Design 6 Design 6 Back 1	4 3 4 1 151 152 8 3 121 122 0 1 161 162 6 0 1 149 150	5 3 8 1 631 632 12 2 593 594 4 1 629 630 6 8 2 591 592 12 3 581 582	5 6 8 1 469 470 12 2 445 446 4 1 475 476 9 4 1 483 484 8 2 447 448 12 3 427 428	6 6 12 3 257 258
Trest Section No. Long Base Base Base Section No. Lane Lane Lane Colored Co	0 733 734	4 3 123 124 8 2 139 140 Shoulder Paving Study Design 2	Shoulder Paving Study Design 2	Shoulder Paving Study Design 2	Shoulder Paving Study Design 2
3 0 8 831 832 853 854 16 817 818 0 855 856 8 845 846	753 754 723 724 725 726 767 768 4 765 766 4 765 766 715 716 717 748	Shoulder Paving Surface Surfac	Separation No. Separa	Bounda Bounda Sandana Bound	Should de Should
6 843 844 835 836	6 4 761 762 713 714	2 3 0 177 178 179 180 2 3 8 175 176 183 184 4 3 0 173 174 181 182	3 0 4 637 638 610 610 612 5 0 4 613 614	3 3 4 435 436 407 408 3 9 4 431 432 405 406 5 3 4 439 410	4 3 8 291 292 275 276 4 3 16 293 294 6 3 8 295 296 277 278
Note: Shaded section	ons are replicates	Base Type Study. Design 4	Base Type Study Design 4	Base Type Study Design 4	Base Type Study Design 4
		B A Section No.	Base Section No. Thickness Test Section No. Thickness Test Section No. Lane Tane 2	Base Thickness Subbase Sal Test Section No.	Bose Thickness Subbose Ess
_	s for Flexible ent Experiments	Crush 3 2-14 0 169 170 Stone 3 2-14 0 105 106 Gravet 3 2-14 0 171 172 Bit. Treat. 3 2-11 0 167 168 IQ1 IQ2 IQ1 IQ2	Crush 3 2-16 4 567 568 Stone 6 561 562 Grovet 3 2-16 4 565 566 Cem, Treat 3 2-10 4 563 564 Treat 5 563 564 557 558	Grove 3 3-18 4 467 468 Bit Treat 3 3-16 4 459 460 Cem. Treat 3 3-12 4 465 466 Treat 3 3-12 4 465 466	Crush. 4 3-19 8 287 288 Stone Bit. 1 279 280 Ireat. 4 3-18 4 285 286 Cem. Treat. 4 3-13 4 289 290 Treat. 283 284 289 290

Loop 1 Loop 2				Loop 3 Loop 4							Lo	ор	5		Lo	op	6	5																							
	Axle Load Axle Load		d	Axle Load					Axle Load					Axle Load					Axle Load																						
Lone 1 Lone 2 Lone 1 Lone 2		And distances in contrast of	Lane I Lane 2					Lone 1 Lone 2																																	
	vone		Non	8	2,0	000-	-5	6,000	D-S	12/	000-	5	24,000-T		0.000	DOWN	the first	32,00		22,400-5 40,000-T				30	30,000-S 48,000-T																
Mo		esig			Mo		Design	1		Mo		esign		-	Moin		tori	-		Mo		esign	Design	M	Main Factorial Desig Design 1		ign														
Type D	Slab	Sabbon	Test Se	Lone 2	Sies Type	Sich	Subbese	Lone	Lane 2	484	Stea	Sassase	Lose Lon	9 8	Type	Thickness	Subbate Prioress	Lane	Lone 2	Tree	Stab	Subbese	Lane Lan	9 5	Stot	Subbone	Lone	Lan													
	- 20	0	935	936		-	0	805	808		-	3	195 194		1	-	3	643	644		-	3	513 514		1	3	353	35													
19	2 2	6	933	734		21	3	791	792		31	6	259 24			5	6	647	846		64	6	517 518		8	6	193	39													
		0	882	890	1			785	786		-	9	213 214		-	-	3	649	678			3	505 509		-	3	259	37													
5	5	1000	923	924	einfarces	34	3	813	814			9	225 28			. 1		697	698				539 540			-	267	36													
n la	-76	6	891	892	1	28	6	787	788	1 3	5	6	581 188		9	64 6		653	656	Monreindanced	8	6		33 534 2	95	4	389	- 39													
Nonreintarced	-	0	919	920	No.		0	801	and the second	Vorrembried		9	219 22	1 3	-		9	703	704			9	507 500	1 3		9	375														
8	9.5	6	917	918		5	3	797	798	8		3	217 218				3	671 687	G72	100		8	511 542 541 542	Norveinfarced		3	377	37													
-1	100	0	885 886		"	300	777	770	1 %	61		193 194		Ē	8	6	683	684		9	6	525 526		11	6	397	39														
	121	100	881	882	-		6	803	904		-×	6	249 250				9	651	852		1000	9	535 530		199	9	365	36													
			909	914		21	3	781	782		-	3	207 20	_			3	675	GTE			3	529 530			3	395	35													
21		-	895	896		-5	_	6 789 790		8	6	235 23		1	95	4	701	702		11	8	497 498		122	6	349															
	41	0	897	den		5 3 809 810	_		_		1	9	105 166	_	-	5	9	681	682			3	509 510	-		3	379	36													
	×2		931	972	1 8		3 7	815	779 780			3	209 210				6	DG1	GGZ		64	6	491 493		8	6	385	30													
		- 1	899	900	1 3			200000		35		205 205		L		9	673	674			9	549 550			2	347	34														
-	5	0	905	905	=				-	2	231 23				3	641	642		1	3	519 520		100	3	301	38															
\$		6	927	928			Participation of Contraction	AND DESCRIPTION OF THE PERSON NAMED IN			3	201 25		. 1	64	6	705 686	686	pez	8	6	521 522	-11	94	6	403	40														
Reinforced		0	dzı	922				The state of the s	100	5	6	191 193		2	1	7	653	654			9 531 532	1 8	1	9	339	34															
2	91	1	915	916		-	-	6 100 100		Reinforced		9	253 23		Maintonced		3	691	692	Reinfarred		3	553 554			3	391	39													
	1	6	887						2	1 4		THE RESERVE OF THE PERSON NAMED IN	199 20	200	-	8	4	669	670		91		543 54	1 #	111	6	557	33													
	125	0	883	884		Note		Note			13	Note	Note	Note			Note			Note		Note		å	64	6	247 24	-		0	9	707	708		100		503 504			345	-
	- 8	6	911	915	Shoded							-	237 23		+		3			-	3	499 500 515 516	-11	-	9	343															
54			Studie		-			section	10000		-	3	241 24	_	1	94	6	665	666		11	6	545 54	1	12 1	6	355	35													
- 2	D	esign	1		r.	596AE					B	6	215 211	_			9	567	668			9	495 499			9	357	35													
Trest Section No. Cross hatched sections are those borrowed from Design 1.				9 197 198 Shoulder Poving-No Subbase			Sh	Shoulder Paving-No Study De				abbase an 3	Shoulder Poving-No Subbase Study Design 3					Shoulder Paving-No Subbas Study Design 3																							
655	F	100	1	904		tron	Des	ign 1.		Stu		CVERG	Design 3		1		25		ction No.		1	= -=	Test Section		=	= = =	Test Se	-													
. 8	350	0	903	094								2	Test Section	18	Should	Sign	23	Lare	Lone	200	100	Sheep Sheep	Late Lat	-118회	See of	Spend Spend	Lave	-													
Reintero	5	6	929	930						Tese	Sieb Sieb	Picture Soften	Contract Contract	-	53	1	35	1	2	-	94	Thebr Thebr	1 2		Page 12	2 32	- 1	2													
ě			100	902						200	Sheulds Pering	180	Lore Lor		1 3	5	0	659 647	640		3 6	0	53T 536	80	5 8	0	373														
										-		1 0	150 190	2	Without	-	0	663	664	12	ž -		493 499		Without	0	383	39													
		_						_		1 1	6 1	1 0	229 28		*	8	6	603	6018	1 5	> 3	2 6	\$253 520		3 1	8	53973														
Ta	ble	36	De	sign	s fo	r F	Rigid	1		No.	2 6	3 8	53440586			5	0	688	694	1	. 6	10	555 551	31		0	351	36													
	-10						100000000000000000000000000000000000000			1	€ 3	9 B	223 22		1	-	6	679	700	2	5 H	-	489 491 551 553		5	8	399	40													
OF-			. P.C	ivem	ent	CX	per	men	15	15.	S	1 0	227 22	10.7 00	100	0		897	922	121	10		887. 881	1100	20.11		207	1.77													

Loop #	1 2			\$	3	4	4	!	5	6		
Carril #	1	2	1	2	1	2	1	2	1	2	1	2
Carga por eje (Lb)	-	-	2000 Simple	6000 Simple	12000 Simple	24000 Tandem	18000 Simple	32000 Tandem	22400 Simple	40000 Tandem	30000 Simple	48000 Tandem

CONCLUSIONES


- Orden de superioridad según tipo de base:
 - Bituminosa (bituminous treated)
 - Tratada con cemento (cement treated)
 - Piedra triturada (crushd stone)
 - Piedra redondeada (gravel) (la mayoría de las secciones con este tipo de base fallaron tempranamente)
- La estructura necesaria para mantener cierta serviciabilidad después de un cierto número de repeticiones de ejes sería de espesores menores en la huella interna que en la externa.
- El ahuellamiento se debió fundamentalmente a la disminución del espesor de capas componentes del pavimento (91%), distribuido de la siguiente manera:
 - 32% en la capa superficial
 - 14% en la base
 - 45% en la subbase
 - 9% en la subrasante
 - En general, la disminución del espesor de las capas componentes del pavimento no se debió a aumentos de densidad, sino a desplazamientos laterales de los materiales.

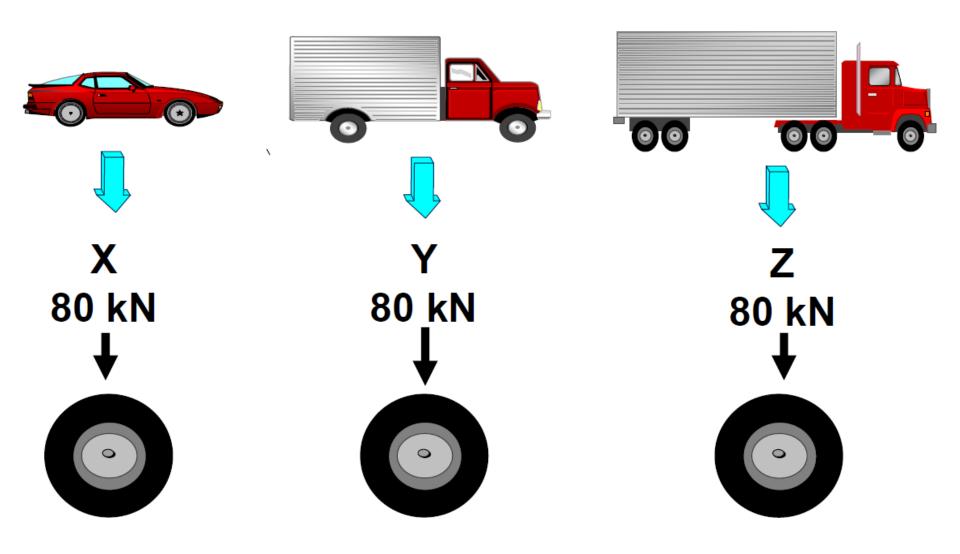
CONCLUSIONES

- Mayor ocurrencia de fisuración superficial durante períodos en los que el pavimento se encuentra en condiciones de clima frío.
- La deflexión dentro de la estructura del pavimento (superficie, base, subbase y superficie de la subrasante) fue mayor en la primavera (coincidente con mayores humedades en los materiales no ligados) que inmediatamente luego del verano.
- Elevada correlación entre la deflexión a nivel de la superficie de la subrasante y la deflexión total, así como entre deflexión y ahuellamiento.
- Importante reducción de deflexiones con el incremento de la velocidad de los vehículos (aumentar la velocidad de 3,2 a 56 km/h) redujo las deflexiones totales en 38% y las de la subrasante 35%.

EJES SIMPLES EQUIVALENTES

ESAL: Equivalent Standard Axle Load

- Convertir tránsito mixto en ejes simples equivalentes de 80 kN (18 kip; 8.16 ton)
- Equivalencia de ejes basada en EFECTO DESTRUCTIVO (pérdida de serviciabilidad)
- Factores de equivalencia de carga (para la conversión)


EJES SIMPLES EQUIVALENTES

- Factor Equivalencia de Carga por Eje (FEC)
 - Número de repeticiones de una carga patrón (eje simple ruedas duales de 80 kN) que produce el mismo deterioro (pérdida de serviciabilidad) que un determinado eje con cierta carga específica.
 - FEC es función de:
 - Tipo de pavimento
 - Capacidad estructural del pavimento
 - Tipo de eje
 - Condición del pavimento

$$FEC = \frac{N^{\circ}ejes..patr\'{o}n}{N^{\circ}otros..ejes}$$

Ambos grupos producen idéntico deterioro

EJES SIMPLES EQUIVALENTES

CRITERIO DE DISEÑO

Completando el antiguo criterio de que un material se comporta bien bajo una adecuado espesor de protección (Tapada), este método, plantea que la función de caída de la serviciabilidad con el número de reiteraciones de ejes de referencia, depende de una combinación entre espesores y calidades de los materiales que constituyen la estructura.

$$Log N = f(\Delta PSI, M_R, SN, Z_R, S_0)$$

ΔPSI Pérdida de serviciabilidad

M_R módulo subrasante (psi)

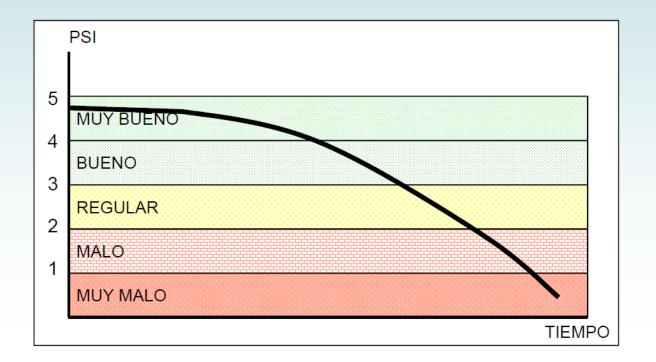
SN número estructural: SNi = ai * h * mi

 $SN = \Sigma SNi$

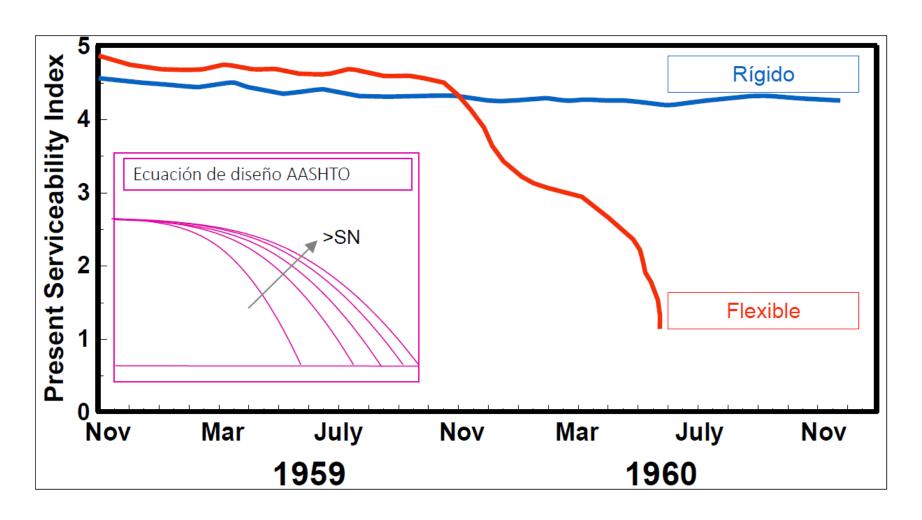
a_i valor de aporte estructural 1/pulg

h espesor (pulg)

mi factor de drenaje


Z_R función de la confiabilidad

S₀ certeza de la información y calidades constructivas


ÍNDICE DE SERVICIABILIDAD

PRESENT SERVICIABILITY INDEX

- Para obtener el punto de vista de los usuarios un equipo de personas recorrió 138 secciones de camino
- rangos predefinidos para calificación:

ÍNDICE DE SERVICIABILIDAD

ÍNDICE DE SERVICIABILIDAD

Para pavimentos flexibles la expresión es:

$$PSI=5,03-1,91 \log(1+SV)-1,38(RD)^2-0,01(C+P)^{0,5}$$
 (2.1)

donde:

SV=varianza del perfil sobre la sección en estudio, medida con el perfilómetro CHLOE, x10 (pulg/pie)²

RD=profundidad de ahuellamiento medio, pulg

C= piel de cocodrilo, clase 2 y clase 3 (pies²/1000pies²)

Clase 2 es cuando todas las fisuras se han unido para formar la piel de cocodrilo. Clase 3 es cuando algunos trozos del cuarteado resultante han desaparecido

P= parches (pies²/1000pies²)

Para pavimentos rígidos se tiene la ecuación:

$$PSI=5,41-1,78 \log(1+SV)-0,09(C+P)^{0,5}$$
 (2.2)

C=fisuras clase 3 y 4, en pies2/1000pies2

Clase 3 es cuando se tiene una fisura abierta o descascarada en superficie hasta un ancho de 6,4 mm (0,25pulg) o más en una distancia de una vez y media la longitud de la fisura. Clase 4 es cuando se refiere a cada fisura sellada.

P=parches (pies²/1000pies²)

ÍNDICE DE SERVICIABILIDAD

ÍNDICE DE SERVICIABILIDAD

Serviciabilidad: capacidad del pavimento para brindar un uso confortable y seguro a los usuarios

PSI INICIAL						
Pavimentos flexibles 4.2						
Pavimentos rígidos 4.5						
PSI F	INAL					
Caminos muy importantes 2.5 o más						
Caminos de menor tránsito	2.0					

ÍNDICE DE SERVICIABILIDAD

PSI – Opinión de Usuarios (USA)

PSI _f	% que lo considera "Inaceptable"
3.0	12
2.5	55
2.0	85

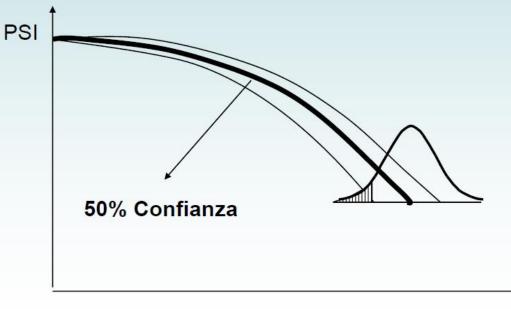
ESTADÍSTICA - CONFIABILIDAD

Las distintas variables involucradas en el proyecto:

- Método de Diseño/Prognosis
- Tránsito
- Materiales
- Ambientales
- Constructivas
- Conservación

presentan dispersiones que ocasionan incertidumbres en el comportamiento de la estructura diseñada y dan origen a los conceptos de riesgo estructural y a su complemento confiabilidad. Aspectos que conllevan fuertes implicancias económicas

ESTADÍSTICA - CONFIABILIDAD


- Uso de enfoque probabilístico
 - Basado en el concepto de confiabilidad
 - Si se utiliza el PSI como criterio de falla, la confiabilidad del diseño (probabilidad de que el PSI sea mayor que el PSI_f adoptado) puede determinarse asumiendo que al PSI_f como una distribución normal (definida por su media y desvío estándar).
 - De manera inversa, dado un cierto nivel de confiabilidad y PSI requeridos, puede calcularse el nivel aceptable de PSI_f.
 - Confiabilidad y desviación estándar. Tiene el mismo significado para pavimentos flexibles, es decir que se refiere al grado de certidumbre de que un dado diseño puede llegar al fin de su período de análisis en buenas condiciones

ESTADÍSTICA - CONFIABILIDAD

Estadística en los Métodos de Diseño - AASHTO

Función	Confiabilidad	
	Urbano	Rural
Autopistas	85-99.9	80-99.9
Principal	80-99	75-95
Colectoras	80-95	75-95
Local	50-80	50-80

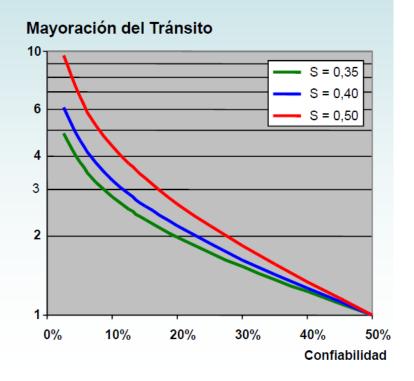
% de	
Confianza	ZR
10	-1.28
20	-0.84
50	0
80	0.84
90	1.28
95	1.65

Log N

 $Log N = -Z_R S_0 + F(SN, PSI, Es)$

ESTADÍSTICA – DESVIACIÓN ESTANDAR

S₀ DESVIACIÓN ESTANDARD


Representa la certeza de la información y la calidad constructiva

Valores recomendados según AASHTO:

Pavimentos flexibles entre 0.4 y 0.5

Para pavimentos rígidos entre 0.3 y 0.4

Según AASHTO 0.35 en el ensayo

TRÁNSITO

TRÁNSITO (8.16 t - 80 KN - 18 kips)

$$N_{(8,16t)}$$
 = TMDA x Fd x Ft x Fa x Fp x \sum_{i} (% vehículo i x Ce_{(8,16t) i})

TMDA: Tránsito medio diario anual del año previo al período de inicio

Fd: Factor de direccionalidad

Ft: Factor de trocha

Fa: Factor para extender el valor "diario" (TMDA) a un determinado número de días (365)

Fp: Factor de acumulación de tránsito (para extender el valor "anual" a un determinado número de años.

$$Fp = \sum_{i=1}^{n} (1 + r)^{i}$$

r: Tasa anual de evolución del tránsito (%)

v: Período de diseño ó vida de diseño (años)

% vehículo i: Participación porcentual, en el TMDA, de cada tipo de vehículo

Ce_{(8,16t) i}: Coeficiente de equivalencia en efecto destructivo, de cada tipo de vehículo

TRÁNSITO

Appendix D

D-3

Table D.1. Axle Load Equivalency Factors for Flexible Pavements, Single Axles and pt of 2.0

Axle Load		Pavement Structural Number (SN)							
(kips)	1	2	3	4	5	6			
2	.0002	.0002	.0002	.0002	.0002	.0002			
4	.002	.003	.002	.002	.002	.002			
6	.009	.012	.011	.010	.009	.009			
8	.030	.035	.036	.033	.031	.029			
10	.075	.085	.090	.085	.079	.076			
12	.165	.177	.189	.183	.174	.168			
14	.325	.338	.354	.350	.338	.331			
16	.589	.598	.613	.612	.603	.596			
18	1.00	1.00	1.00	1.00	1.00	1.00			
20	1.61	1.59	1.56	1.55	1.57	1.59			
22	2.49	2.44	2.35	2.31	2.35	2.41			
24	3.71	3.62	3.43	3.33	3.40	3.51			
26	5.36	5.21	4.88	4.68	4.77	4.96			
28	7.54	7.31	6.78	6.42	6.52	6.83			
30	10.4	10.0	9.2	8.6	8.7	9.2			
32	14.0	13.5	12.4	11.5	11.5	12.1			
34	18.5	17.9	16.3	15.0	14.9	15.6			
36	24.2	23.3	21.2	19.3	19.0	19.9			
38	31.1	29.9	27.1	24.6	24.0	25.1			
40	39.6	38.0	34.3	30.9	30.0	31.2			
42	49.7	47.7	43.0	38.6	37.2	38.5			
44	61.8	59.3	53.4	47.6	45.7	47.1			
46	76.1	73.0	65.6	58.3	55.7	57.0			
48	92.9	89.1	80.0	70.9	67.3	68.6			
50	113.	108.	97.	86.	81.	82.			

TRÁNSITO

D-4

Design of Pavement Structures

Table D.2. Axle Load Equivalency Factors For Flexible Pavements, Tandem Axles and pt of 2.0

Axle Load		Pa	vement Structur	al Number (SN))	
(kips)	1	2	3	4	5	6
2	0000	0000	0000	0000	0000	0000
4	0003	0003	0003	0002	0002	0002
6	001	001	001	001	001	001
8	003	003	003	003	003	002
10	007	008	800	007	006	006
12	013	016	016	014	013	012
14	024	029	029	026	024	023
16	041	048	050	046	042	040
18	066	077	081	075	069	066
20	103	117	124	117	109	105
22	156	171	183	174	164	158
24	227	244	260	252	239	231
26	322	340	360	353	338	329
28	447	465	487	481	466	455
30	607	623	646	643	627	617

TRÁNSITO

Axle Load	Traffic Equivalency Factor		Number of Axles		A18 Kip EAL's
Single Axles	P = 25, SN = 5				
Under 3,000	0 0002	×	0	=	0 000
3,000 - 6,999	0 0050		ĭ	=	0 005
7,000 - 7,999	0 0320	X	6	=	0 192
8,000 - 11,999	0 0870	×××	144	=	12 528
12,000 - 15,999	0 3600	×	16	=	5 760
26,000 - 29,999	5 3890	×	1	=	5 3890
Tandem Axle Groups					
Under 6,000	0 0100	×	0	=	0 000
6,000 - 11,993	0 0100	×	14	=	0 140
12,000 - 17,999	0 0440	×	21	==	0 924
18,000 - 23,999	0 1480	×	44	=	6 512
24,000 - 29,999	0 4260	×	42	=	17 892
30,000 - 32,000	0 7530	×	44	255	33 132
32,001 - 32,500	0 8850	×	21	255	18 585
32,501 - 33,999	1 0020	×	101	=	101 202
34,000 - 35,999	1 2300	×	43	=	52 890
18 Kip EAL's for	all trucks wieghed			=	255 151
Truck Load Factor = 18 Kip EAL	's for all trucks we	ighed	255	151 _	1 5464
II delle delle I conor	of trucks weighed	165	16	5	

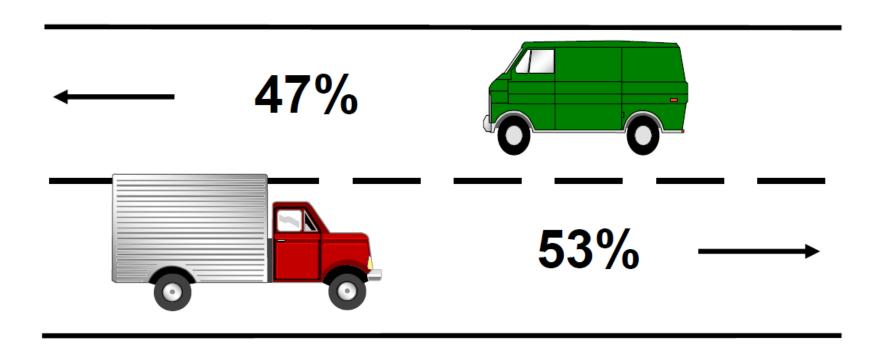
Figure D.1. Computation of the Truck Load Factor for 5 Axle or Greater Trucks on Flexible Pavements with an SN = 5 and a Terminal Serviceability of 2.5

TRÁNSITO

Table D.21. Worksheet for Calculating 18-kip Equivalent Single Axle Load (ESAL) Applications

Location Example	1	Analysis Period = $\frac{20}{9''}$ Years Assumed SN or D = $\frac{9''}{9''}$				
Vehicle Types	Current Traffic (A)	Growth Factors (B)	Design Traffic (C)	E.S.A.L. Factor (D)	Design E.S.A.L. (E)	
Passenger Cars Buses	5,925 35	2 % 24 30 24 30	52,551,787 310,433	0008 6806	42,041 211,280	
Panel and Pickup Trucks Other 2-Axle/4-Tire Trucks 2-Axle/6-Tire Trucks 3 or More Axle Trucks All Single Unit Trucks	1,135 3 372 34	24 30 24 30 24 30 24 30	10,066,882 26,609 3,299,454 301,563	0122 0052 1890 1303	122,816 138 623,597 39,294	
3 Axle Tractor Semi-Trailers 4 Axle Tractor Semi-Trailers 5+ Axle Tractor Semi-Trailers All Tractor Semi-Trailers	19 49 1,880	24 30 24 30 24 30	168,521 434,606 16,674,660	8646 6560 2 3719	145,703 285,101 39,550,626	
5 Axle Double Trailers 6+ Axle Double Trailers All Double Trailer Combos	103 0	24 30 24 30	913,559	2 3187	2,118,268	
3 Axle Truck-Trailers 4 Axle Truck-Trailers 5 + Axle Truck-Trailers All Truck-Trailer Combos	208 305 125	24 30 24 30 24 30	1,844,856 2,705,198 1,108,688	0152 0152 5317	28,042 41,119 589,489	
All Vehicles	10,193		90,406,816	Design E S A L	43,772,314	

TRÁNSITO


DNV - FEC (8.2 ton)

LIVIANOS	Auto / Camioneta	0,044
ÓMNIBUS	O 11	0,308
OWINIBUS	O 12	0,462
CAMIÓN SIN ACOPLADO	C 11	2,640
CAMION SIN ACOPLADO	C 12	2,508
CAMIÓN CON ACOPLADO	C 11-11	5,280
	C 11-12	4,290
CAMION CON ACOPLADO	C 12-11	5,170
	C 12-12	4,224
	C 111	3,564
	C 112	3,960
SEMI-REMOLQUE	C 113	4,510
	C 122	3,850
	C 123	4,092

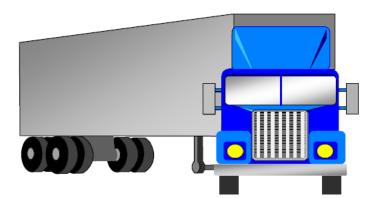
TRÁNSITO

Tipo	Conf.	Ejes	DNV	Lilli y Lockhart RN 7
Ómnibus	11	2	0,31	0,69
Ómnibus	12	3	0,46	0,60
Camiones sin acoplado	11	2	2,64	0,69
Camiones sin acoplado	12	3	2,51	0,60
Camiones con acoplado	1111	4	5,28	2,72
Camiones con acoplado	1112	5	4,29	4,60
Camiones con acoplado	1211	5	5,17	3,73
Camiones con acoplado	1212	6	4,22	3,85
Semirremolques	111	3	3,56	3,19
Semirremolques	112	4	3,96	1,64
Semirremolques	113	5	4,51	2,61
Semirremolques	122	5	3,85	1,96
Semirremolques	123	6	4,09	1,38

TRÁNSITO - SENTIDO

Distribución por Sentido

TRÁNSITO – DISTRIBUCIÓN


Distribución por Carril

25% camiones

→ 8% camiones

75% camiones

→ 39% camiones

→ 53% camiones

Diseño para la peor condición!!

TRÁNSITO - DISTRIBUCIÓN

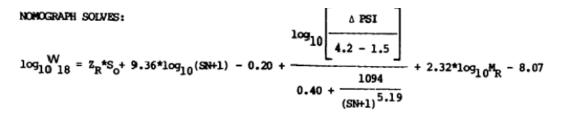
Distribución por carril (USA)

Número de carriles en cada dirección	% de tránsito en el carril de diseño (ESAL 18 Kip)
1	100
2	80 – 100
3	60 – 80
4 o más	50 - 75

TRÁNSITO – FACTOR DE DISTRIBUCIÓN COMBINADO

	,	,			
TIPO DE VEHÍCULO	DISTRIBUCION	NÚMERO DE	% DE CADA TIPO	FACTOR	N° DE EJES
	DE EJES	EJES (14)	DE VEHÍCULO (15)	"C" (16)	(17)=(14)*(15)*(16)
Automóviles y					
camionetas	1,1	2	0,75	0,01	0,0150
Ómnibus	1,1	2	0,02	0,07	0,0028
Camiones	1,1	2	0,06	0,6	0,0720
Camiones	1,2	3	0,03	0,38	0,0342
Camiones	1,1-1,2	5	0,06	0,39	0,1170
Camiones	1,1 - 2	4	0,04	0,45	0,0720
Camiones	1,2 - 3	5	0,04	0,35	0,0700

Factor de contribución combinado (18) Ct=


0,3830

Ejes de 10 t / vehículo

TRÁNSITO

- Aspectos relevantes para predicción de tránsito futuro
 - Crecimiento del número de ejes actuales
 - Cambios posibles en las siguientes distribuciones:
 - Espectro de cargas
 - Distribución por sentido
 - Distribución por carril
 - Distribución horaria, diaria, mensual, etc.
- Hipótesis comunes
 - Aumento constante en el volúmen de tránsito
 - Todas las demás distribuciones permanecen relativamente constantes durante el período de análisis
 - Tasa de crecimiento anual

USO DE GRÁFICOS

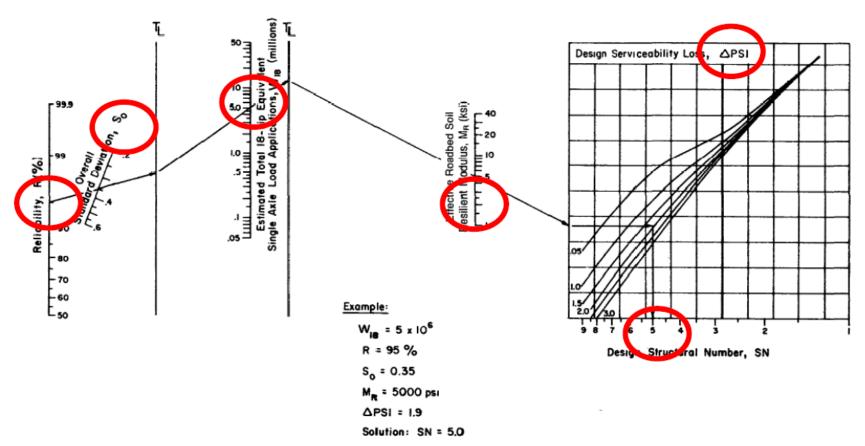


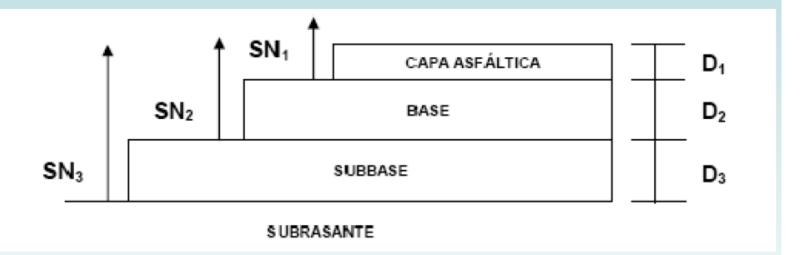
Figure 3.1. Design Chart for Flexible Pavements Based on Using Mean Values for Each Input

NÚMERO ESTRUCTURAL

$$SN = a_1 D_1 + a_2 m_2 D_2 + a_3 m_3 D_3$$

a₁ a₂ a₃ coeficientes de capa (por pulgada o por cm de espesor)

m₂ m₃ coeficientes de drenaje de la capa


D₁ D₂ D₃ espesores de capa (en pulgadas o cm)

 $a_1 > a_2 > a_3$ respetando el escalonamiento modular

NÚMERO ESTRUCTURAL

PROCEDIMIENTO MÉTODO DE DISEÑO AASHTO

1961 1986 **1993** MPEDG2008

$$D_1 >= SN_1 / a_1$$

$$D_2 >= (SN_2 - SN_1)/(a_2 m_2)$$

$$D_3 >= (SN_3 - SN_2 - SN_1)/(a_3 m_3)$$

NÚMERO ESTRUCTURAL

Los aportes estructurales ai se obtienen según el tipo de capa E módulo [MPa] ai [1/cm]

Cementada ai = 0.0000038 * E ^ 1.157

Asfáltica ai = -0.352 + 0.149 * Log10(E)) E: módulo a 20°C Precaución para módulos >+ 3100 MPa por fisuración térmica y fatiga

Base granular ai = (0.249 * LOG(E / 0.007) - 0.977) / 2.54

Sub-base granular ai = (0.227 * LOG(E / 0.007) - 0.839) / 2.54

MÓDULOS

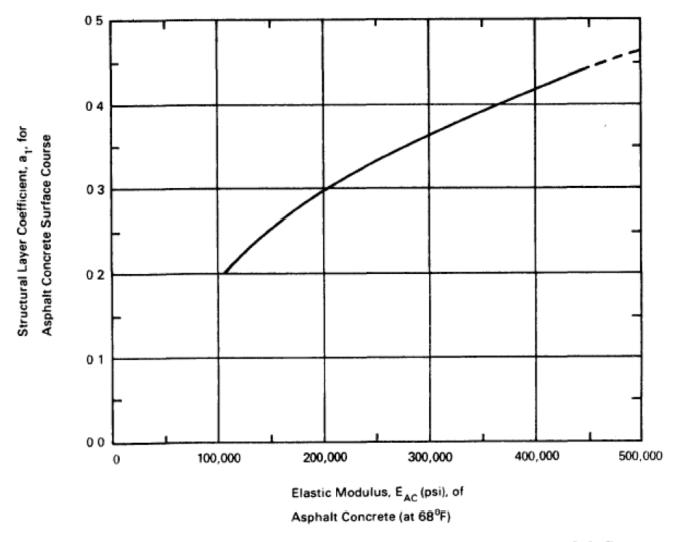
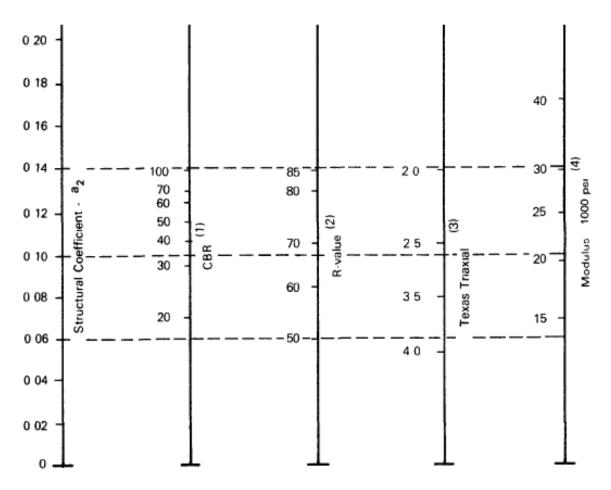
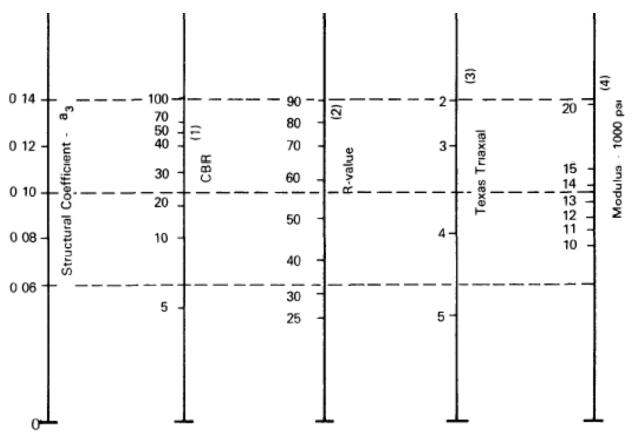
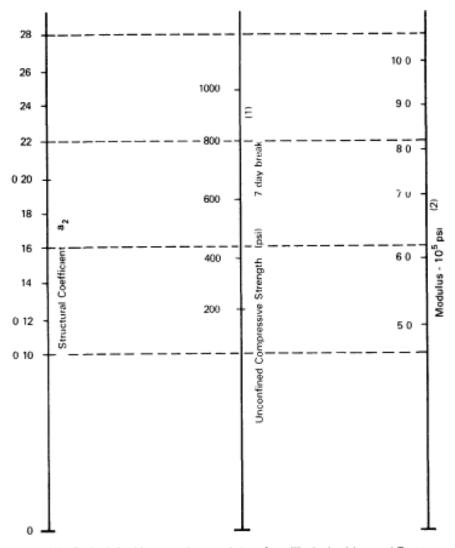



Figure 2.5. Chart for Estimating Structural Layer Coefficient of Dense-Graded Asphalt Concrete Based on the Elastic (Resilient) Modulus (3)


CORRELACIONES DEL CBR – MÓDULO RESILIENTE

- (1) Scale derived by averaging correlations obtained from Illinois
- (2) Scale derived by averaging correlations obtained from California, New Mexico and Wyoming
- (3) Scale derived by averaging correlations obtained from Texas
- (4) Scale derived on NCHRP project (3)

Figure 2.6. Variation in Granular Base Layer Coefficient (a₂) with Various Base Strength Parameters (3)


CORRELACIONES DEL CBR – MÓDULO RESILIENTE

- (1) Scale derived from correlations from Illinois
- (2) Scale derived from correlations obtained from The Asphalt Institute, California, New Mexico and Wyoming
- (3) Scale derived from correlations obtained from Texas
- (4) Scale derived on NCHRP project (3)

Figure 2.7. Variation in Granular Subbase Layer Coefficient (a₃) with Various Subbase Strength Parameters (3)

CORRELACIONES DEL CBR – MÓDULO RESILIENTE

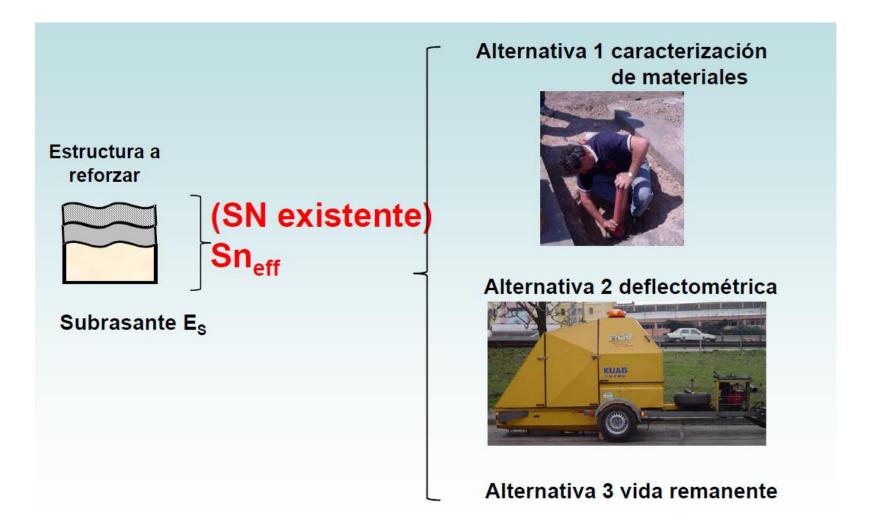
- (1) Scale derived by averaging correlations from Illinois Louisiana and Texas
- (2) Scale derived on NCHRP project (3)

Figure 2.8. Variation in a for Cement-Treated Bases with Base Strength Parameter (3)

COEFICIENTE DE DRENAJE

Calidad del Drenaje	l tiempo de remoción	% del tiempo expuesto a humedades cercanas a saturación			
		<1%	1 a 5%	5 a 25%	>25%
Excelente	2 horas	1,40-1,35	1,35-1,30	1,30-1,20	1,20
Bueno	1 día	1,35-1,25	1,25-1,15	1,15-1,00	1,00
Regular 1	1 semana	1,25-1,15	1,15-1,05	1,00-0,80	0,80
Pobre	1 mes	1,15-1,05	1,05-0,80	0,80-0,60	0,60
Muy pobre	no drena	1,05-0,95	0,95-0,75	0,75-0,40	0,40

FORTALEZAS – DEBILIDADES - LIMITACIONES


- Método simple, paso por paso
- Basado en investigaciones y experiencia
- Guía para evaluación estructural y para caracterización de materiales
- Guía específica para cada tema clave
- Verificación parcial con datos de campo
- Basado en modelos de comportamiento empíricos
- Datos del LTPP (Long Term Pavement Performance) indican diferencias importantes en tránsitos muy elevados. Obtenidos a través de un espectro de carga, conociendo los datos de peso por eje en un sitio específico, este tipo de estudio se conoce por sus siglas en ingles como WIM (Weight in Motion)
- Limitaciones asociadas con el procedimiento AASHTO

REFUERZO DE PAVIMENTOS ASFÁLTICOS

REFUERZO DE PAVIMENTOS ASFÁLTICOS

```
Tránsito futuro
  Abaco de diseño
                                             SN requerido
  Log N = -ZRS0 + F(SN, \Delta PSI, Es)
     Estructura a
       reforzar
                   -SN existente Sn<sub>eff</sub>
    Subrasante Es
        Href = (SN requerido - SN existente)
3
                                a, ref
```

REFUERZO DE PAVIMENTOS ASFÁLTICOS

AUSCULTACIÓN ESTRUCTURAL - ESPESORES Y CALIDADES

Radar de Penetración

EVALUACIÓN ESTRUCTURAL CON FWD (Falling Weight Deflectometer) **SEGÚN AASHTO**

Se valora:

- Deflexión en cada punto (diferencia entre impactos 1, 2 o 3)
- Temperatura de superficie con sensor infrarrojo, y mediante termómetro.
- Los resultados se corrigen por carga. (aproximación lineal) se corrigen por temperatura (función del espesor asfáltico a una temperatura de referencia 20°C, gráfico del método o aproximación propia)
- tramos homogéneos de antecedentes y la aplicación del método de diferencias acumuladas

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

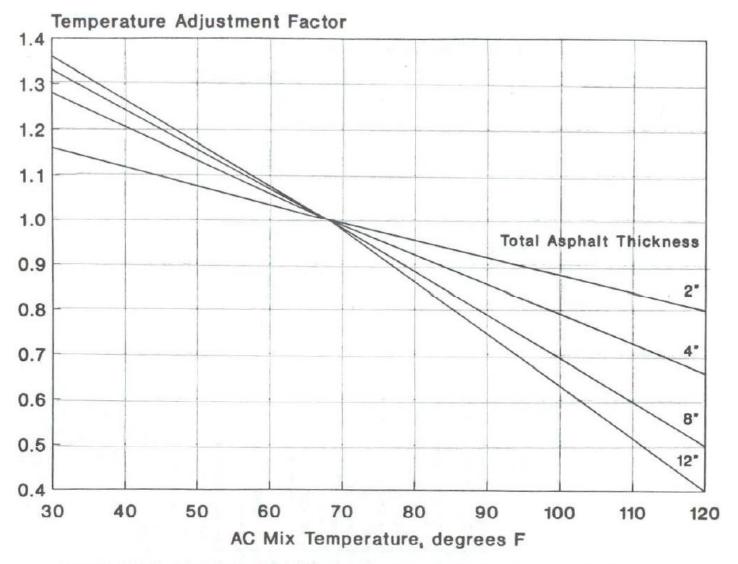


Figure 5.6. Adjustment to do for AC Mix Temperature for Pavement with Granular or Asphalt-Treated Base

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 1 PARA DETERMINAR SNeff (SN existente) a partir de los resultados de ensayos de laboratorio realizados sobre los materiales

A partir de las muestras de materiales de la estructura obtenidas en la toma de testigos y de las calicatas, se realizan ensayos de laboratorio que permiten valorar las características de los mismos.

Para los materiales **no ligados**: clasificación, densidad, contenido de humedad, CBR, módulo resiliente.

Para los materiales **asfálticos**: densidad, contenido de ligante, módulo, grado de deterioro.

En base a esos resultados y a las condiciones de deterioro en que esos materiales se encuentran, es que se le asigna un coeficiente de aporte estructural a cada uno de ellos utilizando los ábacos del Método AAASHTO. Luego, con esos coeficientes y los espesores de cada capa puede calcularse el SN de la estructura existente.

SN = a1 D1 + a2 m2 D2 + a3 m3 D3

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

Coeficientes de aporte estructural sugeridos para capas existentes de concreto asfáltico a_i (1/cm)

MATERIAL	CONDICIÓN SUPERFICIAL	COEFICIENTE [1/cm]	
Carpeta de Concreto Aasfáltico	Sin o con pocas fisuras de fatiga y/o sólo con fisuras transversales de baja severidad	0,138 - 0,157	
	< 10% fisuras de fatiga de baja severidad y/o < 5% fisuras transversales de media a alta severidad	0,098 - 0,138	
	> 10% fisuras de fatiga de baja severidad y/o < 10% fisuras de fatiga de severidad media y/o > 5-10% fisuras transversales de media a alta severidad	0,078 - 0,118	
	> 10% fisuras de fatiga de severidad media y/o < 10% fisuras de fatiga de alta severidad y/o > 10% fisuras transversales de media a alta severidad	0,055 - 0,078	
	> 10% fisuras de fatiga de severidad alta y/o > 10% fisuras transversales de alta severidad	0,0315 - 0,06	

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

Coeficientes de aporte estructural sugeridos para capas existentes de base estabilizada, y base o subbase granular a_i (1/cm)

	stabilizada, y base o subbase granular a _i (1/cm)	
Base estabilizada	Sin o con pocas fisuras de fatiga y/o sólo con fisuras transversales de baja severidad	0,078 - 0,13
	< 10% fisuras de fatiga de baja severidad y/o	0,06 - 0,098
	< 5% fisuras transversales de media a alta severidad	
	> 10% fisuras de fatiga de baja severidad y/o < 10% fisuras de fatiga de severidad media y/o > 5-10% fisuras transversales de media a alta severidad	0,06 - 0,078
	> 10% fisuras de fatiga de severidad media y/o < 10% fisuras de fatiga de alta severidad y/o	0,04 - 0,078
	> 10% fisuras transversales de media a alta severidad	
	> 10% fisuras de fatiga de severidad alta y/o > 10% fisuras transversales de alta severidad	0,031 - 0,06
Base o Subbase Granular	Sin evidencias de bombeo, degradación o contaminación con finos	0,04 - 0,06
	Algunas evidencias de bombeo, degradación o contaminación con finos	0,00 - 0,04

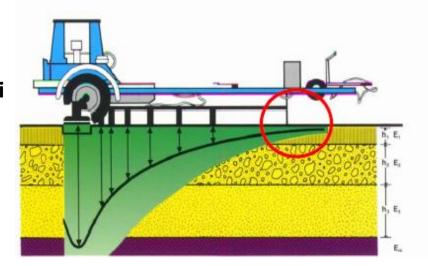
EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 2 PARA DETERMINAR EL SNeff (SN existente) CON FWD

1. Calcular el módulo resiliente de la subrasante por retrocálculo, a partir del valor de la deflexión distante y la magnitud de la carga aplicada por el equipo.

La distancia debe estar lo suficientemente alejada del centro de aplicación de la carga de manera independizarla del efecto de las capas superiores, pero lo suficientemente cerca como para que su valor no sea demasiado

Pequeño e implica calcular el módulo con


precisión.

$$Mrr = (0,24 P) / (dr r)$$

Mrr módulo resiliente retrocalculado, en **psi**P magnitud de la carga aplicada, en libras

dr deflexión distante medida, en pulgadas

r distancia desde el centro de aplicación de la carga a la deflexión distante, en pulgadas

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 2 PARA DETERMINAR EL SNeff (SN existente) CON FWD

2. Calcular el módulo resiliente de diseño.

metodología AASHTO'93.

Mr

El **Mrr retrocalculado** en el diseño del pavimento, debe ser ajustado para ser consistente con el valor medido en laboratorio usado por la ecuación **AASHTO** de pavimentos flexibles. El valor de **Mrr retrocalculado** debe ser multiplicado por un factor de corrección **C**, el cual varía en función del tipo de suelo de subrasante y la presencia de una capa rígida (bedrock), respondiendo a la siguiente expresión:

Mr = C . Mrr

Módulo resiliente de la subrasante, en nsi

	integrate resimente de la subtasante, en por
Mrr	Módulo resiliente de la subrasante obtenida por retrocálculo, en psi
C	Factor de ajuste o corrección en función del tipo de suelo de subrasante. El
	mismo tiene un valor aproximado de 0.33, según está indicado en la

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 2 PARA DETERMINAR EL SNeff (SN existente) CON FWD

3. Calcular el **Ep, Módulo efectivo de todo el pavimento sobre la** subrasante (unidades pulgadas nsi)

$$d_{o} = 1,5.pa \begin{cases} \frac{1}{M_{R} \cdot \sqrt{1 + \left(\frac{D}{a} \sqrt[3]{\frac{E_{p}}{M_{R}}}\right)^{2}}} + \frac{\left[1 - \frac{1}{\sqrt{1 + \left(\frac{D}{a}\right)^{2}}}\right]}{E_{p}} \end{cases}$$

- **Ep** módulo efectivo de toda la estructura, en psi a radio de carga, en pulgadas
- **D** espesor de la estructura, en pulgadas
- do deflexión medida en el centro de aplicación de la carga, ajustada a una temperatura estándar de 68 ºF (20 ºC), en pulgadas
- **p** presión aplicada por el plato de carga, en psi
- Mr módulo de la subrasante obtenido en el punto anterior, en psi

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 2 PARA DETERMINAR EL SNeff (SN existente) CON FWD

4. Calcular el número estructural efectivo del pavimento existente SNeff, que se obtiene como:

$$SN_{eff} = 0,0045D_{\uparrow}^{3}E_{p}$$

D es el espesor de las capas de pavimento, en pulgadas

EP es el módulo efectivo de toda la estructura retrocalculado, en psi

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 3 PARA DETERMINAR EL SNeff (SN existente) por vida remanente

Esta alternativa utiliza el concepto de daño por fatiga, donde cada carga que pasa produce un daño en la estructura y reduce el número de cargas que le quedan por pasar hasta la falla de la estructura.

- Para la estructura en análisis debe determinarse la cantidad de tránsito para la que fue diseñada, calculado utilizando los ábacos con un PSI final de 1.5.
- determinar el número de ejes pasados desde su construcción
- calcular la vida remanente

$$RL = 100 \left[1 - \left(\frac{N_p}{N_{1.5}} \right) \right]$$

RL Vida útil remanente

N_p Tránsito total para 18 kip ESAL

N₁₅ Transito total del pavimento "deteriorado" (P2=15), 18 kip ESAL

EVALUACIÓN ESTRUCTURAL CON FWD SEGÚN AASHTO

ALTERNATIVA 3 PARA DETERMINAR EL SNeff (SN existente) por vida remanente

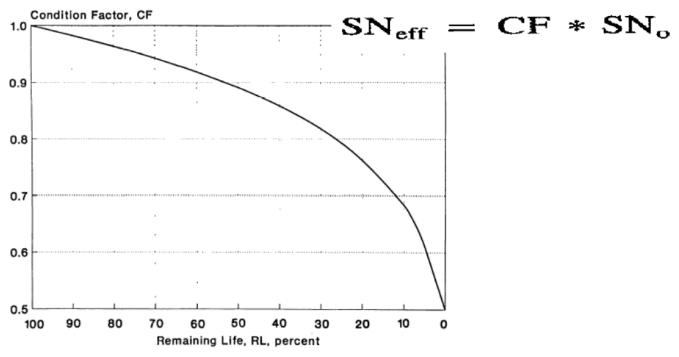


Figure 5.2. Relationship Between Condition Factor and Remaining Life

LOS RESULTADOS DE ESTE MÉTODO PUEDEN CAUSAR GRANDES ERRORES EN LA ESTIMACIÓN

DESARROLLO DEL TRABAJO PRÁCTICO

DESARROLLO DEL TRABAJO PRÁCTICO

Datos	Grupo Nº1	Grupo №2	Grupo Nº3	Grupo Nº4
T.M.D.A. (2014)	1830	1520	2080	1810
Año de Inauguración	2021	2021	2021	2021
Tasa de crecimiento anual %	2.0	2.5	2.0	2.5
Composición: %				
autos y camionetas	68	77	67	69
ómnibus	3	3	2	2
camiones 1.1	8	6	7	5
camiones 1.2	5	3	6	7
camiones 1.1 - 1.2	7	5	6	7
camiones 1.1 - 2	4	4	7	5
camiones 1.2 - 3 (C = 0.31)	5	2	5	5
Total %	100	100	100	100
Vida útil pav.rígido (años)	35	35	35	35
Vida útil pav.flexible (años)	12	12	12	12
Vida útil trat. y lechadas (años)	4	4	4	4
C.B.R. (subrasante)	5	7	10	8
confiabilidad	80	85	80	85
desviación std (So)	0.45	0.45	0.45	0.45
Ps (final)	2	2	2	2
Calidad del drenaje	Buena	Excelente	Buena	Buena
% del tiempo	0.5	2	0.8	8.0
cant de trochas por sentido	1	1	1	1
factor de seguridad de carga	1.2	1.2	1.1	1.1
M.R. del Hormigón kg/cm2	38	39	40	41
Ancho de calzada [m]	7.30	7.30	7.30	7.30
precipitación media anual mm	500	600	450	350

DESARROLLO DEL TRABAJO PRÁCTICO

Forma de aplicación del método

1º) Datos:

Confiabilidad: R = 80 a 90%

Desviación estándar de todas las variables $\sigma_0 = 0.35$ a 0.50

CBR de la SR > **3%**

CBR de la SB > **50%**

CBR de la B > **80**%

Modulo resiliente = MR (De ensayo o de un grafico en función del CBR de la SR)

Índice de serviciabilidad inicial (Adoptado: 4,2 pavimentos flexibles nuevos)

Índice de serviciabilidad final = 1,5 en Argentina

Perdida de serviciabilidad = IS_i – IS_f

Vida útil de la calzada: 12años

TMDA_o conocido = **2007 (año de censo)**

Año de inauguración= **2009**

Tasa de crecimiento hasta el año de inauguración i =2%

Tasa de crecimiento hasta el fin de vida útil i =2%

DESARROLLO DEL TRABAJO PRÁCTICO

2º) Calculo el TMDA en el año de inauguración:

$$TMDA_1 = TMDA_0 * (1+i)^n$$

n: numero de años desde el censo hasta el año de inauguración = 2

(Otra forma de obtenerlo es con un coeficiente "a" de una tabla en función de "n" e "i ")

3º) cálculo el TMDA al fin de la vida útil:

$$\mathsf{TMDA}_2 = \mathsf{TMDA}_1 * \Sigma (\mathsf{a/n}) \quad \mathsf{a} = (1+\mathsf{i})^\mathsf{n}$$

Luego: $TMDA_f = (TMDA1 + TMDA2)/2$

(Otra forma de obtenerlo es con un coeficiente "b" de una tabla en función de "n =12" e "i =2").

4º) Factor de trocha ft:

Depende del proyecto. La trocha de diseño es aquella que recibe el mayor número de ejes. Para un camino de 2 trochas cualquier de las dos es la trocha de diseño ya que el transito forzosamente se canaliza por esa trocha. En este caso es ft = 1. En caso de caminos multitrocha, la trocha de diseño es la más externa dado que lo camiones y por lo tanto la mayor cantidad de ejes usan esa trocha.

DESARROLLO DEL TRABAJO PRÁCTICO

Número de trochas en cada dirección	ft	
1	1,00	
2	0,80 - 1,00	
3	0,60 - 0,80	
4	0,50 - 0,75	

5º) Factor de sentido de circulación fs:

Sale del censo: se ha realizado el censo en una sección de camino, entonces se ha tenido en cuenta el numero de autos que pasan en un sentido o en el otro, o se ha censado el numero de autos totales que pasan en la sección, entonces en este ultimo caso se puede decir que el 50% de los autos van en un sentido y 50% van en otro sentido.

6º) Calculo el número de ejes equivalentes de 10 ton/veh:

El transito esta compuesto por vehículos de diferente peso y número de ejes, y a los efectos de cálculo, se los transforma en un número equivalente de ejes tipo de 10 ton y luego se convierte a número de ejes de 18 kips, ya que los ábacos están hechos para estos valores.

DESARROLLO DEL TRABAJO PRÁCTICO

TIPO DE VEHÍCULO	DISTRIBUCIÓN	NÚMERO DE	% DE CADA TIPO	FACTOR	N° DE EJES
	DE EJES	EJES (14)	DE VEHÍCULO (15)	"C" (16)	(17)=(14)*(15)*(16)
Automóviles y					
camionetas	1,1	2	0,75	0,01	0,0150
Ómnibus	1,1	2	0,02	0,07	0,0028
Camiones	1,1	2	0,06	0,6	0,0720
Camiones	1,2	3	0,03	0,38	0,0342
Camiones	1,1-1,2	5	0,06	0,39	0,1170
Camiones	1,1 - 2	4	0,04	0,45	0,0720
Camiones	1,2 - 3	5	0,04	0,35	0,0700
	Factor de contribución combinado (18) Ct= 0,383				0,3830

Ejes de 10 t / vehículo

Aclaraciones:

Ejes: **1,1** (2 ejes simples)

1,2 (1 eje simple y 1 tandem)

1,1 – 1,2 (3 eje simple y 1 eje tandem)

1,2 – 3 (1 eje simple, 1 eje tandem y 1 eje tridem)

Factor de corrección "c": es un factor de carga equivalente y se obtiene de tablas. En el caso que en el diseño de cargas no se tomen las cargas máximas que da la norma se tiene que buscar el factor de corrección y multiplicarlos por los valores de la columna de % de cada tipo de vehículos.

La norma me da como cargas máxima por eje:

Eje simple = 10tn

Eje tandem = 18tn

Eje tridem = 25tn

Entonces se obtiene el **Nº** de ejes equivalentes de **10** ton (ya no se hace distinción si es un auto, camión, etc.) en un número de ejes de **10ton**.

DESARROLLO DEL TRABAJO PRÁCTICO

7º) Cálculo del número de repeticiones de ejes equivalentes en toda la vida útil:

$$N10tn = fs \cdot ft \cdot TMDA_{r} \cdot Vu \cdot 365 \frac{dias}{año} \cdot \Sigma ejes.equivalentes$$

8º) Conversión de este numero de ejes de 10tn a numero de ejes de 18kips = 8,2tn (valor con que se hicieron los ábacos)

$$N18kips = N10tn \cdot 2,2$$

9º) Calculo del numero estructural SN

Se entra al **NOMOGRAMA**, el cual es el mismo para pavimentos con o sin tratamientos bituminosos superficiales, con:


- Confiabilidad R
- Desviación estándar σ_ο
- El numero ESAL aplicados de la carga tipo de 8,2 ton/eje
- Modulo Resiliente de la SR
- Perdida de serviciabilidad

DESARROLLO DEL TRABAJO PRÁCTICO

10º) Calculo de espesores:

$$SN = a1*D1 + m2*a2*D2 + m3*a3*D3$$

El coeficiente "a1" que es el aporte estructural de la capa de rodamiento se saca de una figura en función de la estabilidad Marshall requerida para esa Carpeta de Rodamiento.

DESARROLLO DEL TRABAJO PRÁCTICO

Se adoptan los coeficientes de drenaje según se muestra en la figura: "m₂" y "m₃" Tabla 7.1

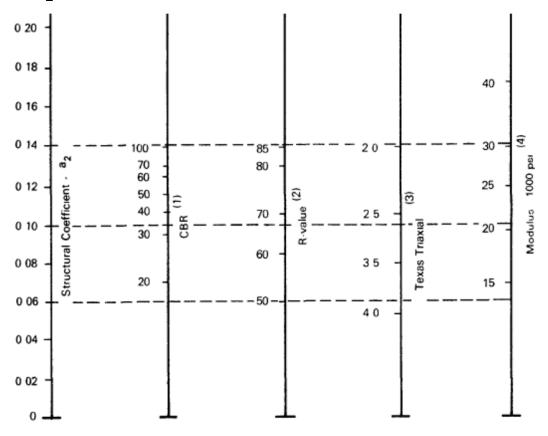
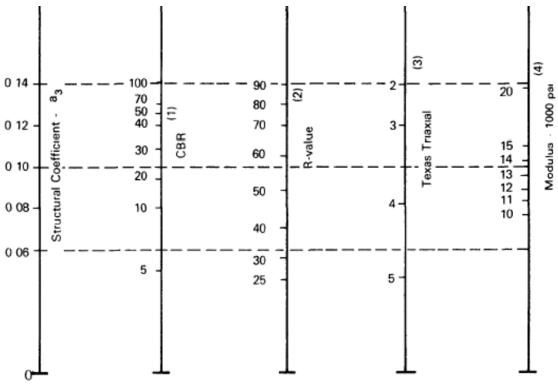

Calidad de drenaje	50% de saturación en:	85% de saturación en:
Excelente	2 horas	2 horas
Bueno	1 día 2 a 5 h	
Regular	1 semana 5 a 10 h	
Pobre	1 mes más de 10 ho	
Muy pobre El agua no drena mucho más de		mucho más de 10 horas

Tabla 7.2 Coeficientes de drenaje para pavimentos flexibles

Calidad de drenaje	% de tiempo en humedad	que el pavimento próximos a la	está expuesto a saturación	niveles de
	<1%	1-5%	5-25%	>25%
Excelente	1.40-1.35	1.35-1.30	1.30-1.20	1.20
Bueno	1.35-1.25	1.25-1.15	1.15-1.00	1.00
Regular	1.25-1.15	1.15-1.05	1.00-0.80	0.80
Pobre	1.15-1.05	1.05-0.80	0.80-0.60	0.60
Muy pobre	1.05-0.95	0.95-0.75	0.75-0.40	0.40

DESARROLLO DEL TRABAJO PRÁCTICO

El coeficientes "a₂" se obtienen de La grafica en función del CBR de la base



- Scale derived by averaging correlations obtained from Illinois
- (2) Scale derived by averaging correlations obtained from California, New Mexico and Wyoming
- (3) Scale derived by averaging correlations obtained from Texas
- (4) Scale derived on NCHRP project (3)

Figure 2.6. Variation in Granular Base Layer Coefficient (a₂) with Various Base Strength Parameters (3)

DESARROLLO DEL TRABAJO PRÁCTICO

El coeficiente "a₃" se obtienen de la grafica en función del CBR de la subbase.

- (1) Scale derived from correlations from Illinois
- (2) Scale derived from correlations obtained from The Asphalt Institute, California, New Mexico and Wyoming
- (3) Scale derived from correlations obtained from Texas
- (4) Scale derived on NCHRP project (3)

Figure 2.7. Variation in Granular Subbase Layer Coefficient (a₃) with Various Subbase Strength Parameters (3)

DESARROLLO DEL TRABAJO PRÁCTICO

Se adoptan espesores de base y subbase (D2 y D3) hasta verificar el número estructural obtenido. Se debe recordar que para el caso de tratamientos D1=1.

Hay espesores mínimos que respetar, dados principalmente por razones constructivas:

Capa	Espesor mínimo
CR	5cm
В	10cm
SB	10cm