UNIDAD VIII

C- CALEFACCION

FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE CUYO

1- CONDICIONES DE CONFORT:

CONFORT TERMICO:

ES LA SENSACION DE LAS PERSONAS CON RELACION AL MEDIO AMBIENTE.

El objetivo del confort térmico,
es proporcionar un parámetro de referencia,
para valorar si las condiciones micro - climáticas de un espacio,
son térmicamente adecuadas para una persona
en cuanto a su respuesta fisiológica.

SENSACION = f (Variables):

- 1- AMBIENTALES: T°aire, HR%, Mov. aire, (clima del local).
- 2- INDIVIDUALES: Actividad, vestimenta, género.

2- CESION DE CALOR:

EL SER HUMANO CEDE CALOR:

•QS (seco): se produce con un ΔT° .

•QL (húmedo): se produce con un cambio de estado.

QL

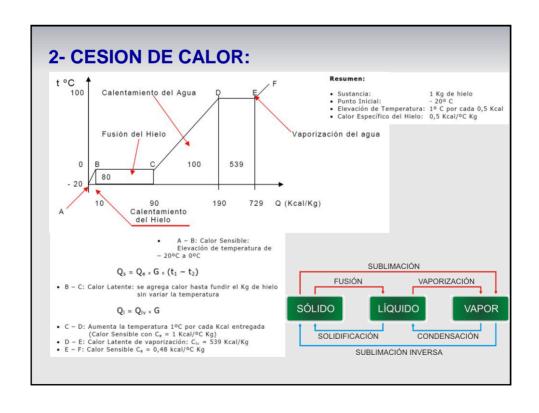
FORMAS:

•RADIACION:

•CONDUCCION Y CONVECCION:

•EVAPORACION:

•RESPIRACION:



LAS COMPONENTES DE CALOR, SE HALLAN REGULADOS DE MODO QUE:

(equilibrio térmico entre el cuerpo humano y su entorno)

3- CONDICIONES DE DISEÑO:

Diseño bioclimático: parámetro de control de las condiciones de habitabilidad (internas y externas).

LOGRAR LA CONFORTABILIDAD DE UN LOCAL.

A- INTERIOR:

VIVIENDAS: INVIERNO (20°C; 50%).

VERANO (24°C; 50%).

COMERCIOS: INVIERNO (19°C; 50%).

VERANO (26°C; 50%).

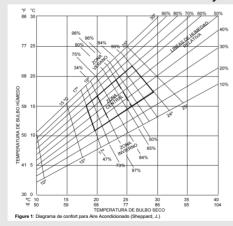
TIPO DE LOCAL	T _{int} (℃)
Viviendas	20 / 21
Oficinas	18 / 20
Local Comercial	18
Centros Comerciales	18
Pasillos – Circulaciones	15
Industrias Pesadas	15
Industrias Livianas	18
Sanitarios - Vestuarios	18
Talleres	18

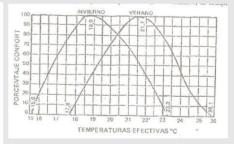
INDUSTRIAS: f (necesidad climática del proceso de fabricación).

B-EXTERIOR:

LOCALIDAD	VERANO (°c)	VERANO H.R. (%)	INVIERNO (°°C)	VERANO H.R. (%)
MENDOZA	35	40	- 1,1	60
POSADAS	38	45	4	75
BARILOCHE	32	40	- 5,6	65
SALTA	34	40	-3	65
SAN JUAN	40	35	- 3,1	55
SAN LUIS	37	30	- 1,8	60
CIPOLETTI	35	40	- 4,2	60
SAN ANTONIO OESTE	34	40	- 3,2	60
SANTA FE	33	40	1	80
ROSARIO	36	40	0,4	80
VERA	38	40	3,2	75
SANTIAGO DEL ESTERO	39	40	0,5	65
SAN MIGUEL DE TUCUMÁN	MIGUEL DE TUCUMÁN 37 45 1,1		70	
RÍO GALLEGOS			- 7,2	70
PUERTO DESEADO			-5	70
PUERTO SAN JULIÁN			-7	65
USUHAIA			-12	70
RÍO GRANDE			- 11	75

B-EXTERIOR:

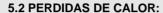

CONDICIONES DE CÁLCULO	PARA LA PROVINCIA DE	MENDOZA
LOCALIDAD	TEMPERATURA (°C)	HR (%)
ZONA URBANA	- 2	60
VISTALBA (LUJÁN DE CUYO)	- 5	60
CHACRAS DE CORIA	- 4	60
CACHEUTA	- 6	60
SAN RAFAEL	- 4	60
LAS CUEVAS	- 12	50
PUENTE DEL INCA	- 12	50
EL PLUMERILLO	- 3	65
VILLAVICENCIO	- 5	60
MALARGÜE	- 10	60
TUNUYÁN	- 5	60
SAN CARLOS	- 6	65
LAVALLE	- 3	60
LA PAZ	- 3	65
GENERAL ALVEAR	- 4	60


4- DIAGRAMA DE CONFORT Y T° EFECTIVAS:

Conociendo: - TBS y TBH.

- HR%

- se determina T°e y % Personas Confortables:


 $T^{\circ}\mathrm{e}\mathrm{:}$ Indice compuesto, que expresa en un solo valor, los tres factores ($T^{\circ},\ HR\ y$ velocidad del aire), que produce igual sensación térmica.

5- BALANCE TERMICO DE INVIERNO:

5.1 OBJETO:

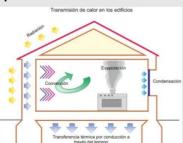
Determinar la cantidad de "Q" a suministrar, para compensar las perdidas, de acuerdo a las características ambientales y de los locales, manteniendo las condiciones estables de confortabilidad

QT = Qt + Qe

[Kcal/h]

Qt: por transmisión. Qe: para compensar infiltración aire exterior.

Imagen: www.hansenpolebuildings.com


5.3 CANTIDAD DE Q POR TRANSMISION:

$$Qt = Qo \cdot (1 + Zd + Zc + Zh)$$
 [Kcal/h]

- · Qo: pérdida por transmisión de las superficies.
- · Zd: mejoramiento por interrupción del servicio.
- · Zc: mejoramiento por pérdidas en cañerías y conductos.
- · Zh: mejoramiento por orientación.

$$Qo = \Sigma qo$$
 $qo = K \cdot A \cdot (ti - te)$

qo: cantidad Q de cada elemento de la sup. del contorno del local.

Amb. calefac.: t = (ti + te) / 2

Sótanos: $ts = (te + 10^{\circ}C) / 2$

Pisos: $t = 10^{\circ}C + te K=1 [Kcal/(hm2^{\circ}C)]$

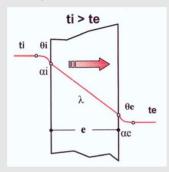

[Kcal/h]

Imagen: Comportamiento del calor. Fuente: artinaid.com

5.3 CANTIDAD DE Q POR TRANSMISION:

Qo =
$$\Sigma$$
 qo qo = $K \cdot A \cdot (ti - te)$ [Kcal/h]

K: coeficiente de transmitancia térmica – IRAM 11.601 qo: cantidad Q de cada elemento de la sup. del contorno del local.

1ra Etapa: Transmisión de calor desde el aire interior a la cara interna de la pared. La transferencia se realiza por convección a través de la capa del aire de contacto y por radiación de los elementos más calientes hacia la pared considerada.

2da Etapa: La transmisión de calor a través del cuerpo, se realiza por conducción.

3ra Etapa: Transmisión de calor desde el interior, de la pared hacía el aire exterior. La transferencia se realiza por convección a través de la capa del aire de contacto y por radiación de la pared considerada hacia los cuerpos más fríos que se encuentran en el exterior de la pared considerada.

Rt = 1 / K = $(1/\alpha i)$ + $(e1 / \lambda 1)$ + $(e2 / \lambda 2)$ + $(e3 / \lambda 3)$ + + $(I/\alpha e)$

5.3 CANTIDAD DE Q POR TRANSMISION:

AISLACION TERMICA

K: coeficiente de transmitancia térmica - IRAM 11.601

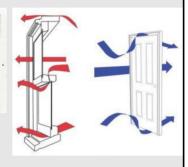
Rt = 1 / K =(1/ α i) + (e1 / λ 1) + (e2 / λ 2) + (e3 / λ 3) + +(I/ α e)

Material Densidad (kg(m3)) Conductividad Vacio 0,000 Aire 0,020 Poliuretano 30 - 60 0,022 EPS 20 0,015 Lana de vidrio 8 - 30 0,042 Granulado volcanico 30 - 130 0,054 Mortero cementicio de granulado 700 0,180 Hormigon 2000 1,100

POLIURETADO EXPANDIDO	(1,00)
POLIESTIRENO EXPANDIDO	(1,59)
LANA DE VIDRIO	(1,91)
GRANULADO VOLCÁNICO	(2,45)
Granulado Volcánico Amasado con Cemento	(8,20)
MAMPOSTERÍA DE LADRILLO	(41,00)
HORMIGÓN ARMADO	(64,00)

5.3.1 SUPLEMENTO POR INTERRUPCION SERVICIO (Zd): ES EL Qnec. PARA LLEVARLO A REGIMEN CONTINUO Servicio Ininterrumpido (viviendas): 7% Interrupción de 8 a 12 hs (comercios): 15% Interrupción de 12 a 16hs (fábricas): 25% 5.3.2 SUPLEMENTO POR ORIENTACION (Zh): SE TIENE EN CUENTA LA EXPOSICION SOLAR E; O: 0% N; NE; NO: -5% S; SE; SO: 5%

5.4 CANTIDAD Q DE PERDIDA POR INFILTRACION DE AIRE:


Qe = f (hermeticidad, diferencia presión de aire ext. e int.)

 $Qe = 0.3 \cdot Ca \cdot (ti - te)$

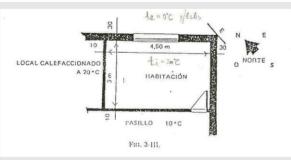
• Método de la rendija: Vol = n [m3/(h.m)] . Long

• Renovaciones de aire: Vol = nr . vol local

Clase de local	Nº (renovación por hora de aire del local)
Shi paredes exteriores	0.5
 Una pared exterior con 	
ventana normal	1
Dos paredes exteriores con	
ventana normal o una con	
ventana grande	1,5
 Con más paredes exteriores 	2

Ca [m3/min]

Buenos Aires

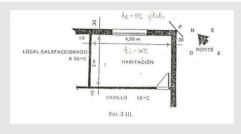

h = 2.70 m

20 °C

0 °C

EJEMPLO BALANCE TÉRMICO PARA CALEFACCIÓN 1- DATOS:

- a. Ubicación:
- b. Temperatura Ti: c. Temperatura Te:
- d. Altura del Local: e. Techo exterior
- g. Pérdidas por cañerías:
- f. Servicio interrumpido (No auto.): 7 % Zc = 10 %



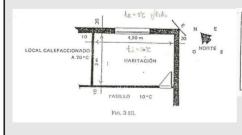
2- CARACTERÍSTICAS ELEMENTOS CONSTRUCTIVOS:

- a. Pared exterior, ladrillos macizos (e=0.3m)
- b. Pared interior, ladrillos huecos (e=0.1m)
- c. Ventana corrediza, marcho chapa y hoja de aluminio.
- d. Piso sobre tierra.
- e. Techo losa, contrapiso y baldosas (1.5).

3- CONSIDERACIONES:

- a. Locales no calefaccionados: t'i = (te + ti) / 2
- b. No existen pérdidas entre locales calefaccionados.
- c. Se consideran las puertas interiores incluidas dentro de la sup. de la pared.
- k = 1 y ts = te + 10 °C. d. Piso sobre tierra:
- e. Nº de renovaciones por infiltración: dos paredes exteriores y ventana → 1.5
- f. No se considera para el cálculo, aportes de Q por personas, iluminación => situación más desfavorable.
- g. Para el K de vidrios: se restan los de la pared => simplifico el cálculo, ya que computo pared completa sin restar el área del vidrio.

4- CALCULO PERDIDA POR TRANSMISIÓN DE SUPERFICIES:


	1.5-1						
LOCAL	DESIG.	ORIENTACIÓN	AREA	k	Δt	qo	
			m2	Kcal(h.m2.°C)	°C	Kcal / h	
HAB.	E30	NE (4.5 x 2.7)	12.15	1.62	20	394	
	E30	SE (3 x 2.7)	8.1	1.62	20	262	
	110	(4.5 x 2.7)	12.15	2.4	10	292	
	V30	NE (2 x 2.1)	4.2	(5-1.62)=3.38	20	284	
	PISO	(4.5 x 3)	13.50	1	10	135	
	TECHO	(4.5 x 3)	13.50	1.5	20	405	
0		1 mm o 14	111				

Qo = Σ qo = 1772 Kcal / h Qt = Qo x (1+Zd+Zh+Zc) = 1772 x (1+0.07+0+0.1) = **2073** Kcal / h Zh (E) = 0 %

5- CANTIDAD Q POR INFILTRACIÓN DE AIRE:

Qe = 0.3 x nº renov. / h x vol. Local x (Ti – Te) Qe = 0.3 x 1.5 renov / h x (4.5 x 3 x 2.7) x 20 °C = **328 Kcal** / h

6- CANTIDAD Q TOTAL: QT = Qt + Qe = 2073 kcal / h + 328 kcal / h = 2401 Kcal / h

Clase de local	Nº (renovación por hora de aire del local)
Sin paredes exteriores	0.5
· Una pared exterior con	
ventana normal	. 1
Dos paredes exteriores con ventana normal o una con	
ventana grande	1.5
· Con más paredes exteriores	1,5