Problema 1

Estudio de depletación de un reservorio subsaturado

Considere un grillado de 9x9x1 con las siguientes dimensiones (fig.1):

grillas x: 1 a 4 y 6 a 9 : 160 ftgrilla 5: 80 ft grillas y: 1 a 4 y 6 a 9 : 160 ftgrilla 5: 80 ft El espesor total y el espesor neto = 30 ft

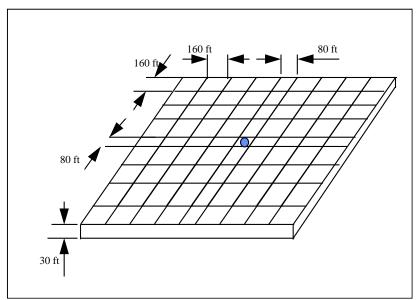


Fig.1: Esquema del reservorio y su grillado

Datos Permeabilidades

kx=ky= 100 md kz= 1 md

Sw	krw	kro	krg
0	0	1	1
0.12	0	0.75	0.97
0.2	0.02	0.5	0.94
0.3	0.04	0.3	0.91
0.4	0.07	0.17	0.87
0.5	0.12	0.09	0.7
0.6	0.18	0.03	0.46
0.7	0.27	0	0.2
0.8	0.51	0	0.06
0.88	0.71	0	0.02
1	1	0	0

Porosidad

Trabajo Práctico I	10	8	
--------------------	----	---	--

0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30

Nivel de Referencia 8.300 ft Tope de la capa 8345 ft

Presión inicial: 5400 psi en el WOC

WOC 8425 ft GOC 8300 ft Swc 0.12 Soi 0.88

Pb=4014.7 psi

Reservorios I

Pozo

Ubicación: ver esquema

 $\begin{array}{ccc} p_{wf} & & 1000 \ psi \\ Q_o & & 300 \ bbl/d \end{array}$

Se pide:

- 1. Estimar analíticamente el porcentaje de recuperación que se obtiene para un petróleo subsaturado
- a) El cálculo analítico está explicado por pasos y se ha tomado como bibliografía el cap 3 del libro Fundamentos de la Ingeniería de Reservorios de L. Dake

2024

Cálculo Analítico Balance de Materiales

Para calcular el volumen del petróleo in situ haga uso de la siguiente ecuación.

$$N = \frac{V * \theta * (1 - S_{wc})}{B_{oi}}$$

1.Cálculo de Boi

Utilizaremos los datos del PVT del Petróleo:

Presión	Во		
psi	RB/STB		
14,7	1,062		
264,7	1,15		
514,7	1,207		
1014,7	1,295		
2014,7	1,435		
2514,7	1,5		
3014,7	1,565		
4014,7	1,695		
5014,7	1,827		
9014,7	2,357		

 $N = \frac{V * \theta * (1 - S_{wc})}{B_{oi}}$

N =

Grafique Bo vs P

Ayuda para el cálculo de Boi

Bo pendiente=-0.232.10⁻⁴

Bo=-mP+b

Con los datos del Punto de Burbuja calcule b y utilice ese valor para ajustar los Bo en las siguientes presiones 5014.7 psi y 9014.7 psi. Interpole para encontrar el Boi.

2, Cálculo del volumen de gas en solución

STB

A partir de los datos del PVT calcularemos la solubilidad del gas en petróleo para la presión inicial Rsi, ¿Qué valores toma Rs a 5014.7 y 9014.7 psi?

Р	Rs		
Psi	SCF/STB		
14,7	1		
264,7	90,5		
514,7	180		
1014,7	371		
2014,7	636		

2514,7	775
3014,7	930
4014,7	1270
5014,7	
9014,7	

Tabla II

Para determinar el gas en solución realice:

$$G = N * Rsi =$$

SCF

Grafique Rs vs P

3, Cálculo del agua in situ

$$W = \frac{V * \theta * S_{wc}}{B_{w}}$$

Considerando Bw=1

4. Cálculo del factor de recuperación

$$\frac{N_p}{N} = \frac{B_{oi}}{B_{ob}} * c_e * \Delta p$$

Ce es la compresibilidad específica

$$c_e = \frac{1}{(1 - S_{wc})} \left[(1 - S_{wc}) * c_o + S_{wc} c_w + c_f \right]$$

de las cuales solo tenemos dato de Swc y Cf (compresibilidad de la formación),

La compresibilidad del petróleo se calcula de la siguiente manera:

$$c_o = \frac{B_{ob} - B_{oi}}{B_{oi} * \Delta p}$$

Para poder calcular el Cw debemos calcular el Bwi ya que el Bwb es dato

$$c_{w} = \frac{B_{wb} - B_{wi}}{B_{wb} * \Delta p}$$

Presión	Bw
14,7	1,041
264,7	1,0403
514,7	1,0395
1014,7	1,038
2014,7	1,038
2514,7	1,0335

3014,7	1,032
4014,7	1,029
5400	1,0254

Tabla III

Considerando cf= 0,000003 1/psi

$$\frac{N_p}{N} = \frac{B_{oi}}{B_{ob}} * c_e * \Delta p$$

Cuando la presión varía un del petróleo in situ es del

% con respecto al valor original el porcentaje de recuperación %

5, Corrección del volumen de agua in situ

Conociendo el valor verdadero de Bwi obtenemos

$$W = \frac{V * \theta * S_{wc}}{B_{w}}$$

6, Cálculo del volumen de petróleo producido

STB

7, Cálculo del volumen de gas producido

Volumen de ese gas liberado una vez que el petróleo es extraído del reservorio,

Cálculo	N (STB)	N _p (STB)	G (SCF)	G _p (SCF)	W (STB)	F
Analítico						