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Element Area

Y oungs modulus of eagticity

modulus of rigidity

unit vector in x direction

unit vector in'y direction

unit vector in z direction

stiffness component

area coordinate

length dimension

shape function

nodal |oad component

distributed load

radial cylindrical polar coordinate
element thickness

displacement component in x direction
strain energy

displacement component in y direction
displacement component in z direction
work done by external loads

cartesian coordinate

cartesian coordinate

cartesian coordinate / axia cylindrical polar coordinate

displacement vector

strain shape function matrix

direction cosine matrix

elasticity matrix

nodal force vector

Jacobian matrix

stiffness matrix

shape function matrix

coefficient of assumed solution polynomial
shear strain component

direct strain components

Static |

UMIST



Notation

{e}
{a}

intrinsic coordinate
intrinsic coordinate
cylindrica polar coordinate
Poissonsratio

intrinsic coordinate

total potential energy

direct stress component
shear stress component
strain vector

stress vector
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1 Plate Bending

1.1

Introduction

Much of the pioneering work carried out developing the finite element method was done by the
aerospace industry. The stress integrity of the components and assemblies in this industry is of
paramount concern, for safety reasons. As an example, the wings of an aircraft consists of aseries
of spars at various positions along the length of the wing and these are covered by a series of thin
plates. Thisform of structure has avery good strength to weight ratio. The spars give the structure
strength and the use of the plates allows a reduced weight over a solid wing. This structure is very
complex and difficult to analyse without the use of a tool such as the finite element method.
Therefore, the development of a range of elements was required. One area of the finite element
method that has received agreat deal of attention from researchersisthe analysis of plate bending.
These elements are two-dimensional, and generally have either five or six degrees of freedom per
node. This makes these elements expensive to use as a single second order quadrilateral plate

element has 48 degrees of freedom.

It could be argued that plate type structures, being three-dimensional could be analysed using three-
dimensional brick elements. However, because the thickness of the plate is much smaller than the
other dimensions, aspect ratio error would be induced in the analysis resulting in poor accuracy of
results. On the other hand, if the three-dimensional element were reduced in size so that the other
dimensions of the element were comparable with the thickness, the error due to the aspect ratio
would be eliminated. However, the number of elements required to achieve this, would result in a

very large model which would require a massive amount of computer resources to run.

There are a number of criteria, which a three-dimensional structure must satisfy to be classed asa

plate. These criterion are as follows,

1. Thethickness of the plate is small compared with the other dimensions of the plate.

2.  Themid-surface of the structure is a neutral surface during bending.

3. Out-of-plane loading can be applied, (in-plane loading can be included if a two-dimensional

finite plane stress element is included in the derivation of the plate bending element).
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Plate Bending

4. The out-of-plane deflections are small compared with the thickness of the plate.

5. Thestress normal to the mid-surface is negligible compared with the bending stresses.

It has been previoudy stated that the derivation and development of plate bending elements has long
been afavourite topic of researchers and many different plate el ements exist. Therefore a number of
additiona assumption may be made for these theories. The reason that these elements receive so
much attention is that there are different theories depending on the thickness of the plate. The
continuity of slope along edges and at the corners of thin plates cannot be maintained within an

element and therefore cannot be maintained across el ement boundaries.

In this text the most basic, thin and thick plate element theories are used to introduce the topic of
plate bending elements, but the reader should be aware that there are many variations of plate
elements. In most finite element packages there is no distinction made between plate and shell
elements and generdly only shell lements will be given. The reason for thisisthat the shell element
is an extension of the plate element. The problem of having to decide whether athick or thin shell
element should be selected is eliminated when using most commercid finite element codes. The
programs either use amore elaborate shell element which can be used for both thick and thin plates
or makes the choice based on the model data.

The difference between a plate element and a shell element isthat the plate element isflat and lies
onasingleplane. A shell is a structure that can be derived from a plate by initially forming the mid-
planeto asingly or doubly curved surface. A shell element must take in-plane as well as out-of-plane

loading into account.
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2 Thin Plate Elements

2.1 Introduction

The derivation of the analysis of thin plates is based on the classical plate theory developed by
Kirchhoff. There are a number of basic criteria that must be satisfied to allow athree-dimensional
gructureto be defined as a plate. These criterion are listed in the introduction to this booklet. In the

derivation of thin plates Kirchhoff made some additional assumptions. These are,

1. The norma to the mid-plane before deformation, remains normal to the mid-plane after

deformation.
2. The shear stress normal to the mid-planeis negligible.

The first assumption basically ignores any effects due to shear deformation. In thin plates thisisa

reasonable assumption to make as the thickness is so small, it is not so reasonable for thicker plates.

2.2 Kirchhoff Plate Element

Consider the plate shown below in Figure 1, of thickness t. The coordinate system is defined such
that thex and y axes are coincident with the neutral surface and the z axisis positivein the direction
of the bottom of the plate.

neutral surface

Figure1: A plate with thickness, t.
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Thin Plate Elements

All nodes, such asi and j, in Figure 1, lie on the neutral surface. Each node has three degrees of
freedom, two rotations about the in-plane axes and a displacement in the direction of the positive z

axis.

The finite element equations can be obtained using the theory of minimum total potential energy,
using similar procedures to those employed in the derivation of the two and three-dimensiondl finite
element analysis. The total potential energy is given by the difference between the strain energy of

the structure and the work done by the external loads.

Thework doneis given by the load multiplied by the displacement (or moment times the rotation).

For a single node this can be written as,

P

W = [w 6, ey] M, (D

My

The strain energy of any structure is given by,

- {o)t{e}
U - va| 5 dvol )

In this case due to the basic assumptions made for a plate, the components of stress and strain are,

lo} =0, lel =€ (3)
Ty Yy

The sressisrelated to the strain by the generalised Hook's law, for the direct strains this is reduced

to,

€, = OX*nUOy

i (4)
Ey = Oy - nUOX
and the shear stress/ shear strain relationship is,
T
- X
Yy ~ G (5)

where,
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Thin Plate Elements

__E 6
2(1-nu) ©)
Equations (4) and (5) can be written in matrix form and re-arranged to give,
o, 1 nu O €,
o - E nu 1 0 e, )
2
1-nu 00 1-nu
2% 2 Ty

Thisisidentical to the relationship obtained for the two-dimensiona plane stress analysis. Equation
(7) isgenerally written as,

{o} = [D] {e} 8)
Using equation (8) the strain energy equation (2) can be written as,

U - %fxfyfz{e}‘[D] {e} dzdydx ©)

The strain-displacement relationship for small displacement theory is,

c - 9
X oX
ov
ey:a—y (10)
Lo, v
Yooy ox

It can be deduced that the strain components will be zero on the neutral surface as the in-plane
displacements will be zero. If Figure 1, isviewed in such away that the surface with nodei is viewed
directly, as shown in Figure 2, that there is a displacement in the direction of the x axis at points

throughout the section other than the neutral surface.
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Thin Plate Elements
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Figure 2 : Plate viewed in the direction of y axis.

Note that the normal to the mid-surface before deformation remains normal to the mid-surface after
deformetion. Therotetion (slope) after deformation is 6, which isin a clockwise direction and hence,

dueto the sign convention adopted, is negative. Examining the anglesin Figure 2, it can be seen that,
- - 9 (11)
It can also be seen that,
u - 28, (12)
(Noting that as shown in Figure 2, u is a negative displacement and aso 0, is a negative rotation).

Substituting equation (11) into equation (12) gives,

oW
u=-z—
X (13)
Figure 1 can dso be viewed in such away that node j is directly in front of the viewer. Thisis shown

below in Figure 3.
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Thin Plate Elements
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V\l

normal before

normal after deformation

deformation
Figure 3: Plate viewed in the direction of they axis.

Therotation &, is clockwise and is hence negétive. The lope of the tangent from the deflected neutral

surface to the axis al so has a negative slope. Examining the anglesin Figure 3, it can be seen that,

~ ex (14)

It can also be seen that,

V= 7zex (15)

Substituting equation (14) into equation (15) gives,

ow
vV=-z—
ay (16)

Using equations (13) and (16) the strain-displacement rel ationships can be re-written as,

(n

2
= @ = zi(a—w) = fZa—W

XX ox\ ox ox2
ov o ow Pw
SV A S bl R 2
Yooy ay( ay) ay? 40

S ou . ov 3 ( ow o ow)l *w
Vo = — +— = 28— | — | +=| — = 22—
Yooy ox oyl ox ) ox\ oy X0y

It can be seen from equations (11), (13), (14) and (16) that al the components are functions of the

single displacement term, w. Thisis known asirreducible asit is dependant on only one variable.
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Thin Plate Elements

As with other finite element derivations an element is defined and a polynomial distribution of the
displacement function is assumed. In this case, however, only the displacement w, at any point is
required in terms of the nodd parameters, as the other degrees of freedom can be calculated from the
displacement, w. The displacement function can be written in terms of the nodal degrees of freedom

and shape functions as,
n ow, ow,
W = aw +b — +¢c— 18
|21: T oax o oy (18)

where a,, b, and ¢, are Hermitian shape functions. The element shape functions are discussed in more
detal in subsequent sections, asthey are not as straight forward as other two-dimensional elements.

Problems arise with the continuity of the dopes within an element, never mind between elements.

Using the relationships given in equations (11) and (14) equation (18) can be written as,
n
W = 21: (aivvi b6, + ciexi) (19)
1=

or in matrix form as,

w =Y {alliN} (20)
i=1
where,
w g,
la} = 46, IN} =4 ¢ (21)
0 -b

Equation (20) allows the strains at any point to be defined in terms of the nodal degrees of freedom
and the shape functions, thus,

62
e = ~zy {lal'— (N}
i1 ox2
n 82
€ = -2 alt— (N} (22)
i=1 6y2
> lar2
Yo = —2z) {al {N}
Y i1 oxay
These strain components can be written in matrix form as,
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Thin Plate Elements

le} = [B]{a! (23)
where,
Ny N,
ox? NG
&N &N
[B] = -z _21 ...... 2“ (24)
oy oy
2ale ...... 2aan
AX3y oxoy |

Using equation (23), the strain energy equation (9) can be written as,

_1 t
U - E{a} fxfyfz[B] [D][B] dzdydx |{a} (25)
Thetota potential energy becomes,
_ 1 t _ t
I - E{a}[fxfyfz[B] [D] [B] dzdydx}{a} faltifl 26)

The finite element equations are obtained when the potential energy isaminimum (i.e. when the

loaded structure attains an equilibrium position). For minimum potential energy,

oll
=0
otal -
Thisgives,
“xfyfz[B]‘[D] [B] dZdde]{a} -1t (28)
where,

[K] - [fxfny[B]‘[D] [B] dzdydx

(29)

is the element stiffness matrix. The function being integrated in the stiffness matrix, through the

thickness of the plateisafunction of Z only. Therefore,

N~

2 18
fz[D]dzfﬁ[D] (30)

N~
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Thin Plate Elements

The [D] matrix is modified to,

1 nu 0
3
D] - Et : nu 1 0 (31)
12(1-nu®) 0 0 1-nu
2
Thus the stiffness matrix becomes,
K] = B]'[D’] [ B] dydx
(K] <[ [ f 1BV (B1 0y (32

The shape functions for the Kirchhoff element can be evaluated in terms of intrinsic coordinates
alowing an intrinsic element to be defined. The stiffness matrix can be evaluated using numerical

integration techniques, and this aid the numerical implementation of the process.

2.3 Shape Function for Kirchhoff Plate
Elements

Inthe previous section, the derivation for the analysis of Kirchhoff plate elements was given, but it
was dightly vague on the subject of element shape functions. This was deliberate as there are a
number of difficulties associated with the shape functions for thin plate elements. Thisis an area

where agreat deal of time and effort has been spent by researchers.

The plate el ement requires not only continuity of the displacement but of the slope of the element at
it'sinterface. The dope being thefirst derivative of the displacement. Thisis known as C, continuity.
Thisisimpossible to achieve. If afour node rectangular element is considered, as shown in Figure
4, adisplacement function can be written along a particular side of the element, say from node 1 to
node 2, such that,

_ 2
W = o+ 0 X+ 0, X"+, (33)
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Thin Plate Elements

y

Do
>

b
0w _duw
dn Jdy

Figure 4 : Afour node rectangular plate element.

There are two nodes on side 1-2, hence two values of w and it's derivative with respect to x. The
displacement function, w, in equation (33) will have acubic variation in this direction. However, as
the coordinate y has a constant value along side 1-2, the slope, 8, can only have alinear variation.
Thelinear variation, will be obtained from the values of 6, at nodes 1 and 2. The polynomial defining
the displacement w, is a function of x only as 'y is constant, therefore no variation of 6, can be
obtained, other than using the values at the nodes. Therefore there is a lack of continuity at the
corners. If Side 1-4 isexamined, it can be deduced, from the above argument that 6, will have alinear

distribution along the element side.

If the [B] matrix is examined, it will be seen that for the strain-displacement relationship, a second
order differential of the displacement with respect to x and y exists. The distribution of 8, along the
side 1-2 islinear dependant on the nodal values of nodes 1 and 2. If thisvalueis differentiated with

2,
respect to x, then % will be afunction of the two nodal values only. Similarly along side 1-4, 0,
y

2,
isdependant on thetwo noda vaues(at nodes 1 and 4). If thisis differentiated with respect toy then ; ;V
YOX

2,
will be afunction of the nodal values. At node 1, it isimpossible to satisfy the condition that %
iscontinuous. Thus, if it isimpossible to obtain continuity within the element, then there is no way
that continuity across the element boundaries can be achieved, using a simple polynomial. An

element which uses such a polynomia is generally known as having non-conforming shape

functions.
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Thin Plate Elements

2.3.1 Four Node Quadrilateral Element

The shape function for afour noded quadrilateral €ement with three degrees of freedom at each node,
can be obtained by assuming a polynomial tria function for the displacement w. Thiswould contain
twelve unknowns coefficients,

W o= 0+ 0y X+ 0,y + 07+ e, Xy + agy? + o X3

(34)
+ X2y agxy? + gy aggXPy + g, Xy

The coefficients «, t0 @, can be obtained by substituting the boundary conditions at each nodeinto
equation (34), thus obtaining twelve simultaneous equations. It is suggested, in some texts that, this
method be used to obtain the shape functions. This, however, has the disadvantage that a standard,
intrinsic eement cannot be defined and the procedure would have to be carried out for every element.
The geometry of the element is limited to rectangles to allow numerica integration to be employed.
The equations can, and have been solved algebraically, but thisis very time consuming and error
prone. This does, however alow the use of an intrinsic element, which will aid the numerical
implementation of the method.

An dternative method for deriving the Hermitian interpolation for an intrinsic element was presented
by El-Zafrany and Cookson. The problem to be solved is given by,

& & oy & &

22 (W) = 2 W, 35
ags ant ags ant 1] ( )

ij
where i variesfrom 1 to the number of nodesin & direction
j variesfrom 1 to the number of nodesin v direction
svaries from 0 to the number of derivative required
t varies from 0 to the number of derivative required
W is the approximate function

wisthe actual function values at the nodes

It was shown that,
: N us as L vt 8‘
W= HPEmE)=Y Y H () = rw, (36)
i1 |s0 OESiA1 10 on'
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Thin Plate Elements

where H** and HJ-V‘t are one dimensional Hermitian polynomials.

Consider the four node quadrilateral element, shown in Figure 5, each node has three degrees of

freedom.

@O)4 @OJ4

6&)1 60)1 Wa

@Q)Q 6@2

a¢

Bﬁaou 8w3
é 9 ¢ oKy

Figure5: Four node quadrilateral plate element with degrees of freedom.

If equation (36) is considered, it can be seen that i and j vary from 1 to 2 (the number of nodesin the
£ and ) directions respectively) and sand t vary from 0 to 1, asthe first derivative of w, is required.

62

However, this produces a cross derivative term v when both sand t have avalue of 1. Thisis
y

not avaid degree of freedom, and hence equation (35) is examined as a series of specia casesand
superposition is used to obtain the overall results. The case wheret is zero and svariesfrom0to 1

is considered and equation (35) yields,

Ww( %] (37)

where afunction of w is obtained over the whole e ement, a cubic function of (2_\2/ is obtained over

the edges where 1 is constant and a linear interpolation over the edges where £ is constant.

The second case considered, where siszero and t variesfrom 0 to 1 gives,

W= w, (WZ—:’:) (38)

Thus a—\év and w are obtained over the ement but w has been defined over the element twice. The

G, on

special case of both sand t are zero is therefore considered to give,
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Thin Plate Elements

W= w, (W) (39)

The interpolation formulafor the e ement can be obtained using the principal of superposition as,

W= W+ w - W, (40)

Thisis shown graphicaly in Figure 6.

7 @w3 K w 67('03
9 SRy 4 75
w, 9W4 g  wa — 7
V9 4 3 3
| w, W)
|w 2| £ 1
o O — O— — —0 —
W 1 6@1 Wo %2 (A)"aaiw/‘ W ao‘)Q
0¢ G 7 o7
Figure 6 : Graphical representation of shape functions for a thin plate.
Equation (40) can be evaluated to give,
m
X [{H @R m @ R ) - M
=
(41)
11 10, OW; 10 11,y OW;
+ H(E)H, (n)8—£1+Hi (&) H, (n)a—nJ
Consider the second term of the above equation,
oW,
HE(EH () (42)
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Thin Plate Elements

The interpolation along the edges where 1) is constant will use the Hermitian shape functions, ie,

HM = N,

(43)

Hy' = N,

where N, and N, are the one-dimensional shape functions which were defined for the Euler beam

element. Theinterpolation function dong the sides of constant, is given in equation (42) by the term,

H(n) (44)

which actualy varies as a Lagrangian polynomid, determined by the number of nodes aong the edge.
Thus equation (42) should be written as,
oW,

11 n
H™ (&) < (n) o

(45)

where,

4'(m) = q [ 2:?{ ] (46)
r= i~ N,

r+j

isaLagrangian polynomial, defined for shape functions of the one dimensional axial bar element.

A similar procedure is carried out for the other terms of equation (41). Thus equation (41) can be

written as

VY [{HE@ A m) R HE M) B EH

m
j=1
(47)
OW,. OW..
+ HPEH () L+ @) B (n) L

ok on
This produces shape functions for an intrinsic element which alows transformation from the actual

element to an element on an intrinsic plane.

The mathematics involved in the complete derivation is beyond the scope of this text, but the
derivation given shows the complexity of the problem. There are many modifications made to the
basic theory to improve the element performance, these are not covered in this text, but some of the
references given discuss these elementsin more detail. In the basic theory, it was stated that the ope
continuity was not satisfied. The effect of this can be determined using a patch test. It is generally
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Thin Plate Elements

found that the results obtained using this element are acceptable. It must be pointed out that the basic
theory is an approximation and the finite element analysisis a further approximation, therefore the
expected level of accuracy obtained from these elementsis not high. However, it isfound that these
elements produce good results for thin plates but as the thickness of the element increase the accuracy

decreases. Thisis because the derivation does not take into account any shear deformation effects.

2.3.2 Three Node Triangular Element

Thetriangular element can be defined by a series of natural or area coordinates, as shown below in

Figure7.

= 2z
A V) (c)
Figure 7 : Athree node triangular element defined using area coordinates.

The coordinate of any point within the triangle can be defined in terms of the nodal coordinates and

the natural coordinates as,
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X
|

= Lxg v LoX, +Lgxg

y = Llyl + I-2y2 + L3y3

(48)

Natural coordinates are often refereed to as area coordinates and the reason can be seen in Figure
8.

Figure 8 : Triangular element divided into a series of areas.

It can be seen that, for apoint P,

Lo- Area 23P
1 Area 123
| _ Area 13P 49
2 " Area 123 (49)
| _ Area12p
3 Area 123

The area of the element is equal to the sum of the areas of the three segments in Figure 8 which

define the area coordinate, thus it can be deduced that,

Li+l,+ly=1 (50)

From equations (48), (49) and (50) the area coordinates can be found in terms of the nodal

parameters,
L (% =%3) (Y=Y,) = (Y, -¥3) (X-X;)
t 2A
L2 _ (X3*Xl) (yyl)ZA(y3yl) (X*Xl) (51)
L - (X*Xl) (yzfyl)f(yfyl) (Xzfxl)
3 =

2A

where A isthe area of the element.
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Thin Plate Elements

The area coordinates can be used to define a polynomial for the field function, in this case the
displacement w. The polynomia requires one term for each degree of freedom of the element. In this
casethere are three degrees of freedom per node and three nodes per element giving atota of nine
terms. The complete cubic polynomia has ten terms, which is one more than required, so generally
amixture of quadric and cubic terms are used to define the polynomial.

W=l +oy L, +o,l oLl vl L+ Lol

2 2 2 (52)
+togl L+ ol Ly +agls Ly

The rotation degrees of freedom can be obtained by using the chain rule of partia differentiation.

0 o dho s
ox  ox oL, ox oL, ox dl,
(53)
o Mo o s o
oy dy L, odyady dy dl,

Equations (53) can easily be evaluated by differentiating equation (52) with respecttoL,, L, and L,
and differentiating equations (51) with respect to x and y.

The next stageisto substitute the boundary conditions at the nodes into the resulting equations. This
gives nine equations for the unknowns ¢, to ¢, and hence the element shape functions can be
obtained.

There are various other methods for deriving the shape functions for this element and again thisis
an areawhere a great deal of research has been carried out. The process has only been outlined in
thistext as the mathemati cs involved are time consuming and error prone and the element has some
drawbacks when used for practical applications. Many researchers have tried various modifications
toimprove the performance of this element. This subject has been covered in various texts in much

greater depth than this introductory text.
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3 Mindlin Plate Analysis

3.1 Introduction

Thereareanumber of basic criteriawhich must be satisfied for athree-dimensiona structure to be
considered asaplate. These criterion are listed in Section 1. The plate theory developed by Mindlin
has an additional assumption which is that the normal to the mid-surface before deformation
remains straight but not necessarily normal after deformation. This assumption give an
gpproximeation for the shear deformation, but does not take into account any warping of the element
caused by the shear deformations. In genera a correction factor is added in the analysis to take

account of warping.

3.2 Mindlin Plate Element

The plate shown in Figure 9, hasthe x and y axes coincident with the neutral surface, with the zaxis

in the direction of the bottom surface of the plate.

neutral surface

Figure 9 : A plate with axes definition.

At any node such asi or j, there are three degrees of freedom displacement, two rotations about the

in-plane axes and atrandation in the globa z direction.

Thetheory of total minimum potentia energy can be employed to derive the finite element equations.

The procedures employed in two and three-dimensiona static analysis are also used to derive the
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Thick Plate Elements

Mindlin plate element. The total potentia energy is given by the difference between the work done
and the strain energy. The work done on the four node quadrilateral element, shown in Figure 10 is,

=W le + le Mx1 + Gyl Myl F oo + W, PZ4 + 6x4 Mx4 + 6y4 M (54)

X3

Figure 10 : Nodal work done by a four node quadrilateral element.

Thisis generaly written in matrix form as,

W = {al'{f} (55)
where,
{aft - [wl 0, 0, - w, 0, ey]
(56)
- [le M, M, P, M, My]

The strain energy for a structureis given by,

B lo}{e!
U = va| 5 dVol (57)

where,

{o}t = [ox 0, Ty Ty sz]
(58)

{elt = [ex € Yy Yy sz]

The stresses and strains are related by Hooke's law for linear elastic homogeneous materias. The

direct stresses are related to the direct strains by,
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(CATES

x
ml— mle

(oy -nu ox)

These equations can be re-written in matrix form and re-arranged to give,

1 nu

nu 1

o, ) E €,
o) 1-nu? €,

The shear strains are related to the shear stresses,

T

—_—

G

T

_ ¥z

G

T

R

where,

_ E

2(1-nu)

(59)

(60)

(61)

(62)

The strain term v,,, is due to the bending while the termsy  and,y , are due to the shear. The

bending shear stressisincluded with the direct bending stressto give,

o, 1 nu O €,
o, ( = E nu 1 0 € (63)
2
1-nu 00 1-nu
Ty 2 Yy
Thisis generaly written as,
{o}, = [D], le), (64)
The shear stress-strain relationship is give by,
T 10/(|Y
vz| L yz (65)
T, 2(1-nu) [0 1]|v,
which is generally written as,
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lo}, = [D], el (66)

The stress-strain relationships are partitioned in such a way to alow the inclusion of a two-
dimensiond plane stress stiffness matrix into the finite element equation. This gives a more genera
plate eement which alows both in-plane and out-of-plane loading to be applied. The [D], matrix for
the plane element isidentical to the [D] matrix for a plane strain analysis, the partition of the stress-
strain relationship means the same matrix is not calculated twice. The inclusion of a plane stress
analysisis not considered further in this text.

The strain-displacement (compatibility) relationships for small deflections are,

e - Qu

XX

P

y ay

vy - NN 67
Xy ay OX ()
oW

. 6z oy

.o du, ow

9z

At first glance, it may seem that most of the strain terms will be zero asthere is no displacementsin
thex andy directions, defined as active degrees of freedom for the element. Thisistrue, only for the
neutral surface, if Figure 11 isexamined, it can be seen that there is adisplacement in the x direction
at points through the thickness of the plate.
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normal before

deformation \
0

assumed normal /

after deformation

normal after
deformation

Figure 11 : The component of displacement through the thickness of the plate.

It can be seenfrom Figure 11, that at a distance z from the neutral surface, in the displaced section,
there is a displacement u, due to the application of moment M,. The moment M,, causes a negative
rotation 6, and the displacement u, is aso in the negative direction. It can also be seen that the

rotation 8, has two components, thus,
6y = (%Ver)y) (68)
The displacement u, isgiven by,
u= zey (69)

(As8, isnegative, uwill automatically be negative) or substituting equation (68), (124) into equation
(69),

u-= z(%vuby] (70)

Similarly Figure 12, shows the original and displaced shapes of the plate, with the corresponding

rotations and displacements.
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normal before

deformation X

assumed ‘normal’ /

after deformation

normal after
deformation
Figure 12 : Displacement components through the thickness of the plate.

It can be seen that a moment M, causes a negative rotation €, , but a positive displacement v a a
distance z from the neutral surface. It should also be noted that the slope of the tangent to the

displaced neutral surface is negative. The rotation has two components and can be written as,

ow
ex = a—y + y (71)

The displacement, v, istherefore,

V= 7zex (72)

(As 0, is negative, when substituting into equation (72) it will give v as positive) or substituting

equations (71) into equation (72) will yield,

oW,
V= Z( ax d)x) (73)

It can be seen from equations (70) and (73) that u and v are not wholly dependant on w and can
therefore be treated as independent variables. This means that Lagrangian shape functions identical
to the ones used for two-dimensiond static analysis can be used, in thisanalysis. The problem isone

of C, continuity, as only the displacements need be continuous between elements.

The displacement at any point on the plate can be specified using nodal parameters and nodal shape
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functions,
n
w= Y Nw,
i-1
n
ex = Z Ni (ex)| (74)
i-1
n
ey = ZNi (ey),

as,
ou o 2 oN,
o S-S 2 e,
€ = @ = i(,ze) = *Zzn: ﬂe (75)
y oy X i1 oy *

S a0 5e0)

(76)
n. |oN oN.
-z ‘g, -— 6
.21: ox oy X'}
o ow J 0
= —+— == (-20)+—(wW
Ty az+ oy az( X>+ (W)
(77)
n N
> {exNi +W|—I}
i-1 y
_du_ ow _ & 0
Va2 ™)
(78)
n
= z; {eyNi +V\/I_'}
1=
Equations (75) to (78) can be written in matrix form, for the ith node as,
UMIST
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oN, |
0 0 zZ—
oX
oN.
“x 0 z— 0
€, ay W,
oN  ON.
K A v
Tl N O
— -N. 0
sz ay !
oN,
— 0 N
| oX

The displacement vector would actually contain 3n vaues for the complete element and the [B]
metrix of equation (79) is repeated for every with the subscript of that node. The strain-displacement
equation, like the stress-strain equations, are partitioned such that,

oN. |
0 0 z—
ex oX W|
oN
ef=|0 —za—' 0 |45 (80)
y
T N on | O
-7 Z_
ox oy |
which iswritten as,
{e}, - [By[{a} (81)
and,
oN
Y a_l N0
{”} o 6, (82)
sz i
1 0 N
oX ! el
which iswritten as,
{e}s = [BJ{a} (83)

This partitioning isin line with the partitioning of the stress-strain relationship.

Using equations (64), (66), (81) and (83) the strain energy equation for the element is found to be,
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Hay

[ [BIID (B dvol |{a} + 2{a)

t
va| [B]'[D,]1[B,] dVol (84)

The potentia energy of the element can therefore be written as,

II =

N =

{ay[Kl,{a) « S{a)[K].{a) -talif) (85

where,

[K]b - fVoI [Bb]t [Db] [Bb] dvol

(86)
(Kl = [, [BJ'[D.][B] dVo

are the stiffness matrices due to bending and shear respectively.

Thefinite eement equation is obtained by finding the minimum potential energy of the structure, this

corresponds to the equilibrium position of the loaded structure and is given by,

oll
olat

-0 87
Hence, the finite element equation is,
K, + KJ{a} = {f} (88)

The stiffness matrices can be partially evaluated andytically as the integration through the thickness
is straight forward. In the case of the bending stiffness matrix, the [B,] matrix has a constant value
of z, thus,

z?[D,]dz - n [D,] (89)
12

— Nl

Nl

Generally the [D,] matrix iswritten as,

1 nu O
3 nu 1 0
[Dy] = 12(Elhf nu) (90)
0 0 1-nu
2
In asimilar way, the [B] matrix for the shear componentsis not afunction of z, hence,
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[D]dz - h[D,] (91)

— N

N

Again the matrix is modified to,

10
01

aEh

2(1+nu) (92)

[Dg] =

where ¢ isacorrection factor introduced to take account of the non-uniform shear strain distribution

and warping. For isotropic materials, ¢ = 5/6.

The element can be transformed to an intrinsic coordinate system in a similar manner to the two-
dimensiond plane stress andlysis. This allows numerical integration to be carried out to evaluate the

stiffness matrix.

The Mindlin plate bending element has advantages over the other plate bending elements, these are
mainly the ease of derivation and it's extension to afive degree of freedom element including in-plane

loading.

The Mindlin plate bending element has a disadvantage, in the fact that it becomes less accurate than
the Kirchhoff element as the plate thickness decreases. Thisis dueto shear locking. Generally the
problem can be overcome using reduced numerical integration or selective numerical integration

on the offending shear term.
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4.1 Introduction

There are many examples of shell structures in engineering, including the outer surfaces of most
modes of powered transport. The bodies of cars, aeroplanes, trains and space vehicles are all shells.
The shell offers anumber of advantages over other engineering forms, such as high strength to weight
ratio's, stiffness can be built-in in the geometry of the shell or by adding shell stiffeners, shells can
be pressed into aerodynamic shapes. Shells can be distinguished from plates by the geometry, shells

are either singly or doubly curved. The shell thicknessis small compared with the other dimensions.

The analysis of shell structures is of vital importance due to their use in safety critical situation,
especidly the in the aerospace industry. The geometry of the problem makes the analysis of shells
particularly complex. There are three main approaches to the finite element analysis of shells and
countless e ements have been devel oped over the years. Many different displacement fields have been
assumed and different strain-displacements relationships assumed. There is often little agreement on
which of the terms of the strain-displacement are negligible. Thisisthe reason that so many different

shell element have been devel oped.

Shell lementsfall into one of three categories,

1. Facet (Flat) shell elements
2.  Solid shell eements
3. Curved shell dements

Thefacet shell dement isaflat el ement which approximates the curved surface by a series of facets.
Only triangular elements can give atrue facet representation of a curved surface. Indeed quadrilateral
elements can suffer from problems when used to approximate a shell structure if the elements are co-
planar. The facet shell dements are generdly flat plat elements combined with plane stress elements.
The most obvious problem with using a facet representation of a curved surface isthat discretisation
errors automatically occur. There are other difficulties which arise in the formulation of these
elements. The dope termsin the assumed displacement field are discontinuous within the element.
The continuity of slopes between elements isaso lost and therefore the compatibility conditionis
not satisfied. The results obtained from these elements tend to be on the upper bound of error limits

or in many cases are inaccurate. The advantage of this element isthat its formulation is perhaps the
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easiest. In the following section the derivation of athin and thick facet shell element is presented.
These are based on the Kirchhoff and Mindlin plate bending elements.

The solid shell elements are based on second order three-dimensiona solid elements. Using second
order elements allows the curved geometry to be modelled more accurately. Asthe shell thickness
issmdl compared with the other dimensionsthe problem of aspect ratio error occurring immediately
springs to mind when using athree-dimensional element. Thisis overcome by assuming that no direct
strain occurs through the element thickness. This allows the mid-side nodes through the thickness
to be removed. Therefore a twenty node brick element becomes a sixteen element. This is often
referred to as a degenerate solid element. Transverse shear deformation is included within this
element asthe displacement is calculated on the top and bottom surface of the shell, and are not tied
to the dope of the mid-surface of the shell. Even with the removal of the mid-side nodes through the
surface of the element, aspect ratio errors can till pose a problem and this type of element ismainly
used for thick shell analysis. Another drawback of this element is the large number of degrees of
freedom and hence large computer memory requirements. The results for these elements are
acceptable, although not as accurate as the curved shell element. The accuracy isimproved using
reduced integration schemes. The attraction of these elements are that they can be formulated without
having to use classical shell theory. The three-dimensional element isincluded in most finite element
packages and it is relatively straight forward to modify the code to include a solid shell element.
These will not be dealt with in the body of thisintroductory text.

The curved shell elements, although difficult to formulate, have been developed to overcome the
inaccuracy of the other shell elements. As there is no accepted standard strain-displacement
relationship (after neglecting some of the terms) these elements tend to be derived for particular
geometries. The geometric transformation from a two-dimensional curved surface in three-
dimensiona space to a standard element also limits the type of geometry that the elements can be
applied to. Thus in many cases these elements do not have genera applicability. These elements
approximate the geometry quite closaly if not exactly.
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5.1 Introduction

The thin shell element is a combination of the two-dimensional plane stress element and the
Kirchhoff plate bending element and as such can carry both in-plane and out-of-plane loading. The
limitations of the Kirchhoff plate el ement, regarding the accuracy of the results and the plate thickness
also applies to the shell element. The shell ement is a two-dimensional element in three-
dimensiond space. Each element will have aloca system of axes, but the model will bein aglobal
coordinate system. Thefinite dement equiations are obtained for the element in terms of the local axes
and a transformation from this axis system to the global axis system must be carried out. Similarly

thereisathick shell element based on the Mindlin plate element and a plane stress element.

The plane stress element has two degrees of freedom, displacements u and v in the global x and y
directions. The plate bending element has three degrees of freedom, one displacement w, and two
rotations 8, and 6, about the global x and y axes respectively. Both of the rotations are functions of
the displacements w. Therefore the combined element has five of the six possible degrees of freedom.
The sixth degree of freedom 0, isincluded in the equations, although it has zero stiffness and is not
arequired to calculate the strain components, to simplify the transformation of the coordinate system.

The element consists of a number of nodes which define the element geometry. These nodes are

placed on the mid-surface of the element and thisis where the loads are applied.

5.2 Kirchhoff Shell Element

The in-plane displacements have two components. One resulting from the in-plane loading, thisis

given by,
n
us - IZ; Ni u|
(93)
n
Vs - Z NiV|
i=1
and a component due to the bending moments,
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ow
u, = -z— = z6
b 0z y
ow
vV, = z— = -z0
b ay X

The other degrees of freedom can be expressed as,

(94)

(95)

The strain matrix is partitioned into two, the first partition contains the membrane components and

the second the bending components.

o, Fw
c X ox?
X
€ = A % r - 79 ﬂv
/ ay dy?
ny % + % 2 aZW
oy  ox oxay

which is commonly expressed as,

lel = e +ig))

S

(96)

(97)

The strains can now be written in terms of the displacements, for the membrane partition at the ith

node,
i u,
oN,
— 0 000 0|y
oX
W.
oN. i
ley) = O—'OOOOe> (98)
oy pa
oN, N, 0
| oy oX ]
621
and for the bending partition at the ith node,
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- lu
éa, o &b, '
oo — — 2 o],
ox%  ox? ox? i
Pa ¢ Db Wi
lef =100 — — ——X 0|y | (99)
ay?  oy? dy? %
é’a, o, &b, Y,
002 2 -2 0 '
oy "oy oy |,

The stresses are a so partitioned,

lo} = tog +1ioy} (100)

From the derivation of the plane stress and plate bending elements, it can be seen that the following
stress-strain relationship exists,

log) = [D] {eg

(101)
{o,) = [D] le)
where,
1 nu O
(D] - E nu 1 0 (102)

1-nu? 0 0 1-nu

The [D] matrix isidentical for both the plane stress and the Kirchhoff plate bending el ement. The

strain energy equation can now be written as,

1

A, - E{u}t[fVOl[Bs]t[D] [B] dVol | lu}
1

A, - E{U}t[fvm [BJ'[D] [B] dVoI]{u}

(103)

Upon minimisation of the total potential energy equation, the finite element equation is obtained,

[K]ta) = {f} (104)

where,
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[K] = [K] +[Ky]

[K] = fxfx[BS]t [D][B] tdydx (105)

[K,] - [ [ [BJ'ID][By] £ oy

The above equations are for asingle element in terms of the local coordinate system. This must be

transformed to the global coordinate system, thus the finite el ement equation becomes,

[TI'[K][T]{a} = {f} (106)
where,
[T] = €9 (107)
“|locC
where,
Cxlx C><|y Cxlz
[C] = |G« Gy Gz (108)
CZ1X CZO’ CZ12

This element has a drawback in that under certain circumstances the stiffness matrix becomes
singular. Thisis dueto the fact that the degree of freedom 0, has no stiffness associated with it. This
problem may be overcome by restraining all the 6, components or by giving a stiffnessto 6,. The

second option is acceptable asit resultsin,
ke, = 0 (109)
which resultsin 0, being zero. The value of k must be comparable with the other components of

stiffnessto avoid ill-conditioning. The degree of freedom 0,, has an associated |oad M, which can not
actually be applied.

5.3 Mindlin Shell Element

The Mindlin shell element is a combination of a two-dimensiond plane stress element and the
Mindlin plate element. The plane stress element is used to cater for in-plane loading and has degrees
of freedom u and v. The Mindlin plate element allows out-of-plane loading and bending loads to be
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applied. The plate element has degrees of freedomw, 0,, 0,. The finite element equation for plane

X? y*

stressis,

[K]fa} = (f} (110

where,

{ajf = [u v]

t (111)
= [P P]
Thefinite element equation for the Mindlin plate element is,
[Kp]la = {f} (112)
where,
ta, ! =[w 6, 6]
(113)

) =[P, M, M, ]

The dement stiffness matrix for plane stress analysisis derived in Sections 1.1 of the Static | : Two
Dimensional Analysis booklet and the element stiffness matrix for the plate element isderived in
Section 3.2 of this booklet.

The finite element equation for the Mindlin thick shell element is obtained by combining the plane
stress and plate bending equations, thus,

aS fS
AR

The vector of displacements contains al possible degrees of freedom at a node except 0,. This degree

K, 0
0 K,

of freedom is not required for the strain and hence the stress calculations. There is therefore no
stiffness associated with this degree of freedom. It is however useful to add this degree of freedom
to the element equation. Thus,

06, = 0 (115)

Thisis combined with equation (114) to give,
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K, 00
0 K, 0|{a} - {f} (116)
0 0O

where,

{alt = [u vwe, o ez]
(117)
ifit = [PX P, P, M, M, MZ]

It should be noted that the load, M,, is afictitious load and as such cannot actually be applied to the
structure. The reason for adding the extra degree of freedom to the finite element equation, isthat a
transformation from the local €lement coordinate system to the global coordinate system is required.
The shell dement isatwo-dimensional element, but is defined in three-dimensional space (compare

with the beam space element). Thisis shown below in Figure 13.

4

—
V]

Figure 13 : Two-dimensional plate element in three-dimensional space.

The element must be projected onto the global x - y plane, so it can then be mapped to an intrinsic
element, to allow the element stiffness matrix to be calculated. This transformation is carried out
using a transformation matrix, which consists of the direction cosines between the local and global

axes. The method presented can be used for any shape element in general three-dimensiona space.

The dement is defined in terms of the nodes, which are given their position using globa coordinates.
The first stage isto define the local axis system. The first local axis defined is generally the x, axis

and is defined using nodes 1 and 2. This can be seenin Figure 14,
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’ e 2
X

y local

Figure 14 : Definition of local axes of a plate element in three-dimensional space.

The direction cosines are given by theratio of the component lengths and the actual length between

nodes 1 and 2. Therefore,

c %%

X|X Ll_2
Coy = yf_i L (118)

1-2

c _ %4

X|Z Ll_2

where,

L, = 0% %)+ (%, - V1)? + (- 2,)° (119)

The next stageisto obtain theloca z axis direction cosines. Thisis done by calculating the direction
cosines of the side 1-4. (This would be 1-3 if atriangular element were being considered). Thisis
donein exactly the same manner as the direction cosines of sides 1-2. The vector of the side 1-4 is
not necessarily perpendicular to side 1-2, as the element may be skew. A triangular element will
amost definitely not have perpendicular sides. Thus, this vector cannot be taken as the local y-axis.
The vectors of Sdes 1-2 and 1-4 do, however, lie on the same plane, the plane of the element. If the

vector cross product is obtained then thiswill give the direction cosines for the z axis.
i I k
Vio X Vig = X% Yo 54 (120)

X=X Yo=Y 4477
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The direction cosines are found to be,

e W(z-2) - (%-2) (Y- W)

CZ'X A

(%-%)(z-2) - (,-27) (%, %)

C,y = 1 n 4 1 (121)

C (Xzfxl) (y47y1) 7(X47X1) (yzfyl)
7z A

where A is the area of the parallelogram defined by the two vectors. The area of the parallelogram

is equivalent to the length of the vector, perpendicular to the area.

The direction cosines of the local x and z axes are now known and only the y axis need to be defined.
The cross product of these two vectors will now define the local y axis. The equations previously

employed are used to obtain the direction cosines of the y axis. This gives the transformation matrix,
Cx| X Cx| y Cx| z

[C] - nyx Cy|y Cy|z (122)
Cox oy Cae

The displacements and loads can now be transformed from the local coordinate system to the global

coordinate system,

co
A (LY (123)
and,
co
fh = [O C}{f}l (124)

Thus, equations (123) and (68), (124) can be substituted into equation (114) to give the finite

element equation in terms of the globa coordinate system,

[T]‘[K][T]{a}g = {f}g (125)

where,
T] = co 126
[T] = 0cC (126)
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and,

k. 0 0
[K] =]0 k, O (127)
000

Thisisthe finite element equation for the Mindlin shell element.

Thereis, however a drawback to this derivation, which in certain cases makes the stiffness matrix
singular. Thisisdueto theinclusion of zero stiffness for the 0, degree of freedom. In some cases the
singularity is easily spotted in the stiffness matrix by the finite element program, however if the
transformation matrices are used to transform the local to global coordinate system, the singularity
may be hidden.

There are two suggested methods for dealing with this singularity. The first is to restrain al 6,
degrees of freedom and remove them from the assembled global stiffness matrix in the reduction
process before the equation is solved. Thiswould be carried out by the program and there would be

no need for the user to restrain these degrees of freedom.

The second method of dealing with this problem is to give the degree of freedom a tiffness. This

would be done by the program and would be transparent to the user. Thiswould give,

ke,-0 - 6,-0 (128)

As0, is not associated with any of the strain components (and hence the stresses) this does not affect
theresults and is therefore perfectly acceptable. The value of the stiffness assigned to this degree of
freedom should be of comparable magnitude to the other stiffness values in the matrix, to avoid

problem with ill conditioning.
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6.1 Ahmad Element

The Ahmad dement is acurved shell element which gpproximates the geometry of the structure more
accurately than afacet shell element. Curved shell elements by their very nature are higher order
elements and unlike faceted elements alow for continuity in the geometry between elements. The
Ahmad shell element, like the Mindlin plate element assumes that the normal to the sope after
deformations remains straight, but not necessarily normal. This alows the effects of shear
deformation to be accounted for and thus this element is used mainly for the analysis of thick shells.
It can, however, be used for the analysis of thin shell structures providing that a selective quadrature
schemeis employed to carry out numerical integration. In the derivation of the element it is assumed
that the train energy corresponding to the stresses perpendicular to the mid-surfaceisignored. The
Ahmad element is defined in such a way that, if the shape functions are compatible then the

displacement compatibility between the elements is maintained.

The Ahmad element isincluded in this text because it is precursor to the Semi-Loof shell element,
which is the most generd shell element available to date. The Semi-Loof element is discussed in
more depth in Section 6.2.

A curved shell element is shown in Figure 15. The nodes describing the element lie on the mid-

surface of the shell and are defined in terms of the global cartesian coordinates.

Figure 15 : A doubly curved Ahmad shell element.

It can be seen from Figure 15 that the element orientation is such that none of the element sides are

aligned with any of the global axes. In the derivation of facet shell elements a set of local cartesian
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coordinates are defined and a transformation relationship used to convert components of
displacement and load from the local to global coordinate systems. This is a relatively straight
forward process as the facet lement is aflat eement. The Ahmad element is doubly curved and local
cartesian axes defined at aparticular point in the element will have little relevance to any other point
in the dement. The mid-surface of the element can be defined using curvilinear intrinsic coordinates
g and. Thelinear intrinsic coordinate ¢ is used in the direction of the shell thickness. Theintrinsic
coordinates have values between -1 and 1 (this can also be between 0 and 1 if amodified approach
is adopted. In this derivation it the modified approach is used. Therefore the mid-surface of the
element lies on aplane where ¢ has aconstant value of 0.5. The intrinsic coordinate system is shown

in Figure 16.

Figure 16 : Intrinsic coordinate system for curved shell element.

Using the curvilinear coordinatesalocal cartesian coordinate system can be defined for any point on
the shell surface. A unit vector parallel to theintrinsic { axis at apoint in the element istaken asthe

local cartesian z axis. These normals are both perpendicular to the plane of the element.

Thefinite element equation for the Ahmad shell element can be derived using the theory of minimum
total potential energy. The potentia energy is the difference between the strain energy stored in the
deformed structure and the work done by the external loads.

om-uU-w (129)

The loads and moments are applied to the element at the nodes, therefore the work done by these
loadsis the sum of the loads and moments multiplied by the nodal displacements and rotations. The
noda displacements of the element are defined in terms of the global cartesian axes directions. The
displacement components are the trandations u, v and win the directions of the global x, y, and z axes
respectively. A transformation matrix can be defined relating each set of local axesto the global axes.
Therotations can only be defined in terms of the local cartesian axes. The rotation about the local x,

axisistaken as f and about thelocal y, axis the rotation is ¢.. The degrees of freedom at a node are
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shownin Figure 17. The forces and moments are defined in asimilar manner to the displacements.

Figure 17 : Displacement components at a node.

Thus the work term can be written as,

w = {al{f} (130)
where,
le Ul
Pyl v,
le Wy
() = My la) = {a,f (131)
M, By
M, Bn

The strain energy for alinear elastic structure subjected to small displacementsis given by,

{oltie}

U= dvol (132)
Vol
where for ashell e ement,
0)( eX
Oy Gy
to} = {T( ted = \Vu( (133)
Tyz Yy
TZX YZX

The strain energy of the element is written in terms of stresses and strainsin the global coordinate

system, they could have as easily been written in terms of the local coordinate system. The
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transformation relationship between the loca and globa coordinate systems used for the
displacements can be used for the stresses and strains. It isfor the user to decide whether the stress

results are more useful in the local or global coordinate system.

For an isotropic, homogeneous linear elastic materid the stresses are related to the strains by Hooke's
law,

{o} = [D]{e} (134)
where,
(1 nu 0 0 0
nu 1 0 0 0
00 1’2”“ 0 o
[D]-(—E7> . (135)
1-nu 00 0 nu 0
oo o o 21
2 d

The dadticity matrix [D] isindependent of the coordinates (thisis not the caseif the materia is not
isotropic) and can be used to relate the local or global stress to the local or global strains. The strain

energy equation (132) can now be written as,

{e!'[D] {e} dVol (136)

Previoudy in this derivation there have been a number of references to the relationship between the
local and global coordinate systems without any physica definitions. It would be useful to provide

these relationships before going on to examine the strain-displacement rel ationships.

It has been shown in various derivations that any point within an element can be expressed in terms
of the nodd coordinates and shape functions. Therefore any point on the mid-surface of the plane can
be expressed as,

<
E|
I
145
Z
x

I
I8

Yon = Z; Ny, (137)
2 = 2N 7
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where N, are two-dimensional Lagrangian shape functions.

In equation (137) the global coordinates of the element are expressed in terms of the intrinsic

coordinates, therefore the intrinsic axes can be expressed as vectorsin the global cartesian space,

ok ok ot~
ﬁ:glJrﬂiJrazk

on on  on
¢ =E.1

(138)

The vector defining the ¢ axisis obtained by taking the vector cross product of the other two vectors,

as it is perpendicular to the plane of these two vectors. The direction cosines of the vector can be

obtained by dividing the components of the vector by the overall length of the vector. Thus, the cross

product of the two vectorsis,

Ik
x oy &
¢ =|0E O OF (139)
x ¥y
on on on
Evaluating equation (139) resultsin,
5 on on ok 0k on on & 0t on  an
Defining,
a3z Oy
0k on on &
0z X 0z oX
h - L£ o2 _ 02 R
0k on on & (141)
oo Xy Xy
0t on on ok
then equation (140) can be re written as,
{=ai+bj+ck (142)
The length of the vector, , isgiven by,
UMIST
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L, = vyaZz+b?+c? (143)

The direction cosines of the vector are therefore,

'_|U .,\'_|QJ

X

(144)

|o

n; =

-

Thedirection cosines for the z axis are denoted by the subscript 3, as the direction cosines of the x,
andy, axes are denoted by subscripts 1 and 2 respectively. A unit vector in the direction of the  can
be expressed as,
¢ = lii+myj +nk (145)

Thelocd z axisat any point in the dement is taken as the normal to the mid-surface. The unit vector
givenin equation (145) is normal to the mid-plane so therefore describes the local z axis. It can be
seen from Figure 15 and Figure 16, that at the lower surface of the shell element, where ¢ hasavalue
of zero, that the coordinate z has avalue equal to negative half of the thickness. Similarly, on the top

surface of the shell, where { has avaue of unity, that the coordinate z has avalue equal to half of the
thickness. It can therefore, be deduced that,

z = ((-05)t (146)
This can also be written using equation (145) as,
z = i+ myj+nzk = (C-05)t (147)

Equation (147) defines the shell thickness as components in the global coordinate system. Therefore,
the global coordinates of any point within the shell can be written as,
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yZNiyi+(c%)tn13 (148)

where |, m,, and n, are the direction cosines of the unit vector defining the z axis.

The other local axes can now be defined. It is possible to define an infinite number of unit vectors
which are perpendicular to thelocd z axis, therefore some decision must be made to define the other
axes. Inthiscaseitissmplest to use the global cartesian axes as a basis for defining the local x, and
y, axes. If the z axisis parallel to the global cartesian x axis then the local x axisistaken asbeing
perpendicular to both the globa y axis and the locdl z axis. The direction cosines of the local x, axis
can be obtained by taking the cross product of the two vectors and dividing by the length of the

resulting vector, therefore,

,_
N

X ° (149)

IN

—

The cross product of equation (149) is,

Ix

i
j.z, =10 1
l; m,

o

(150)

=]

3

Thus the vector of the local x, axis can be written as,

™k

n
X :—3l+0j_+ k

X m32 - n32 —m (151)

The direction cosines of this vector are therefore,
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n3
l, =
mg + ng
m, -0 (152)
n, = 7%
mg + ng

The unit vector in the direction of the local y, axis can be obtained asit is perpendicular to both the

% and z axes.

I
N

(153)

<
I

I

N

Inmost casesthelocal z axiswill not be parallel to the global x axis. In such casesthelocal x, axis,
will be assumed to be perpendicular to the global x axis and the local z axis. In this case the unit

vector defining the axisis,

N

X = — (154)

—
N

The cross product of the vectorsin equation (154) is,
R ¢
i_.zI =11 0 O (155)
ly my ng

Thus the vector of thelocal x, axis, inthiscaseis,

n
o2,y

J_+

Jmiend fmdon?

X (156)

The direction cosines of this vector are therefore,
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, -0
n
m1:7 3
2 2
m; + Ny (157)
l‘\lfirn3
m; +ng

The unit vector defining the locd y, axis is again found using equation (153).

The direction cosines represent the angles between the global and local axes and can be used to form
atransformation matrix between the two coordinate systems. The transformation matrix is given by,

l, m ny
[T] =, m n, (158)
l; My Ny

It was previoudy stated that at each node there are three displacement components in the directions
of global cartesian axes, but these displacements were not examined in detail. If the displacement at
the mid-surface of the lement is considered, they can be written in terms of the nodal displacements
and shape functions, in asimilar way to the global coordinates in equation (137), thus,

c
3
I
145
Z
<

I
I8

Vi = 2 N, (159)
i=1

Zn = Xn:NiW.
i=1

The displacement components at any point through the thickness of the shell must be determined. It
was shown in equation (148) that the component of the global coordinate through the thickness of
the shell was afunction of the direction cosines of the local z axis, the intrinsic coordinate ¢ and the
thickness of the shell. It would be reasonabl e to assume that these will affect the displacement at any
point through the thickness of the shell. The rotations ¢ and p about the local y, and x, will also have
an effect on the displacement at any point through the thickness. Figure 18 shows part of the
displaced shell looking in the direction of the local y, axes. The rotation about they, axisis .
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U Vo displacement components due
to slope «

Figure 18 : Displaced shape of the shell element.

The local displacement component due to the rotation will be,

(u), = t(C-05) (160)

similarly the local displacement component due to the rotation 3 will be,

(v), = -t(¢-05)p (161)

Thegloba displacement components due to the rotation can be found using the transformation matrix

of direction cosines.

(162)

<
=
e
&
<

W rotation n, N, nyf(0 rotation

The rotation at any point in the element can be specified by the noda rotations and the Lagrangian

shape functions as,
n
o = Z N, o
'=: (163)
B =3 NB

Using equations (159), (162) and (163) the global displacement components can therefore, be

written in full as,
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u- znj Niul+zn: N.t(¢-05) (I, & ~1,B,)

i=1 i=1
V:Zl:NVJer:Nt(C 0.5) (mye; -m, ;) (164)

2= Nw ilwit(co.s)(nlainzﬁi)

Now that the displacement have been established the strain-displacement relationship can be
investigated. The strain-displacement relationships can be written as,

e -
XX

oV
vy - NN 165
Xy ay OX ( )
v aw
. 6z oy
v = a_vv ou
2 x oz

Asthe displacements functions have been defined in terms of the intrinsic coordinate system, it would
be useful if the strains were a so specified in the same system. This would make evaluation simpler.
Consider the three displacement components differentiated with respect to the three intrinsic

coordinate axes. Thus,

 uox sy ouae .
G OX 0E Oy 0F oz o€ (166)

In total nine such expressions can be written and these can be expressed in matrix form as,

u v ow| | x &y oz|lau v aw
0k OE OF & O aC|| ox ox ox
du v oaw| |ox &y dzf|du v w (167)
on on on an on on||dy dy oy
u v oow| | x &y oz|lau v aw
¢ a¢ oC| |8 o a¢f| oz oz oz |
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It can be seen, that in equation (167), the left-hand matrix contains al the components of strain. This
matrix is multiplied by the Jacobian matrix. Equation (167) can be re-arranged to give the strain

componentsin terms of the intrinsic parameters.

u v ow u v ow
oxX ox ox o0k 0 ok
U v aw| g v aw (168)
oy dy oy on on on
u v ow u v ow
| 0z 0z 0z | | 0 3¢ aC |

The strains can be written in terms of the local coordinates using the standard operation,

a; ap a5 a; ap a5
8y 8y 8y =[T] |3 3 33 [T17 (169)
A A A | 8y 83 A3

Noting that the trangpose of the transformation matrix is equal itsinverse, the equation (168) can be

written as,
[ou ov, ow | - -
-~ T o ou v ow
X, 9% oX & OF
ou av, oW, du ov ow
— — — | =IT)) = = =|[TI 170
el R ) R R bl 1 (170)
au, av, ow ou ov aw
oz, 9z oz IS
Defining,
[A] = [3][T]" (171)
The matrix [A] can be written as,
[ ox oy
& ok & |1 I2 |3
ox &y oz
_|oX oy oz 172
(Al =150 an anf|™ ™ ™ (172)
ox ay oz|lM M M
EXrard

Thus,
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82 82 X, m Y
l,—
GX 0z GX 0z , dX oy
- - l,— — 173
11 ml 811 n rr12 811 3811 ' m387 (173

oz 0z , ox oy
1ac mlac lac zac mzac zac 3ac m3az

Some of the components of the matrix [A] can be evaluated. Using the definition of the direction

cosines of the z axis, given in equation (144), it can be shown that,

Ag=Ag=0 (174)

Using the values of the global coordinates given in equation (148), it can be seen that,

oXx

Xt

or 3

e,

a—zzmst (175)
oz

— = ngt

o¢ 3

Substituting these values into the components A,, and A, of the [A] matrix gives,

Ay = lLlgrmmy+nn,
Ay = Lz rmymy e n,ng

(176)

As the three local axis are mutualy perpendicular both of the expressions result in zero values.

Therefore the matrix [A] can be written as,

Ay A, O
[A] =]|Ay Ay, O 177)
0 0 A,

where,

Static Analysis| 53 UMIST



Curved Shell Elements

ox , ooy,

- 1,Z 9
& 15T ac
B 0z
A12 2 ag rnZ E_; 2 ag
0z

Ay = 1 ;;{ ”h-—— e (178)

X oy 0z
= | = 1+ pn, ==
Ay 28n+mz<3n+28n
X 5, 0z
Ay = 3=+ m3_y tNy—

o
To evaluate equation (170), the inverse of the [A] matrix must be found. It can be shown that,

A22 A33 ’Azl A33 0

1
- Anhg Ay g 0 (179)
Ary Py Agg = Ay Ay gy 0 0 A A, - A

For ease of derivation, the following parameter is defined,

[C] = [A]* (180)

Thelocal strain tensor can now be evaluated from the expression,

u voaw
o0& ot |
oV ow (181)
on on on
du ov ow
ESEaEd

[e]locaJ - [C]

Considering the first component of strain, it can be shown that,

ou ov ow ou ov ¢
[, — + +n— | +C I— M — =
Mt e a&) ”( fon tom o (e

where,

. A Ay
H A11A22A33’A12A21A33

(183)
o Por A
2 A11 A22 A33 B A12 A21 A33

Static Analysis| 54 UMIST



Curved Shell Elements

From equation (164) it can be shown that,

NN, & oN,
a_g Zl_guzl a—gt(CfO.S)(IlocifIZBi) (184)

similar expressions exist for g—\é and (2_\2/ Thefirst component of strain can be written as,

oN

+1(¢-05) Clla_g[(llllerlmlJrnlnl)(xi (185)

’(|1|2+mlmz+nlnz)ﬁi]

N
+ Clza[(llll tmm nl)“i
7|l|2+m1mZ+nln2)[3i]}]
Noting that for perpendicular vectors,

1, +mym, +n.n, =0 (186)

and that,

I +mf+nf - 1 (187)

then equation (185) can be re-written in terms of vectors for the ith nodes as,
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N, N
ly Clla_EJrClZa
o NN %
4 _
N m| & 12 50 v,
— = N oN w (188)
X n| Cy— +Cp—
ok an o
B

aN, _ aN,
t(¢ -0.5) Curgg * Cugy

0

This procedure is carried out for the other components of the strain vector, it isfound that,

{e} - [B]{a} (189)
where for the ith node the [B] matrix has components,
G, m G, nG,  t({-05)G,
1,G, m,G, n,G, 0 -t(¢-
1G,+1,G, mG,+m,G, n,G,+n,G, t({-05)G, -t(¢- (190)
|362 m362 n362 0 B
156, m, G, n, G, tG,
where,
oN._ oN,
G =Cy E3 * ClZE
oN. oN.
G, = Cy— +Cp— (19D
ok on
G3 C33Ni

Thusthelocal strains have been defined in terms of the global displacement components. Equation
(132) givesthe expression for the strain energy. The strain energy of the element will have the same
vauewhether the globa or local stresses are used. It has also been seen that the local stressisrelated

totheloca strain by the [D] matrix. Thus the strain energy expression can be written as,

1oyt T
U= ={a B|'|D||B|dVadl |{a
> 1a)7 [ [B]'[D][B]dvol {a} (192)
Thus the total potential energy can be written as,
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n- Lay|y, (eVlole)avall{a-fayit) (199

This expression is minimised with respect to the noda displacements to give the finite element
equation,

[K]{a} = {f} (194)

where [K] isthe e ement stiffness matrix.

The dement stiffness matrix can be partialy evaluated analyticaly, asthe limits of integration in the
direction of the z axis, will always be between,

— Nl
o
N
I
—

(195)

N~

Thelimits of integration can be changed from cartesian coordinates to the intrinsic coordinates using
the standard method,

fxfydydx = fg_fnlJldndE" (196)

Onefina modification is made to the equation for the stiffness matrix, thisis to modify the [D] matrix

with a correction factor for the shear deformation terms. The [D] matrix becomes,

(1 nu 0 0 0
nul O 0 0

00 1;?“ 0 o
D1 - 197
D) g (197

00 o 1M o
20,

oo o o 1M
20, |

where ¢ = 1.2 for isotropic materials.

The actual shear distribution through the thickness of the plate is parabolic, but the distribution
obtained from the displacement definition will be constant. The correction factor is used to ensure

that the strain energy due to the shear is approximately equal to that of the actual distribution.
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6.2 Semi-Loof Elements

The semi-loof element is one of the most popular shell element found in todays finite element
packages. The element has general applicability and produces accurate results. It is extremely
difficult to formulate and is rarely understood by engineers, but is has been shown to be an extremely
useful analysis tool. Due to the complex nature of this element, this section only gives outline

information to the semi-loof € ement.

The element was developed by Bruce Irons because of a deep dissatisfaction with the existing
available thin shell elements at that time. The starting point was to outline what was required from
the element. Thistook into consideration the both the user and the programmer. The points of what

were considered to be agood element are listed below,

1. Finite element packages have a genera applicability and the element should be a direct

stiffness element, suitable for such a package.

2. The shell element should be able to be attached to other elements to model practical
Stuations. (There is a semi-loof beam element that can be used as a stiffener for semi-loof
shell elements and the degrees of freedom at the nodes match for both elements).

3. The lement must be able to analyse shells of small thickness.

4, The dement must be ableto pass the patch test (also developed by Bruce Irons). To achieve
this the element must alow strain-free rigid body motion.

5. The element should be able to deal with sharp corners, junctions and other practical

geometrical features without complications.
6. The element should be robust in performance.

7. Extreme accuracy is never needed (How accurate are the material properties used for the

model ?), however, a course mesh should still produce reasonabl e results.
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8. The dement should be implemented as a shape function routine, which encapsulates al the

complications.

The numerous shell elements available before the development of the semi-loof satisfied some of

these criteria but not them all.

Thesemi-Loof shell is based on the Kirchhoff theory (the basic assumptions of which are givenin
Section *.*) and is essentidly for thin plates. The element is available as a six node triangle and eight
node quadrilateral. The element also has nine Loof points (named after H. W. Loof) which are
Stuated at the integration points dong the sides of the element and at the centre of the element. These
points are transparent to the user. The Loof points are at the points of a 2x2 integration scheme, but
on the edge of the element. At each node there are three degrees of freedom (u, v, w), trandationsin
the global x, y and z directions respectively. The rotations normal to an edge are the degrees of
freedom at the Loof points, but these are generally combined and given as a single degree of freedom

at the mid-side nodes. The element degrees of freedom are shown below in Figure 19.

(a) Displacement degrees (b) Rotation degrees
of freedom of freedom
O nodes x Loof points

Figure 19 : The semi-loof element with degrees of freedom.

The dement is a non-conforming element, but the normal rotations at the Loof nodes provide some
measure of C' continuity. The starting point of the derivation was a forty five degree of freedom
element, the degrees of freedom being three displacement components at each of the eight nodes and
the centre node, anormal and tangential rotation at each of the Loof points and two rotations about
the local axes of the central node. Using a series of constraint relationships the number of degrees
of freedom are reduced firstly to forty three and findly to thirty two for the eight node quadrilateral
element. The congtraints come about from setisfying the patch test and using concepts of geometrical
and generalized displacement definitions. The degrees of freedom are firstly reduced by two by

Static Analysis|

59 UMIST



Curved Shell Elements

combining the displacement components at the central node to give the nodal deflection at the centre
of the element. There are eleven other degrees of freedom removed from the element by constraining
the shears at the Loof nodes to zero. This effectively removes the tangential rotations at the Loof

nodes, the rotations at the centre node.

There aretwo sets of shagpe functions for the Semi-Loof element. Thefirst are the shape functions at
the nodes, which are those used for the Ahmad shell element and the two dimensional plane stress
(dtrain) element. The second set of shape functions are those which apply to the Loof points. There
are nine of these functions, eight for the points on the edge of the element and one for the L oof node

a the centre of the element.

The dement has atota of thirty two degrees of freedom, (considerably less than other shell elements)
for the eight node element. The two norma rotation are generally combined and specified as a
rotation at the mid-point nodes. The element would then appear to have twenty eight degrees of
freedom. The sign convention adopted for the rotations normal to the edge is aright hand screw rule
with the thumb parallél to the edge in the direction from the first specified node on the edge to the

second. This can be seenin Figure 19(b).

The caculation of the nodal strains presents a problem in the derivation of this element. The direct
strains are obtained from the noda shape functions. The bending and shear strains consists of a
component due to the nodal displacements and the rotation at the Loof points. The Loof shape
functions cannot be differentiated to give strains (as with the nodal shape functions). The bending and
lateral strains are obtained by satisfying the requirements that,

e The bending behaviour of aflat plate must be reproduced

e Therigid body motions must be strain free.

The Semi-Loof eement has two spurious mechanisms. That is the element deformsin such a manner
that the strains are zero. This comes about by the fact that the elements deform in such a manner that
the displacements at the Gauss integration points, i.e. the points where the strains are calculated, are
zero. The first mechanism is the hour glass, this also occurs with plane elements. The second
mechanism is saddle shaped. The element bends in such a manner that the Gauss points do not

displace.

The semi-Loof element produces good results even with a course mesh and does not suffer when

problemswith sharp corners and multiple junctions occur due to the fact that there are no rotations
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at the corner nodes.
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Much of the pioneering work carried out developing the finite element method was done by the
aerospace industry. The stress integrity of the components and assemblies in this industry is of
paramount concern, for safety reasons. The aircraft structures contain many types of elements, plates,
spars, etc and to carry out stress analysis by hand is extremely difficult, time consuming and error
prone. The aircraft must have strength so that it does not fall apart in flight, but it must also be aslight
as possible to maximise the carrying capacity. The finite element method is a means of accurately

calculating stresses and allowing great advances in strength to weight ratios.

A form that often appearsin aerogpace structures is thin axisymmetric shells. The body of an aircraft,
or rocket, rocket fuel tanks, rocket motor nozzles are afew examples of thistype of structure. Asthis
type of structure is so common a large amount of research was carried out to develop an

axisymmetric shell element.

The axisymmetric shell element is a conical fustra, represented by a straight line element, as shown
in Figure 20.

A Z

Axisymmetric
shell element

Conical fustra

Figure 20 : An axisymmetric shell element.
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A curved axisymmetric structure can be approximated using a number of sufficiently sized shell
elements. Theelement is considered in the global r - z plane, but the element has alocal coordinate
system defined by the s- t axes, which isinclined at an angle ¢, to the global coordinate system. The

local coordinate system is required to define the in-plane and normal displacements, as shown in

Figure 21.
u
z &\6 w
| 7
| S
iu
j ——
W
¥
g rotation L e t

u, w local displacement U, w global displacement
Figure 21 : Local coordinate system for axisymmetric shell element.

Each node has three degrees of freedom associated with it, these are two displacement components

and arotation. These correspond to the three local components, P,, P, and M.

Thetheory of total minimum potentia energy is again used to obtain the finite element equation. The
strain energy is a function of the stress and strain and as with other derivations, the generalised
Hooke's law is used to obtain the strain energy in terms of strains only. The strain-displacement
(compatibility) equations are then used to obtain the strain energy equation in terms of a'stiffness
and displacements. Thisform of the strain energy equation is then used to obtain the finite element

equation.

Thefirst step will beto obtain the strain componentsin terms of the local displacements. There area
total of four strain components, two membrane (in-plane) and two bending (out-of-plane) strains.

There are direct strains and hoop strains.

If the membrane strains are considered, then it can be seen from Figure 22, that the strain

components are,
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€~ e (198)

\\/JW

z / WCOS &
=

for the direct membrane strain and,

_ using + wcos¢

) - (199)

for the hoop strain.

. u
usino

Figure 22 : In-plane strain components.

The bending strains can be deduced from Figure 23.

Figure 23 : Bending strain components.

Figure 23 shows the shell element and the membrane displacement due to bending. The hoop
component of this displacement is shown in detail in Figure 23. The membrane strain due to bending

isgiven by,

¢ - du_df hdw)  hd®w 200
boodt dt 2 dt? (200)

The hoop component of strain caused by bending is given by,

Static Analysis|

65 UMIST



Axisymmetric Shell Elements

c. - hdwcos 201
% 2ds r (201)
The displacement vector for the element can be defined as,
dw, dw
ul = u w 5 u, W, dtn (202)

The shape functions for the element are easily obtained from knowledge of previous derivations. As
the displacement u, is required only and none of it's derivatives then the shape functions are
Lagrangian in form and are those used for the two-noded axia bar element. This can easily be

transformed to an intrinsic coordinate system, thus,

G- Y N@Y (203)
i-1
where,
N, - 1-E
(204)
N, - &
and,
£ = th 205
T (209

The displacement component w, is required along with it's first derivative with respect to t. This
impliesthat Hermitian shape functions are required and in fact those of the two node beam element
are used. The displacement can be written in terms of the shape functions and nodal displacement

as,

Wznj(v\,igi+d_""hi] (206)
i1 dt
where,
g = H™(nE)
(207)
h = LH(nk)

where, for Hil‘O the subscript i refers to the node number and the superscript 1,0 refers to the

displacement. The strain-displacement relationships can be written in matrix form as follows,
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el - [B,]1u

(208)
(ehy - [B] W

where,

(209)
and,

b] - 210
Tl (= (=) .
r | r | |

aso,
[B,] - [bl b, ... bn] (211)
where,
0 (L)d_g [ h )ﬂ
2L2 2 2L2) o2
b, - - ; @12
o [ hsné) 9% (hsing) dn
2rL '3 2rL (o'
Note that,
o dt E o dt (213)
thus,
dv_1dw 214
at L (214)
and it can aso be found that,
a2 L2 & (215)

Thereterms, which areincluded in equation (212) would generally form the Jacobian matrix, but due

to their smple nature they are included in the [B] matrix. The stresses can be written in terms of the
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strainsasfollows,

lo,} = [D]{e,}

(216)
to,) = [D] le,}
where,
E 1 nu
D] =
O] = —| 1] (217)

Therefore, the strain energy for the shell element can be written in the usual format as,

: {a}‘[ [, [BAIDI[B, I dVol + [ [B,]'[D][By] dVoI] (218)

This expression is differentiated with respect to the displacements and equated to zero. This gives

the left hand side of the finite element equation. A membrane and bending stiffness matrix is
obtained, these can be written as,

[K],, = fer[Bm]‘[D][Bm]tdzdr

(219)

— Nl

[B,]'[D][B,] ds|dzdr

S

N~

A rotation matrix isrequired to convert the local coordinate system to the global coordinate system.
It isfound that the rotation matrix is given by,

cosd sinp O
[T] =|-sind cosdp O
0 0 1

(220)

Notethe similarity between this rotation matrix and that obtained for the plane truss element. Thus
it can be deduced that the global stiffness matrix can be expressed as,

[Kly = [TI'[K]([T] (221)

where the subscript g refers to the global system and | to the local coordinate system.

Static Analysis| 68 UMIST



8 References

Ahmad, S., Irons, B.M., Ziekienciz, O.C., Analysis of thick and thin shell structures by curved
finite elements, Int JNum Meth Eng, Vol 2 No3, pp419-451, 1970

Ashwell, D.G., Gallagher, R.H., (editors) Finite elements for thin shells & curved members. J.
Wiley & Sons, 1976, ISBN 0471 01648 9

Bathe, K .J., Finite element procedures in engineering analysis, Prentice-Hall, 1982, ISBN 0-13-
317305

Cook, R.D., Concepts and applications of finite eement analysis., Second Edition, J. Wiley & Sons,
1981, ISBN 0-471-87714-X

Dhatt, F., Touzot, G., Finite element method displayed, Wiley, 1976

El-Zafrany, A.M ., Finite element method : MSc course notes, Cranfield Ingtitute of Technology,
1987

Hearn, E.J., Mechanics of materials (Vol 1 & 2), Second Edition, Pergamon Press, 1985, ISBN 0-
08-031131-8 (Vol 1) 0-08-031151-2 (Vol 2)

Hinton, E., Owen, D.R.J., An introduction to finite element computations. Pineridge Press, 1979,
ISBN 0-906674-06-9

Hinton, E., Owen, D.R.J., Finite element software for plate and shells. Pineridge Press, 1984,
ISBN 0-906674-24-7

Irons, B.M ., Ahmad, S., Techniques of finite lements, Ellis Horwood, 1980, ISBN 0-85312-130-3

Kraus, H., Thin dastic shells - An introduction to the theoretical foundations and the analysis of
their static and dynamic behaviour. JWiley & Sons, 1967

NAFEMS, A finite element primer, Dept Trade & Industry, 1986, ISBN 0-903640-17-1

Static Analysis|

69 UMIST



References

Martins, R.A.F., Owen, D.R.J., Sructural instability and natural vibration analysis of thin
arbitrary shellsby the use of the semiloof element. Int JNum Meth Eng, Vol 11, pp481-498, 1977

Martins, R.A.F., Owen, D.R.J., Thin plate semiloof element for structural analysis - including
instability and natural vibration. Int JNum Meth Eng, Vol 12, pp1667-1676, 1978

Rao, S.S., Thefinite eement method in engineering, Pergamon Press, 1982, ISBN 0-08-025466-7

Zienkiewicz, O.C., Taylor, R.L., Thefinite element method (Vol 2), Fourth Edition, McGraw-Hill,
1989, ISBN 0-07-084175-6

Static Analysis|

70 UMIST



