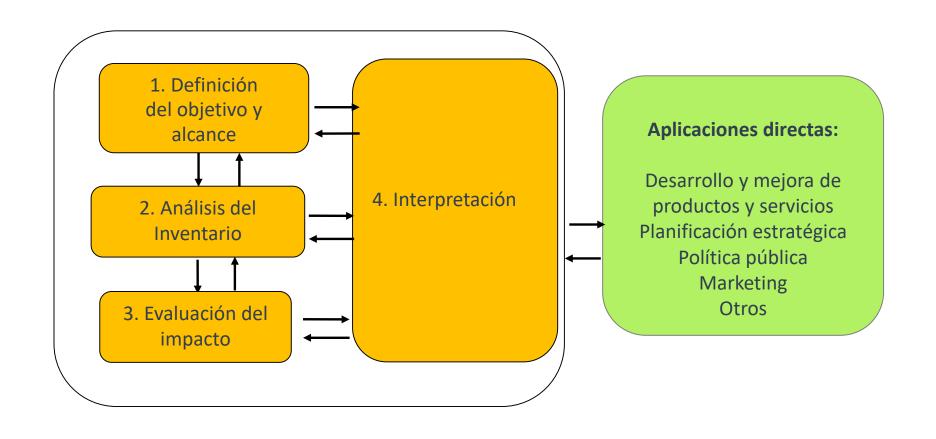
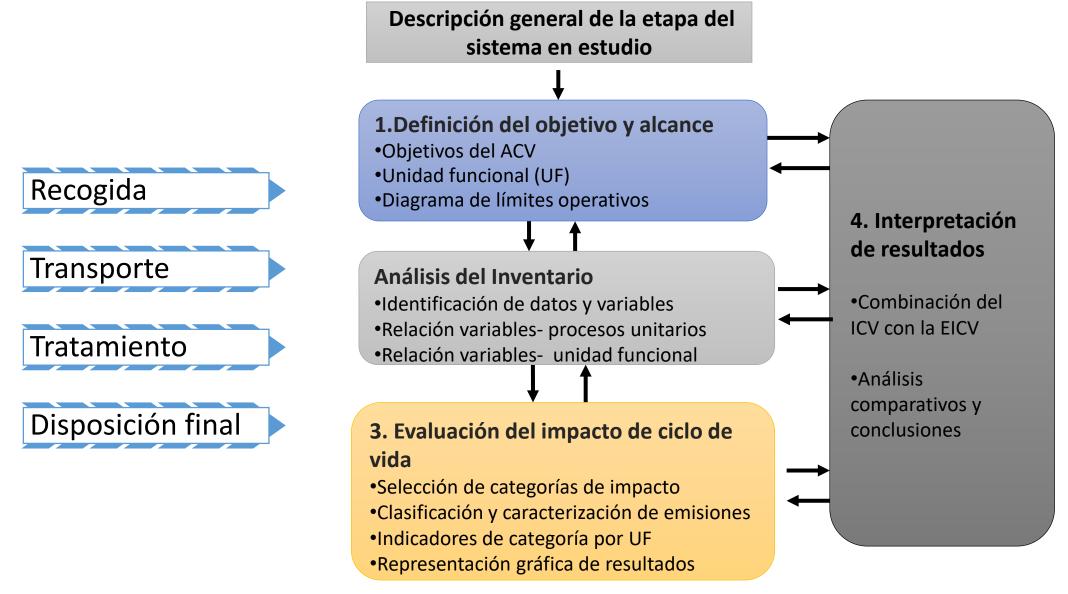

Curso de Posgrado: Uso sustentable de residuos sólidos y geomateriales

Unidad 3

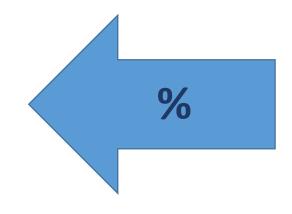

- a) Tecnologías de reciclaje de los RCD. Maquinarias y equipos. Etapas del proceso de reciclado (generación, tratamiento, transporte y venta).
- b) Plantas fijas y móviles. Casos nacionales y/o internacionales del tratamiento de RCD.
- c) Productos y Mercado de los RCD reciclables. Aspectos legales.
- d) Estudios de caso Unidad 2 y Unidad 3.

Ciclo de vida del sistema de gestión de RCD


Metodología ACV

Etapas según ISO 14040 y 14044- 2006

Unidad 1 Unidad 2 Unidad 3


Análisis de Ciclo de Vida de cada etapa (sub-sistema)

Entrada de residuos: datos de generación

El primer paso para realizar el análisis de ciclo de vida de la gestión de los residuos de construcción y demolición es definir la composición de los RCD a gestionar.

Tipo	Fracción	Nomenclatura
Inertes (IN)	Inerte mezclado	IM
	Hormigón	IH
	Asfalto	CA
	Vidrio	VD
No especiales	Madera	MD
(N-Es)	Cartón-Papel	СР
	Plásticos	PL
	Metales	MT
	Yeso	YS
Rechazo	Varias	Re
Mixtos	Todas	Total

Unidad 1 Unidad 2 Unidad 3

Fase 1 del ACV. Definición de objetivo y alcance

OBJETIVO

Evaluar la carga ambiental de sistemas de gestión de RCD

UNIDAD FUNCIONAL

1 tn de RCD

ALCANCE: límites del sistema

Delimitación de un área de generación de RCD determinada y periodo de tiempo considerado

Etapas del proceso que se consideran

Tipos de residuos a incluir en el estudio

Tipo de tecnologías

Fuente de datos (primaria, secundaria)

Sub-sistema: Recogida

Objetivo

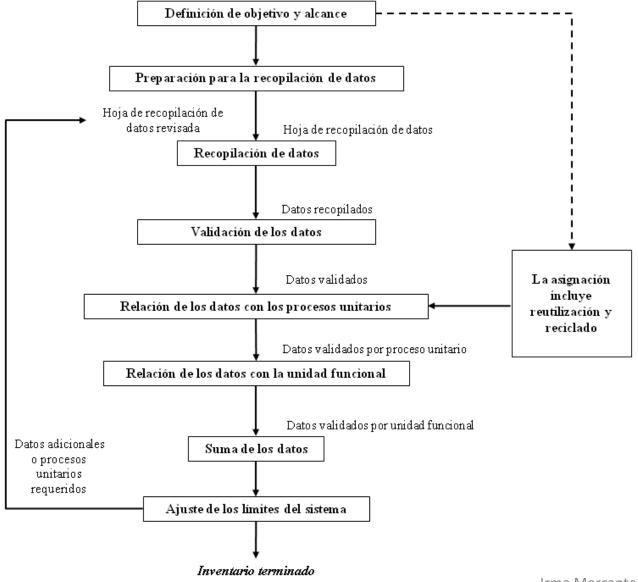
El objetivo es identificar y evaluar las cargas ambientales que se vinculan con la etapa de Recogida.

Alcance y límites del subsistema

Las cargas ambientales vienen dadas por el consumo de materiales y recursos energéticos por la producción y uso de contenedores.

Unidad Funcional

La unidad funcional es **la recogida de 1t de RCD** con la composición que corresponda



Fase 2 del ACV. Análisis del inventario de ciclo de vida (ICV)

Es una lista cuantificada de todos los **flujos entrantes y salientes del sistema** durante todo el ciclo de vida, los cuales son extraídos del ambiente natural o bien emitidos en él, calculando los requerimientos energéticos y materiales del sistema, así como las emisiones producidas

Elaboración del inventario

Para todos las etapas: Datos del inventario

- Bases comerciales
 - •Buwal /Suiza
 - •Idemat/ Holanda
 - Ecoinvent/Suiza
 - Boustead/ Reino Unido
 - •Franklin/ EE. UU.

- •Datos de campo:
 - Comunicaciones personales
 - Medidas directas
 - Documentos publicados

El proceso de recopilación de datos es el que más recursos consume dentro del ACV y es la etapa más crítica

Los datos de ICV se obtienen de forma mixta por combinación de datos primarios y secundarios.

ICV Recogida: Datos de entrada contenedores de RCD

^aCatálogo Contenur (España)

^bAgromarc, comunicación vía email (Buenos Aires, Argentina)

^cGrupo Ravi, entrevista personal (Castellón, España)

^dLucio Agnic, entrevista personal y vía e-mail (Mendoza, Argentina)

^eCubas Llopiz, contacto telefónico (Sevilla, España)

fEmpresa Palumbo, entrevista personal (Mendoza, Argentina) gJimeca S. L., contacto telefónico (Sevilla, España)

Tipo de contenedor	Capacidad V _c (m ³)	Material- Proceso	Peso (kg)	Número de usos (n)
Plástico ^a	0,09	Polietileno alta densidad- Inyección	9,00	100
Saco de rafia ^{b,e}	1	Fibras de polipropileno- Extrusión	1,12	4
Metálico 1 ^{c,d,f}	3		300,00	5000
Metálico 2 ^{c,d,f}	5	Placa de	650,00	5000
Metálico 3 ^c	8	acero ST 37 Laminado Soldado ^g	800,00	5000
Metálico 4 ^c	20		1000,00	5000
Metálico 5 ^c	30		1200,00	5000

Cálculo de contenedores referidos a cada fracción residual j, para 1 ton. de residuo j

$$N_{i,j}\left(\frac{N^{\underline{o}} \ de \ cont.}{t}\right) = \frac{1}{\delta_{j}\left(\frac{t}{m^{3}}\right) * V_{i}\left(m^{3}\right) * n_{i}}$$

Fracción	Densidad aparente	Cantidad de contenedores N (Nº de cont./t)					
de RCD	(t/m^3)	Cont.	Saco de	Contenedor	Contenedor	Contenedor	Contenedor
		Plástico	Rafia	Metálico 1	Metálico 2	Metálico 3	Metálico 4
Cartón/papel	0,070	1,587			5,714 E-04		1,429 E-04
madera	0,200	0,556			2,000 E-04		5,000 E-05
metales	0,330	0,337			1,212 E-04		3,030 E-05
plásticos	0,060	1,852			6,667 E-04		1,667 E-04
vidrio	0,400	0,278		1,667 E-04	2,667 E-05		
yeso	0,637	0,174	0,392	1,047E-04	6,279 E-05	3,920E-05	
inerte mezclado	1,200		0,208	5,556 E-05	3,333 E-05	2,083 E-05	
hormigón	1,500			4,444 E-05	2,667 E-05	1,667 E-05	
asfalto	1,500				2,670E-05	1,67E-05	
total	1,000		0,255	6,667 E-05	4,000 E-05	2,500 E-05	
rechazo	0,500	0,222		1,333 E-04	3,809 E-05	2,381 E-05	

ICV de datos de salida por contenedor

Se modelan los datos de entrada y se obtiene el ICV de salida por contenedor

Inventario de consumo de recursos y emisiones/contenedor							
Recursos Emisiones al aire Emisiones al agua Residuos sólido					os sólidos		
Tipo	Cantidad	Tipo	Cantidad	Tipo	Cantidad	Tipo	Cantidad

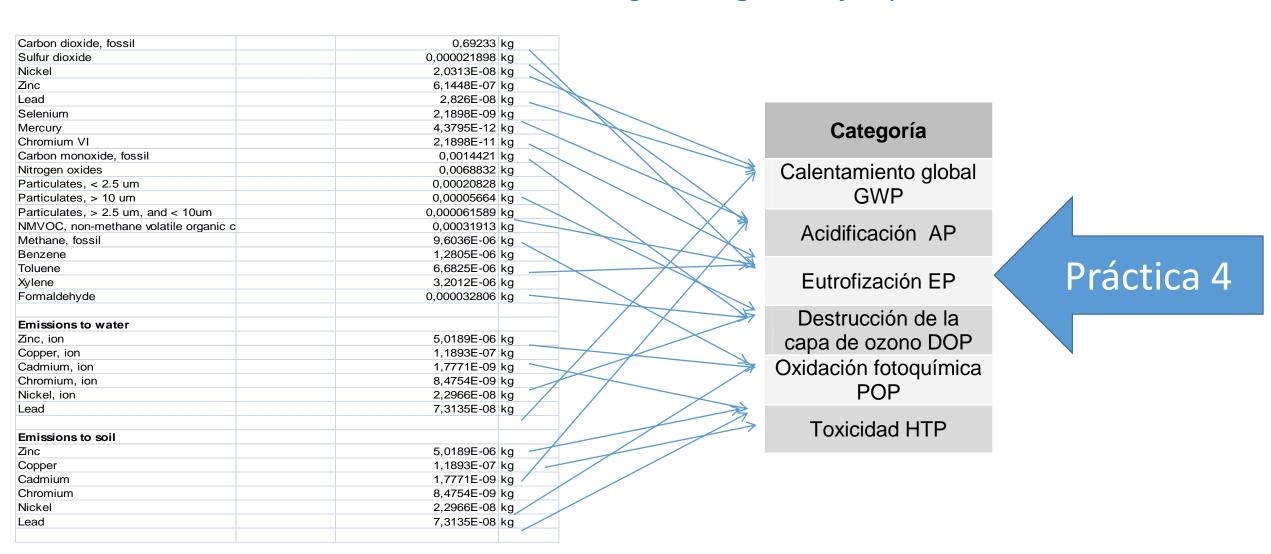
Fase 3 del ACV . Evaluación de impactos del ciclo de vida (EICV)

Sub-etapas Obligatorias

- 3. 1 Selección de categorías de impacto
- 3.2 Clasificación de los datos de ICV según categorías
- 3.3 Caracterización: contribución de cada contaminante a las categorías.

Resultados del inventario de ciclo de vida

Se obtiene la **cuantificación de las entradas** de materiales y energía del ambiente; y de las **salidas** al ambiente, diferenciando entre emisiones atmosféricas, vertidos al agua y suelos, residuos sólidos y otros aspectos ambientales (ruido, radiactividad, etc.), para el sistema en su conjunto y/o para cada proceso unitario que lo compone.


Resultados del ICV

Ejemplo:

- Entrada: 0,5 kg gas oil
- Salida: Ejemplo: Emisiones de la combustión de 0,5 kg de gas oil

Emissions to air		
Carbon dioxide, fossil	0,69233	kg
Sulfur dioxide	0,000021898	kg
Cadmium	2,4058E-09	kg
Copper	7,6343E-07	kg
Chromium	1,6749E-08	kg
Nickel	2,0313E-08	kg
Zinc	6,1448E-07	kg
Lead	2,826E-08	kg
Selenium	2,1898E-09	kg
Mercury	4,3795E-12	kg
Chromium VI	2,1898E-11	kg
Carbon monoxide, fossil	0,0014421	kg
Nitrogen oxides	0,0068832	kg
Particulates, < 2.5 um	0,00020828	kg
Particulates, > 10 um	0,00005664	kg
Particulates, > 2.5 um, and < 10um	0,000061589	kg
NMVOC, non-methane volatile organic c	0,00031913	kg
Methane, fossil	9,6036E-06	kg
Benzene	1,2805E-06	kg
Toluene	6,6825E-06	kg
Xylene	3,2012E-06	kg
Formaldehyde	0,000032806	kg
Acetaldehyde	0,000017848	kg
Ammonia	0,000005	kg
Dinitrogen monoxide	8,8345E-06	kg
PAH, polycyclic aromatic hydrocarbons	0,00000001	kg
Heat, waste	9,8759	MJ
Emissions to water		
Zinc, ion	5,0189E-06	ka
Copper, ion	1,1893E-07	
Cadmium, ion	1,7771E-09	-
Chromium, ion	8,4754E-09	
Nickel, ion	2,2966E-08	-
Lead	7,3135E-08	-
2000	7,01002 00	.vg
Emissions to soil		
Zinc	5,0189E-06	
Copper	1,1893E-07	
Cadmium	1,7771E-09	
Chromium	8,4754E-09	kg
Nickel	2,2966E-08	
Lead	7,3135E-08	kg

3.2 Clasificación de emisiones según categorías. Ejemplo ilustrativo

3.3 Caracterización. Ej. Indicador CG

SUSTANCIA	FACTOR DE CARACTERIZACION
Dióxido de carbono CO ₂	1
Metano CH ₄	24
Halon 1301 CF ₃ B _r	6900
Oxido de Nitrógeno N ₂ O	360
Tetrafluoruro de carbono CF ₄	5700

$$CCI = \sum_{i} GWP_i \times m_i$$

CCI: Indicador de calentamiento global [kg eq. CO2] m_i: cantidad de emisión de la sustancia

3.1 Categorías de Impacto más utilizadas

Categoría	Unidad	Alcance espacial
Calentamiento global GWP	g CO ₂	Global
Acidificación AP	g SO ₂	Regional
Eutrofización EP	g NO3	Regional y local
Destrucción de la capa de ozono DOP	g CFC-11	Global
Oxidación fotoquímica POP	g de ethene	Regional y local
Toxicidad HTP	g 1,4 dicloro-benceno	Local y global
Uso del suelo	ha-año	Regional y local

EICV: Indicador para una ton. de fracción residual j

$$Ind. C_{it} = Ind. C_i \times N_{i,j}$$

Ind. $C_{i,t}$: Indicador de categoría de impacto del contenedor C_i referido a 1 t de RCD

Ind. C_i : Indicador de categoría de impacto para el contenedor C_i

 N_{ij} : Cantidad de contenedores C_i necesarios para cada fracción A_j de RCD

Indicador	Unidad	Contenedor*	Saco de	Contenedor*	Contenedor*	Contenedor*	Contenedor*
Ci	Unidad	901	rafia*	3 m^3	5 m^3	8 m^3	20 m^3
ADP	kg Sb eq.	3,72E-01	4,04E-02	6,60E+00	1,38E+01	9,17E+00	2,41E+01
AP	kg SO ₂ eq.	8,71E-02	9,23E-03	3,59E+00	8,05E+00	3,44E+00	1,42E+01
EP	kg PO ₄ ³⁻ eq.	7,45E-03	8,82E-04	5,59E-01	1,22E+00	7,95E-01	1,93E+00
GWP	kg CO ₂ eq.	2,49E+01	2,68E+00	8,54E+02	1,79E+03	1,05E+03	3,17E+03
PCOP	kg de C ₂ H ₄ eq.	7,05E-03	5,75E-04	3,67E-01	7,99E-01	6,22E-01	1,30E+00
-		•	-	•	•		

*Valores referidos a un contenedor

EICV: Indicadores de la Etapa Recogida para la unidad funcional

$$Ind.R_{t,s} = \sum Ind.C_{i,t} \times \left[\sum N_{i,j} \times \frac{\% A_j}{100} \times Es_j \right]$$

 $Ind.R_{t,s}:$ valor total del indicador de la etapa de Recogida en obra de tipo selectiva.

Fase 4 del ACV. La interpretación de resultados

Es una combinación de resultados de la etapas 2 y 3:

Análisis de inventario

Evaluación del impacto

Que se obtiene de la interpretación?

Recomendaciones de mejora del sistema

Cambios en el proceso

Cambios en el diseño

Análisis de sensibilidad de los resultados

Inclusión- exclusión de datos

Exclusión de etapas del proceso no significativas

Omisión de entradas- salidas

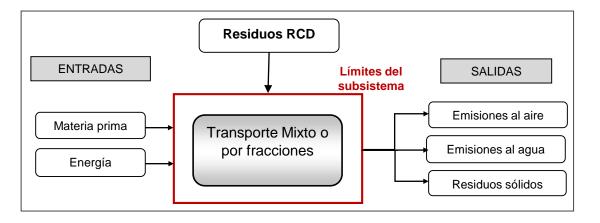
Usos de ACV en SGIRCD

- Atribucionales
 - Conocer el desempeño ambiental de un sistema y optimizar

- Consecuenciales
 - Conocer el efecto de cambios en el proceso

- Comparativos
 - Comparar dos sistemas /tecnologías

Sub-sistema: Transporte


Objetivo

El objetivo en esta etapa es evaluar las cargas ambientales vinculadas al transporte

•

Alcance y límites del subsistema

Unidad Funcional

La unidad funcional de esta etapa es el **transporte de 1 t.km de RCD** (transporte de 1 t de RCD en una distancia de 1 km), ya sea mixto (total) o separadamente en las distintas fracciones.

Datos de entrada del ICV: Ejemplo de datos de consumos de diesel

	Volumen	Densidad	Peso	Fracción	Consumo medio	
	de carga			de RCD	Cm	
	(m^3)	(t/m^3)	(t)		(kg diesel/t.km) ^a	
•	3		3.0		0.065	
	5		5.0	total	0.039	
	7-8	1.00	7-8	wai	0.024	
	15		15		0.016	
	25		25		0.013	
	3		1.5		0.129	
	5		2.5	_	0.077	
	7-8	0,5	3.5-4	rechazo	0.051	
	15		7.5		0.032	
	25		12.5		0.026	
	3		3.6		0.054	
	.5	1.2	6.0	inerte	0.032	
	7-8	1.2	8.4-9.6	mezclado	0.024	
	15		16*		0.015	
	$\frac{25}{2}$		25*		0.013	
	3		4.5		0.043	
	5	1 5	7.5	asfalto-	0.026	
	7-8	1.5	12-10*	Imhormigón	0.023	
	15		16*		0.016	

Entrada de ICV: Ecuación de cálculo del consumo

$$Cm_{i,j} = \frac{C_{dieselu}\left(\frac{l}{km}\right) \times f\left(\frac{kg}{l}\right)}{V_i(m^3) \times \delta_j\left(\frac{t}{m^3}\right)} \quad \left[\frac{kg \ diesel}{t. \ km}\right]$$

 $C_{dieselu}$: Consumo de diesel promedio según la potencia del vehículo

 V_i : volumen de la carga

 δ_i : densidad aparente de la fracción residual A_i

f: factor de equivalencia del diesel en kg/l

Salida del ICV : ndicadores para un kg de Diesel

	Indicadores de categoría de impacto diesel						
Unidad de combustible	ADP / kg diesel	EP/ kg diesel	AP/ kg diesel	GWP/ kg diesel	ODP/ kg diesel	POCP/ kg diesel	
1 kg diesel							

De bases de datos comerciales

Salida del ICV: Indicadores de la Etapa Transporte

$$Ind.T_{Vi,t} = Ind.diesel \times \sum Cm_{ij} \times \frac{\% A_j}{100} \times Es_j \times d_j$$

 $Ind.T_{Vit}$: Indicador de categoría de impacto de transporte para el volumen de carga Vi referido a 1 tonelada de RCD transportada

Esj: eficiencia en la clasificación Cm_{ij}: consumo medio de combustible para V_i y fracción A_i

dj: distancia a las plantas de tratamiento para cada fracción Aj

Sub-sistema: Planta de Clasificación y Reproceso de Inertes (PCRI)

Objetivo

El objetivo en esta etapa es evaluar las cargas ambientales vinculadas a la clasificación y reproceso de RCD.

Unidad funcional

La unidad funcional de esta etapa es la clasificación de 1t de RCD y el reproceso de la fracción inerte.

Planta Fija

Planta Móvil

Definición alcance de las PCRI

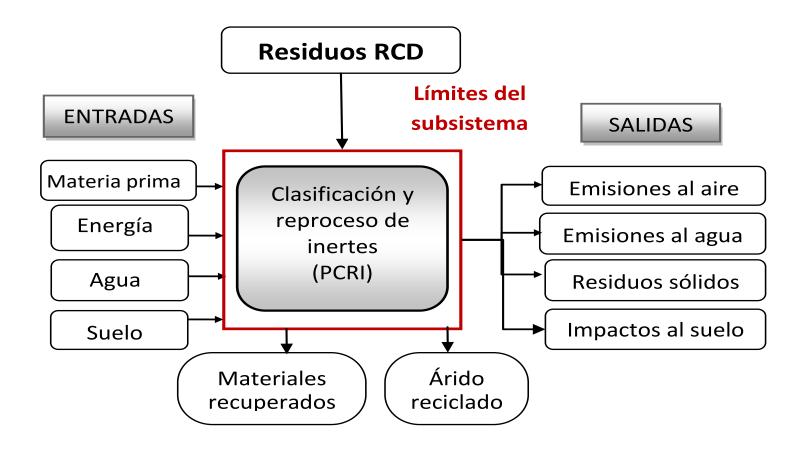
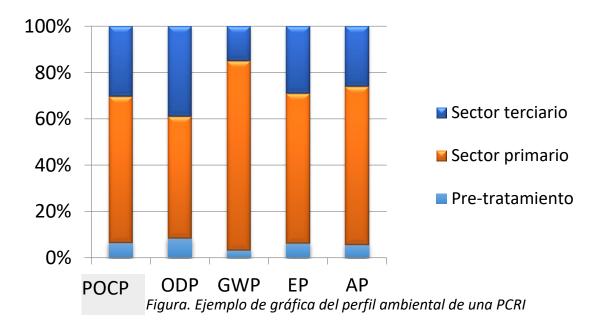


Figura. Límites del subsistema en la etapa de clasificación y reproceso de inertes

Inventario de ciclo de vida (ICV) de las PCRI

- contacto con empresas de PCRI
- 2. visita a las PCRI contactadas: análisis del proceso, cuestionarios sobre el funcionamiento de las instalaciones, identificación de procesos unitarios
- 3. recopilación de datos anuales de procesamiento de RCD y consumos energéticos y de combustible
- 4. asignación de cargas a la unidad funcional
- 5. definición de criterios de asignación
- 6. asignación de cargas a procesos unitarios
- 7. resumen de datos de inventario

Ítem de consumo	Unidad
Combustible diesel	(I/t)
Energía eléctrica	(kWh/t)
Agua	(I/t)
Superficie ocupada	(ha)


Ejemplo Plantas de Nivel I- México- Producción y consumos

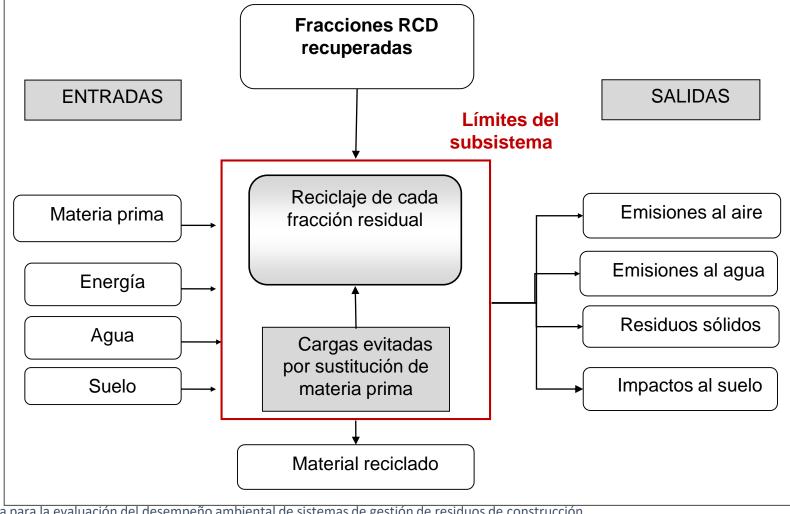
	Planta México					
Capacidad en volumen	125 m ³ /h					
Densidad media RCD	1	.300 kg/m³				
Capacidad en peso		162, 5 t/h				
		Consumo diesel (I/h)	Consumo diesel (I/t RCD)			
	Cargadora-Excavad.	16	9,85E-02			
Maquinarias	Trituradora C-12	40	2,46E-01			
	Clasificadora S-5	20	1,23E-01			
	Cono de trituración	16	9,85E-02			
	Cargadora frontal	22	1,35E-01			
Consumo total		114	7,02E-01			

Evaluación del impacto de ciclo de vida (EICV)

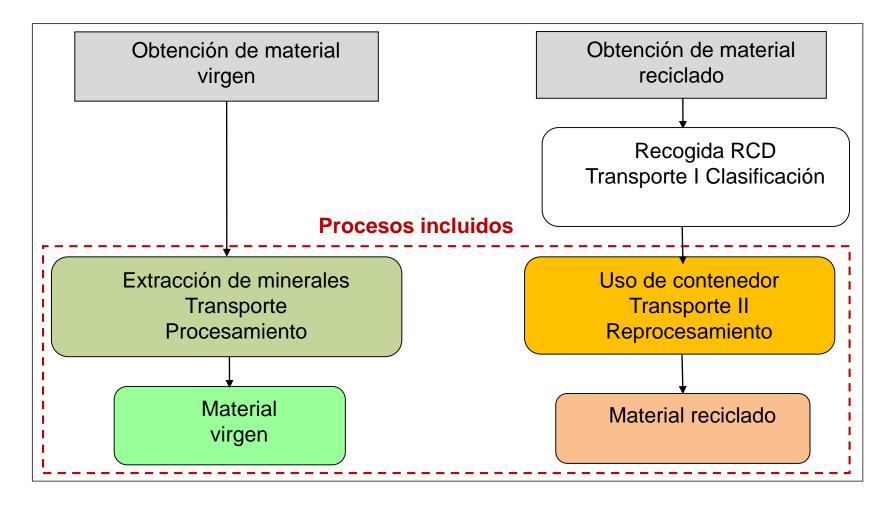
 $Ind.SectorPCRI_{ti} = Ind.diesel \times C_{di} + Ind.EE \times E_{ei}$

- Pre-tratamiento: cargas por clasificación
- Sector primario: cargas de reproceso de inertes en su mayoría, pudiendo restarse de los consumos que corresponden al electroimán.
- Sector terciario: corresponde a cargas de reproceso de inertes con algunos procesos unitarios de clasificación o no.

Sub- Etapa: Reciclaje

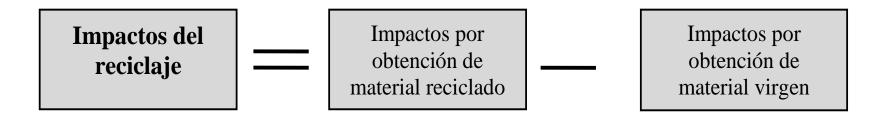

Objetivo

El objetivo es evaluar las cargas ambientales que se vinculan con la etapa del Reciclaje de las fracciones residuales recuperadas. Asimismo se contabilizan las cargas evitadas por sustitución de material virgen.


Unidad funcional

La unidad funcional es el reciclado de 1 tonelada de material recuperado, es decir de cada fracción residual separada en origen o en planta de clasificación.

Límites del sub-sistema



Procesos incluidos en la obtención de material virgen y reciclado

ICV del Reciclaje

Los datos de inventario contabilizados en esta etapa consideran las cargas ambientales debidas al reciclaje y la carga evitada por el ahorro del reemplazo de material virgen para cada fracción

Productos evitados

Mineral, obtención y clasificación granulométrica de 1 t de grava en cantera

Consumos por reproceso de la fracción inerte

Combustible y energía eléctrica por trituración y clasificación granulométrica de 1 t de inerte residual

Fracciones residuales, productos evitados y proporción de sustitución

Material recuperado	Producto evitado	Proporción sustitución
cartón/papel	pasta base de cartón	1: 0,83
inerte	grava en cantera	1:1
metales (férrico)	arrabio	1:1
madera	madera triturada	1:1
plástico	plástico granulado	1: 0,81
vidrio	vidrio virgen	1:1

Evaluación del impacto de ciclo de vida (EICV)

$$IndRE_{jt} = [[Ind.C_{itj} + Ind.T_{itj}] \times Es_j + [Ind.Rep_{jt} - Ind.PE_{jt}] \times Ep_j \times Ps_j] \times \frac{\% Aj}{100}$$

Ind. C_{it} : Indicador de categoría de impacto del contenedor para la fracción residual j

Ind. T_{it} : Indicador de categoría de impacto del transporte de la fracción residual j

Ind. Rep_{tj} : Indicador de categoría de impacto del reproceso de la fracción residual j

 A_j : porcentaje de la fracción residual A_j

Ep_i: Eficiencia de la fracción j

Ps_i: Proporción de sustitución de la fracción residual j

Ind. PE_{tj} : Indicador de categoría de impacto del producto evitado que sustituye a la fracción residual j

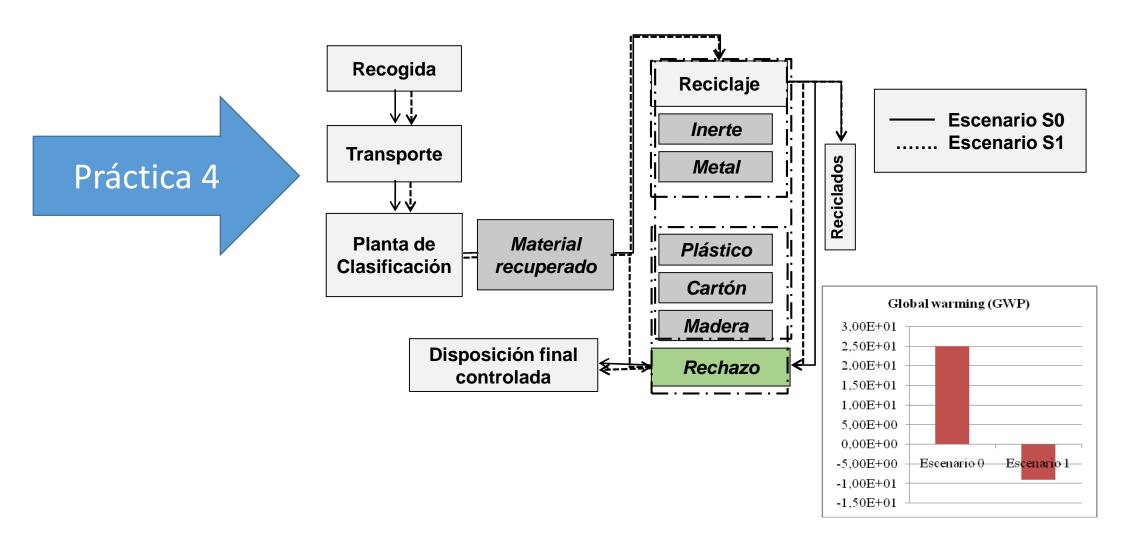
Sub- Etapa: Vertido

Objetivo

El objetivo es evaluar las cargas ambientales que se vinculan con la etapa de vertido en terreno.

Unidad funcional

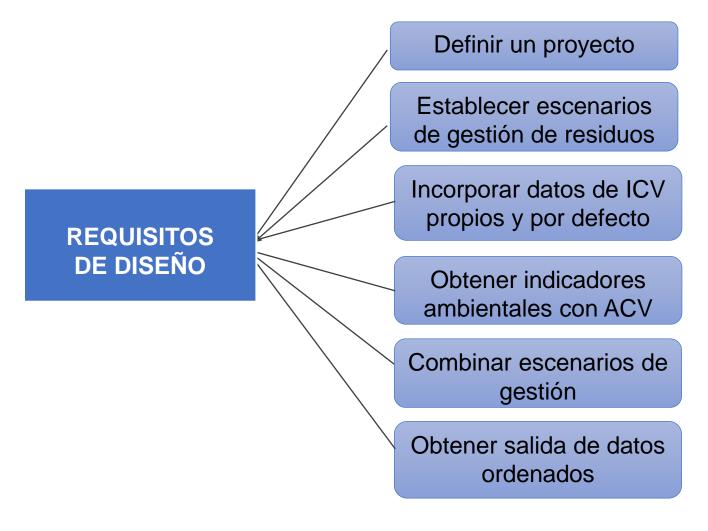
La unidad funcional es el vertido de 1 t de RCD. En este caso podría ir a vertido el total de los RCD o por fracciones desechadas.

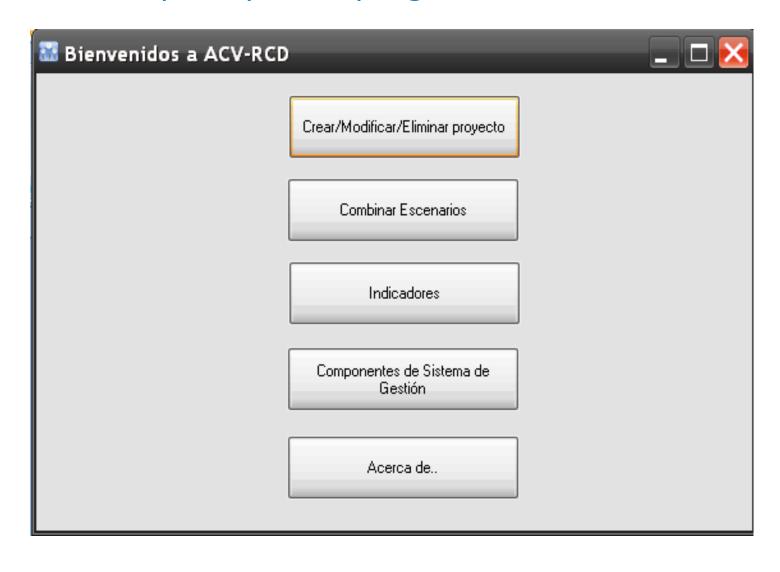

Datos de entrada del ICV: Vertido

Item de consumo	Unidad
Combustible diesel	(1/t)
Energía eléctrica	(kWh/t)
Agua	(1/t)

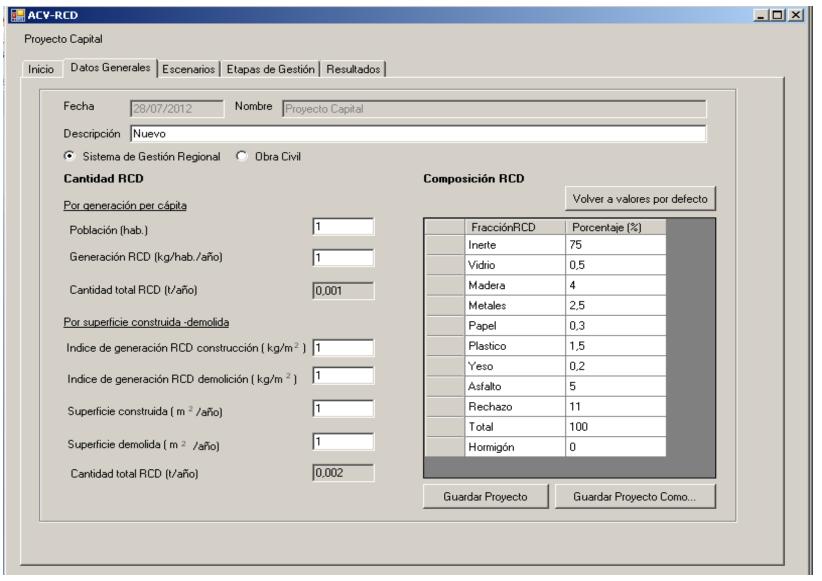
EICV: Vertido

 $Ind.SectorPCRI_{ti} = Ind.diesel \times C_{di} + Ind.EE \times E_{ei}$


Creación y evaluación ambiental de escenarios


Resumen de características de la metodología de evaluación ambiental de SGIRCD

- > Establece relación y dependencia entre las etapas del sistema y sus variables.
- > Visualiza integralmente el sistema de gestión.
- > Aplica ACV por etapas y posibilita creación de escenarios.
- Es una metodología flexible a casos existentes o nuevos.
- > Permite incluir categorías de impacto e indicadores regionales.
- Es aplicable a cualquier región o país.
- Es una herramienta de selección de alternativas.


Herramienta informática ACV-RCD

Pantalla principal del programa ACV- RCD

Datos Generales

Lineas de trabajo I+D+i

- > ACV de sistemas de gestión de RCD
- Caracterización de RCD en obras civiles
- > Residuos plásticos en materiales de construcción
- > ACV de organizaciones industriales

http://ingenieria.uncuyo.edu.ar/centro-de-estudio-de-ingenieria-de-residuos-solidos

COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV GL
= ISO 9001 =

