MPI: The Complete Reference

Seientific and Engineering Computation
Janusz Kowalik, Editor

Data-Parallel Programming on MIMO Computers
by Philip J. Hatcher and Michael J. Quinn, 1891

fnstructured Scientific Computaion on Scdable Multiprocessors
edited by Pivush Mehrotra, Joel Saliz, and Robert Voigt, 1501

Parallel Jompulational Fluid Dymamics: Implemeniations and Results
edited by Horst D. Simon, 1952

Enterprizse Integration Modeling: Proceedings of the First International (lonference
edited by Charles I. Petrie, Jr., 1852

The High Performance Fortrnm Hondbook
by Charles H. Kcelbel, David B. Loveman, Robert 5. Schreiber, Guy L. Steele Jr.
and Mary E. Fozel, 1883

sing MPI: Portable Parallel Programming with the Message-Passing Interface
by William Gropp, Ewing Lusk, and Anthony Skjellum, 16534

PVM: Parallel Virtual Machine-A User’s Guide and Tutorial for Network Parallel
Computing

by Al Geist, Adam Beguelm, Jack Dongarra, Wekheng Jiang, Bob Manchek, and
Vaidy Sunderam, 1954

Enabling Technologies for Petagflops (omputing

by Thomas Sterling, Paul Messina, and Paul H. Smith

An Imtroduction to High-Performance Scientific (omputing
by Lloyd D. Fosdick, Elizabeth R. Jessup, Carclyn J.C. Schauble, and Gitta Domik

Practicd Parallel Programming
by (regory V. Wilson

MPi: The Complete Reference
by Marc Snir, Steve Otto, Steven Huszs-Lederman, David Walker, and Jack Don-

gATTa

MPI: The Complete Reference

Mare Snir

Hteve Otto

Steven Huss-Lederman
David Walker

Jack Dongarra

The MIT I'ress
Cambridge, Massachuzetts
London, England

© 1906 Massachnzetts Institnte of Technology

All rights recerved . Mo part of thiz ook may be reproduced in any form by any electronic or
mechanical means [ineluding photosopying, recording, or information storage and retrieval]
without permisgion in writing from the publicher.

Fartz of thig book came from, “MFI: A Meezage Faseing Interface Standard™ by the Meazage
FPasing Interface Forum. That document is @ the Univerdity of Tenneszes. These sections were
copded by permisgion of the University of Tenneazes.

Thiz ook was get in IXTEX by the anthaors and wae printed and bound in the United States of

America

Litrary of Congress Clataloging-in-Fublication Data

Contents

L1
1.2
L3
1.4
L5
1.6
LT
L&
1a

21
22
2.3
24
25
2.0
25
23
2.9
210
211
212
213

3
31

Sere:z Foreword
Preface

Introduction

The Goals of MPI

Who Should UUse Thiz Standard?

What Platforms are Targets for bnplement ation”
What is Included in MPI?

What is Not Included in MPI?

Version of MPI

MPI Conventions and Design Choices

Semantic Terms

Language Binding

Point-to-Point Communication

Introduction and Oherview

Blocking Send and Receive {rperations
Datatype Maiching and Data Conversion
Semantics of Blodang Point-to-point
Example — Jacohi iteration
Send-Heceive

Null Proceszes

Nonblockang Communication

Multiple Completions

Probe and (ancel

Persistent Clommunication Requests

Communication-Complete Calls with Null Request Handles

Clommunication Modes

Uszser-Defined Datatypes and Packing

Introduction

x

EmmmmmhpMH

FEELHEEBEEELR &

B E =

101
101

f
Tl

3.2
+3
3.4
&9
3.8
37
&3

4.1
4.2
4.3
4.4
4.5
4.8
4.7
4.3
4.9
4.10
4.11
4.12
4.13

5.1
5.2
9.3
5.4
9.9
9.0
5.7

Introduction to Jser-Defined Datatypes
Datatype Constructors

Ilse of Derived Datatypes

Addrese Function

Lower-bound and Upper-bound Markers
Absclute Addresses

Pack and Unpack

Collective Communiesations

Introduction and Overview
Operational Detalls
Communicator Argument
Barrier Synchronization
Broadeast

(lather

Scatter

Gather to All

All to All Scatter/(Gather
(ilobzal Reduction {rperations
Scan

Uszer-Defined Operaticns for Beduce and Scan

The Semantics of Collect rre Communications

Communicators
Introduction

Overview

(Giroup Management
Communicator Management
Safe Paralle]l Libraries
Caching

Intercommumication

Coolooly

101
105
123
123
130
133
135

147

147
150
151
152
152
154
185
170
173
175
133
138
145

201
201
203
207
216
223
229
243

Coolenly

&1
é.2
6.3
8.4
.5
6.0
6.7
8.3

7.1
7.2
7.3
7.4
7.9

g1
8.2
2.3
8.4
2.5

a1
9.2
0.3
9.4
0.5

Process Topologies
Introduction

Virtual Topologies
Overlapping Topologies
Embeddmng in MPI

Cartesian Topolegy Punctions
Graph Topology Functions
Topology Inguiry Functions
An Application Examplke

Envirenmental Management
Implementation Information
Timers and Synchrenization
Initizlization and Exdt

Error Handling

Interaction with Executing Environment

The MPl Profiling Interface

Requirement s
Diccussion

Legic of the Design
Examples

Multiple Levels of Interception

Coneclnsions

Design Iscues

Portable Programming with MPI
Heterogeneous Computing wath MPI
M Pl Implementations

Extenzions to MPI

Bibliography

aa
Tu

253
253
254
250
250
257
267
273
273

287
287
200
20]
Fath]
301

303
303
303
3
300
310

J11
J11
314
321
323
J24

3T

aua
L

Index
{lonstants Index
Function Index

Coolooly

324
333
355

Series Foreword

The world of modern computing potentially offers many helpful methods and tools
to scientists and engineers, but the fast pace of change in computer hardware, sofi-
ware, and algorithms often makes practical uze of the newest computing technel-
cgy difficuli. The Scientific and Engineering Computation series focuses on rapid
advances in computing technologies and attempts to facilitate transferning these
technclogies to applications m science and engineermg. It will mdude books on
theories, methods, and onginal applications in such areas as parallelism, large-ccale
simulaticns, time-critical computing, computer-zided design and engineering, use
of computers in manufact uring, visuahization of scentific data, and human-machine
interface technclogy.

The zerie= will help scientists and engineers to understand the current world of
advanced computation and to anticipate future developments that will impact their
comput ing environments and open up new capabilities and modes of computation.

This bock is about the Message Passing Interface {MPI}, an important and in-
creasingly popular standarized and portable message passing system that brings
us doser to the potential development of practical and cost-effective large-scale
parallel applications. It gives a compkte specification of the MPI standard and
provides illustrative programming examples. Thiz advanced level bock supple-
ments the companion, introductory volume in the Series by William Gropp, Ewing
Lusk and Anthony Skjellum, {feing MPF: Portable Parallel Programming with the
Megsage- Paseing Interface.

Jamuzz 5. Kowalik

Prefare

MPI, the Mewcage Passing Interface, iz 2 standardized and portzble message
passing systemn designed by a group of researchers from academis and industry
to functicn on a wide vanety of parallel computers. The standard defines the
syntax and semantics of a core of library routines useful to a wide range of users
writing portable message-passing programs m Fortran 77 or . Several well-dested
and effickent implementations of MPl already exast, inchuding =ome that are free
and in the public domain. These are beginning to focter the development of a
paralle] sofiware indusiry, and there is excitement among computing researchers
and vendecrs that the development of portable and =calable, large-scale parallel
applications £ now feasible.

The MPI standardization effort involved over 3) pecple from 40 orgamzations,
mainly from the UInited States and Europe. Most of the major vendors of con-
current computers at the time were involved in MPI, along with researchers from
universities, government laboratorses, and indusiry. The standardization process
began with the Workshop on Stand ards for Mecsage Paseing in 2 Diktributed Mem-
cry Environment, sponsored by the Center for Research on Parallel Computing,
held Apnl 20-30, 1652, in Willamsburg, Virgmia [2§]. A preliminary draft pro-
posal, known as MPIL, was put forward by Dongarra, Hempel, Hey, and Walker in
Movernber 1992, and a revised version was completed in February 1843 [11].

In November 1842, a meeting of the MPl workang group was held in Minneapoli,
at which it was decided to place the standardization process on & more formal
focting. The MP| worlang group met every & weeks throughout the first © months of
1603, The draft MP| standard was presented at the Supercomputing '93 conference
in November 1893, After a period of public comments, which resulied in some
changes in MP, version 1.0 of MP| was releazed in June 1994,

These meetings and the email discussion together constiuted the MPl Forum,
mermbership of which has been open to all members of the high performance com-
puting community.

This bock serves a: an annotated reference manual for MPI, and a complete
specification of the standard iz presented. We repeat the material already published
in the MP| specification document [15], though an attempt to clarify has been made.
The annotations mainly take the form of explaming why certain design choices were
made, how users are meant to use the interface, and how MP| implementors should
construct & version of MPl. Many detailed, ilustrative programming examples are
alzo given, with an eye toward lluminating the more advanced or subik features
of MPL.

The complete mterface i= prezented i this book, and we are not hesitant to ex-

xil Preface

plam even the most esctenic features or consequences of the standard. As such, this
volume does not work a= a gentle introduciion to MPI, nor a< a tutorial. For such
purpozes, we recorunend the companion volume in this series by William Gropp,
Ewing Luszk, and Antheny Skjellum, Using MPI: Portable Paralle! Programming
with the Message- Passing Interface. The parallel application developer will want
to have copies of both books handy.

For a first reading, and a= a good introduction to MPI, the reader should first
read: Chapter 1, through Section 1.7.1; the material on point to point commu-
nications covered in Sections 2.1 through 2.5 and Section 2.8; the simpler forms
of collective communications explained in Sections 4.1 through 4.7; and the basic
introduction to commumnicators given in Sections 5.1 through 52. Thi= will give a
fair understanding of MPI, and will allow the construction of paralle]l applications
of moderate complexaty.

Thiz book i= bazed on the hard work of many people in the MPl Forum. The
anthore gratefully recognge the members of the forum, especially the contributions
made by members who served in positions of responsibility: Lyndon Clarke, James
Cowmie, Al Geist, Wilkiam Gropp, Rolf Hempel, Robert Knighten, Richard Litile-
field, Ewing Lusk, Paul Pierce, and Anthony Skjellum. {Hher contributors were: Ed
Anderson, Robert Babb, Joe Baron, Eric Barsgcs, Scott Berryman, Rob Bjornson,
Mathan Doss, Anne Elster, Jim Feeney, Vince Fernando, Sam Fineberg, Jon Flower,
Daniel Frye, Ian (Aendinning, Adam (Greenberg, Robert Harrieon, Leslie Hart, Tom
Haupt, Don Heller, Tom Henderson, Anthony Hey, Alex Ho, C.T. Howard Ho, Gary
Howell, John Kapenga, James Kchl, Susan Kranss, Bob Leary, Arthur Maccabe,
Peter Madams, Alan Mainwaring, Oliver McBryan, Phil Md{mley, Charles Mosher,
Dan Meszett, Peter Pacheco, Howard Palmer, Sanjay Ranks, Peter Rigsbee, Axch
Robizcn, Enich Schikuta, Mark Sears, Ambuyj Singh, Alan Sussman, Hobert Tom-
linzom, Hobert 3. Voigt, Denms Weeks, Stephen Wheat, and Steven Fenith. We
especially thank William Gropp and Ewing Lusk for help in formatting thiz volume.

Support for MPl meetings came in part from ARPA and NSF under grant ASC-
0310330, NSF Science and Technology Center Clooperative agreement No. OCR-
2300615, and the Commission of the European Community through Esprit Project
P8643. The University of Tennessee also made financial contnbutions to the MPI
Forum.

MPI: The Complete Reference

—

1 Introduoction

Message passing k& a programming paradigm used widely on parallel computers,
expecially Scalabke Parallel Computers (SPCs} with distributed memory, and on
Networks of Workst ations (NOWs). Although there are many variations, the basic
concept of processes communicating through messages 1= well understood. Ohver the
last ten years, subet antial progress has been made i casting significant applications
into this paradigm. Each vendor has implkmented its own vanant. More recently,
several public-domain systems have demonstrated that a message passing system
can be efficiently and portably implemented. It i= thus an appropriate time to
define beoth the symiax and semantics of a standard core of library routines that
will be uzeful to a wide range of users and efficiently implementable en a wide
range of computers. Thiz effort has been undertaken over the last three years by
the Meszage Passing Interface (MPI} Forum, a group of more than 30 people from 40
crgamzations, representing vendors of parallel systems, industrial users, induostrial
and naticnal research laboraicories, and universities.

The designers of MPl sought to make use of the most attractive features of a
number of exdsting message-passing sy=tems, rather than zelecting one of them and
adopting it a= the standard. Thus, MPl has been strongly influenced by work
at the IBM T. J. Watson Research Center [1, 2], Intel’s NX/2 [24], Express [23],
nCUBEs Vertex [22], pd [, 5], and PABMALCS [3, 7]. Otiher imporiant contribu-
ticns have come from Zipeode [25, 26], Chomp [13, 14], PVM [17, 27], Chameleon
[18], and PICL [18]. The MPI Forum sdentified some critical shortcomings of exasi-
Ing mescage-passing systems, in areas such as complex data layouts or support for
modularity and safe commumication. Thiz led to the miroduction of new features
in MPI.

The MPI standard defines the user interface and functionality for a wide range
of mescage passing capahbilities. Since its completion in June of 1984, MPI has
become widely accepted and used. Implementaiions are available on & range of
machines from SPCs to NOW:. A growing number of $PC: have an MPI supplied
and supported by the vendor. Because of this, MPl has achieved cne of its goals
— adding credibility to parallel computimg. Third party vendors, researchers, and
others now have a reliable and portabk way to express message-passing, parallel
PrOgrams.

The major goal of MPI, 2= with most standards, & 2 degree of portability across
different machines. The expeciation iz for 2 degree of portability comparable to
that given by programming languages such a= Fortran. Thi means that the same
message-passing source code can be executed on a vanety of machmes 2= long as the
MPI Bbxary is available, whik some tuning might be needed tc take best advantage

1

2 ﬂ}.lath:r 1

of the features of each system. Though message passing i= often thought of in
the context of disiributed-memory paralle]l computers, the same code can run well
on a chared memory parallel computer. It can run on 2 network of workstations,
cr, indeed, 2= a set of processes Tunning on 2 single workstation. Knowing that
efficent MPl implementations exdst arrcse o wide variety of computers gives a high
degree of flexability in code development, debugging, and in choosing a platform for
production runs.

Another type of compatibility offered by MPI & the ahility to run transparently
cn heterogenecus systemns, that iz, collections of processors with distinct archi
tectures. It 3= possible for an MPl mplementation to span such a heterogenecus
collection, yet provide a virtual computing model that hides many architectural dif-
ferences. The uzer need not worry whether the code is sending messages between
processcrs of like or unlike architecture. The MP| mplementation will antcmat-
ically do any necessary data conversion and utilize the correct communications
protocol. However, MPI does not prolubit implementations that are targeted to a
single, homogeneous system, and does not mandate that distinct implement ai ions
be intercperable. Users that wih to run on an hetercgeneous system must use an
MP| implement ation designed to support heterogeneity.

Portabibty iz central but the standard willnot gain wide usage if thi was achieved
at the expenze of performance. For example, Foriran is comumnonly used over aszem-
bly languages becanse compilers are almost always available that yield acceptable
performance compared to the non-portable alernative of ascembly languages. A
crucial point is that MPl was carefully designed =0 25 to allow efficient implementa-
ticns. The design choices seem to have been made correctly, since MPl implemen-
tations over a wide range of platforms are achieving high performance, comparakble
to that of less portable, vendorspectfic systems.

An mmport ant design goal of MPl was to allow efficient implementations across
machines of differing charactenistics. For example, MP| carefully avoids specifying
how operations will tale place. It only specifies what an operation does logically.
A= a result, MPI can be easily implemented on systems that buffer messages at the
sender, receiver, or do no buffering at all. Implkement ations can take advantage of
specific feat ures of the commumnicat ion subsystem of vanous machines. Om machines
with intelligent comimunication coprocessors, much of the message passing protocol
can be offloaded to this coprocessor. Om other systems, most of the communication
code 15 executed by the main processor. Another example 1= the use of opaque
cbjects in MPIL. By hiding the detaik of how MPlspecific cbjects are reprezented,
each implementation is free to do whatever & best under the ciroumst ances.

Anciher design choice leading to efficiency i= the avcidance of unnecezsary work.

Lulroduclion 3

MP| was carefully designed = as to avoid a requirement for large amounts of extra
information with each mescage, or the need for complex encoding or decoding of
message headers. MPl also avoids extra computation or tests in critical routines
since thiz can degrade performance. Ancther way of minimimng work i= to en-
courage the reuse of previous computations. M Pl provides this capahility through
constructs such as persistent communication requests and caching of attributes on
communicators. The design of MPI avoids the need for extra copying and buffening
of data: in many caszes, data can be moved from the user memory directly to the
wire, and be received directly from the wire to the receiver memory.

MP| was designed to encourage overlap of communication and computation, =0 as
to tale advant age of intelligent communication agents, and to hide communication
latencies. This i= achieved by the use of nonblodang communication calls, which
separate the imtiation of a communiation from it completion.

Scalability iz an important goal of parallel processing. MPI allows or supporis
scalability through several of its design features. For example, an application can
create subgroups of processes that, in turn, allows collective communication oper-
ations to limit their scope to the processes imwlved. Another technique uszed is
to provide functionality without a computation that scales a= the number of pro-
cezzes, For example, a two-dimensional {artesian topology can be subdiided into
its one-dimensional rows or colummns without explicitly enumerating the proceszes.

Finally, MPI, as all good standards, is valuable in that it defines a kmowm, min-
mum behavicr of message-paseing implementations. Thiz relieves the programmer
from having to worry about certain problems that can arize. Ome example is that
MP| guarantees that the underlying transmission of messages i= reliable. The user
need not check if a message i= received correctly.

1.1 The Goals of MPI

The goal of the Message Passing Interface, simply stated, iz to develop 2 widely

used standard for writing message-pascing programs. As such the interface should

establih o practical, portable, efficient, and flexdble standard for meseage passing.
A hist of the goals of MPI appears below.

¢ Deszign an application programming interface. Although MPI is currently used
az & run-tome for parallel compilers and for various libraries, the design of MPI
primarily reflecis the perceived needs of application programmers.

¢ Aowefficient communication. Avoid memory-to-memory copying, allow overlap

4 ﬂ}.lath:r 1

of computation and communication, and offload to a communication coprocessor-
proceszor, where available.

¢ Allow for amplementations that can be used in 2 heterogeneous enviromment.

¢ Alow convenient and Fortran 77 bindings for the interface. Alzo, the semantics
of the interface should be language independent.

¢ Provide a reliable communication interface. The user need not cope with com-
munication faihires.

¢ Define an interface not too different from current practice, such 2= PYVM, NX,
Expressz, pd, etc., and provides extensions that allow greater flexabality.

¢ Define an interface that can be implkmented cn many vendor’s platforms, with

no significant changes mn the underlying communication and system scfiware.

¢ The interface should be designed to allow for thread-safety.

1.2 Who Should Usze Thiz Standard?

The MPI standard is intended for use by all those who want to wrte portable
message-passing programs in Fortran 77 and . This indudes individual application
programumers, developers of software designed to run on parallel machines, and
creators of environments and tools. In order to be attractive to this wide audience,
the stand ard must provide a simple, easy-to-use mterfare for the basic uzer while not
semantically precluding the high-performance message-passing operaticns available
on advanced machines.

1.3 What Platforms are Targets for Implementation?

The attractiveness of the message-passing paradigm at least partially stems from
itz wide portability. Programs expressed thiz way may run on distributed-memory
multicomputers, shared-memory multiprocessors, networks of workstations, and
combinations of all of these. The paradigm will not be made obsclete by archi-
tectures combining the shared- and dizstributed -memory views, or by inaeaszes in
network speeds. Thus, it should be both possible and useful to implement this
standard on a great vanety of machines, induding thoze “machines” consisting
of collections of other machines, parallel or not, connected by a2 communication
network.

The interface & suitable for use by fully general Multiple Instruction, Multiple
Data (MIMD} programs, or Multiple Program, Multiple Data (MPM D} programs,
where each process follows a distinet execution path through the same code, or even

Lulroduclion &

executes a different code. It 3= also suitable for those written in the more restricted
stvle of Smgle Program, Multiple Data {SPMD}, where all processes follow the
same execution path through the same program. Although no explicit support for
threads iz provided, the interface has been designed so 2= not to prejudice their use.
With this version of MPl no support & provided for dynamic spawning of tasks;
such support i= expected in future versions of MPI; see Section 9.5.

MPI provides many features intended to improve performance on scalable parallel
computers with specizbzed interproceszor communication hardware. Thus, we ex-
pect that native, high-performance implementations of MP1will be provided on such
machines. At the same time, implementations of MPl on top of standard Unix inter-
processcr communication protocols will provide portahbility to workstation clusters
and heterogenecus networks of workstations. Several proprietary, native imple-
mentations of MPl, and public domam, pertable implkment ation of MPI are now
available. See Section §.4 for more information about MPl implement ations.

1.4 What iz Included in MPI?

The standard mcludes:

Point-to-peint communication
Collective operations

Process groups

Clommunicat ion domains

Process topologies

Envircnmental Management and inquiry
Profiling interfare

Bindmgs for Fortran 77 and

1.5 What iz Not Included in MPI?

MPI does not specify:

¢ FEyplict shared-memory operations

¢ Operations that require more operating system support than was st andard dur-
ing the adoption of MPI; for example, mterrupt-driven receives, remote execution,
or active messages

¢ Program construction tocls

+ Debugging facihities

3] ﬂ}.lath:r 1

Explict support for threads
Support for task management
I/ funciions

There are many features that were considered and not included m MPL This
happened for 2 number of reazons: the time constraint that was self-imposed by
the MPl Forum i finishing the standard; the feeling that not encugh experience
waz availlable on zome of theze topics; and the concern that additional features
would delay the appearance of implement ations.

Features that are not included can always be offered a:s extensions by speafic

implementations. Future versions of MPI will address some of these 1zsues [see

Section §.5).

1.4 Version of MPI

The criginal MPI standard was created by the Message Passing Interface Forum
{MPIF}. The public releaze of version 1.0 of MPI was made in June 1904, The
MPIF began meeting again in March 1995, One of the first tacks undertaken was
to make clarifications and corrections to the MPI standard. The changes from
version L0 to version 1.1 of the MPI standard were limited to “corrections" that
were deemed urgent and necessary. Thi work was completed in June 1995 and
version 1.1 of the standard was released. Thi= book reflects the updated versicn
1.1 of the MPI standard.

1.7 MPI Conventions and Design Choices

Thie zeciion explains notational terms and conventions used throughout thie book.
1.7.1 Documcent Notation

Rationale. Throughout thiz document, the rationale for design choices made in
the interface specification & set off in thiz format. Some readers may wizh to slap

these zections, while readers mierested in interface design may want to read them
carefully. (End of rationale.}

Advice {o users. Throughout this document, material that speaks to users and
Mlustratez uzage iz set off in thiz format. Some readers may wizh to skdp these
sections, while readers interested in programming in MPI may want to read them
carefully. (End of advice fo users.)

Lulroduclion T

Advice {o implementors. Throughout thi= document, matenial that 3= primanly
commentary to implementors is set off in thic formai. Some readers may wish to
sldp these zections, while readers interested in MP| implementations may want to
read them carefully. {End of aduice i implemeniors.)

1.7.2 Procedure Specification

MPI procedures are specified vsing a language independent notation. The argu-
ments of procedure calls are marked as IN, OUT or INOUT. The meanings of these
are:

¢ the call uzes but does not update an argument marked IN,
¢ the call may update an arpument marked OUT,
the call both vsec and updates an argument marked INOUT,

There i= one special case — if an argument iz a handle to an opague object
{defined in Section 1.8.3), and the object is updated by the procedure call, then the
argument & marked OUT. It is marked this way even though the handle itzelf i= not
modified — we uze the OUT atiribute to denote that what the handle references is
updated.

The definiticn of MPI tries to avoid, to the largest possible extent, the uze of
INOUT arguments, because such use is error-prone, especially for scalar arpuments.

A common occurrence for MPI functions i an argument that iz used 2= IN by
some processes and OUT by other processes. Such an argument is, syntactically,
an INOUT argument and is marked as such, although, semantically, it i= not used
in one call boih for input and for cutput.

Ancther frequent situation arisez when an argument value 3= needed only by a
subzet of the processes. When an argument iz not significant at a process then an
arbitrary value can be passed as the argument.

Unless specified ctherwie, an argument of type OUT or type INOUT cannot
be aliazed with any other arpument passed to an MPl procedure. An example of
argument aliasing in ! appears below. If we define a procedure like thi,

void copyIntBoffer{ int *pin, int *pont, int len J
{ int 1i;
for (i=0; i<len; ++i} tpont++ = spin++;

¥
then a call to it in the following code fragment has aliazed arguments.

int al10];

) ﬂ}.lath:r 1

copyIntBoffer(a, a+3, 7J;

Alhough the O langusge allows this, such usage of MP| procedures iz forbidden
unless otherwize specified. Mote that Fortran prohibit= aliazing of argument=.

All MPl functicns are first specified in the language- independent notation. Im-
mediately below this, the AMNSI C version of the function is shown, and below this,

a version of the same function in Fortran 77.

1.8 Semantic Terms

Thi section describes semantic terms used in this book.
1.8.1 Processcs

An MPI program consists of antonomous processes, executing their own (C or For-
tran} code, in an MIMD style. The codes executed by each process need not be
identical. The processes communicate via calk to MP| communication primitives.
Typically, each process executes in its own addrese space, although shared-memory
implementations of MPI are possible. Thi= document specifies the behavior of a
parallel program assuming thai only MPI calls are uszed for communication. The
interaction of an MPIl program with other possible means of communication (e.g.,
shared memaory) is not specified.

MPIl does not specify the execution model for each process. A process can be
sequential, or can be multi-threaded, with threads pessibly executing concurrently.
Care has been taken to male MPl “thread-zafe” by avciding the use of implicit
state. The desired interaction of MPl with threads= & that concurrent threads= be
all allowed to execute MPI calls, and callz be reentrant; a BHlodang MP call Blodks
cnly the inwoling thread, allowing the scheduling of ancther thread.

MPI doez not provide mechanims to specify the mitial allocation of proceszes to
an MP| computation and their binding to physical processors. It iz expected that
vendors will provide mechanizms to do =0 either at load time or at run time. Such
mechanisms will allow the specification of the initial number of required processes,
the code to be executed by each imitial process, and the allocaiion of processes
to processcrs. Ako, the current standard does not provide for dynamic creaticn
cr deletion of processez during program execution {the total number of proceszes
is fixed}; however, MPI design i consistent with such extensions, which are now
under consideration (see Section 0.5). Finally, MPIl always identifies proceszes ac-
cording to ther relative rank in a group, that &, consecutive integers n the range
O..gronpsize-1.

Lulroduclion o

1.8.2 Typcs of MPl Calls

When discussing MPI procedures the following terms are used.

local If the complktion of the procedure depends cnly on the local executimg pro-
cese. Such an operation does not require an explicit communication with anciher
uzer process. MPI calls that generaie local objects or query the status of local
cbjects are local.

non-local If completion of the procedure may require the execution of some MPI
procedure on another process. Many MPl communication calls are non-local.

blocking If reiurn from the procedure indicates the user is allowed to re-usze re-

sources specified in the call. Any visible change in the state of the callmg procezs
affected by a bloddng call occurs before the call retumns.

nonblocking If the procedure may return before the operation initizted by the
call completes, and before the uszer & allowed to re-use resources (such as buffers)
specifled in the call. A nonblodking call may mitiate changes in the state of the
calling procese that actually take place after the call returned: e.g. a nonblodang
call can imtiate a receive operation, but the meszage is actually received afier the

call returned.
collective If all proceszes in & process group need to invoke the procedure.

1.8.3 Opaguc Objects

MP| manages system memory that 15 used for buffering messages and for stonng
internal reprezentations of various MPI cbjects such a= groups, communicators,
datatypes, etc. Thiz memory ic not directly accessible to the uszer, and objecis
stored there are opague: their size and shape is not vizible to the user. Opague
objects are acceszed via handles, which exst in user space. MPl procedures that
cperate on opagque objects are passed handle arguments to access theze objects.
In addition to their use by MPI calls for object access, handles can participate in
azsignments and compansons.

In Foriran, all handles have type INTEGER. In , & different handl type iz de-
fined for each categery of chjects. Implementations should use types that support
assignment and equality cperators.

In Fortran, the handle can be an index in a table of opague objects, while in
it can be such an mdex or a pointer to the cbject. More bisarre possibilities exst.

Opagque objects are allocated and deallocated by calle that are specific to each
object type. These are bisted in the secticms where the objects are described. The

10 ﬂ}.lath:r 1

calls accept a handle argument of matching type. In an allocate call the 1= an OUT
argument that returns a valid reference to the object. In a call to deallocate thie
15 an INOUT argument which returns with 2 “null handle” value. MPI provides a
*null handle” constant for each chject type. Comparkons to thizs constant are used
to test for validity of the handle. MPI calls do not change the value of handles,
with the exception of calls that allocate and deallocate objects, and of the call
MPLTYPE_.COMMIT, defined in Section 3.4.

A mull handle argument & an erronecus IN argument in MPI calls, unless an
exception iz explicitly stated in the text that defines the function. Such exceptions
are allowed for handles to request objects i Wait and Test calk (Section 2.5).
Otherwise, a mull handle can only be passed to a function that allocates o new
object and returns a reference to it in the handle.

A call o deallocate invalidates the handle and marks the object for deallocation.
The object i= not acceszible to the user after the call. However, MPl need not
deallocate the object immmediately. Any operation pending {at the time of the
deallocate} that involves this object will complete normally; the object will be
deallocated afterwards.

An opaque cbject and it= handle are significant only at the process where the
object was created, and cannct be transferred to ancther process.

MPI provides certain predefined opague objeciz and predefined, static handles to
these cbjects. Such objects may not be destroved.

Rationale. Thi design hides the internal representation used for MPI data struc-
tures, thus allowing similar calls in ¢ and Fortran., It also avoids conflicts with the
typing rules in theze languages, and easzily allows future extensions of functionality.
The mechanizm for opague objects used here doozely follows the POSIX Foriran
binding standard.

The expliat separation of uzer space handles and “MPl zpace” objects allows deal-
location calk to be made at appropriate points in the uzer program. If the opague
objects were in user cpace, one would have to be very careful not to go out of scope
before any pending cperation requiring that object completed. The specified design
allows an cbject to be marked for deallocation, the user program can then go out
of =cope, and the object itzelf persiztz until any pending cperations are comglete.

The requirement that handles support assignment,/com parison 1= made =ince such
cperations are common. This restricts the domain of possible implement aiions. The
alternative would have been to allow handles to have been an arhitrary, cpague type.
The would force the miroduction of routmes to do assignment and comparnison,
adding complexity, and was therefore ruled out. {End of rationae.}

—

Lulroduclion 11

Advice {0 users. A user may accidently create adanghng reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if 2 handle variable ic deallocated before the ascociated
cbject iz freed, then the cbject becomes inaccessible [this may cocur, for example,
if the handle & a local variable within a subroutine, and the subroutine iz exdted
before the associated cbject is deallocated). It is the user’s responsibility to manage
correctly such references. (End of advice io users.)

Advice {o implementors. The intended semantics of cpague cbjects 15 that each
cpague object iz separate from each other; each call to allocate such an object copies
all the infermation required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived dataiype
may contain references to its components, rather then copies of its components; a
call ic MPLLCOMM _GRQUP may return o reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects such that the
visible effect iz as if the objects were copied. (End of advice io implemeniors.)

1.8.4 MNamed Constants

MP| procedures sometimes assign a special meaning to a special value of an argu-
ment. For exampk, tag ¥ an integer-valued argument of point-to-point commu-
nication operaticns, that can take a special wild-card value, MPILANY TAG. Such
arguments will have & range of regular values, which is 2 proper subrange of the
range of values of the corresponding type of the variable. Spedcal values (such as
MPLANY TAG) will be cutside the regular range. The range of regular values can
ke queried using environmental inguiry functicns {Chapter 7).

MPI al=c provides predefined named constant handles, such as MPLCOMM WAORLD,
which iz a handle to an object thai reprezentz all processes available at stari-up
time and allowed to communicate with any of them.

Al named constants, with the exception of MPILEOTTOM in Foriran, can be used
in initialization expressions or assignments. These constants do not change values
during execution. Opague objects accessed by constant handles are defined and do
not change value between MPI imtialization (MPLINIT(} call} and MPI completion
{(MPLFINALIZE() call}.

1.85 Choice Arguments

MP| functions sometimes use arguments with a choice (or union} data type. Dastinct
callz to the same routine may pass by reference actual argument= of different types.

12 ﬂ}.lath:r 1

The mechani=m for providing such arguments will differ from language to language.
For Fortran, we use <type: to represent a choice variable, for 2, we use [veid *).

1.% Langnage Binding

Thie zeciion defines the ez for MPI language binding in Foriran 77 and ANSI .
Defined here are various object representations, a= well 2= the naming conventions
uszed for expressing this standard.

It i= expected that any Fortran 90 and U4+ implementations use the Fortran 77
and ANSI C bindings, respectively. Although we consider it premature to define
other bmdings to Fortran 9 and €4+, the current bindings are designed to en-
courage, rather than discourage, experiment ation with better bindings that might
be adopted later.

Since the word PARAMETER, iz 2 keyword in the Fortran language, we use the
word “argument” to dencte the arguments o a subroutine. Thesze are normally
referred to as parameters in €, however, we expect that { programmers will un-
derstand the word *argument” {which has no specific meaning in (I}, thus allowing
ue to avoid ummecessary confusion for Fortran programmers.

There are zeveral important language binding issues not addresced by this stan-
dard. Thiz standard does not discuse the intercperability of message paszing be-
tween languages. It & fully expected that good quality implement ations will provide
such intercperability.

1.9.1 Foriran 77 Binding Issucs

Al MPl names have an WPI_ prefix, and all characters are upper caze. Programs
should not declare variables or functions with names with the prefioc, ¥PI_or PMPI_,
to avoid pessible name colbizions.

All MPl Foriran subroutines have a return code in the last argument. A few
MPFP| cperations are functions, which do not have the return code argument. The
return code value for successful completion i= MPISUCCESS. Other error codes are
implementation dependent ; see Chapter 7.

Handles are represented in Fortran as INTEGER=. Bmary-valued variables are of
type LOGICAL.

Array arguments are indexed from one.

IInless explicithy stated, the MPl F77 binding is consistent with ANSI standard
Foriran 77. There are several pointz where the MPl ctandard diverges from the
ANSI Fortran 77 standard. These exceptions are consistent with cormmnon practice

Lulroduclion 13

denble precisicn a
integer b

call MPI_sgend(a,...)
call MPI_send(b,...)}

Figure 1.1
An example of calling & rauntine with mismatehed formal and actnal arguments.

in the Fortran community. In particular:

+ MPI identifiers are limited to thirty, not six, significant characters.

* MPI identifiers may contain underscores after the first character.

¢ An MPl subroutine with a choice argument may be called with different argument
types. An example is shown in Figure 1.1. The viclates the letter of the Fortran

standard, but such a viclation is cormunon practice. An alternaiive would be to have
a separate version of MPISEMD for each data type.

Advice to implementors, Although not required, it 15 strongly suggested that
named MPl constants (PARAMETERs) be provided in an include file, called mpif_h.
Om systems thai do not support include files, the implementation should specify

the values of named constants.

Vendors are encouraged to provide type declarations and interface blocks for MPI
functions in the opif.h file on Fortran systems that support thoze. Such decla-
rations can be uszed to avoid some of the limitations of the Fortran 77 binding of
MPI. For example, the { binding specifles that “addreszes™ are of type MPILAint;
thiz type can be defined to be a 64 bit mieger, on systems with 64 bit addresses.
Thie feature iz not available in the Fortran 77 binding, where “addresses” are of
type INTEGER. By providing an interface block where “address™ parameters are de-
fined to be of type INTEGER(E), the implementor can provide support for 84 bit
addrezzes, while maintaming compatibility with the MPI standard. [End of advice

o implementors.}

All MPl named constants can be used wherever an entity declared with the
PARAMETER attribute can be used in Feortran. There i= one exception to this rule:
the MPl constant MPI_BOTTOM (section 3.7} can only be uszed as a buffer argument.

14 ﬂ}.lath:r 1

1.9.2 C Binding Issucs

We uze the AWSI C declaration format. All MP| names have an MPI_prefix, defined
comstants are in all capital letters, and defined types and functions have one capital
letter after the prefi. Programs must not declare variables or functions with names
beginning with the prefix MPI_or PMPI.. This is mandated to avoid possible name
collisicns.

The definition of named constants, function prototypes, and type definitions must
be supplied in an include file mpi_h.

Almest all O functions return an error code. The successful return code will
be MPI_SUCCESS, but failure return codes are implementation dependent. A few O
functions do not return error codes, =0 thai they can be implemented as macros.

Type declarations are provided for handles to each category of opague objects.
Eirther 2 pointer or an integer type is used.

Array arguments are indexed from zero.

Logical flags are integers with value {0 meaning “false” and & non-zero value
meaning “true.”

Cheice arguments are pointers of type voids.

Address arguments are of MPI defined type MPI_AInt. This 1= defined to be an int
of the size needed to hold any valid address cn the target architecture.

Al named MPl constants can be used m mitialization expressions or assigmments
like C constants.

2 Point-to-Point Communieation

2.1 Introdoetion and Overview

The basic communication mechanism of MPI iz the transmitial of data between a
pair of proceszes, cne side sendimg, the other, receiving. We call thiz “point to point
communication” Almost all the constructs of MPI are built around the point to
point operations and so thi chapter is fund amental. It iz also quite a long chapter
since: there are many vanants to the point to point operations; there 1= much to zay
in terms of the semantics of the operations; and related topics, such as probing for
messages, are explaimed here becavsze they are uzed in conjuncticn with the point
to point operations.

MPIl provides a set of send and receive functions that allow the communication
of typed data with an associated tag. Typing of the message contents is necessary
for heterogenecus support — the type information iz needed =o that correct data
reprezentation conversicns can be performed a= data 1 sent from one architecture
to another. The tag allows selectivity of mescages at the receiving end: one can
receive om a particular tag, or one can wildcard this quantity, allowing reception
of messages with any tag. Mescage celectivity on the source process of the meszage
15 alzo provided.

A fragment of O code appears n Example 2.1 for the example of process () send-
ing a message to process 1. The code executes on both process () and process 1.
Process) sends a character string using ¥PI Send (). The first three parameters of
the send call specify the data to be sent: the outgoing data is to be taken from nsg;
it consists of strlen{msgi+1 entries, each of type MPI_CHAR (The siring "Hello
thera" contains strlen(msgy=11 significant characters. In addition, we are al=c
sending the *\0* string termmator character]. The fourth parameter specifies the
message destination, which iz process 1. The fifth parameter specifiez the meszage
tag. Finally, the last parameter £ a communicator that spedfies a communi-
cation domain for thiz communication. Among other things, a communicator
serves to define a set of processes that can be contacted. Each such process 1= la-
beled by o procese rank. Process ranks are integers and are discovered by inquiry
to a communicatcr (see the call to MPT Comm_rank{}}. MPI COMM WORLD is a defauli
communicator provided upon start-up that defines an imtial communication do-
main for all the proceszes that participate in the computation. Much more will be
said about communicators in Chapter 5.

The receiving process specified that the incorming dat 2 was to be placed in msg and

15

16 ﬂ}.lath:r 2

that it had a maxmum size of X)) enines, of type HPI CHAR. The variable status,
set by MF I Racy (), gives mformation cn the source and tag of the mecsage and how
many elements were actually received. For example, the receiver can examine this
variable to find cut the actual length of the character string received. Datatype
matching (between sender and receiver} and data conversion on hetercgenecus
syetems are discussed In more detail m Section 2.3,

Example 2.1 { code. Process) sends a message to process 1.
char wsgl20] ;

int myrank, tag = 90;

MFI_Statns statuns;

MPI_Comm_rank(MPI_COMM_WORLD, Emyrank J; /% find oy rank »/
if (myrank == 0} {

strcpy(nsg, "Hello there");

MPI_Send{ msg, strlen{msg)+1, MPI_CHAR, 1, tag, MPI_COMM_WORLD};
T} else if {myrank — 1) {

MPI_Recv{ wsg, 20, MPI_CHAR, O, tag, MPI_COMM_WORLD, Estatms);
j;

The Fortran version of thiz code 15 shown in Example 2.2, In order to make cur
Fortran examples more readable, we use Fortran 90 syntax, here and in many cther
places mn this book. The examples can be easily rewritten in standard Foriran
77. The Fortran code i= essentially identical io the O code. All MPI calls are
procedures, and an additional parameter i= used to retum the value returned by
the corresponding O function. Note that Portran strings have fioced size and are
not mulHerminated. The receive operation stores "Hello there™ in the first 11
positions of msg.

Examplc 2.2 Fortran code.

CHARACTER*20 msg

INTEGER myrank, ierr, statns(MPI_STATUS_SIZE}
INTEGER tag = 8%

CALL MPI_COMM_RANK{ MPI_COMM_¥CRLD, myrank, ierr)
IF {myrank .Ef. 0) THEN
nsg = "Hallo thara"
CALL MPI_SEND{ wsg, 11, MPI_CHARACTER, 1,
tag, MPI_COMM_WORLD, iaerr}

Poiol-Lo-Poiol Commununicalion i7

ELSE IF (myrank .Ef. 13} THEN
CALL MFI_RECV{ msg, 20, MFI_CHARACTER, O,
tag, MPI_COMM_WORLD, status, ierr)
END IF

These examples emploved blocking send and receive functions. The send call
Hlocks until the send buffer can be reclaimed (i.e., after the send, process 0 can
safely over-write the contents of msg). Similarly, the receive function blocks until
the receive buffer actually contans the contents of the message. MPI also provides
nonblocking send and receive functicns that allow the possible overlap of meszage
transmitial with computation, or the overlap of multiple mescage transmittak with
cne-another. Non-blocking functions always come in two paris: the posting func-
ticns, which begin the requested operation; and the test-for-completion functions,
which allow the application program to discover whether the requested operation
has completed. {ur chapter begins by explaining blockang functions in detail, in
Secticn 2.2-2.7, whik nonblocking functions are covered later, in Sections 2.5-2.12.

We have already zaid rather a lot about a simple transmittal of data from one
process to another, but there & even more. To understand why, we examine two
azpects of the communication: the semantics of the communication primitives, and
the underlying protoools that implement them. Consider the previous example, on
process (), after the Blocking send has completed. The question anizes: if the send
has completed, does thi= tell us anything about the receiving proces=” Can we kmow
that the receive has finished, or even, that it has begun?

Such questions of semantics are related to the nature of the underlying protocol
implementing the operations. If one wishes to implement & protocol minimizing
the copying and buffering of data, the most natural semantics might be the “ren-
dezvous" version, where complktion of the zend implies the receive has been imitiated
{at least}. Omn the other hand, a protocol that attempts to Block processes for the
minimal amount of time will necessarilly end up doing more buffering and copying
of data and will have “buffering” semantice.

The trouble is, cne choice of semantics is not best for all applications, nor is it
best for all architectures. Becanze the primary goal of MPI iz to standardee the
cperaticns, yet not sacrifice performance, the decision was made to include all the
major choices for point to point semantics in the standard.

The above complexities are manifested in MPl by the exdstence of modes for
point to point communication. Both blocking and nonblocking communicat ions
have modes. The mode allows cne to choose the semantics of the send operation
and, in effect, to influence the underlying protocol of the transfer of dais.

18 ﬂ}.lath:r 2

In standard mode the completion of the send does not necessanly mean that the
matching receive has started, and no assumption should be made in the application
program about whether the out-going data i= buffered by MPL. In buffered mode
the user can guarantee that a certain ameount of buffering space is available. The
catch & that the space must be explicitly provided by the application program. In
synchronous mode a rendesvous semantics between sender and receiver 1z used.
Finally, there i= ready mode. This allows the uzer to explont extra Imowledge to
simplify the protocol and potentially achieve higher performance. In a ready-mode
send, the user asceric that the maiching recerve already has been posted. Modes

are covered 1 Section 2.13.

2.2 Blocking Send and Receive Operations

Thi secticn describes standard-mode, Hlocking sends and receives.
2.2.1 Blodking Scnd

MPISEND(buf, count, datatype, dest, tag, comm)

IM buf imilial address of serd buofler
IN count ownber of colriey Lo vemd
IN datatype dalaly pe of cach colry

IM cest rank of delinalion

IN tag meage lag

IM cornnm conununicalor

int MPISend{veoid* buf, int count, MPI Datatype datatype, int dest,
int tag, MPIComm comm)

MPI_SEND(EUF, COUNT, DATATYFE, DEST, TAG, COMM, IERROR)
<type> BUF(s)
INTEGER COUNT, DATATYFE, DEST, TAG, COMM, IERROR

MPI SEND performs a standard-mede, blodking send. The semantics of this
function are described in Section 2.4. The arguments to MPISEND are described
in the followmg subsections.

Poiol-Lo-Poiol Commununicalion 16

2.2.2 Bcnd Buffer and Mcssage Data

The send buffer specified by MPISEND consits of count successive entries of the
type indicated by datatype, starting with the entry at address buf. Note that we
specify the message kength in terms of number of eniries, not number of bides.
The former 3= machine independent and facilitates portable programming. The
count may be zero, in which case the data part of the message i= empty. The baszic
datatypes correspond to the basic datatypes of the hest language. Possible values
of thiz argument for Fortran and the corresponding Foriran types are histed below.

MPI dat atype Fortran dat atype
MFPLINTEGER INTEGER

MPILREAL REAL
MPLDOUEBLE_FRECISION | DOUELE FRECISION
MPLCOMPLEX COMPLEX
MPLLOGICAL LOGICAL
MPILCHARACTER CHARACTER(1)
MPLEYTE

MPLPACKED

Pozzible values for this argument for 0 and the corresponding O types are histed
below.

MPI dataiype C datatype
MFPICHAR signad char
MFPISHORT signed shert int
MPIINT signed int
MPILAONG gigned long int

MPIUNSIGNED_ CHAR mnsigned char
MPIUNSIGNED_SHORT | oneigned short int

MFPIUNSIGNED mneigned int
MPIUNSIGNED LONG | onsigned leng int
MPIFLOAT float

MPIDOUELE donble

MPILONG DOUELE long denble
MPIBYTE

MPIPACKED

The datatypes MPILBYTE and MPIPACKED do not correspond to a Fortran or
C datatype. A value of type MPIBYTE comsists of a byte (8 binary digits}. A

20 ﬂ}.lath:r 2

byte is uninterpreted and iz different from a character. Dhfferent machines may
have different representations for characters, or may use more than one byte to
represent characters. Om the other hand, a byte has the same binary value on all
machines. The uze of MPILPACKED is explained in Section 3.5.

MPI| requires support of the datatypes listed above, which match the basic data-
types of Fortran 77 and ANSI €. Addiinal MPI datatypes should be provided if
the host language has additional data types. Some examples are: MPILONG LONG,
for 0 integers declared io be of type longlong; MPIDAUELE COMPLEY for double
precision complex in Fortran declared to be of type DOUELE COMPLEY; MFI_REALZ,
MFPIREAL4 and MPI_REALS for Fortran reals, declared to be of type REAL*2, REAL*4
and REAL*8, respectively; MPILINTEGERL MPLLINTEGER2 and MPILINT EGER4 for For-
tran integers, dedared to be of type INTEGER*1, INTEGER*2 and INTEGER*4, re-
spectively. In addition, MPl provides a mechaniam for users to define new, denived,
datatypes. This iz explained in Chapier 3.

2.23 Mocssage Eovelopo

In addition to data, messages carry information that iz used to distinguizh and
selectively receive them. This information consits of a ficed number of fields,
which we collectively call the messape covelope. These fields are

source, destination, tag, and communicator.

The message source iz implictly determined by the identity of the message zender.
The other fields are specfied by argument= in the send operation.

The comm argument specifies the communicator used for the send operation.
The communicator i& a local cbject that reprezents a communication domain.
A communication domain & & global, distributed structure that allows proceszes in
a gronp to communicate with each other, or to communicate with processes in
ancther group. A communication domam of the first type (communication within
a group} is represented by an intracommunicator, whereas a communication do-
main of the second type [communication between groups) is represented by an
intcrcommunicator. Processes in a group are ordered, and are identifled by their
integer rank. Processes may participate m several communication domains; di-
tinct communication domains may have partially or even completely overlapping
groups of processes. Each communication domam supports & disjoint stream of
communications. Thus, a process may be able to communicate with another pro-
cezs via two ditinct communication domains, using two distinet communicators.
The zame process may be identifled by a different rank in the two domains; and
communications m the two domains do not interfere. MPI applications begin with a

Poiol-Lo-Poiol Commununicalion 21

default communication domain that includes all processes (of this paralle]l job); the
default communicator MPICOMMMWORLD represents this communication domaim.
Cominunicat ors are expluined further in Chapter 5.

The message destination % spectfied by the dest arpument. The range of valid
values for dest iz 0,.._,n-1, where n is the number of processe= in the group. This
range includes the rank of the sender: if comm 35 an intracommunicaior, then a
process may send a message to itzelf. If the commumnicator i= an intercommunicator,
then destinations are identified by their rank in the remote group.

The mtegervalued message tag & specified by the tag argument. Thk integer
can be used by the application to distinguizsh meseages. The range of valid tag
values is 0,...,UB, where the value of UB iz implement ation dependent. It & found
by querying the value of the attribute MPILTAG UB, a= described in Chapter 7. MPI
requires that UB be no less than 32767.

2.24 Commcnis on Scnod

Advice {0 users. Communicaiors provide an important encapsulation mechanism
for libraries and modules. They allow modules to have their cwn communication
space and their own process numbering scheme. Chapter § discusses functions for
defining new cormmunicators and vse of communicators for library design.

VJzers that are comfortable with the notion of a flat name space for proceszes and a
single cormumunicat on domain, as offered by mest exdsting communication libranies,
need only usze the predefined variable MPILCOMM_WORLD a5 the comm argument.
Thie will allow cormmunication with all the processzes available at initialization time.
{End of aduice i users.}

Advuice to implementors. The meszage envelope 3= ofien encoded by a fived-
lengih mescage header. Thiz header carries a communication domain id {sometimes
referred to 2= the context id. This id need not be sy=tem wide unigue; nor does
it need to be identical at all processes within a group. It & sufficient that each
crdered pair of communicating processes agree to associate a particular id value
with each communication domain they uze. In addition, the header will usually
carry meszage source #nd tag; source can be reprezented as rank within group or
az an absolute task id.

The context id can be viewed as an additional tag field. It differs from the regular
message tag in that wild card matching 1= not allowed on this field, and that value
setting for thiz field & controlled by communicator manipulation functions. | End
of aduice to implementors.)

22 ﬂ}.lath:r 2

2.2.5 Blodking Recoive

MPLRECY [buf, count, datatype, source, tag, comm, status)

ouUT buf wilial addrew of moecive buller
IM count max nwnber of eolio Lo reccive
IN datatype dalaly pe of cach colry

IN sSOUroe rank of source

IN tag mosape Lo

IN Cornnm conununicalor

ouUT status relurn slaloy

int MPIRecv(void* btnf, int comnt, MPI Datatype datatype, int sonrce,
int tag, MPIComm comm, MPI Statns wstatns])

MPI_RECY(EUF, COUNT, DATATYFE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(s)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS (MPI STATUS SIZE), IERROR

MPI_RECY perfocrms a standard-mode, bloddng receive. The semantics of this
function are described in Secticn 2.4. The arpuments to MPILRECY are dezcribed
in the following subsections.

2.2.8 Recoive Buffer

The receive buffer consizt= of storage sufficient to contam count conzecutive entries
cof the type specified by datatype, starting at address buf. The length of the recemved
message must be less than or equal to the lengih of the receive buffer. An overflow
errcr occurs if all meoming datas does not fit, without truncation, into the receive
buffer. We explain in Chapter 7 how to check for errors. If 2 mezzage that & shorter
than the receive buffer arrives, then the incoming message is stored in the initial
locations of the receive buffer, and the remaming locations are not modified.

2.2.7 Mocssage Sclection

The zelecticn of & message by a receive operaticn & governed by the value of its
message envelope. A message can be recerved if its envelope matches the source,
tag and comm values specified by the receive cperation. The receiver may specify
a wildcard valie for source (MPLANY SOURCE}, and/or a wildcard value for tag

Poiol-Lo-Poiol Commununicalion 23

{MPLANY _TAG), indicating that any source and /or tag are acceptable. Ome cannot
specify a wildcard value for comm.

The argument source, if different from MPLANY SOURCE, is specified a: a rank
within the process group assocated with the communicator (remote process group,
for intercommunicators). The range of valid values for the source argument is
10,...n-1JU{MFPLANY SOURCE], where n & the number of processes m this group.
Thi range includes the receiver’s rank: if comm & an mtracommunicator, then a
process may receive a message from itzelf. The range of valid values for the tag
argument iz {0,.. UBTU{MPLANY_TAG).

2.2.8 Rcturn Statns

The receive call does not speafy the size of an Incoming message, but only an upper
bound. The source or tag of 2 received message may not be Jmown if wildcard
values were used in & recemve operation. Ako, if multiple requests are completed by
a single MPI function {see Section 2.5}, a distinct error code may be returned for
each request. [Usually, the errcr code is returmed as the value of the function in C,
and as the value of the IERRQR argument in Foriran.}

This mformation is returned by the status argument of MPILRECY. The type of
status iz defined by MPI. Status variables need to be explicitly allocated by the user,
that iz, they are not system objects.

In , stats iz a structure of type MPISwrus that containe three fields named
MFPILSOURCE, MPLTAG, and MPIERROR; the structure may contain additional fields.
Thus, status MPI SOURCE, status MPLTAG and status MPI ERROR contain the source,
tag and error code, respectively, of the received message.

In Fortran, status is an array of INTEGERs of length MPISTATUS_SIZE. The three
constants MP1S0OURCE, MPI_TAG and MPI_ERROR are the indices of the entries that
store the source, tag and errcr fields. Thus status{MPISOURCE}, status{MPLTAG)
and status{MFPI ERROR} cont ain, respectively, the scurce, the tag and the error code
of the received message.

The status argument also returns mformation on the length of the message re-
ceived. However, this information 3= not directly available as a field of the status
varizble and a call to MPLGET_CQUNT ic required to *decode” thisz information.

24 ﬂ}.lath:r 2

MPLGET_COUNT[status, datatype, count)

IN status relurn slaluy of recdve operalion
IN datatype dalaly pe of cach recdve buller enlry
ouT count ownber of recdved col e

int MPIGet count(MPI Statns sstatns, MPI Datatype datatypa,

int #*comnt)

MPI_GET COUNT({STATUS, DATATYFE, COUNT, IERROR)
INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

MPI_GET_COUNT takes as input the status zet by MPI.LRECY and compute= the
number of entries received. The number of entries is returned incount. The datatype
argument should match the argument provided to the receive call that zet status.
{Section 3.4 explains that MPIGET_COUNT may return, in certain situations, the
value MPILLUNDEFINED.}

2.29 Comments on Recolve

MNote the asymmeiry between send and receive operations. A receive operation
may accept messages from an arbitrary sender, but a zend operation must specify
a unique receiver. This matches a “push” communication mechamsm, where data
transfer iz effected by the sender, rather than a “pull” mechanism, where data
transfer iz effecied by the receiver.

Scurce equal to destination & allowed, that iz, 2 process can send a message to
1tzelf. However, for such a communication to succeed, 1t 1= required that the message
be buffered by the system between the completion of the send call and the start
of the receive call. The amount of buffer space available and the buffer allocation
policy are implementation dependent. Therefore, it & unsafe and non-portable to
send self-mescages with the standard-mode, blocking zend and receive operations
described =0 far, zsince this may lead to deadlock. More discussions of thi appear
in Section 2.4,

Advuice to users. A recemve operation must specify the type of the entries of the
incoming meseage, and an upper bound on the number of entries. In some cases, a
process may expect several messages of different lengths or types. The process will
post a receive for each messzage it expects and use message tags to dizambiguate
INCOIMINg Messages.

In cther cases, a process may expect only one message, but the message is of

Poiol-Lo-Poiol Commununicalion 28

unknown type or length. If there are only few pessible kind:s of incoming mes-
sages, then each such kind can be identified by a different tag value. The function
MFPI.PROBE described in Section 2.10 can be uszed to check for incoming mescages
without actually receiving them. The receiving process can first test the tag value
of the incoming message and then receive it with an appropriate receive operation.

In the most general casze, it may not be peesible to reprezent earh message kind by
a different tag value. A two-phasze protoccl may be uzed: the sender first sends a
message containing a description of the data, then the data itzelf. The two mezsages
are guaranteed to arrve in the correct order at the destination, as discussed in
Section 2.4. An alternative approach & to use the packing and unpacking functions
described in Section 3.8, These allow the sender to pack in one message adescription
of the data, followed by the daia itzelf, thus creating a “self-typed” message. The
receiver can first exdract the data description and next use it to exiract the data
tzelf.

Superficially, tags and commumnicators fulfill a similar function. Both allow one to
partition communications into distinet classes, with sends matching only receives
from the same class. Tags offer imperfect protection since wildcard receives cir-
cumvent the protection provided by tags, while communicators are allocated and
managed using specizal, safer operations. It 3= preferable to use communicators to
provide protected communication domams acrese modules or libraries. Tags are
used to discrimmate between different kinds of meszages wihin one module or
library.

MPI offers o variety of mechanisms for matching incoming messages to receive oper-
ations. {Mtentimes, matching by sender or by tag will be sufficient to maich sends
and receives correctly. MNevertheless, it iz preferable to avoid the uze of wildcard
receives whenever possible. Narrower matching criteria result in safer code, with
lesz opportumities for message mizmatch or nondeterministic behavior. Narrower
matching criteria may ako lead to improved performance. (End of advice to uzers.}

Rationale. Why is status information returned via a special status vanable?

Some hbraries retum this information via INOUT count, tag and source arguments,
thus uzing them both to specify the selection critena for incoming messages and to
return the actual envelope values of the received meszage. The use of 2 separaie
argument prevents errors ascociated with INOUT arpuments (for example, using the
MPLANY TAG constant as the tag argument i a send}. Ancther potential source of
errcrs, for nonblocking communications, 1= that status mformation may be updated
after the call that passed in count, tag and source. In “cld-style" designs, an error

26 ﬂ}.lath:r 2

could occur if the receiver accesses or deallocates these variables before the commu-
nication compleied. Instead, in the MPI design for nonbloddng communications,
the status argument iz passed to the call that completes the communication, and is
updated by thi call.

Other libraries return status by calls that refer implicitly to the “last mescage
received.” Thiz iz not thread zafe.

Why izn't count = field of the status variable”

Om some systems, it may be faster to receive data without counting the number
of entriez received. Incoming messages do not carry an entry count. Indeed, when
user-defined datatypes are uzed {see Chapter 3}, it may not be pessible to compute
such a count at the sender. Instead, incoming messages carry a byte count. The
tranzlation of a byte count into an entry count may be time consuming, espeaally
for user-defined datatypes, and may not be needed by the receiver. The current
deszign awoids the need for computing an entry count in those situations where the
count i= not needed.

Mote that the current design allows implement ations that compute 2 count during
receives and store the count in a field of the status variable. (End of rationafe.)

Advice to implementors. Even though no specific behavicr is mandated by MPl for
EITCNecls Programs, the recommended handbng of overflow situations 15 to return,
in status, information about the source, tag and size of the incoming message. The
receive operation will return an error code. A quality implementation will also
ensure thai memery that is cutside the receive buffer will not be cverwritten.

In the csse of a2 mescage shorter than the receive buffer, MPI iz quite sirict in
that it allows no modification of the other locations in the buffer. A more lenient
statermnent would allow for some optimizations but this iz not allowed. The imple-
mentation must be ready to end a copy mto the receiver memory exactly at the
end of the received data, even if it iz at a non-word-aligned address. (End of advice
o implementors.)

2.3 Datatype Matching and Data Conversion

2.31 Typc Matching Rules
One can think of message transfer a= consisting of the following three phases.
1. Data & copied out of the zend buffer and a message i= assembled.

Poiol-Lo-Poiol Commununicalion T

2. A meszage is transferred from sender to receiver.

3. Data 1= copied from the incoming message and diascembled into the receive
buffer.

Type matching must be cbeerved at each of these phases. The type of each
variable in the sender buffer must match the type specified for that eniry by the
send operation. The type specified by the zend operation must match the type
specified by the receive operation. Finally, the type of each variable in the receive
buffer must match the type specified for that entry by the receive operation. A
program that fails to cbzerve these rules & erronecus.

To define type matching preasely, we need to deal with two issues: maiching
of types of vaniables of the host language with types specified in communicaticn
operations, and matching of types between sender and receiver.

The types between a send and receive match if both operations specify identi-
cal type names. That iz, MPILINTEGER matches MFILLINTEGER, MFPI_REAL matches
MFPIREAL, and =0 cn. The one exception to thi= rule is that the type MFIPACKED
can match any other type (Section 3.8}.

The type of a variable matches the type specified in the communication cpera-
ticn if the datatype name used by that operation corresponds to the basic type of
the hest program varisble. For example, an entry with type name MPIINTEGER
matches a Fortran variable of type INTEGER. Tables showing this correspondence
for Fortran and C appear in Section 2.2.2. There are two exceptions to thiz rule:
an entry with type name MPI BYTE or MPIPACKED can be used to match any byte
of storage {on a byte-addressable machine}, mrespective of the datatype of the
variable that contains thi= byte. The type MPLLBYTE allows cne to transfer the
binary value of a byte in memory unchanged. The type MPIPACKED iz used to
send data that has been explicitly packed with calls to MPI_PACK, or receive data
that will be explicitly unpacked with calk to MPI_UNPACK [Section 3.3].

The following examples dlustrate type matching.

Example 2.3 Sender and receiver speafy matching types.
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(af1}, 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.E.1) THEN
CALL MPI_RECVW(b{1}, 16, MPI_REAL, O, tag, comm, statns, ierr)
END IF

28 ﬂ}.lath:r 2

ThE code iz correct if both a and b are real arrays of size > 10. (In Fortran, it
might be correct to use this code even if a or b have size < 10, eg., a{1) might ke
ke equivalenced to an array with ten reals.}

Example 2.4 Sender and receiver do not specify maiching types.
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.E.0) THEN
CALL MPI_SEND({af1}, 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF {rank.Ef.1) THEN
CALL MPI_RECV(b(1}, 40, MPI_EYTE, O, tag, comm, statns, ierr)
END IF

Thi code & erronecus, since sender and receiver do not provide matching dataiype
arguments.

Example 2.5 Sender and receiver specify cormmunication of untyped values.
CALL MPI_COMM_RANK(comm, rank, ierr)
IF {rank.E.0) THEN

CALL MPI_SEND({a{1}, 40, MPI_EYTE, 1, tag, comm, ierr)}
ELSE IF (rank.Eq.1) THEN

CALL MPI_RECY(b{1}), 80, MPI_EYTE, O, tag, comm, status, ierr)
END IF

Thi code 1= correct, irrespective of the type and size of 3 and b [unless this resulis
in an out of bound memory access).

Type MPLCHARACTER The type MPICHARACTER matches one character of a
Fortran variable of type CHARACTER, rather then the entire characier string stored
in the variable. Fortran variables of type CHARACTER or substrings are transferred
az if they were arrays of characters. This iz illustrated in the example below.

Examplc 2.6 Transfer of Fortran CHARACTER=.
CHARACTER®10 A
CHARACTER®10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.E(.0) THEN

CALL MPI_SEND{a, £, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank.E(.1) THEN

Poiol-Lo-Poiol Commununicalion 0

CALL MPI_RECV(b({8:10},5,MPI_CHARACTER,.O,tag, conn,statns, ierr)
END IF

The last five chararters of siring b at process 1 are replaced by the first five char-
arters of siring a at process (.

Advice to users. I a buffer of type MPIBYTE iz passed 3z an argument to

MPISEND, then MPI wmall send the data stored at contiguous locations, starting
from the address indicated by the buf argument. This may have unexpected resulis
when the data layout £ not a: a casual user would expect it to be. For example,
some Fortran compilers implement variables of type CHARACTER 2= a structure that
contains the character length and a pointer to the aciual string. In such an envi-
romment, sending and receiving a Fortran CHARACTER variable vsing the MPILEYTE
type will not have the anticipated result of transferring the character string. For
thiz reazocn, the uszer iz advied to use typed communications whenever possible.

{End of aduice i users.)

Rationale. Why does MPI force the uszer to specify datatypes? After all, type

information iz available in the source program.

MPI iz meant to be implemented 2= a library, with no need for additional prepro-
cessing or compilation. Thus, one cannot assume that a communication call has
information on the datatype of variables in the commumnication buffer. This infor-
mation must be suppled at calling time, either by calling a different functicn for
each datatype, or by passimg the datatype information as an explicit parameter.
Dataiyvpe information & needed for heterogeneous support and is further discussed
in Section 2.3.2.

Futures extenzions of M Pl might take advantage of polymorphism in 4+ or For-
tran 90 in order to pass the datatype information implicitly. (End of rationafe.)

Aduice to implementors. Some compilers pass Fortran CHARACTER arguments a5 a
structure with 2 kength and a pointer to the actual string. In such an environment,
MPI zend or receive calls need to dereference the pointer in order to reach the string.
{End of aduice io implementors.)

2.3.2 Data Conwversion

One of the goals of MPIl & to support paralkl computations across heterogenecus
envircnments. {ommunicaiion n 2 heterogeneous environment may require data
conversions. We use the following terminclogy.

30 ﬂ}.lath:r 2

Typc conversion changes the datatype of a value, for example, by roundmg a
HEAL to an INTEGESR.

Recpresentation conversion changes the bimary representation of a value, for
example, changing byte ordering, or changing 32-bit floating point to §4-bit foating
point.

The type matching rules imply that MPl communications never do type con-
version. O)n the other hand, MPI requires that a representation conversion be
performed when a typed value % transferred acrozs environments that use different
reprezentations for such a value. MP| does not specify the detailed rules for repre-
gentation conversion. Such 2 conversion is expected to preserve integer, logical or
character values, and to convert a floating point value to the nearest value that can
be represented on the target sy=tem.

Overflow and underflow exceptions may oocur during floating point conversicns.

Conversion of integers or characters may also lead to exceptions when a value that
can be represemted m ome systermn canmot be represented in the other system. An
exception occurring during represent ation conversicn resulis in a failure of the com-
munication. An error occurs either in the send operation, or the receive operation,
cr beth.

If a value zent in a message & uniyped (i.e., of type MPLEYTE}, then the ki
nary representation of the byte stored at the receiver iz identical to the binary
reprezentation of the byte loaded at the sender. Thiz holds true, whether zender
and receiver run in the same or in distinct enviromments. No representation con-
vercion i done. Note that representation conversion may occur when values of
type MPICHARACTER or MPILCHAR are transferred, for example, from an EBCDIC
encoding to an ASCII encoding.

Mo representation conversion need occur when an MPI program executes in a
homogenecus system, where all processes Tun in the same environment.

Consider the three examples, 2.3-2.5. The first program iz correct, assuming that
3 and b are REAL arrays of size > 10. If the sender and receiver execute in different
environiments, then the ten real values that are fetched from the zend buffer will be
converted to the representation for reals on the receiver site before they are stored
in the receive buffer. While the number of real elements feiched from the zend
buffer equal the number of real elements stored in the receive buffer, the number of
byies stored need not equal the number of bytes Joaded. For example, the sender
may use i four byte representation and the receiver an eight byte represent ation
for reals.

The zsecond program i erronecus, and its behavier is undefined.

Poiol-Lo-Poiol Commununicalion 31

The third program iz correct. The exact same sequence of forty bytes that were
loaded from the send buffer will be stored in the receive buffer, even if cender and
receiver run in a different enviromment. The mescage cent has exartly the same
length (in bytes} and the same binary reprezentation as the meszage received. If
a and b are of different types, or ff they are of the same type but different daia
reprezentations are used, then the hits stored in the receive buffer may encode
values that are different from the values they encoded in the send buffer.

Reprezentation conversion also apphies to the envelope of 2 meszage. The source,
destination and tag are all integers that may need to be converted.

MP| does not require support for inter-language communication. The behavior
of a program is undefined if messages are zent by a { process and received by a

Fortran process, or vice-versa.
2.3.3 Commecnis on Data Conversion

Rationale. MPI does not handle interdanguage communication becanse there are
no agreed-upon standards for the correspondence between O types and Fortran
types. Therefore, MPl applications that mix languages would not be portable.
Vendors are expected to provide mter-language communication consistent with their
support for inter-language procedure invocation. {End of nadionafe.)

Advice to implementors. 'The datatype matching rules do not require messages
to carry data type information. Both sender and recerver provide complete data
type informaticn. In a heterogenecus environment, one can either use a machine
independent encoding such a= XDH, or have the receiver convert from the sender
representation to ite owm, or even have the sender do the conversion.

Additional type imformation might be added to messages in order to allow the
syetemn to detect mismaiches between datatype at sender and receiver. This might

be particularly useful in a slower but zafer debug mode for MPL

Alihough MPI does not speafy mterfaces between ¢ and Foriran, vendors are ex-
pected to provide such interfaces, =0 as to allow Fortran programs to invoke parallel
librarie= written in), or communicate with servers running € codes {and vice-
versa). Imtialwation for Fortran and ' should be compatible, mechanizms should
be provided for passing MPI objects as parameters in interlanguage procedural in-
wocations, and mter-language communication should be supporied. For example,
consider a systerm where o Fortran caller can pass an INTEGER actual parameter
to & routine with an int formal parameter. In such o system a Fortran routine
should be able to zend a message with datatype MPLLINTEGER ic be received by a

32 ﬂ}.lath:r 2

C routine with datatype MPIINT. (End of advice iv implementors.)

2.4 Semantics of Blocking Point-to-point

Thi secticn describes the main properties of the send and receive calls introduced
in Section 2.2, Interested readers can find a more formal treat ment of the iscues in
thiz section in [10].

2.4.1 Buffcring and Safcty

The receive described in Section 22.5 can be started whether or not 2 matching
send has been posted. That version of recerve i= bloddng. It returns only afier
the receive buffer contams the newly received mescage. A receive could complete
before the matching zend has completed [of course, it can camnplete only after the
matching send has started).

The zend operation described in Section 2.2.1 can be started whether or not a
matching receive haz been posted. That version of send iz blocdking. It does not
return uniil the message data and envelope have been safely stored away =o that
the sender & free to accesz and owerwrite the send buffer. The send call iz al=o
potentially non-local. The message might be copied directly into the matching
receive buffer, or it might be copied into a temperary system buffer. In the first
caze, the zend call will not complete until 2 matching receive call occurs, and =c, if
the sending process ¥ single-threaded, then it will be blocked until this time. Inthe
second case, the send call may returm ahead of the matching receive call, allowing a
single-threaded process to continue with s computation. The MPlimplementation
may make either of theze choices. It might block the sender or it might buffer the
data.

Mezzage buffering decouples the zend and receive operations. A blodang send
might complete as soon as the message was buffered, even if no matching receive
has been executed by the receiver. Om the other hand, message buffering can be
expensive, az it entails additicnal memory-to-memory copying, and it requires the
allocation of memery for buffering. The choice of the right amount of buffer space
to allocate for communication and of the buffering policy to use & application and
implementation dependent. Therefore, MPI offers the choice of several communi-
cation modes that allow one to control the cheice of the commumnication protoccl.
Modes are deccribed in Section 2.13. The choice of 2 buffering policy for the stan-
dard mode send described in Section 22.1 ic left to the implkment ation. In any
caze, lack of buffer space will not cauze 2 standard send call to fail, but will merely

Poiol-Lo-Poiol Commununicalion a3

cauze it to block. In well-constructed programs, this results in a useful throtile
effect. Clonsider & situation where 2 producer repeatedly produces new values and
sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If standard sends are used, then the pro-
ducer will be autematically throttled, a= its send operations will Hlock when buffer
space 1= unavailable.

In ill-const ructed programs, Bloddng may lead to a deadlodk situaton, where all
proceszez are blocked, and no progress occurs. Such programs may complete when
sufficient buffer cpace iz available, but will fail on systems that do less buffering,
or when data setz (and message sizes) are increased. Since any system will run
cut of buffer rescurces sz message sizes are increased, and some implementations
may want to provide little buffering, MPI take= the pesition that safe programs do
not rely on system buffering, and will complete correctly irrespective of the buffer
allocation policy used by MPl. Buffering may change the performance of a zafe
prograim, but it doesn't affect the result of the program.

MPI does not enforce o cafe programiming style. 1zers are free to take advantage
of knowledge of the buffering policy of an implementation in order to relax the
safety requirements, though deing =c will leszen the portahbility of the program.

The following examples Musirate safe programming izsues.

Example 2.7 An exchange of messages.
CALL MPI_COMM_RANK(comm, rank, ierr)
IF {rank.BqQ.0) THEN
CALL MPI_SEND(sendbnf, comnt, MFI_REAL, 1, tag, comm, ierr)
CALL MPI_RECY(recvbuf, count, MPI_REAL, 1, tag, comm, statns, ierr)
ELSE IF (rank.Eq.1) THEN
CALL MPI_RECY(recvbmf, comnt, MPI_REAL, O, tag, comn, statns, ierT)
CALL MPI_SEND(sendbmf, comnt, MPI_REAL, O, tag, comm, ierr)}
END IF

Thi program succeeds even if no buffer space for data is available. The program
15 safe and will always complete correctly.

Example 2.8 An attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF {rank.EQ.0) THEN
CALL. MPI_RECY({recvbmf, comnt, MPI_REAL, 1, tag, commn, statns, ierTr)
CALL MPI_SEND(sendbmf, comnt, MPI_REAL, 1, tag, comm, ierr)}

34 ﬂ}.lath:r 2

ELSE IF {(rank.Ef.1) THEN
CALL MPI_RECY(recvbuf, count, MPI_REAL, O, tag, comm, statns, ierr)
CALL MPI_SEND(sendbnf, comnt, MPI_REAL, O, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can
complete only if the matching send of the second processor iz executed. The receive
operaticn of the second process must complkie before itz send and can complete
cnly if the matching send of the first process iz executed. This program will always
deadlock.

Example 2.9 An exchange that relies on buffering.
CALL MPI_COMM_RANK(comm, rank, ierr)
IF {rank.EQ.0) THEN

CALL. MPI_SEND(sendbmf, comnt, MPI_REAL, 1, tag, comm, ierr}

CALL MPI_RECY({recvimf, count, MPI_REAL, 1, tag, comn, statns, ierTr)
ELSE IF (rank.EQ.1} THEN

CALL MPI_SEND(sendbmf, comnt, MFI_REAL, O, tag, comm, ierr)

CALL MPI_RECY(recvbuf, count, MPI_REAL, O, tag, comm, statns, ierr)
END IF

The message sent by each process must be copied somewhere before the send oper-
ation returns and the receive operation starts. For the program to comgplete, it is
neceszary that at least ome of the two mescages be buffered. Thus, thic program will
succeed only if the communication systerm will buffer at least count words of daia.
Otherwise, the program will deadlock. The succeszz of thi program will depend on
the amount of buffer space available in a particular anplementation, on the buffer
allocation policy uszed, and on other concurrent communication occurning in the
system. This program is unsafe.

Advice {0 users. Safety i= a very important izsue in the design of message passing
programs. MPI offers many features that help in writing safe programs, in ad-
dition to the techniques thai were outlined above. Nonblocking message passing
operaticns, as described m Section 2.8, can be uzed to awoid the need for buffer-
ing outgoing messages. This eiminates deadlocks due to lack of buffer space, and
potentially improves performance, by awoiding the cverheads of allocating buffers
and copying messages into buffers. Uze of other communication modes, described
in Section 2,13, can also avoid deadlock situations due to lack of buffer space.

Poiol-Lo-Poiol Commununicalion a5

Quality MP| inplementations ai tempt to be lenient to the user, by providing buffer-
ing for st andard blodang sends whenever feasible. Programs that require buffering
in order to progrese will not typically break, unless they move large amounts of
data. The caveat, of course, is that “large” iz a relative term.

Safety iz further discusced in Section 92, (Bnd of advice o users.)

Advice to implementers. The challenge facing implementors 3= to be as lenient
az poszgible to applicaiions that require buffering, without hampering performance
of applications that do not require buffering. Apphcations should not deadlock if
memeory & available to allow progress in the communication. But copying sheuld
ke avoided when it 3= not necessary. (End of aduice fo implementors.)

2.4.2 Multithreading

MPI dce= not speafy the interaction of bloddng communication calls wath the
thread scheduler in a multi-threaded implement ation of MPL The desired behay-
icr is that a Blocking communication call Blocks only the izsuing thread, allowing
another thread to be scheduled. The blocked thread will be rescheduled when the
blocked call is satisfied. That iz, when data has been copied out of the cend buffer,
for 2 send operation, or copied into the receive buffer, for a receive operation. When
a thread executes concurrently with a blodked communication cperation, it & the
uzer's responsibility not to access or modify a communication buffer until the com-

muniation completes, (therwize, the cutcome of the comput ation is undefined.
2,43 Ordor

Mezeages are non-otertaking. Conceptually, cne may think of successive messages
sent by a process to ancther process a= ordered in a sequence. Receive operations
posted by a process are also ordered in a sequence. Each incoming message matches
the first matching receive in the sequence. Thiz iz illustrated n Figure 2.1. Process
gero =ends two messages to process one and process two sends three messages to
process one. Process cne pogte five receives. All communications occur in the
same commurnication domain. The first message sent by process zerc and the first
message sent by process two can be received m either crder, since the first two
posted receives match either. The second meszage of process two will ke received
before the third message, even though the third and fourth receives match either.

Thus, if 4 zender zends two messages m suocession to the same destination, and
both match the same receive, then the receive cannot get the second meszage if the
first mescage ic =till pending. If & receiver posts two receives In succession, and both

36 ﬂ}.lath:r 2

process 0 | tap — 1 | tag =4
(zend) 5 5

sc=*|sc=*[src=2 |z =2|smm=*%*

Time
EI:CTI tag=1|tap =1 [tag = *[tag=*|tag = * ——

N

dest = 1| dest = 1|dest =1

process 2 | yao— 1| tap=72|tag=73
(zend) E £ £

Figure 2.1
Mecsages are matched in arder.

match the same message, then the second receive operation cannct be satiefied by
thiz message, if the first receive is still pending.

Theze requirements further define message matching. They guarantee that
message-passing code iz determminizstic, if proceszes are single-threaded and the wild-
card MPI_ANY SOURCE % not used in receives. Some other MPl functions, such ac
MPLCANCEL or MPI_ WAITANY, are additional sources of nondetermminisim.

In a single-threaded process all communication operations are ordered accord-
ing to program execution crder. The situation iz different when processes are
multi-threaded. The zsemantics of thread execution may not define a relative crder
between two communication cperations executed by two distinct threads. The op-
erations are logically concurrent, even if one physically precedes the other. In this
caze, no order comstrainis apply. Two mescages sent by concurrent threads can be
received in any order. Similarly, if two receive operations that are logically concur-
rent receive two suocessively sent messages, then the two messages can maitch the
receives I either order.

It iz Impertant to understand what & guaranteed by the ordenng property and
whai iz not. Between any pair of communicating processes, meszages flow in or-
der. Thiz does not imply & consistent, total order on communication events in the
systerm. Consider the following example.

Poiol-Lo-Poiol Commununicalion ar

Examplc 2.10 Oxder preserving is not transitive.
CALL MPI_COMM_RANK(comm, rank, ierTr)
IF (rank.EQ.0) THENW

CALL MPI_SEND{bmfi, comnt, MPI_REAL, 2, tag, comm, ierr)

CALL MPI_SEND{bmfZ, comnt, MPI_REAL, 1, tag, comm, ierr)
ELSE IF {rank.Ef.1) THEN

CALL MPI_RECY{bufZ, count, MPI_REAL, O, tag, comm, statns, ierr)

CALL MPI_SEND(bufZ, comnt, MPI_REAL, 2, tag, comm, ierr)
ELSE IF (rank.EQ.2)

CALL MPI_RECY(buf1, comnt, MPI_REAL, MPI_ANY_SOURCE, tag,

comm, statms, ierTr)
CALL MPI_RECY(buf2, comnt, MPI_REAL, MPI_ANY_SOURCE, tag,
comm, statms, ierTr)

END TF
Process zero sends a message to process two and next sends 2 message to process
cne. Process one receives the mescage from procese zero, then sends a meszage to
process two. Process two receives two messages, with sonrce = dontcare. The
two incoming messages can be received by process two in any order, even though
process cne sent itz message after it received the second message sent by process
gero. The reason 3= that communication delays can be arbitrary and MPI does not
enforce global serializaiion of cormnunications. Thus, the somewhat paradodcsl
outcome illustrated in Figure 2.2 can occur. If process gero had sent directly two
messages to process two then these two meszages would have been received in order.
Since it relayed the second message via process one, then the messages may now
arrive out of order. In practice, such an cccurrence i= unhkely.

2.4.4 Progress

If & pair of matching cend and receives have been initiated on two processes, then
at least ome of these two cperations will complete, independently of cther actions
in the system. The send operation will complete, unles= the receive & zatisfied by
ancther message. The receive operation will complete, unless the message =ent is
conzumed by another matching recerve posted at the same destination process.

Advice to implementors. This requirement imposes constraimts on implementation
strategies. Suppcse, for example, that o process executes two successive blodang
send calls. The message sent by the first call 1= buffered, and the second call starts.
Then, if o receive & posted that matches thi= second zend, the zecond message
should be able to overtake the first buffered one. {End of aduice to implementors.}

38 ﬂ}.lath:r 2

Process O

Process 2

=== TECY

Figure 2.2
Order pregerving iz not traneitive.

2.4.5 Fairncss

MP| makes no guaraniee of foirnees im the handbng of communication. Suppcose
that a zend i posted. Then it is possiblke that the destination process repeatedly
posts a receive that matches this send, yet the message & never received, becauze
it is repeatedly cveriaken by ciher messages, s=ent from other sources. The sce-
nario requires that the receive used the wildcard MPILLANY SOURCE a= its scurce
argument.

Similarly, suppoze that a receive is posted by 2 multi-threaded process. Then it
1z pozsible that messages that match this receive are repeatedly consumed, yet the
receive is never satisfied, because 1t i= overtalen by other receives posted at this
node by other threads. It iz the programmer’s responsibility to prevent starvation
in such situations.

Poiol-Lo-Poiol Commununicalion 30

2.5 Example — Jacohi iteration

We chall use the following example to illustrate the material introduced =o far, and
to motivate new functions.

Examplc 2.11 Jaccobi iteration — sequential code
REAL A{D:n+1,0:n+1), B{il:n,1:n}

| Main Loop
DO VHILE({.HNOT.convarged)
| perform 4 point stencil
Da j=i, n
0o i=1, n
B{i,j =0. 2w (Afi=1, 0+ 0is , jownfd, j=13+n{i,J+107
END DO
END DO

| copy resnlt kack inte array A
o0 j=1i,n
00 i=1,n
a(i,3) = B(i,3)
END DO
END DO

| Convergence test omitted

END DO

The code fragment describes the main loop of an iterative solver where, at each
mteration, the valie at a peint is replaced by the average of the North, Scuth,
FEast and West neighbors (a four pont stencil is used to keep the examgple simple}.
Boundary values do net change. We focus on the imner loop, where most of the
comput ation 15 done, and use Fortran 90 syntax, for clarity.

Since thic code has a somple structure, a data-paralle] approach can be uzed to
derive an equivalent parallel code. The array & distributed acrose processes, and
each process iz aseigned the task of updating the entries cn the part of the array it

OIS

A paralle]l algorithm iz derived from a chokce of data distribution. The distribu-
ticn should be balanced, allocating {roughly} the same number of entries to each

40 ﬂ}.lath:r 2

processcr; and it should minimEe communication. Figure 2.3 illustrates two possi-
Hle distributions: a 1D {block) distribution, where the matrix is partitioned in one
dimensicn, and a 2D (block,block) distribution, where the matrix & partiticned in

two dimensions.

1D partitian 2Dy partition

Figure 2.3
Block partitioning of & matrix.

Since the communication occurs at block boundaries, communication vwolume is
minirmized by the 30 partition which has a betier area to perimeter ratio. How-
ever, in thic partition, each processor communicates with four neighbors, rather
than two neighbers in the 1D partition. When the ratio of n/P (P number of pro-
ceszors) is small, communication time will be dominated by the fixed overhead per
message, and the first partition will kad to better performance. When the ratic
15 large, the zecond partition wdll resuli in better performance. In order to keep
the example simpl, we chall use the firet partition; a realistic code would usze a
“polyalgorithm® that zelecic one of the two partitions, according to problem cize,
number of processcrs, and communication performance parameters.

The value of each point in the array B 1= computed from the vale of the four
neighbors in array A. Communications are needed at Blodk boundanies in order to
receive valies of neighbor peints which are owned by another processor. Clommu-
nications are simplified if an overlap area 3= allocated at each processcr for storing
the values to be received from the neighbor proceseor. Eesentially, storage iz allo-
cated for each entry both at the producer and at the consumer of that entry. If
an entry i= produced by cne processcr and consumed by another, then storage is
allocated for thiz entry at both processors. With such scheme there £ no need for
dynamic allocation of communication buffers, and the Jocation of each variable is
fired. Such scheme works whenever the data dependencies in the computation are
fired and simple. In our case, they are described by a four point stencil. Therefore,
a one-colurn overlap & needed, for a 1D partition.

Poiol-Lo-Poiol Commununicalion 41

We shall partition array & with one column overlap. No such overlap 15 required

for array B. Figure 2.4 shows the extra cohumns in & and how data is transfered for
each iteration.

We zhall uze an algorithm where all values needed from a neighber are brought
in one message. Coalescing of communications in thiz manner reduces the number
of messages and generally mmproves performance.

Process 0 Process 1 Process 2
0 ocooo m+l 0 ococo mHl 0 ocooc mal
0
A
w1
1
B
n
Figure 2.4

1) Hlock partitioning with overlap and canmumnication pattern far jaeobi iteration.
The resulimg parallel algemthm i= shown below.

Examplc 2.12 Jaccohi iteration — first version of paralkl code

l;t.l.?u;.L, ALLOCATARLE A(:,:Y, B{:,:2

| Compnte noober of processes and nyrank
CALL MPI_COMM_SIZE({comm, p, ierr)
CALL MPI_COMM_RANK({comm, myrank, ierT)

42 ﬂ}.lath:r 2

| Compnte size of local block

o = nfp

IF {(oyrank.LT.{(n-p*w)) THEN
m = m+l

END IF

| Allocate local ArTays
ALLOCATE (A{Q:n+1,0:m+1), B{n,m})

| Main loop
DO VHILE {.NOT. converged)
| Computa
D0 j=i,m
oo i=1,n
B(i,3)
END DO
END DO
DO j=1,m
0O i=1,n
A(i, g2
END DO
END DO

0.26%{Afi=1,30+n(i+1, 33 (i, J=1)+001,3+1))

B(i,32

| Commmnicate
IF {myrank.GT.0) THEN
CALL MPI_SEND(E{1.,1), n, MPI_REAL, myrank-1, tag, comm, ierr)
CALL MPI_RECY(A(1,0), n, MPI_REAL, oyrank-1, tag, comm,
gtatne, ierr)
END IF
IF (myrank.LT.p-1) THEN
CALL MPI_SEND(B{i.,m), n, MPI_REAL, myrank+l, tag, comm, ierr)
CALL MPI_RECY({A{1.,m+1}, n, MPI_REAL, myrank+l, tag, comm,
statns, ierr)
END IF

END DO
The code has a communication pattern similar to the code in Example 2.8, It is
un=afe, since each procesecr first zend= messages to its two neighbors, next receives

Poiol-Lo-Poiol Commununicalion 43

the messages they have zent.

Ome way to get a safe version of thic code is to alternate the order of sends and
receives: odd rank processes will first zend, next receive, and even rank processes
will first receive, next send. Thus, one achieves the communication pattern of
Example 2.7.

The modified main loop i= shown below. We shall later see simpler ways of
deabng with this problem.

Example 2.13 Main loop of Jarchi steration — safe version of parallel code

| Main loop
DO VHILE(.NOT. converged}
| Compute
D j=1i,m
Dg i=1i,n
B{i,J) = 0.26%(Ali-1,)i+t fR001 , J=1d+R 1, J+1))
END DO
END DO
D j=1i,m
Dg i=1i,n
Afi,3) = B{1i,32
END DO
END DO

| Commmunicate
IF (MOD{myTank,2).EQ.1) THEN
CALL MPI_SEND(E(1,1), n, MPI_REAL, myrank-1, tag,
comm, ierT)
CALL MPI_RECY(A(1,0), n, MPI_REAL, myrank-1, tag,
comm, statms, ierr)
IF {oyrank.LT.p-1) THEN
CALL MPI_SEND(E(1,m), n, MPI_REAL, myrank+l, tag,
comm, ierTr)
CALL MPI_RECY(A(1,m+1), n, MPI_REAL, myrank+1, tag,
comm, statms, ierr)
END IF
ELSE | omyrank is £ven
IF (myrank.GT.0) THEN

44 ﬂ}.lath:r 2

CALL MPI_RECV({A({1,0), n, MPI_REAL, myrank-1, tag,
comm, statme, ilerr)
CALL MFI_SEND(E{1,1), n, MPI_REAL, myrank-1, tag,
comm, ierT)
END IF
IF {oyrank.LT.p-1} THEN
CALL MPI_RECV({A({1,m+1}, n, MPI_REAL, myTank+1l, tag,
comm, statms, ilerr)
CALL MFI_SEND(E{1,m), n, MPI_REAL, myrank+l, tag,
comm, ierT)
END IF
END IF

END Dd

2.8 Send-Receive

The exchange communication pattern exhibited by the last example iz sufficently
frequent to justify special support. The scnd-reccive operation combines, in one
call, the zending of one meszage to a destmation and the receaving of ancther mes-
sage from a source. The scurce and destination are possibly the same. Send-receive
15 useful for communications patterns where each node both zends and receives
messages. One example £ an exchange of data between two processes. Ancther
example is & shift operation across a chain of processes. A cafe program that imple-
ments such chift will need to use an odd/even ordering of communications, sirmilar
to the cne uzed in Example 2.13. When zend-receive i= uzed, data flows simul-
tanecusly in both directions (logically, at least} and cycles in the communication
pattern do not lead to deadlock.

Send-receive can be used in conjunction with the functions described in Chap-
ter § to perform shifis on logical topologies. Also, send-receive can be uzed for
implementing remote procedure calls: one blocking send-receive call can be used
for sending the input parameters to the callee and receiving back the ontput pa-
rameters.

There i= compatibility between send-receive and normal zsends and receives. A
message sent by asend-receive can be received by a regular receive or probed by a
regular probe, and a send-receive can receive amessage =ent by a regular zend.

Poiol-Lo-Poiol Commununicalion 45

MPISENDRECY(sendbuf, sendeount, sendiype, dest, sendtag, recvbuf, recweount,

recviype, source, recviag, comm, status]

IM sendbuf milial address of serd buofler
IM sendcount ownber of colriey Lo vemd

IN gendiype Lype of eulriey o scod buller
IM dest rank of deslinalion

IM gendtag vend Lag

ouUT recvbuf wilial addrew of mocive buller
IN recvoount max nwnber of colio Lo reccive
IN recviype Lype of culries in meocive buller
IN sSOUroe rank of source

IN recviag recolve Lag

IN Cornnm conununicalor

ouUT status relurn slaloy

int MPI Sendrecr{void *sendbmf, int mendconunt, MPI Datatype sendtyps,
int dest, int sendtag, veoid sreacvbnf, int recvcomnt,
MPI Datatype recvtype, int sonrce,
MPI Datatype recvtag, MFI Comm comm, MPI Statns w5tatns)

MPI_SENDRECY (SENDEUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVEUF,
RECYCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS,
IERROR)
<type> SENDBUF(+), RECYEUF(*)}
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECYCOUNT, RECVTYPE,
SO0URCE, RECY TAG, COMM, STATUS(MPI STATUSSIZE), IERROR

MPI SENDRECY executes a bloclking send and receive operation. Both the zend
and receive usze the same communicator, but have distinct tag arguments. The
send buffer and receive buffers must be dizjoint, and may have different lengihs and
datatypes. The next function handles the caze where the buffers are not dijeint.

The semantics of a zend-receive operation is what would be cbiamed if the caller
forked two concurrent threads, one to execute the send, and one to execute the
receive, followed by a jom of these two threads.

46 ﬂ}.lath:r 2

MPISENDRECY_REPLACE(bf, count, datatype, dest, sendtag, source, recviag, comm,

status)

INOUT buf wilial addreyy of vemd and recive buller

IN count ownber of colde n scod amnd mocive
buller

IM datatype Lype of colries 1o send and recdve buller

IN dest rank of deulinalion

IN gendtag vend mcvape Lag

IN sOUFCe rank of vource

IN recviag recve mousage Lag

IN cornm comunuuicalor

ouUT status ulaliw objecl

int MPI Sendrecvreplace(void+ buf, int count, MPI Datatype datatype,
int dest, int sendtag, int somrce, int recvtag,
MPI Comm comm, MPI Statms *statms)

MPI_SENDRECY REPLACE{RUF, COUNT, DATATYPE, DEST, SENDTAC, SOURCE,
RECVYTAG, COMM, STATUS, IERROR)
<typa BUP(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECYTAG, COMM,
STATUS(MPI STATUS SIFEY, IERROR

MPI SENDRECY_REPLACE executez a blocking send and receive. The same
buffer is used both for the send and for the receive, so that the message sent is
replaced by the message received.

The example below shows the main loop of the paralle]l Jacobi code, reimple-
mented using send-receive.

Examplc 2.14 Main loop of Jacobi code — version using send-recerve,

| Main loop
DO WHILE({. NOT. convargad)
| Compute
o0 j=1,n
DO i=i,n
B{i,3) = 0.26%CAli-1,d+ali+1, 0001, J-1d+R {1, J+137
END DO
END DO

Poiol-Lo-Poiol Commununicalion 4T

D0 j=i,m
DO i=1,n
Afi,j) = B{i,32
END DO
END DO

| Commmunicate
IF {myrank.GT.0) THEN
CALL MPI_SENDRECY(E(1,1), n, MPI_REAL, myrank-1, tag,
A{1,0%, n, MPI_REAL, myrank-1, tag, comm, =tatms, ierr)
END IF
IF (myrank.LT.p-1) THEN
CALL MPI_SENDRECYV(E(i,m}, n, MPI_REAL, myrank+1, tag,
Af1l,m+1}, n, MPI_REAL, myrank+l, tag, comm, statns, ierr)
END IF

END Dd
The code is zafe, notwithstanding the cyclic commumication pattern.

Advice to implementors. Addiional, intermediate buffering & needed for the
replace variant. Only a fixed ameount of buffer space should be uszed, ctherwice

send-receive will not be more robust then the equivalent pair of blodang send and
receive calk. (End of aduice to implementors.)

2.7 Null Proceszes

In many inst ances, it is convenient to specify a “dummy” source or destination for
communication.

In the Jacohi example, this will avcid special handling of boundary processes.
The also simplifiez handling of bound aries in the caze of 2 non-arcular shift, when
uszed in conjunction with the functions described m Chapter §.

The special value MPIPROC MULL can be used mstead of a rank wherever a
source or & destination argument is required in 2 communication function. A com-
munication with procese MPILFROC_MULL has no effect. A zend to MPIFPROC MULL
succeeds and returns as coon as possible. A receive from MPIPROC NULL succeeds
and returns a= soom as possible with no modifications to the receive buffer. When
a receive with source = MPIPROC_NULL i= executed then the status object retums
source = MPILPROC NULL, tag = MPLANY _TAG and count = 0.

48 ﬂ}.lath:r 2

We take advantage of null processes to further simplify the parallel Jacobi code.

Example 2.15 Jacohi code — version of parallel code using sendrecy and null pro-
Cesses,

l;t.lla'u;.L, ALLOCATAELE Af:,:3, B(:,:3

| Compnte nnmber of processes and myTank
CALL MPI_COMM_SIPE{comm, p, ierr)
CALL MPI_COMM_RAWNK({comm, myrank, ierT)

| Compnte size of local block

o = nfp

IF {(oyrank.LT.{(n-p*w)) THEN
n = m+l

END IF

| Compnte neighbors
IF (myrank.EQ.0) THEN
laft = MPI_FROC_NULL
EL=E
left = myrank -1
END IF
IF {myrank.Eq.p-1) THEN
Tight = MPI_PROC_NULL
EL=ZE
Tright = myrank+1
END TF

| Allocate local ArTays
ALLOCATE (A{Q:n+1,0:m+1), B{n,m})

| Main leop
DO VHILE{.NOT. converged}
| Computa
D0 j=i,m
oo i=1,n

Poiol-Lo-Poiol Commununicalion 40

B{i,3) = 0.26%CAli-1,3d+ali+1, i1, J-1d+R 1, J+137
END DO
END DO
Do i=l,m
Da i=1,n
ﬁ{i!j) = B{i:j}
END DO
END DO

| Commmnicatea
CALL MPI_SENDRECY(E(1,1), n, MPI_REAL, left, tag,
A{1,0), n, MPI_REAL, left, tag, comm, statms, ierr)
CALL MPI_SENDRECVY(E({1,m), n, MPI_REAL, Tight, tag,
Af1l,o+13, n, MPI_REAL, right, tag, comm, statuns, ierr)

END Dd

The boundary test that was previously executed mside the loop has been effectively
moved cutside the loop. Although this is not expected to change performance
significantly, the code & simplified.

28 Nonblocking Communication

Omne can improve performance on many systems by overlapping communication and
comput ation. This & especially true on systems where communication can be exe-
cuted autonomously by an intellipent communication controller. Multi-threading is
cne mechankm for achieving such overlap. Whik cne thread i= blocked, waning for
a communication to complete, ancther thread may execute on the same processor.
Thi mechanizm 1= efficient if the sy=tem suppecris light-weight threads that are in-
tegrated with the commumication subsystem. An alternative mechanism that often
gives better performance iz to uze nonblocking communication. A nonbloddng
post-sond imtiates 2 send operation, but does not complete 3t. The post <end will
return before the message i= copied cut of the send buffer. A zeparate complete-
scnd call & needed to complete the communication, that is, to verify that the data
has been copied out of the zend buffer. With suitable hardware, the transfer of
data cut of the sender memory may proceed concurrently with computations done
at the sender after the send was initiated and before it completed. Similarly, a
nonblockimg post-recoive initiates 2 receive operation, but does not complete it.

{1 ﬂ}.lath:r 2

The call will return before a message is stored into the receive buffer. A separate
complote-rocoive 3= needed to complete the recemve operation and verify that the
data has been received into the receive buffer.

A nonblecking send can be posted whether a matching receive has been posted
cr not. The postsend call has local completion semantics: it returns immediately,
irrezpective of the status of other processes. If the call cauzes some system resource
to be exhausted, then it will fa1l and returm an errcr code. Quality implementat ions
of MPlchould ensure that thi happens only in “pathological” cazes. That 1=, an MPI
implementation chould be bk to support a large number of pending nonbloddng
cperaticms.

The complete-send returns when data has been copied out of the send buffer.
The complte-zend has non-local completion semantics. The call may returmn before
a matching receive is posted, If the message ¥ buffered. Om the other hand, the
complete-send may not return until 2 matching receive i posted.

There iz compatibility between blodang and nonblodang communication func-
ticns. Nonblockang sends can be matched with blocking receives, and vice-verza.

Advice {0 users. The use of nonblodang sends= allows the sender to proceed ahead
of the recerver, =0 thai the computation i= more tolerant of fluciuations in the
speeds. of the two processes.

The MPI| mescapge-passing model fits a “push” model, where commumication is ini-
tizted by the sender. The commumnication will generally have lower overhead if a
receive buffer iz already posted when the sender initiates the communication. The
uze of nonblocking receives allows one to post receives “early” and =oc achieve lower
communication overheads without Bloddng the receiver whike it waits for the zend.
{End of aduice io users.)

2.81 Roguest Objocts

Nenblodang communications use request objects to identify communication op-
erations and link the pesimg operation with the completion operation. Bequest
objects are allocated by MPl and rezside in MPl “system" memory. The request
object iz opaque in the sense that the type and structure of the object iz not vizible
to users. The application program can only manipulate handles to request objects,
not the objects themszelves. The system may use the request object to identify
varicus properties of a communication operation, such as the communication buffer
that iz assoaated with i, or to store information about the status of the pending
communication cperation. The user may accese request objects through vanous
MFI calls to nquire about the status of pending cormumunication operations.

Poiol-Lo-Poiol Commununicalion i1

The special value ¥PI REQUEST NULL ¥ used to ndicate an invali request handle.
Operations thai deallocate request objects set the request handle to thiz value.

2.8.2 Posting Opcrations

{Jallz that post send or receive operations have the same names as the corresponding
Hocking calls, except that an additional prefix of | {for immediate) mdicates that
the call is nonblocking.

MPLISEND{buf, eount, datatype, dest, tag, comm, request)

IN buf inilial addres of scod buller

IN count ownber of colries 1n send buller
IN datatype dalaly pe of cach scwd buller eolry
IN dest rank of deulinalion

IN tag mosape Lo

IN cornm comunuuicalor

ouT request requenl handle

int MPI Isand{void* buf, int count, MPI Datatyps datatype, int dest,
int tag, MPIComm comm, MPI Regnest treqgnest)

MPI_TSEND{EUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(s)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND posts a standard-mode, nenblodang send.

MPLIRECY {buf, count, datatype, scurce, tag, comm, request)

ouUT buf wilial addrew of mocive buller

IN count owaber of colrie 1o recelve buller
IN datat}rpe dalaly pe of cach reccive buller enlry
IM EOUFCE rank of source

IN tag mosape Lag

IN COrmrm coununicalor

ouT request requesl handle

int MPIIrecv{void+ buf, int comnt, MPI Datatype datatype,
int gomrce, int tag, MPI Comm comm,
MFI Regoest sTeguest)

B2 ﬂ}.lath:r 2

MPI_TRECY(EUF, COUNT, DATATYFE, SOURCE, TAG, COMM, REQUEST, IERRORD
<type> BUF(s)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REOUEST, IERROR

MPIIRECY posts a nonblocking receive.

Theze calls allocate a request object and return a handle to it in request. The
request iz used to query the status of the communication or wait for 1ts completicn.

A nonblocking post-send call indicates that the system may start copying data
out of the send buffer. The zender must not access any part of the send buffer
{neither for loads nor for stores) after 2 nonblocking send operation is posted, until
the completecend returns.

A nonblocking post-recerve indicates that the system may start writing data into
the receive buffer. The receiver must not access any part of the receive buffer after
a nonblocking receive operation iz posted, until the complete-receive returns.

Rationale. We prolubit read accesses to a send buffer while it & being used, even
though the zend cperation is not supposed to alter the content of thi= buffer. This
may seem more stringent than neceszary, but the additional restriction causes little
lese of functionality and allows better performance on some systems — consider
the caze where data transfer ic done by 2 DMA engine that i not cache-coherent
with the main processor. {End of raefionde.)

2.83 Complotion Operations

The function= MPIWAIT and MPI_TEST are uzed to complete nonbloddng sends
and receives. The completion of a zend indicates that the sender is now free to
access the send buffer. The complketion of a receive mdicates that the receive buffer
contains the message, the receiver is free to access it, and that the status cbject is
et.

MP IWAIT request, status)
INOUT request requenl handle
ouUT status ulaliw objecl

int MPI¥Wait(MPI Reqonest #Teqonest, MPI Statns +statns)

MPI ¥AIT{REQUEST, STATUS, IERROR}
INTEGER REQUEST, STATUS(MFI STATUS_SIZE), IERROR

Poiol-Lo-Poiol Commununicalion 3

A call to MPIMWAIT returmns when the operation identified by request is complkte.
If the system object pointed to by request was criginally created by a nonbloddng
send cor receive, then the object is deallocated by MPIWAIT and request i= et
to MPIREQUEST_NULL. The status cbject iz =et to contain information ocn the
completed operation. MPIWAIT has non-local completion semantics.

MPILTEST] request, flag, status)

INOTUT request rog |, hardle
ouUT flag true if opora Lo r.;u.lnp].t:Lurl
ouUT status ulalim uhjur.;L

int MPI Test(MPI Reqoest *Teqoest, int +flag, MPI Status +statns)

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

A call to MPLTEST returns flag = true if the operation identified by request is
complete. In thi cace, the status object & set to contam information on the com-
Pleted cperation. If the systermn object pointed to by request was oniginally created
by 2 nonblocking send cor receive, then the chject iz deallocated by MPILTEST and
request iz zet to MPILREQUEST_MULL. The call returns= flag = false, ctherwize. Inthi
caze, the value of the status cbject 1= undefined. MPI_TEST has local completion
semantics.

For both MPIWAIT and MPI.TEST, information on the completed operation
1= returned in status. The content of the status object for & receive operation is
arcessed as described in Section 22.8. The contents of a status object for a send
cperation is undefined, except that the query funciion MPI_TEST_CANCELLED
{Section 2.10} can be applied to it.

Advice to weers. The uze of MPLTEST allows one to schedule altermative activities
within a single thread of execution. {End of advice io users.}

Advuice to implementors. In a muliithreaded environment, a call to MPIWAIT
should Hock only the calling thread, allowing ancther thread to be scheduled for
execution. (End of advice i implemeniors.)

Rationale. MPIWAIT and MPLTEST are defined =0 thai MPI.TEST returns
successfully {with flag = true} exartly im those situation where MPLWAIT returns.

E4 ﬂ}.lath:r 2

In thoze cazes, both return the same information in status. Thi allows one to
replacre a blocking call to MPIWAIT with 2 nonbloddng call to MPILTEST with
few changes in the program. The zame design logic will be followed for the multi-
completion cperations of Section 2.9. (Ehd of retionae.)

2.84 Examples

We illustrate the uze of nonblodang communication for the same Jacobi computa-
tion used m previcus examples (Example 2.11-2.15). To achieve mazxamum overlap
between computation and communication, communications should be started as
soom as possible and completed as late a= peossible. That %, sends should be posted
az zoon as the data to be zent iz available; receives should be posted asc zoon as
the receive buffer can be reused; sends should be completed just before the zend
buffer iz to be reused; and receives should be completed just before the data in the
receive buffer & to be used. Sometimes, the overlap can be increased by recrdering
comput ations.

Examplc 2.16 Use of nonbloddng communications in Jacobi comput ation.

REAL, ALLOCATABLE Af:,:Y, B{:,:2
INTEGER reg(4)
INTEGER statuns(MPI_STATUS_SIZE,&)

| Compnte nnmber of processes and myTank
CALL MPI_COMM_SIPE{comm, p, ierr)
CALL MPI_COMM_RANK({comm, myrank, ierr)

| Compnte size of local block

o = nfp

IF (myrank.LT.{(n-p*m)) THEN
n = m+l

END IF

| Compnte neighbors
IF (myrank.Eq.0) THEN
left = MPI_PROC_NULL
EL=E
left = myrank -1
END IF

Poiol-Lo-Poiol Commununicalion BB

IF {myrank.Eq.p-1) THEN
Tight = MPI_FROC_NULL
ELSE
Tright = myrank+1
ENDIFP

| Allocate local ArTays
ALLOCATE (A{Q:n+1,0:m+1), B{n,m})

| Main loop
DO VHILE({.HNOT.convarged)

| Compute bonndary colnmns

D0 i=1,n
B{i,1Y = 0.26%(Afi=1,10+a0i+1, 10001, 00001, 200
Bii,m} = 0. 26« (A{i=1,m)=A{i+1 , m)+0{i, m=13+A01i, m+13]
END DO

| Start commmnication

CALL MPI_ISEND(H{1,1), n, MPI_REAL, laeft, tag, commn, reqg({i), ierr)
CALL MPI_ISEND(H({1,m), n, MPI_REAL, right, tag, comm, reqf2), ierr)
CALL MPI_IRECV({A{1,0), n, MPI_REAL, laft, tag, comm, rag(3), ierr)

CALL MPI_IRECY(A(1,m+1), n, MPI_REAL, Tight, tag, comm, Tag{4), ierr)

| Compnte intericr
D0 j=2,o-1
oo i=1,n
B(i,3)
END DO
END DO
DO j=1,m
0o i=1,n
a{i,3)
END DO
END DO

O.2Bm{Ali=1, Joenfiet, jomili,j=1d=n0i, j+133

B(i,32

| Complate commmnicationm
DO i=1,&

E6 ﬂ}.lath:r 2

CALL MPI_VWAIT(req(i), statns{1,i), ierT)
END DO

END DO

The commumnication calls use the kftmest and rightmest columns of ocal array
B and set the leftmost and nghtmost columns of Jocal array A. The zend buffers
are made available early by separating the update of the leftmost and nghtmost
columns of B from the update of the intericr of B. Since thik & also where the
leftmost and nghtmost columns of 4 are veed, the communication can be started
immediately after these columns are updated and can be completed just before the

next iteration.

The next example shows a multiple-producer, single-consumer code. The last
process in the group conswmes messages sent by the other processes.

Example 2.17 Multiple-producer, single-consumer code using nonblocking com-
munication

typedef struct {
char datal[MARSIZE];
int datasizea;
NPI_Regnest rag;

1} Boffer;

Euffer buffer[];

MFI_Statns status;

MPI_Comm_rank(comm, Erank);
MPI_Comm_gize(comm, Exize);
if{rank |= size-1) { /% prodocer code =/
/% initialization - produncer allocates one boffar =/
btuffer = (Eoffer *imalloclsizect (Bnfler));
whilef1}) { /+ main loop =/
/% producer fills data boffer and returns
nunber of bytes stored in boffer =/
prodoce (| boffer->data, Ebnffer->datasiza);
/% send data */f
MPI_Send(btoffer->data, btoffer->datasize, MPI_CHAR,
size-1, tag, comm);

Poiol-Lo-Poiol Commununicalion T

I
1
alge | /% rank — gize=1; consnmer code */
F% initialization - consmmer allocates cne boffer
FeT producer #*/
toffer = (Boffer *inalloclsizect (Bnfferi*{siza-13);
Torf{i=0; i< size-1; i+)
/% post a receive from each producer =/
MPI_Irecv{bmffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
comm, E{bnffer[i].req));

forf{i=0; ; i=(i+1)%({size-1}} { /% main loop */
MPI_Vait (E{tuffer[i].req), Estatns);
/% find noober of bytes actually received s/
MFPI_Get_connt(Ekztatnz, MPI_CHAR, E(bnffer[i].datasize));
/% consune enpties data buffer =/
consnns (boffer[i] .data, boffer[i].datasize);
/% post new receive =/
MPI_Irecv{boffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
comn, E{boffer[i].req));
1
I
¥
Each producer runs an infinite loop where it repeatedly produces one message and
sends 1t. The conzumer zerves each producer in tumn, by receiving itz message and
consuming it.

The example impeees a strict round -robin discipline, since the consumer receives
cne message from each producer, in turn. In scme cases it i= preferable to uze
a “first-comefirst-served” discipline. This i= achieved by using MPI_TEST, rather
than MPIMWAIT, as shown below. Note that MPI can only offer an approxamation
to first-come-first-zerved , since messages do not neceszarily arrive in the order they
wWere sent.

Example 2.18 Multiple-producer, single-consumer code, modified to use test calls.

typedef strmct {
char datal[MAXSIZE];
int datasizea;

423 ﬂ}.lath:r 2

MPI_Regnest redq;
} Boffer;
Boffer boffer[];
MFI_Statne statns;

MPI_Comm_rank({comm, Erank);
MPI_Comm_size(comm, Esizel;
if{rank |= size=-1) { /% prodocer code =/
buffer = (Boffer * malleoc(zizect (Rnffer));
whila{1}) { /% main loop w/
prodoce (| boffer->data, Ebnffer->datasiza);
MPI_Send(boffer-»data, boffar->datasize, MPI_CHAR,
Eize-1, tag, comm);
1
1
alge | /% rank — gize=1; consnmer code */
btoffer = (Boffer *imalloclsizect (Bnfferi*{siza-13];
Forf{i=0; i< size-1; i++}
MPI_Irecv{boffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
comn, Ebufferli].req);
i=0;
whilefi}) { /% main loop =/
for (flag=0; Iflag; i= (i+1)%(=mize-1}]
/% btmsy-wait for completed Teceive /
MPI_Test(E{btuffer[i].req), Eflag, Estatns);
MPI_Get_connt(Estatns, MPI_CHAR, Ebnfferli].datasiza);
consnne (buffer[i].data, boffer[i].datasize);
MPI_Irecv{bmffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
conm, Ebnffar[i].req);
1

}

H there iz no message pending from a producer, then the consumer process skaps to
the next producer. A more efficient implementation that does not require muliiple
test calls and busy-waiting will be presented in Section 2.9,

2.8.5 Frecing Requosts

A request object iz deallocated antomatically by a successful call ic MPIWAIT o
MPLTEST. In addition, & request object can be explicitly deallocated by using the

Poiol-Lo-Poiol Commununicalion D

following cperaticn.

MPI_REQUEST _FREE{request)
INOUT request requel handle

int MPI Reguest Tree(MPI Request sreguest)

MPI_REQUEST FREE (REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_REQUEST_FREE marks the request object for deallocation and sets request
to MPLREQUEST _MULL. An engoing communication associated with the request will
be allowed to complkete. The request becomes unavailable afier 1t i= deallocated, as
the handk & reset to MPLLREQUEST _MULL. However, the request cbject itzelf need
not be deallocated immediately. If the communication associated with thi= object
1% £till ongoing, and the object is required for its correct completion, then MPI will
not deallocate the object until after 3ts completion.

MPI_REQUEST_FREE cannot be used for cancelling an ongoing communication.
For that purpese, one should use MPILCANCEL, described in Section 2.10. Ome
should use MPI_REQUEST_FREE when the logic of the program is such that a
nonblockmg communication is kmown to have termmated and, therefore, a call to
MPIWAIT or MPI_TEST is superflucus. For example, the program could be such
that 2 send command generates a reply from the receiver. I the reply has been
successfully received, then the send iz Jmown to be compleie.

Example 2.19 An example using MPI_REQUEST_FREE.
CALL MPI_COMM_RANK({MPI_COMM_WORLD, rank, ierTr)
IF(rank.EQ.0) THEN
DO i=1, n
CALL MPI_ISEND(cutval, 1, MPI_REAL, 1, 0, comm, regq, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECY(inval, 1, MPI_REAL, 1, 0, comm, req, ierr)
CALL MFI_WAIT(Teqy, statns, ierr)
END DO
ELSE IF (rank.Ef.1) THEN
CALL. MPI_TREC¥(inval, i, MPI_REAL, O, 0, comm, Teg, ierT)
CALL MPI_VWAIT(req, statns, ierr)
oo i=1, n-1

60 ﬂ}.lath:r 2

CALL MPI_ISEND(cutwal, 1, MPI_REAL, O, 0, comm, Teg, ierr)
CALL MPI_RE(UEST FREE(req, ierr)
CALL MPI_IRECY(inval, 1, MPI_REAL, O, O, comm, req, ierr)
CALL MPI_WAIT(req, statms, ierT)

END DO

CALL MPI_ISEND(cutval, 1, MPI_REAL, 0, 0, comm, Teg, ierT)

CALL MPI_VAIT(req, statns)

END IF

Aduice to veers. Requests should not be freed explicitly unless the communication
12 kmown to complete. Receive requests should never be freed without a call o
MPIWAIT or MPLTEST, since only such a call can gusrantee that a nonbloddng
receive operation has compkted. Thiz & explained in Section 2.8.6. If an error
oocurs during a communication after the request object has been freed, then an error
code cannot be returned to the user (the error code would normally be retumed to
the MPLTEST or MPIWAIT request}. Therefore, such an error will be treated by
MPI as fatal. {End of advice to uszers.)

2.8.6 Bcmantics of Nonblodking Communications

The semantics of nonblocking communication i= defined by suitably extending the
definitions in Section 2.4

Order Nonblocking communication operations are ordered according to the exe-
cuticn order of the posting calls. The non-overtalang requirement of Section 2.4 is
extended to nonblockng cormunication.

Examplc 2,20 Message ordering for nonblodang operations.
CALL MPI_COMM_RANK(comm, rank, ierTr)
IF (rank.EQ.0) THEN
CALL MPFI_TISEND(a, 1, MPI_REAL, 1, 0, comm, rl, ierr)
CALL MPI_ISEND(bL, 1, MPI_RBAL, 1, O, comm, T2, ierr)
ELSE IF (rank.E.1) THEN
CALL MPI_IRECY(a, 1, MPI_REAL, 0, 0, comm, 1, ierr)
CALL MPI_IRECY(b, 1, MPI_REAL, 0, 0, comm, T2, ierr)
END IF
CALL MPI_WAIT(r2,status}
CALL MPI_WAIT(ri,statms}

Poiol-Lo-Poiol Commununicalion 61

The first zend of process zerc will match the first receive of process one, even if
both mescages are sent before process one executes either recemve.

The order requirement specifies how pestsend calle are matched to post-receive
calls. There are no restrictions on the order in which operations complete. Consider
the code in Example 2.21.

Example 2.21 Order of completion for nonbloddng communications.
CALL MPI_COMM_RAWNK(comm, rank, ierTr)
flagl = .FALZE.
flag2 = .FALZE.
IF {rank.BqQ.0) THEN
CALL MPI_ISEND{a, m, MPI_REAL, 1, 0, comm, Tl, ierT)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, T2, ierr)
DO WHILE {.NOT.(flagl.AND.flag2))
IF (.NOT.flagl) CALL MPI_TEST(r1, flagi, s, ierr)
IP (.NOT.flag2) CALL MPI_TEST(r2, flag2, s, ierr)
END DQ
ELSE IF (rank.Eq.1) THEN
CALL MPI_IRECVY(a, m, MPI_REAL, 0, 0, comm, 1, ierT)
CALL MPI_IRECY(b, 1, MPI_REAL, O, 0, comm, T2, ierr)
DO WHILE (.NOT.(flagi.AND.flag2})
IF (.NOT.flagl) CALL MPI_TEST({ri, flagi, s, ierr)
IF {.NOT.flag2} CALL MPI_TEST(rZ2, flagZ, s, 1eI1I)
END DO
END IF

Az in Example 2.20, the first zend of procese zerc will match the first receive of
process one. However, the second receive may complete ahead of the first receive,
and the second send may complete ahead of the first zend, especially if the first

commmunication involves more data than the second.

Since the completion of a receive can take an arbitrary amount of time, there is
no way to mfer that the receive cperation completed, short of executing a complete-
receive call. Om the other hand, the completion of 2 send operation can be inferred
indirectly from the completion of 2 matching receive.

62 ﬂ}.lath:r 2

Progress A communication i enabled cnce a send and a matching receive have
been posted by two processes. The progress rule requires that once & communication
1= enabled, then ejiher the cend or the receive will proceed to completion (they might
not both complete as the send might be matched by ancther receive or the receive
might be matched by ancther send}. Thus, a call to MPI_WAIT that completes a
receive will eventually return if 2 matching send has been started, unless the send
15 satisfied by another receive. In particular, if the matching zend iz nonblockmg,
then the receive completes even if no complete-send call iz made on the sender zide.

Similarly, a call to MPIMWAIT that completes a send eventually returms if 2 match-
ing receive has been started, unles= the recerve iz satisfied by ancther zend, and even
if no complete-receive call 3= made on the receiving =ide.

Example 2.22 An illusiration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF {rank.EQ.0) THEN
CALL MPI_SEND{a, connt, MPI_REAL, 1, O, comm, ierr)
CALL MFI_SEND(L, comnt, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1} THEN
CALL MFI_IRECY(a, count, MFI_REAL, 0, 0, comm, T, ierTr)
CALL MPFI_RECV(L, comnt, MPI_REAL, O, 1, comm, =tatms, ierr)
CALL MPI_WAIT(r, statns, ierr)

END IF

Thie program 1= safe and chould not deadlock. The firct send of process zero must
complete after process one posts the matching (nonblocking) receive even if process
cne has not vet rearhed the call to MPIWAIT. Thus, process zero will continue and

execute the second zend, allowing process one to complete execution.

If . call to MPLLTEST that completes a receive iz repeatedly made with the zame
arguments, and a maiching send has been started, then the call will eventually
return flag = true, unless the zend iz zatisfled by ancther receive. If a call to
MPLTEST that completes a send iz repeatedly made with the same arguments,
and a matching receive has been started, then the call will eventually return flag =
true, unless the recemve k& catisfied by another send.

Fairncss The statement made in Section 2.4 concerning fairnese applies to non-
Hodang communications . Namely, MPl does not guarantee faimess.

Poiol-Lo-Poiol Commununicalion 63

Buffcring and resource limitations The use of nonblodang communicaticn
alleviaies the need for buffering, since a sending process may progress after it has
posted & send. Therefore, the constraints of safe programming can be relaxed.
Hewever, some amount of storage i consumed by a pending communication. At a
mminimum, the communication subsystem needs to copy the parameters of a posted
send or receive before the call returns. If this storage iz exhansted, then a call
that posts a new communication will fail, since post-zend or post-recerve calls are
not allowed io block. A high quality implement ation will conswme only 2 fixed
amount of storage per pested, nonbloddng commumnication, thus supporiing a large
number of pending commumnications. The failure of a parallel program that exceeds
the bounds on the number of pending nonbleckang communications, like the failure
of a sequential program that exceeds the bound on stack size, should be seen as
a pathclogical caze, due either to a pathdogical program or a pathclogical MPI
implement ation.

Example 2.23 An illusiration of buffering for nonblocking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF {rank.E.0) THEN
CALL MPI_ISEND(sendbnf, count, MPI_REAL, 1, tag, comm, Ieg, ierr)
CALL MPI_RECY(recvbuf, comunt, MPI_REAL, 1, tag, comm, statns, ierr)
CALL MPI_WAIT(Teq, statns, ierr)

ELSE | rank.EQ.1
CALL MPI_ISEND(sendbnf, comnt, MPI_REAL, O, tag, comm, Teg, ierT)
CALL. MPI_RECY({recvbmf, comnt, MPI_REAL, O, tag, comn, statns, ierT)
CALL MPI_VWAIT(req, statns, ierr)

END IF

Thi program ic similar to the program shown in Example 2.9, page 34: two pro-
cesses exchange messages, by first executing asend, next a receive. However, unlike
Example 2.9, a nonblodang send i= used. This program is safe, since it 1z not nec-
eszary to buffer any of the messages data.

Example 2.24 Out of order communication with nonblockang messages.
CALL MPI_COMM_RANK(comm, rank, ierTr)
IF (rank.EQ.0) THENW
CALL MPI_SEND{sendbnfl, comnt, MPI_REAL, 1, 1, comm, ierr)
CALL MPI_SEND(sendbnfZ, count, MPI_REAL, 1, 2, comm, ierr)
ELSE | rank.EQ.1
CALL MPI_IRECY(recvbofZ, count, MPI_REAL, O, 2, comm, regl, ierr)

64 ﬂ}.lath:r 2

CALL MPI_IRECY(recvbnfi, count, MPI_REAL, O, 1, comm, TeqgZ, ierr)
CALL MPI_WAIT(reql, statns, ierr)
CALL MPI_WAIT(reqZ, status, ierr)

END IF

In thiz program process zero sends two messages to process one, whik process cne
receives these two messages m the reverse order. If blocking send and receive oper-
ations were uzed, the program would be unsafe: the first message has to be copied
and buffered before the second zend can proceed; the first receive can complete
cnly after the second send executes. However, since we used nonblocking receive
cperaticns, the program is safe. The MPl mmplementation will store a small, fixed
amount of infermation about the first receive call before it proceeds to the second
receive call. Once the second post-receive call occurred at process one and the first
{blocking) send occurred at process zerc then the transfer of buffer sandbnfi is
enzabled and iz guaranteed to complete. At that point, the second send at process
gero is started, and is also guaranteed to complete.

The approach illustrated in the last two examples can be used, in general, to
transform unsafe programs into safe ones. Assume that the program consists of
successive communication phases, where proceszes exchange data, followed by com-
put aticn phazes. The communication phase should be rewritten as two sub-phases,
the first where each process posts all its communication, and the second where the
process waits for the complktion of all its communications. The order in which
the communications are pesied is not important, ac bong a2 the total number of
messages =ent or received at any node iz moderate. Thic iz further discussed in
Secticm §.2.

2.8.7 Commecntzs on Scmantics of Nonblodking Communications

Advice te vsers. Typically, 2 posted zend will consume storage both ai the sending
and at the receiving procese. The sending process has to keep track of the posted
send, and the receiving process needs the message envelope, =0 a= to be ablk to match
it to posted receives. Thus, storage for pending communications can be exhaunsted
not cnly when any one node executes a large number of post-send or post-receive
calls, but alsc when any one node i= the destination of a large number of meszages.
In a large syetem, such & “hot-spot™ may occur even if each individual process has
cnly a2 small number of pending pested sends or receives, if the communication
pattern iz very unbalanced. (End of aduice to ueers.)

Poiol-Lo-Poiol Commununicalion 65

Advice to implementers. In most MPl implementaticns, sends and receives are
matched ai the receiving process node. This i because the receive may specify a
wildcard source parameter. When a post-gsend returns, the MPI implementation
must guarantee not only that it has stored the parameters of the call, but alsc that
it can forward the envelope of the pested message to the destination. Otherwize,
no progrese might occur on the posted send, even though a matching receive was
posted. Thiz impeses restrictions on implementat ions strategies for MPL

Azsume, for example, that each pair of communicating processes is connected by one
crdered, flow-controlled chammel. A naive MPI implementation may eagerly send
down the chammel any posted send meszage; the back pressure from the flow-conirol
mech anizm will prevent less of data and will throiile the sender if the receiver iz not
ready to receive the incoming data. TTnfortunately, with thi= ghort protoco!, a long
message sent by a nonbloddng send operation may fill the channel, and prevent
moving to the receiver any information on subszequently pested send=. Thi might
cocur, for example, with the program in Example 2.24, page 63. The data sent by
the first send call might dog the channel, and prevent process zero from informing
process one that the second send was posted.

The problem can be remedied by using a2 fong protecet: when a zend is pested, it
15 orly the mescage envelope that iz sent to the receiving process. The receiving
process buffers the fived-cize envelope. When a matching receive 1= posted, it sends
back a. “ready-to-receive” message to the sender. The zender can now transmit the
message data, without cloggmg the communication channel. The two protoccls are
Mluzirated in Figure 2.5.

Whik zafer, th& protocc]l requires two additional transactions, as compared to
the zimpler, eager protocal. A possible compromee iz to use the short protocol
for short messages, and the long protocc for bong messages. An eary-ammiving
short meszage is buffered at the destination. The amount of storage consumed
per pending communication is sl bounded by a {reascnably small} constant and
the hand-shaling overhead can be amortized over the transfer of larger amount= of
data.

{End of aduice i implementors.)

Rationale. When a procese runs out of spare and cannot handle & new post-zend
operation, would it not be better to block the sender, rather than declare failure?” If
cne merely blocks the post cend, then it 3= possible thai the messages that clog the
communication subsystem will be consumed, allowing the computation to proceed.
Thus, blocking would allew more programs to run successfully.

66 ﬂ}.lath:r 2

Short Protocol Long Protocol

SEND
reg-to-send

SEND MesagEs

RECV
ready

ack data

%/
Y

RECV

Figure 2.5
Mecsage passing protosols.

The counterargument & that, in 2 well-designed system, the large majority of pro-
grams that exceed the system bounds on the number of pending communications
do =0 because of program errors. Hather then artificially prolonging the hfe of a
program that 1= doomed to fail, and then have 1t fail in an obecure deadlock mode,
it may be better to cleanly terminate it, and have the programmer correct the
program. Also, when programs run close to the system bhmits, they ®thrash” and
waste resources, ac processes repeatedly block. Finally, the claim of 2 more lenient
behavior should not be used as an excuse for a deficient implementation that cannot
support 2 large number of pending communications.

A different line of argument agamst the current design i= that MPI should not force
implementors to use mere complex communication protocols, in crder to support
cut-of-crder recerves with a large number of pending communications. Rather,
uzers should be encouraged to order their communications =0 that, for each pair
of communicating processes, receives are posted in the same order as the matching

sends.

Thi argument & made by immplementors, not vsers. Many vsers perceive thi or-
dering restriction as too constraining. The design of MP| encourages virtualization
of communication, 2= one process can communicate through several, separate com-

Poiol-Lo-Poiol Commununicalion 6T

muniation spaces. {ne can expect that users will increazingly take advantage of
thiz feature, especially on multi-threaded systems. A process may support muliiple
threads, each with its own separaie communication domain. The communication
subsystern should provide robust multiplexang of these communications, and mm-
mruge the chances that one thread is blocked becanse of communications imtiated

by another thread, m another communication domain.,

Uzers should be aware that different MPl implementations differ not only in their
bandwidth or latency, but also in their ability to support cut-of-order delivery of
messages. (End of rationde.)

2.9 Multiple Completions

It iz convenient and effident to complete in one call 2 hist of multipk pending
communication operations, rather than completing only one. MPILWAITANY or
MPLTESTANY are used to complete one out of several operations. MPIWAITALL
cr MPLTESTALL are used to complete all operations in a list. MPIWAITSOME or
MPLTESTSQME are used to complete all enabled operations in a list. The behavior
of theze functions iz described in this section and in Section 2.12.

MPIWAITANY [count, array_of_requests, index, status)

IN count lul leoglh

INOUT array-of_requests array of roguel handle

ouUT index dex of requesl handle Lhal compleled
ouUT status slalw objecl

int MPIWaitany(int count, MPI Request sarray of regquests,
int *index, MPFI Statne *=tatns)

MPI_WAITANY(COUNT, ARRAY OF REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX,
STATUS(MPI STATUS SIZE), IERROR

MPI WAITANY blodks until one of the communication operaticns assocated with
requests in the array has complkted. i more then one operation can be completed,
MPI.WAITANY arbitranly picks cne and completes it. MPIMWAITANY returns in
index the array location of the completed request and returns in status the status of
the completed commumnication. The request object 1= deallocated and the request

68 ﬂ}.lath:r 2

handle 1= =et to MPLLREQUEST_NULL. MPIWAITANY has non-local completion ze-
mantics.

MPLTESTANY[count, array_of requests, index, flag, status)

IN count liul leoglh

IMNOUT array_of_requests array of requesl handle

ouT index dex of requenl handle Lhal compleled
aLUT flag true if one hay connpleled

ouT status slaliw objecl

int MPI Testany(int connt, MPI Regnest *array of Teguests,
int #index, int *flag, MPI Status *statms)

MPI_TESTANY (COUNT, ARRAY OF REQUESTS, INDEE, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX,
STATUS(MPI STATUS SIZE), IERROR

MPI_TESTANY test= for completion of the communication operations associated
with requests in the array. MPLTESTANY has local compktion semantics.

If an operation has completed, it returns flag = true, returns in index the ar-
ray location of the completed request, and returns in status the statos of the
completed communication. The request iz deallocated and the handle i= set to
MPIREQUEST _MLLL.

If no operation has completed, it retums flag = false, returns MPILUNDEFINED in
index and status 1= undefined.

The execution of MPLTestany{ecunt, array_of_requeste, &index, &flag, Lstatus)
has the same effect as the execution of MPI_Test{ Zarray of requests[], Eflag, &sta-
tus), for 1=0, 1 ..., ecunt-1, in some arbitrary order, until one call returns flag =
true, or all fail. In the former caze, index iz set to the last value of |, and in the
latter caze, it 1z set to MPILUNDEFINED.

Poiol-Lo-Poiol Commununicalion 6D

Examplc 2.25 Producer-consumer code using wait any.

trpedef struct |
char datal[MAXSIZE];
int datasize;

1} Buffer;

Enffer btoffer[];

MPI_Reguest regll;

MFI_Statne statns;

MPI_Comm_rank({comm, Erank];
MPI_Comm_size(comm, Esizel;
if{rank |= size=-1) { /% prodocer code =/
buffer = (Boffer * malleoc(zizect (Rnffer));
whilef1}) { /+ main loop =/
prodoce (| boffer->data, Ebnffer->datasiza);
MPI_Send(boffer-»data, boffar->datasize, MPI_CHAR,
Eize-1, tag, comm};
1
1
alge | /% rank — gize=1; consnmer code */
boffer = (Boffer *)malleocfzizect (Anfferi*(size-13);
Tag = (MPI_Regnest *)malloc(sizect (MPI_Request)*{size-13};
Torf{i=0; i< size-1; i+}
MPI_Irecv{bnffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
comn, Ereqlil);
whilefi}) { /% main loop =/
MPI_Vaitany(size-1, Teq, Ei, Estatns);
MPI_Cet_connt(kstatns, MPI_CHAR, Ebnffer[i].datasiza);
consnne (boffer[i] .data, boffer[i].datasize);
MPI_Irecv{bnffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
comn, Ereqlil);
1
b
Th program implements the same producer-consumer protocol as the program
in Exampk 2.1%, page 57. The use of MPIWAIT_ANY awoids the execution of
multiple tests to find a communication that completed, resulting in more compact

T ﬂ}.lath:r 2

and more efficient code. However, thi= code, unlike the code m Example 2.18, does
not prevent starvation of producers. It 35 possible thai the consumer repeatedly
consumes messages sent from process zero, while ignoring mescages zent by the

cther processes. Example 227 below shows how to implement a fair server, using
MPIWAITSOME.

MPIWAITALL{ ecunt, array_of_requests, array of statuses)

IN count liul leoglh
IMNOUT array_of_requests array of requesl handle
ouT array_of statuses array of slaliw objecly

int MPIWaitall(int connt, MPI Regnest *array of Tequests,
MPI Statns *arrayof statnses)

MPI_WAITALL(COUNT, ARRAY OF REQUESTS, ARRAY OF STATUSES, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS (%)
INTEGER ARRAY OF STATUSES (MPI STATUS SIZE,*), IERROR

MPIWAITALL bBlodes until all communications, associated with requests in the
array, camplete. The -th entry in array_of statuses 1= set to the retumn status of the
i-th operation. All request objects are deallocated and the corresponding handles in
the array are set to MFILREQUEST _MULL. MPI_WAITALL has non-Jocal completion
semantics.

The execution of MPIWaitall{count, array_of requests, array_of statuses) has the
same effect as the execution of MPI \Wsit[&array_of_requests[i], &array_of statuses[l]},
for =0 ..., count-1, in some arbitrary order.

When cne or more of the commumnications completed by a call o MPI_ZWAITALL
fail, MPIZWAITALL wall returmn the error code MPILERRLINSTATUS and will et the
errcr field of each staius to & specific error code. This code will be MPILSUCCESS,
if the specific communication completed; 1t will be ancther specfic error code,
if it failed; or it will be MPILLPENDING if it has not failed nor completed. The
function MPIWAITALL will return MP1SUCCESS if 1t completed suocessfully, or will
return another error code if it failed for other reasons (such a= invalid arguments).
MPIWAITALL updates the error fields of the status cbjectz only when it returns
MPLERR_IN STATLS.

Rationale. This design streamlines error handling m the apphication. The apph-
cation code need only test the (single} function resuli to determine if an error has

Poiol-Lo-Poiol Commununicalion Tl

cocurred. It needs to check individual statuses only when an error occurred. {End
of rationale.)

MPLTESTALL {eount, array of requests, flag, array_of_statuses)

IN count Lul leoglh

INOUT array_of_requests array of requel handle
ouUT flag true if all have compleled
ouUT arra}r_nf_statuses array of slalin objosly

int MPITestall(int count, MPI Request sarray of Tequests, int =flag,
MFI Status sarray.of statnses)

MPI_TESTALL(COUNT, ARRAY OF REQUESTS, FLAG, ARRAY OF STATUSES,
IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY OF REQUESTS(*),
ARRAY OF STATUSES (MPI STATUS SIZE,*), IERROR

MPI_TESTALL testz for completion of all communications associated with re-
quests in the array. MPILTESTALL has local completion semantics.

If all cperations have completed, it returns flag = true, sets the corresponding
entrie= m status, deallocates all requests and zet= all request handles to MPLRE-
QUEST_MULL.

If a1l operations have not completed, flag = false i returned, no request 1= mod-
ified and the values of the status entries are undefined.

Errors that ccourred during the execution of MPLLTEST _ALL are handled in the
same way as errors in MPIAWAIT _ALL.

Examplc 2,28 Main loop of Jacchi computation using waitall.

| Main loop
DO WHILE(.NOT. converged)
| Compute bonndary colnmns
Dg i=1,n
B{i,1) = 0.26%{A(i-1,10+A0i+1, 10+001, 00 +001, 2]
B{i,m) = 0.26%(A(i-1 my+A(i+l, m)+A 1, m-10+A01 ,m+13)
END DO

T2 ﬂ}.lath:r 2

| Start commmnication

CALL MPI_ISEND(H{1,1), n, MPI_REAL, laft, tag, comn, reqg{i), ierr)
CALL MPI_ISEND(H({i,m), n, MPI_REAL, right, tag, comm, reqf2), ierr)
CALL MPI_IRECYW(A(1,03, n, MPI_REAL, laft, tag, comm, Teg(3), ierT)
CALL MPI_IRECY(A(1,m+1), n, MPI_REAL, Tight, tag, comm, Teq{4}, ierr)

| Compnte intericr
DO j=2,m-1
Da i=1,n
B{i,3) = 0.26%(ACi-1,)01+t 3001, J=1d+R 1, J+1))
END DO
END DO
DO j=1,m
Da i=1,n
A(i,3) = B(i,3)
END DO
END DO

| Complete commmnication
CALL MPI_WAITALL(%4, req, statns, ierr)

Thi code solves the same problem zs the code in Example 2,16, page 54. We

replared four calls to MPIWAIT by one call to MPIAWAITALL. Thiz saves function
calls and context switches.

MPIWAITSOME(inceunt, array_of_requests, cutcount, array_ofindices, array_of_statuses)

IM incount leoglh of army_of rogueuly

IMNOUT array_of_requests array of requesl handle

ouUT cutcount ownber of compleled mgueily

ouUT array_of_indices array of indice of commpleled operaliony

ouUT array_of statuses array of slaluy objecly for compleled op-
crallom

int MPIWaitsomaf{int incount, MPI Regnest +array of Tequnests,
int wewtcomnt, int =array of indices,
MPI Status sarray.of statnses)

Poiol-Lo-Poiol Commununicalion T3

MPI_VAITSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY.OF TNDICES,
ARRAY OF STATUSES, IERROR)
INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT,
ARRAY OF TNDICES(#), ARRAY OF STATUSES(MP I STATUS SIZE,*), IERROR

MPI WAITSOME waits until at least one of the communications, associated with
requests in the array, completes. MPIWAITSOME retumns in outcount the num-
ber of completed requesis. The first outcount locatioms of the array array of-
Jindices are set to the indices of these operations. The first outcount locations
of the array array of statuses are =et to the status for these completed operations.
Each request that complkted & deallocated, and the assocated handle i= set to
MPIREQUEST _NULL. MPIWAITSOME has non-local completion semantics.

If one or more of the communications completed by MPIWAITSQOME fail then
the arguments outcount, array_of indicez and array_of statuzes will be adjusted to in-
dicate completion of all comimumications that have succeeded or failed. The call will
return the error code MPILERR IN_STATUS and the error field of each status returned
will be zet to mdicate suorese or to indicate the specific exror that occurred. The
call will return MPILSUCCESS if it succeeded, and will return another error code if it
failed for for other reaszons (such as invalid arguments). MPIAMWAITSOME updates
the status fields of the request objeciz only when 1t returns MFPI_ERR_IN STATLUS.

MPLTESTSOME(inceunt, array_ef_requests, outcount, array of indices, array_of_statuses)

IN incount leoglh of army_of rogueuly

IMNOUT array_of_requests array of requesl handle

ouUT cutcount ownber of compleled mgueily

ouUT array_of_indices array of indice of commpleled operaliony

ouUT array_of statuses array of slaluy objecly for compleled op-
crallom

int MPI Testsomef{int incount, MPI Reqgnest +array of Tequnests,
int wewtcomnt, int =array of indices,
MPI Status sarray.of statnses)

MPI_TESTSOME(INCOUNT, ARRAY OF REQUESTS, OQUTCOUNT, ARRAY OF TNDICES,
ARRAY OF STATUSES, IERROR)
INTECER INCOUNT, ARRAY OF REQUESTS(+), QUTCOUNT,
ARRAY OF TND ICES(*), ARRAY OF STATUSES (MP I STATUS SIZE,*), IERROR

T4 ﬂ}.lath:r 2

MPI_TESTSME behaves like MPIWAITSQOME, except that it returmns immedi-
ately. If no operation has completed it returns cutcount = Q. MPLLTESTSQME has
local completion semantics.

Errcrs that ocour during the execution of MPI_TESTSOME are handled as for
MPIWAIT SOME.

Both MPLLWAITSOME and MPI_TESTSOME fulfil] 2 faimess requirement: if a re-
queszt for a receive repeatedly appears in a.list of requests passed to MPIWAITSOME
or MPITESTSOME, and a matching zend has been posted, then the receive will
eventually complete, unless the send i satizsfied by another receive. A similar fair
ness requirement holds for send request=.

Example 2.27 A client-server code where st arvation is prevented.

typedef strmct {
char data[MAESIZE] ;
int datasize;

1 Boffer;

BEuffer buffer[];

MPI_Regnest regll;

MPI_Statns statmns[];

int index[];

MPI_Comm_rank(comm, Erank);
MPI_Comm_size(comm, Exize);
if{rank |= size-1) { /* producer code =/
btuffer = (Boffer *imalloc(sizect (Buffer));
while{1} { /% main loop */
prodoce [buffer->data, Ebnffer->datasize);
MPI_Send(btnffer—->data, boffer—>datasize, MPI_CHAR,
Eize=-1, tag, comm);
1
1
else { /% rank — size-1; consnmer code %/
toffer = (Boffer *inalloclsizect (Bnfferi*{siza-137;
Teg = (MPI_Reqgnest »jmalloc(sizeol (MPI_Requnest)s(size=13);
statne = (MPI_Statns *)malloc{eizecf (MPI_Statns)s({ziza=137;
indexr = {int *Imallecleizecl (int)*(eize=1));

—

—

Poiol-Lo-Poiol Commununicalion TE

Torf{i=0; i< size-1; i+)
MPI_Irecv{bmffer[i].data, MAXSIZE, MPI_CHAR, i, tag,
comn, Ereglil);
whila{1} { /% main loop */
MPI_Vaitsome{size-1, req, kcount, index, statms);
forf{i=0; i < comnt; i++) {
j = index[i];
MPI_Get_count (Estatns[i], MPI_CHAR, E{buffer[j].datasize})};
consnoe(buffer[j].data, boffer[j].datasize};
MPI_Irecv(buffer[j].data, MAKSIZE, MPI_CHAR, j, tag,
conm, Ereqglj]);
}
}
1
Thi code solves the starvation problem of the code in Example 2.25, page 8. We
replaced the consumer call to MPIWAITANY by 2 call to MPILWAITSOME. This
arhieves two goals. The number of communication calls is reduced, since one call
now can complete multiple communications. Secondly, the consumer will not starve
any of the consumers, since it will receive any posted zend.

Aduice to implementors. MPIWAITSOME and MPI_TESTSOME should complete
a: many pending communications as possible. It iz expected that both will complete
all receive cperations for which information on matching zends has reached the
receiver node. Thi= will ensure that they satisfy their fairmness requirement. {End
of aduice to implementors.)

2.10 Probe and Cancel

MPILLPROBE and MPLIPRQBE allow polling of incoming messages without actually
receiving them. The application can then decide how to receive them, bazed on
the information returned by the probe ({in a status variable). For example, the
application might allocate memory for the receive buffer according to the length of
the probed meszage.

MPI_CANCEL allows pending communications to be canceled. Thi= & required for
ceanup in some situations. Suppose an application has posted nonblodang sends
cr receives and then determines that these operaticns will not complete. Posting
a send or a receive ties up application resources (send or receive buffers), and a

TG ﬂ}.lath:r 2

cance]l allows these resources to be freed.

MPLIPRQBE(scurce, tag, cormm, flag, status)

IN £OUFCE rank of source

IN tag meage lag

IN cornm comunuuicalor

ouT flag true il Lhere 1y a mncusagc
ouT status slalie objocl

int MPI Iprobefint senrce, int tag, MPI Comn comm, int *flag,
MPI Statns *statms)

MPI_TPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS SIZE), IERROR

MPIIPROBE is a nonblodang operation that returns flag = true if there iz a
message that can be recerved and that matches the message envelope specified by
source, tag, and comm. The call matches the same message that would have been
received by a call to MPI_LRECV {with these arguments} executed at the same point
in the program, and returns in status the came value. Otherwize, the call returns flag
= false, and leaves status undefined. MPILIPROBE has local completion semantice.

If MPLIPROBE(zcuree, tag, comm, flag, status) returns flag = true, then the first,
subzequent receive executed with the communicator comm, and with the socurce
and tag returned in status, will receive the message that was matched by the probe.

The argument source can be MPILANY SOURCE, and tag can be MPLANY_TAG, =c
that one can probe for messages from an arbiirary source and/or with an arbitrary
tag. However, & specfic communicator must be provided m comm.

It i= not necessary to receive o message immediately after it has been probed for,
and the same message may be probed for several times before 1t i= recerved.

MPI_PROBE(scurce, tag, cornm, status)

IM EOUFCE rank of source
IN tag mosape Lag
IN COrmrm coununicalor
ouUT status slalm objecl

int MPIProbe(int sonrce, int tag, MPI Comm comm, MPI Statns sstatns)

Poiol-Lo-Poiol Commununicalion i

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS SIZE), IERROR

MPI_PROBE behaves like MPLIPROBE except that it blocks and returmns only
after 2 matching message has been found. MPLPROBE has non-local completion
semantics.

The semantics of MPI_PROBE and MPIIPRQBE guarantee progress, in the same
way s 2 corresponding receive executed at the same pomt in the program. If a call
to MPI_PRQOBE has been issued by a process, and a send that matches the probe has
been inmitiated by scome process, then the call io MPILPROBE will return, unless the
message 15 received by ancther, concurrent receive operation, irrespective of cther
activities m the system. Somilarly, if 2 process busy wait= with MPLIPRQBE and
a matching meszage has been E=ued, then the call to MPILIPRQBE will eventually
return flag = true unlese the meszage iz received by another concurrent receive
operaticon, irrespective of other activities m the system.

Example 2.28 1Jze a blocking probe to wait for an incoming message.
CALL MPI_COMM_RANK(comm, rank, ierTr)
IF (rank.EQ.0) THEN
CALL MPI_SEND({i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank.Eq.2) THEN
DO i=1, 2
CALL MPI_PROEE(MPI_ANY_SOURCE, O,
comm, statme, ierr)
IF (gtatns{MPI_SOURCE) = 0) THEN

100 CALL MPI_RECY({i, 1, MPI_INTEGER, O, 0, comm,
& statns, ierr)
EL=E
200 CALL MPI_RECY(x, 1, MPI_REAL, 1, 0, comm,
& gtatns, iarr)
END IF
END DQ
END IF

Each message ic received with the night type.

T ﬂ}.lath:r 2

Examplc 2.29 A similar program to the previous example, but with a problem.
CALL MPI_COMM_RANK(comm, rank, ierTr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierT)
ELSE IF f{rank.Ef.1) THEN
CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF {rank.E.2) THEN
Da i=1, 2
CALL MPI_FROEE (MPI_ANY_SOURCE, O,
comm, statme, ierr)
IF (status{MPI_SOURCE) = 0) THEN
100 CALL MPI_RECY({i, 1, MPI_INTEGER, MPI_ANY_ SOURCE,
0, comm, statms, ierT)

ELSE
200 CALL MPI_RECY({x, 1, MPI_REAL, MPI_ANY_SOURCE,
0, comm, =tatme, ierr)
END IF
END DO

END IF

We clightly modified example 2.28, using MPLANY _S0OURCE as the source argument
in the two receive calls m statements labeled 100 and 200. The program now has
different behavior: the recemre operation may receive a message that iz distinct from
the mezsage probed.

Advice to implementors. A call to MPILPROBE(socurce, tag, comm, status) will
match the message that would have been received by a call to MPI_LRECV(. source,
tag, comm, status) executed at the same point. Supposze that this message has
source &, tag t and communicator . If the tag argument in the probe call has value
MFPLANY_TAG then the mescage probed will be the earliest pending message from
source £ with communicator ¢ and any tag; in any case, the mescage probed will
be the earliest pending message from source & with tag t and communicator ¢ (thi
iz the message that would have been received, =0 as to preserve message crder).
ThE mescage continues as the earliest pending message from source s with tag t
and communicator ¢, until it iz received. The first receive operation subsequent
to the probe that uses the same communicator as the probe and uvses the tag and
source values returned by the probe, must receive thic message. (End of advice o
implementors.)

Poiol-Lo-Poiol Commununicalion ™

MPLCANCEL(request}
IN request requel handle

int MPICancel(MPI Request sreguest)

MPI_CANCEL(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_CANCEL marks for cancelation a pending, nonbloddng communication op-
eraticn (send or receive}). MPLCANCEL has local completion semantics. It retums
immediately, possibly before the communication & actually canceled. After this,
it 1= =till neceszary to complete a communication that has been marked for cance-
lation, wsing a call to MPILREQUEST_FREE, MPILWAIT, MPLTEST or cne of the
functions in Section 2.9. I the communication was not cancelled {that iz, if the
communication happened to start before the cancelation could take effect}, then the
completion call will complete the communication, as vsual. If the communication
was successfully cancelled, then the complktion call will deallocate the request ob-
ject and wall return in statue the informationthat the communication was canceled.
The application should then call MPILTEST _CANCELLED, using status as input, to
test whether the communication was actually canceled.

Either the cancelation succeeds, and no communication occurs, or the commu-
nication complktes, and the cancelation fails. ¥ a send & marked for cancelation,
then it must be the case that either the zend completes normally, and the message
sent i= received at the destination process, or that the send is successfully canceled,
and no part of the message & received at the destination. If a receive 1= marked for
cancelaticn, then it must be the case that either the receive completes normally, ox
that the recerve is succescfully canceled, and no part of the receive buffer 1= altered.

If 2 communication is marked for cancelaiion, then a complktion call for that
communication i guaranteed to return, irrespective of the activities of other pro-
cesses. In thiz casze, MPIWAIT behawes as alocal function. Similarly, if MPITEST
1= repeatedly called in a busy wait loop for a canceled communication, then MPL
_TEST wall eventually succeed.

£l ﬂ}.lath:r 2

MPLTEST_CANCELLED(status, flag)

IN status slalie objocl
ouUT flag true I cancced

int MPITest cancelled{MFI Status *statuns, int =flag)

MPI_TEST CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI.STATUS SIZE), IERROR

MPI_TEST_CAMCELLED % used to test whether the communication operation
was artually canceled by MPI_CAMCEL. It returns flag = true if the communication
aszociated with the status cbject was canceled successfully. In thi case, all cither
fields of status are undefined. It retums flag = false, otherwisze.

Example 2.30 Code using MPLCANCEL
MPI_Comm_rank({comm, Erank);
if (rank = 03
MFI_Send{a, 1, MPFI_CHAR, 1, tag, comm};
alge if (rank—1) {
MPI_Irecv(a, 1, MPI_CHAR, O, tag, comm, ETeg);
MPI_Cancel (kreg);
MPI_Vait(kreq, Estatns);
MPI_Test_cancelled{Estatns, Eflag);
if {flag) /% cancel sncceeded -- need to post new recaive =/
MFI_Recv(a, 1, MPI_CHAR, O, tag, comm, Ereg);
1

Advice to veers. MPILCANCEL can be an expensive operation that should be used
only exceptionally. (End of advice {0 users.)

Advice te implementors. A communication operation cannot be cancelled once the
receive buffer hac been partly overwritten. In this situation, the communication
should be allowed to complete. In general, a cormmunication may be allowed to
complete, if send and receive have already been matched. The implementaticn
should take care of the possible race between cancelation and maiching.

The cancelation of a zend operation will internally require communicaticn with the
intended receiver, if information on the send operation has already been forwarded
to the destination. Note that, while commumication may be needed to implement

Poiol-Lo-Poiol Commununicalion £l

MPILLCANCEL, this iz =till a local operation, since its completion does not depend on
the application code executed by other processes. (End of advice to implementors.}

2.11 Persistent Communication Requests

Often a communication with the same argument lit is repeatedly executed within
the inner loop of a parallel computation. In such a situation, it may be possible
to optimize the communication by binding the bzt of communication argument= to
a persistent communication request once and then, repeatedly, using the request
to initiate and complete messages. A persistent request can be thought of az a
communication port or & *half channel.” It does not provide the full functionality of
a conventional channel, since there & no binding of the send port to the receive port.
The construct allows reduction of the overhead for communication between the
process and commumnication controller, but not of the cverhead for communication
between one communication controller and another.

It i= not necessary that messages sent with a perziztent request be received by a
receive operation using a persistent request, or vice-versa. Persistent comumunica-
ticn requestis are aszociated with nonblodang send and receive operations.

A persistent communication request iz created using the following functions.
They invclve no communication and thus have local completicn semantics.

MPISEND_INIT{ buf, count, datatype, dest, tag, comm, request)

IMN buf wilial addrew of send buller
IMN count oweber of colriey Lo vemd
IMN datat}rpe dalalype of cach colry

IMN dest rank of deslinalion

IMN tag mosape Lag

IMN co M coununicalor

ouT request requesl handle

int MPISend init{void* tnf, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm, MPI Regoest sregnest)

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUP(*)
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,
IERROR

82 ﬂ}.lath:r 2

MPI SEHND_IMIT creates a persistent communication request for a standard-mode,
nonblockimg send cperation, and binds to it all the arguments of a send operation.

MPLRECV_INIT{buf, ecunt, datatype, source, tag, comm, request)

ouUT buf wilial addrew of moecive buller
IM count max nwnber of eolio Lo reccive
IN datatype dalaly pe of cach colry

IN sSOUroe rank of source

IN tag mosape Lo

IN Cornnm conununicalor

ouT request requenl handle

int MPIRecvinit{void* btnf, int connt, MPI Datatype datatypa,
int =mewmrce, int tag, MPI Comm comm,
MPI Request *reguest)

MPI_RECY_TNIT{BUF, COUNT, DATATYFE, SOURCE, TAG, COMM, REQUEST,
TERROR)
<typa> BUP(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_RECV_INIT creates a persistent communication request for 2 nonbloddng
receive operation. The argument buf 35 marked az QUT becausze the application
gives permizsion to write on the receive buffer.

Persistent communication requests are created by the preceding functions, but
they are, =o far, inactive. They are activated, and the asscoated communication

cperaticns started, by MPISTART or MPLSTARTALL.

MPISTART(request)
INOUT request requesl handle

int MPIStart(MPI Request sregoest)

MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPISTART activates request and imitizies the assodated communication. Since
all persiztent requests are assocated with nonblocking communications, MPI.START

Poiol-Lo-Poiol Commununicalion £3

has local completion semantics. The semantics of communications done with per-
sistent requestz are identical to the corresponding operations without persistent
requests. That is, a call to MPISTART with a request created by MPISEND_INIT
startz: a communication in the same manner as a call to MPIISEND; a call to
MPISTART with a request created by MPILRECY INIT startz a communication in
the same manner a= a call to MPLIRECY.

A zend operation mitiated with MPI_START can be matched with any receive op-
eration (including MPI_PROBE)} and a receive operation initiated with MPLLSTART

can receive mescages generated by any send operation.

MPISTARTALL{ecunt, array_ef_requests)

IN count liul leoglh
IMNOUT array_of_requests array of requesl handle

int MPI Startall{int count, MPI Requnest *array of Teqnests)

MPI_STARTALL(COUNT, ARRAY OF REQUESTS, IERROR)
INTEGER COUNT, ARRAY OF REQUESTS(*), IERROR

MPI STARTALL =starts all communications associated with persiztent requests in
array of_requests. A call to MPLSTARTALL{count, array of requests) has the same
effect as calls to MPILSTART (array_of_requests[i]), executed for i=0 ..., count-1, in
some arbitrary crder.

A communication started with a call to MPISTART or MPISSTARTALL i= com-
Pleted by a call io MPIWAIT, MPLLTEST, or one of the other completion functions
described in Secticn 2.9, The persistent request becomes inactive after the comple-
ticn of such a call, but i i= not deallocated and it can be re-activated by ancther
MPISTART or MPISTARTALL.

Persistent requests are expliatly deallocated by a call to MPILREQUEST_FREE
{Secticn 2.8.5). The call to MPILREQUEST_FREE can occur at any point in the
program after the persictent request was created. However, the request will be
deallocated only after it becomes inactive. Artive receive requests should not be
freed. Otherwie, it will not be possibke to chedk that the receive has completed. It
15 preferable to free request= when they are inactive. If this rule iz followed, then
the functions described m this section will be involed in a sequence of the form,

Create (Start Complete})* Frec ,

where » indicates gero or more repetitions. If the same communication request is

B4 ﬂ}.lath:r 2

uszed in several concurrent threads, it 35 the user's responsibility to cocrdinate calls
g0 that the correct sequence is obeyed.

MPI_CANCEL can be used to cancel & commumnication that uses a persistent re-
queszt, in the same way it iz used for nonpersistent request=. A successful cancelation
cancels the active communication, but does not deallocate the request. After the
call ic MPILCANCEL and the subzequent call ic MPIWAIT or MPLLTEST [cr other
completion function}, the request becomes martive and can be arctivated for a new
communication.

Examplc 2.31 Jacobi computation, usmg persistent requests.

REAL, ALLOCATABLE A(:,:), B(:,:)
INTEGER raeg(4)
INTEGER status(MPI_STATUS_SIZE,&)

| Compnte noober of processes and nyrank
CALL MPI_COMM_SIZE{comm, p, ierr)
CALL MPI_COMM_RANK(comm, myrank, ierr)

| Compnta size of local bBleck

o = nfp

IF {oyrank.LT.{n-p*w}) THEN
o = m+l

END IF

| Compnta neighbors
IF {myrank.Ef.0) THEN
left = MPI_PROC_NULL
EL=E
leaft
END TF
IF (myrank.EQ.p-1) THEN
right = MPI_PROC_NULL
EL=EE
Tight = myrank+1
ENDIF

oyrank -1

| Allocate local arrays

Poiol-Lo-Poiol Commununicalion BE

ALLOCATE (A(n,0:m+1), Bin,m)}

| Craate persistent regnests

CALL MPI_SEND_INIT({E{1,1}), n, MPI_REAL, laft, tag, comm, Teg(l), ierT)
CALL MPI_SEND_INIT{E(1,m}, n, MPI_REAL, right, tag, comm, req(2), ierr}
CALL MPI_RECY_INIT{A(1,0), n, MPI_REAL, left, tag, comm, req(3), ierTr)
CALL MPI_RECY_INIT{A({1,m+1}, n, MPI_REAL, right, tag, comm, req(4), ierr)}

| Main loop
DO VHILE({.HNOT.convarged)

| Compute bonndary colnmns
D0 i=1i,n
B{i,1Y = 0.26%(Afi=1,10+a0i+1, 10001, 00001, 200
Bii,m} = 0. 26« (A{i=1,m)=A{i+1 , m)+0{i, m=13+A01i, m+13]
END DO

| Start communication
CALL MPI_STARTALL(4, reg, ierr)

| Compnte interier
oo j=2,m-1
og i=1i,n
B{i,3) = 0.26%CAli-1,d+ali+1, 0001, J-1d+R {1, J+137
END DQ
END DO
Do i=1,m
Dg i=1,n
L{i:j) = E{i,j}
END DO
END DQ

| Complete commmnication
CALL MPI_WAITALL(4, req, status, ierr)
END DO
We come back {for a last time!} to our Jaoohi example (Example 2.12, page 41).

£6 ﬂ}.lath:r 2

The communication calls in the main loop are reduced to two: cne to start all four
commmunications and cne to complete all four communications.,

2.12 Communication- Complete Calls with Null Reguest Handles

Normally, an invalid handle to an MPI cbject i not 2 valid argument for a call that
expects an object. There i= one exception to thiz rule: communicaticn-complete
callz can be passed request handles with value MPILREQUEST_NULL. A commmunica-
ticn complete call with such an argument is 2 *no-op”: the null handles are ignored.
The zame rule applies to persistent handles that are not assodated with an active
communication operation.

We shall uze the following termminology. A null request handle & 2 handle with
value MPI REQUEST _MULL. A handle to o persitent request ic inactive if the re-
quest iz not currently associated with an ongoing communication. A handle is
active, if it iz neither mull nor inactive. An cmpty status i= a status that i= zet to
tag = MPLANY _TAG, source = MPLANY SOURCE, and iz also internally configured
so that calls to MPLGET_COUNT and MPI_GET_ELEMENT return count = 0. We
set a status variable to empty in cases when the value returned i not significant.
Status iz et thi way to prevent errors due to access of stale information.

A call to MPIWAIT with 2 null or inactive request argument returns inmediately
with an empty status.

A call to MPILTEST with a null or inactive request argument returns mnmediately
with flag = true and an empty status.

The bst of requests passed to MPIMWAITANY may contain null or inactive re-
questz. If some of the requestz are active, then the call returns when an active
request has completed. If all the requests in the lizt are null or inactive then the
call returns immediately, with index = MPILUNDEFINED and an empty status.

The bzt of requestz pazsed to MPI_TESTANY may contain null or inactive re-
quests. The call returns flag = false if there are active requests in the list, and none
have completed. It returns flag = true if an active request has completed, or if all
the requesiz in the list are mull or mactive. In the later caze, it returns index —
MPLUMDEFIMNED and an empty status.

The hist of requests passed to MPIWAITALL may contain null or inactive requests.
The call returns as soon as all active requests have completed. The call sets toempty
each status associated with a null or inactive request.

The lizt of requests passed to MPI_TESTALL may contain null or inactive requests.
The call returns flag = true if all active request= have completed. In this caze, the

Poiol-Lo-Poiol Commununicalion ET

call zets to empty each status associated with a null or inactive request. Otherwize,
the call returns flag = false.

The kst of requests passed to MPIWAITSOQME may contam null or inactive re-
quests. Ifthe hist contains active requests, then the call returns when scme of the
artive requestz have completed. If all request= were null or inactive, then the call
returns immediately, with eutcount = MPI_UNDEFINED.

The kst of request= passed to MPLLTESTSOME may contain mull or inactive
requests. If the list contams active requests and zome have completed, then the call
returns in outcount the number of completed request. If 1t contains active requests,
and nome have completed, then it returns outeount = 0. If the list contains no
artive requests, then it returns cutcount = MPI_UNDEFINED.

In all theze cases, null or mactive request handles are not modified by the call.

Examplc 2.32 Starvation-free producer-consumer code

typedef struct {
char datal[MARSIZE];
int datasizea;

} Boffer;

Boffer bonffer(];

MPI_Request Tegl];

MFI_Statns status;

MPI_Comm_rank(comm, Erank);
MPI_Comm_gize(comm, Exize);
if{rank |= size-1) { /% prodocer code =/
btuffer = (Boffer *imalloclsizect (Bufler));
while{1}) { /% main loop */
producef buffer->data, Ebnffer->datasize);
MFI_Send(btnffer->data, boffer->datasize, MPI_CHAR,
Eiza-1, tag, comm, Ekstatms);
1
j;
else { /% rank — size-1; consnmer code */
buffer = (Boffer # malleoc(sizecl (Anfferi+(size—13);
Teg = (MFI_Reqgoest »jmalloc(sizeol (MPI_Requoest)s(siza=13);
Tor (i=0; i<gize=1; i+=k)

ER ﬂ}.lath:r 2

reg[i] = MPI_REQUEST_NULL;
while (13 { /% main loop =/
MPI_Waitany(size=-i, req, ki, Estatuns);
if {1 = MPI_UNDEFINED} { /* no pending raceive laft =/
Tor (j=0; j+< size-1; j++)
MPI_Irecv({buffer[j].data, MAKSIZE, MPI_CHAR, j, tag,
conm, Ereqlill;
alse |
MPI_Get_connt(Estatns, MPI_CHAR, Ebnffer[i].datasize];
consnme [bnffar[i] .data, bofferli].datasize);
j)
b
}
Thi i our Jast remake of the producer-consumer code from Example 2,17, page 56.
Az in Example 2.17, the computation proceeds in phases, where at each phaze
the consumer consumes cne message from each producer. Unlike Example 2.17,
messages need not be consumed in order within each phase but, rather, can be

conswumed as soon as arrived.

Rationale. The acceptance of null or inactive requests n communicaticn-complete
calls facilitate the use of multiple completion calls (Section 2.5). As in the example
above, the nser need not delete each request from the list as soon as it has completed,
but can reuse the same list until all requests in the list have completed. Checking for
null or inactive requests 1= not expected to add a significant overhead, since quality
implementations will check parameters, anyhow. However, mest implementations
will zuffer some performance lozs if they often traverse mostly empty request lists,
lodking for active requests.

The behavicr of the multiple compktion calls was defined with the following struc-

ture.

¢ Tezt returns with flag = true whenever Wait would return; both calls retum same
information in this case.

e A call to Wait, Waitany, Waitsome or Waitall will return if all request= in the
izt are null or inactive, thus avoiding deadlock.

¢ The information retumed by a Test, Testany, Testzome or Testall call distin-
guishes between the caze “no cperation completed” and the case *there i= no
operation to complete”

{End of redionale.}

Poiol-Lo-Poiol Commununicalion ED

2.13 Commmnication Modes

The zend call described in Section 2.2.1 used the standard communication mode.
In thi= mode, it iz up to MPI to decide whether cutgoing meszages will be buffered.
MP| may buffer cutgoing messages. In such a case, the send call may compkte
before a maiching receive is invoked. Om the other hand, buffer space may be
unavailable, or MPl may chocee not to buffer outgoing messages, for performance
regzons. In the caze, the zend call will not complkte until 2 matching receive
has been peosted, and the data has been moved to the receiver. (A bBlodang zend
completes when the call returns; 2 nonbloddng zend completes when the matching
Wait or Test call returns successfully.}

Thus, a send in standard mode can be started whether or not a maiching re-
ceive has been posted. It may complete before a matching receive 15 posted. The
standard-mode send has non-Jocal completion semantics, smee successful comple-
ticn of the send operation may depend on the occurrence of 2 matching receive.

A buffered mode send operation can be started whether or not 2 matching
receive has been posted. It may complete before a matching receive is posted.
Buffered-mode zend has local completion semantics: its completion does not depend
cn the cocurrence of a matching receive. In order to complete the operation, it may
be neceszary to buffer the outgoing message Jocally. For that purpoze, buffer space
is provided by the application {Section 2.13.4). An error will cccur if a buffered-
mode zend iz called and there ic insufficient buffer spare. The buffer space occupied
by the message iz freed when the message 15 transferred to its destination or when
the buffered zend i= cancelled.

A synchronous-mode zend can be started whether or not a2 matching receive
was posted. However, the send will complete successfully only if a matching receive
15 posted, and the receive operation has started to receive the message sent by the
synchronouws send. Thus, the completion of 2 synchronous send not only indicates
that the send buffer can be rensed, but alsc mdicaies that the receiver has reached
a certain pont in its execution, namely that it has started executing the match-
ing receive. Synchronous mode provides synchronous communication semantics: a
communicationdoes not complete at either end before both processes rendesvous at
the communication. A synchronous-mode send has non-local completion semantics.

A readymode send may be started only if the matching receive has already
been posted. Oiherwize, the operation is errcmeous and ite outcome is undefined.
On some systems, this allows the remeval of a hand-shake operation and results in
improved performance. A ready-mode send has the same semantics a= a st andard-
mode send. In a correct program, therefore, a ready-mode send could be replaced

OO ﬂ}.lath:r 2

by a standard-mode send with no effect on the behavior of the program other than

performance.

Three additional send functions are provided for the three additional communi-
cation modes. The communication mode i= indicated by o one ktter prefic: B for
buffered, 5 for synchroncus, and R for ready. There is only one recerve mode and
1t matches any of the send modes.

All zend and receive operations use the buf, count, datatype, scurce, dest, tag,
comm, status and request arguments in the zame way as the standard-mode zend
and receive operations.

2.13.1 Blocking Calls

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf wilial addrew of send buller

IN count nwaber of colrie in vend buller
IN datat}rpe dalalype of cach semd buller enlry
IN dest rank of deulinalion

IN tag mosape Lag

IN COrmrm coununicalor

int MPIBsend(voids bof, int comnt, MPI Datatype datatype, int dest,
int tag, ¥MPIComm comm)

MPI_ESEND (RUP, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND performs a buffered-mode, bloddng send.

MPISSEND [buf, count, datatype, dest, tag, comm)

IM buf milial address of serd buofler

IM count ownber of colrie 1o vend buller
IN datatype dalaly pe of cach sewd buller eolry
IM dest rank of deslinalion

IN tag mousage Lag

IM Cornnm conununicalor

int MPISsend{void+ buf, int count, MPI Datatype datatype, int dest,

Poiol-Lo-Poiol Commununicalion o1

int tag, MPIComm comm)

MPI_SSEND(EUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<typa> BUP(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI SSEND performs a synchronous-mode, blocking send.

MPLESEND [buf, count, datatype, dest, tag, comm)

IM buf imilial address of serd buofler

IM count ownber of colrie 1o seod buller
IN datatype dalaly pe of cach scod buller eolry
IM cest rank of delinalion

IN tag meage lag

IM cornnm conununicalor

int MPIRsend(voids bof, int comnt, MFI Datatype datatype, int dest,
int tag, MPIComm comm)

MPI_RSEND(EUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR}
<type> BUF(s)
INTEGER COUNT, DATATYFE, DEST, TAG, COMM, IERROR

MPI_RSEND performs a ready-mode, bloddng zend.
2.13.2 Nonblocking Calls

We uce the came naming conventions a= for blocking comimunication: a prefix of B,
5, or R & used for buffered, synchronous or ready mode. In addition, a prefix of | {for
immediate} indicates that the call iz nonblocking. There i only one nonblocking
receive call, MPLLIRECY. Nenblodang send operations are completed with the same
Wait and Test calk as for standard mode zend.

o2 ﬂ}.lath:r 2

MPLIBSEND{buf, count, datatype, dest, tag, comm, request)

IN buf inilial addres of scod buller

IN count ownber of clancoly 1o send buller
IN datatype dalaly pe of cach scod buller deinenl
IN dest rank of delinalion

IN tag meage lag

IN cornm comunuuicalor

ouT request requel handle

int MPI Ibsend{void* buf, int count, MPI Datatype datatype, int dest,
int tag, MPIComm comm, MPI Regnest sTegnest)

MPI_TESEND (EUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(s)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IBSEND posts a buffered-mode, nonblocking send.

MPLISSEND({buf, count, datatype, dest, tag, comm, request)

IMN buf wilial addrew of send buller

IMN count owaber of clancoly 1o vend buller
IMN datat}rpe dalaly pe of cach semd buller demenl
IMN dest rank of deslinalion

IMN tag mosape Lag

IMN co M coununicalor

ouT request requesl handle

int MPIIssend{void* bof, int count, MPI Datatype datatype, int dest,
int tag, ¥PIComm comn, MPI Reguest sTegnest)

MPI_TSSEND (EUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUP(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IESEND posts 2 synchronous-mode, nonblocking send.

Poiol-Lo-Poiol Commununicalion o3

MPLIRSEND{buf, count, datatype, dest, tag, comm, request)

I buf imilial addros of scod buller

I count onber of clamcoly 1o send buller
IN datatype dalaly pe of cach semd buller demenl
IN dest rank of delinalion

IN tag mosape Lag

IN cormm comununicalor

ouT request requesl handle

int MPIIrsend{void+* bof, int count, MPI Datatype datatype, int dest,
int tag, MPICoom comm, MPI Regnest tTeqnest)

MPI_TRSEND (EUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORD
<typa> BUP(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IRSEND postz a ready-mode, nonblocking zend.
2.13.3 Porsistent Reguests

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf tilial addres of seod buoller
IM count ownber of colriey Lo semd
IM datatype dalaly pe of cach colry

IN dest rank of deulimalion

IN tag mousage Lag

IN cornm comunuuicalor

ouT request requel handle

int MPIEBsend init{veids bof, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm, MPI Regnast *regnest)

MPI_ESEND_TNIT{EUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,
IERROR}
<type> BUF(s)
INTEGER REQUEST, COUNT, DATATYFE, DEST, TAG, COMM, REQUEST,
TERROR

MPI_BSEND_INIT creates a persietent communication request for a buffered-
mode, nonblocking gend, and binds to 3t all the arguments of a send operation.

ﬂ}.lath:r 2

MPLSSEND_INIT{buf, count, datatype, dest, tag, comm, request)

IN
IN
IN
IN
IN
IN
ouT

buf
oount
datatype
dest

tag
O
request

wilial addrews of scod buller
ownber of colriey Lo scmd
dalaly pe of cach colry

rank of dolinalion

mouuage lag

conununicalor

requel handle

int MPISsend init{veids bof, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm, MPI Regnast *regnest)

MPI_SSEND_INIT{BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,

IERROR)

<type> BUF(s)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI SSEND_INIT creates a persietent communication object for a synchronous-
mode, nonblocking zend, and binds to it all the arguments of a send operation.

MPLRSEND_INIT(buf, ceunt, datatype, dest, tag, comm, request)

IN
IN
IN
IN
IN
IN
ouUT

buf
count
datatype
dest

ag
COMm
request

wilial addresy of scod buller
ownber of colricy Lo somd
dalaly pe of cach colry

rank of deslinalion

mouuage lag

couununicalor

requesl handle

int MPIRsend init{veids bof, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm, MPI Regonest sregnest)

MPI_RSEND_TNIT(EUF, COUNT, DATATYFE, DEST, TAG, COMM, REQUEST,

IERROR}

<type> BUF(s)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_RSEND_INIT creates a persistent communication object for a ready-mode,
nonblockmg send, and binds to it all the arguments of a send cperation.

Poiol-Lo-Poiol Commununicalion OE

Examplc 2.33 Use of ready-mode and synchronous-mode
INTEGER req(2), statuos(MPI_STATUS_SIZE,2), comm, ierT
REAL buff(1000,2)

CALL MPI_COMM_RANK(comm, rank, ierr)
IF {rank.EBQ.0) THEN
CALL MPI_IRECY(banff({1,1), 1000, MPI_REAL, 1, 1,
comn, Tegil), ierr)
CALL MPI_IRECY(buff(1,2), 1000, MPI_REAL, 1, 2,
comm, Teg(l), ierr)
CALL MPI_VWAITALL(Z, req, statms, ierr)
ELSE IF (rank.E.1) THEN
CALL MPI_SSEND(banff({1,2), 1000, MPI_REAL, O, 2,
comm, statnsf(l,1), ierr)
CALL MPI_RSEND(buff(1,1), 1000, MPI_REAL, O, 1,
comm, statnefl,2), ierr)
END TF
The first, synchronous-mode send of process one matches the second receive of
process zero. 'Lhiz send operation will complete only after the second receive of
process gero has started, and afier the completion of the first post-receive of process
gero. Therefore, the second, ready-mode send of process cne staris, correctly, afier
a matching receive iz posted.

2.13.4 Buffor Allocation and Usageo

An application must specify a buffer to be used for buffering messages zent in
buffered mode. Buffering is dene by the sender.

MPI.BUFFER_ATTACH(buffer, size)

IN buffer wnilial bufler addocss
IN £ize buller le.t:, 1 hJ.'Lm

int MPI Bnffer.attach{ void+ boffer, int size)

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<typa> BUFFER({*)
INTEGER SIZE, IERROR

06 ﬂ}.lath:r 2

MPI_BUFFER_ATTACH provides to MPI a buffer in the application’s memory to
be uzed for buffering cutgoing messages. The buffer iz used only by messages cent
in buffered mode. Omly cne buffer can be atiached at a time (per process).

MPI.BUFFER_DETACH(buffer, size)

ouUT buffer tilial buller addreys
ouUT gize buller vive, 1o bylo

int MPI Buffer detach{ veoids baffer, int* size)

MPI_BUFFER DETACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

MPI_BUFFER_DETACH detaches the buffer currently associated with MPI. The
call returns the address and the swe of the detached buffer. Thiz cperaticn will

block until all messages currently in the buffer have been transmitted. UUpon retum
of thiz function, the uszer may reusze or deallocate the space taken by the buffer.

Example 2.34 {allz to attach and detach buffers.
itdefina BUFFEIZE 10000

int =iza

char *bnffl;

tuff = {char *)malloc(BUFFSIZE]};
MPI_Euffer_attach(bnff, BUFFSIZE);

/% a toffer of 10000 bytes can now be nsed by MPI_Esend «/
MPI_Enffer_detach{ Ebnff, Exize);

/% Boffer size rednced te zero */
MPI_Enffer_attachf{ buff, size);

/% Boffer of 10000 bytes available again */

Advice {0 users. Ewven though the O functions MPl Buffer_attach and MPI_Buffer-
Adetach both have a first argument of type void*, these arguments are used dif-
ferently: A pointer to the buffer iz paszed to MPI_Buffer_attach; the address of the
pointer iz paszed to MPI1 Buffer_detach, =o that thiz call can return the pointer value.
{End of aduice to uszers.)

Poiol-Lo-Poiol Commununicalion o7

Rationale. Both arguments are defined to be of type vwid* (rather than void* and
void?*, respectively], s0 as to avoid complex type casts. E.g., in the last example,
&:buff, which iz of type char*?, can be passed as an argument to MPLBuffer_detach
without type casting. If the formal parameter had type void** then one would need
a type cast before and after the call. {End of rafionde.}

Now the question arises: how iz the attached buffer to be used” The answer is
that MPl must behave a= if outgoing message data were buffered by the sending
process, in the specified buffer space, using a circular, contiguousspace allocation
policy. We cutline below 2 model mplementation that defines this policy. MPI
may provide more buffering, and may use a better buffer allocation algorithm than
described below. On the other hand, MPl may signal an error whenever the simple
buffering allocator described below would run out of space.

2.13.5 Modcl Implementation of Buffered Modce

The model implementation uses the padang and unpackng functions described in
Section 3.8 and the nonblocking communication functions described in Section 2.3,

We assume that acircular quene of pending message entries (PME) is maintained.
Each entry cont ains a communicationrequest that identifies 2 pending nonbloddng
send, & pointer to the next entry and the parked message data. The entries are
stored in successive locations m the buffer. Free space & avmilable between the
queue tail and the queue head.

A buffered zend call results m the execution of the following algonthm.

o Traverce sequentially the PME queue from head towards the tail, deleting all
entries for communications that have completed, up to the first entry with an
uncompleted request; update quene head to point to that entry.

¢ Compute the number, n, of bytes needed to store entries for the new mes
sage. An upper bound on n can be computed as follows: A call to the function
MPI.PACK SIZE{ceunt, datatype, comm, size), with the connt, datatype and comm
arguments used m the MPI BSEND call, returns an upper bound on the amount
of spare needed to buffer the meszage data (see Section 3.8}. The MPI comstant
MPILESEND 9YERHEAD provides an upper bound on the additional s pace consumed
by the entry (e.g., for pomters or envelope information).

¢ Find the next contiguous, empty space of n bytes in buffer (space following queune
tail, or spare at start of buffer if quene tail is too close to end of buffer}. If space
15 not found then raize buffer overflow error.

+ Clopy request, next pointer and packed mescage datsinto empty space; MPI_PACK

og ﬂ}.lath:r 2

15 used to pack data. Set pointers so that thE entry & at tail of PME queue.
¢ Post nonblocking cend (standard mode)} for packed data.
Heturn

2.13.f Commcnts on Communication Modes

Advice to vgers. When should cne use each mode?

Mozt of the time, it i= preferabk to use the standard-mode zend: implementers are
likely to provide the best and most robust performance for this mode.

Uzers that do net trust the buffering policy of standard-mode may uze the buffered-
mode, and control buffer allocation themzelves. With this authornty comes respon-
sibility: it iz the user responsibility to ensure that buffers never overflow.

The synchronous mode is convenient n cases where an acknowledgment would be
ot herwize required, e.g., when communication with rendezwous semantics is desired.
Ako, uze of the symchronous-mode is 2 hint to the system that buffering should be
avoided, since the sender cannot progress anyhow, even if the daia & buffered.

The ready-mode i= error prone and should be used with care. [End of advice {o
tgers.)

Aduice to implementors. Since o synchronousanode send cammot complete before
amaiching receive is posted, one will not normally buffer mescages sent by such an
operation.

It 1= usually preferable to choose buffering over Blocking the sender, for <t andard-
mode sends. The programmer can get the non-buffered proioco] by usmg syn-
chrenous mode.

A possible choice of communication protocols for the various communication modes
15 outlined below.

standa rd-mode gend: Short protocol is uszed for short messages, and long protocoo] is
used for long meszages (see Figure 2.5, page 66).

ready-mode send: The message is sent with the chort protocal (that is, ready-mode
messages are always “chort™}.

synchronous-rmode send: The long protocol 35 used (that iz, synchronous-mode mes—
sages are always “long™}.

buffered-mode gend: The send copies the mescage into the application-provided
buffer and then zends 1t with a standard-mode, nonblocking send.

Poiol-Lo-Poiol Commununicalion L2

Ready-mode zend can be impkmented as a standard-mode zend. In this casze there
will be no performance advantage (or disadvantage) for the use of ready-mode send.

A standard-mode send could be implemented as a synchronous-mode zend, =o that
no data buffering 1= needed. This & consistent with the MPl specification. However,
many uzers would be surprized by thi choice, since standard mode & the natural
Flace for system-provided buffering. (End of aduice to implementors.}

100

ﬂ}.lath:r 2

3 Uszer-Defined Datatypes and Packing

3.1 Introduetion

The MPl communication mechanisms introduced in the previous chapter allows one
to send or recerve o cequence of identical elements that are contiguous m memory. It
1z often desirable to send data that iz not homogeneous, such as a structure, or that
15 not contiguous in memery, such as an array section. Thi= allows cne to amortize
the fixed cverhead of sending and recerring a message over the tran=mittal of many
elements, even in these more general circumst ances. M Pl provides two mechanisms
to achieve thi.

The user can define derived dataiypes, that specify more general data layouts.
VJzer-defined datatypes can be uzed m MP| communication functions, in place of
the basic, predefined datatypes.

A zending process can expliatly pack noncontiguous data into a contiguous buffer,
and next send it; a receiving process can explicitly unpack data received in a con-
tiguous buffer and store in noncontiguous locations.

The construction and uze of derived datatypes & described in Section 3.2-3.7. The
uze of Pack and UInpack funciions i= described in Section 3.8. It 35 often possible to
achieve the same data transfer using either mechanisms. We dicuss the proes and
cons of each approach at the end of thic chapter.

8.2 Intredunction to User-Defined Datatypes

Al MPI cormmnunication functions take a datatype argument. In the simplest caze
thiz will be 2 primitive type, such as an integer or floating-point number. An im-
portant and powerful generalmation results by allowing user-defined (or *derived”}
types wherever the primitive types can occur. These are not “types” as far a= the
programming language is concerned. They are only “types” in that MPI 3= made
aware of them through the use of type-constructor functions, and they describe
the layout , in memory, of sete of primitive types. Through user-defined types, MPI
supports the commumnication of complex data structures such #s array sections and
structures containimg combinations of primitive datatypes. Example 3.1 shows how
a user-defined datatype iz used to send the upper-triangular part of 2 matrix, and
Figure 3.1 diagrams the memory layout represented by the user-defined datatype.

101

102 ﬂ}.lath:r 3

Examplc 3.1 MPl code that sends an upper tnangular matnzx.
double al100] [100]

digpl[100] ,blocklen[100],1;

WPI_Datatyps nppar;

/% compute start and size of each row */
Tfor (i=0; i<100; ++iy 4
digpli] = 100 * i + i;
blocklen[i] = 100 = 1i;
}

/% create datatype for npper triangnlar patrt */
MPI_Type_indered{100, blocklen, disp, MPI_DOUELE, Enpper);
MPI_Type_conmit(Enpper);

A% .. and send it =/

MPFI_Send{a, 1, upper, dest, tag, MPI_COMM_WORLD);

et ety £ v dddress

Figure 3.1
A diagram of the memary cells reprecented by the nser-deflned datatype uppar. The shaded cells
are the locatione of the array that will ba gent.

Derived datatypes are constructed from basic datatypes using the constructors
described in Section 3.3. The constructors can be applied recurcively.
A derived datatype is an cpague object that specifies two things:

¢ A sequence of primitive datatypes and,
» A sequence of integer (byte} displacements.

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 103

The displacements are not required to be positive, distinct, or in ncreasing order.
Therefore, the order of items need not coincide with their order in memory, and an
itern may appear more than once. We call such & pair of sequences (or sequence of
pairz} a type map. The sequence of primitive datatypes (displacements ignored}
1z the type signature of the daisivpe.

Let

Typemep = {(typeo, dispo)y . . oy (ypen -1, dispu_1}},
be such a type map, where dype; are primitive types, and disp; are dizplacements.
Let

Typesig = {*Wﬂu: e :typen—l]'
be the associated type signature. Thi= type map, together with a base address
buf, specifles a communication buffer: the communication buffer that consist= of
@ entries, where the i-th entry 1= at address buf + disp; and has type #ype;. A
message aszembled from a single type of this sort will consiet of & values, of the
types defined by Typesig.

A handle to a derived datatype can appear sz an argument in & cend or receive
cperation, instead of a primitive datatype argument. The operation MPLSEND({buf,
1, datatype,...]) will use the send buffer defined by the base address buf and the
derived dataiype associated with datatype. It will generate a message with the type
signature determined by the datatype argument. MPLRECV{buf, 1, datatype,...])
will uze the receive buffer defimed by the base address buf and the derived dataiype
aszociated with datatype.

Derived datatypes can be nsed in all zend and receive operations including col
lective. We discuss, in Section 3.4.3, the case where the second argument count has
value > 1.

The primitive datatypes presented m Section 2.2.2 are spedal caszes of a derived
datatype, and are predefined. Thus, MPLINT iz & predefined handk to a dataiype
with type map {{int,0}}, with cne entry of type int and displacement zero. The
cther primitive datatypes are similar.

The cxtent of a datatype is defined to be the span from the first byte 1o the
last byte cccupied by entries in the datatype, rounded up to satisfy alignment
requirements. That iz, if

hETmeEP: {(tupeo, dispﬂ}: AR l:typen—lsdi@n—l}]':
then

b{Typermap) = mindisp,,
i
ub(Typemap) = mjax[d‘isp_.,' +sizeof (fype;)} + ¢, and

—

104 ﬂ}.lath:r 3

extent(Typemap) = ub{Typemap) — Ib(Typemag).

where j =10,...,n — 1. I is the lower bound and ¢ is the upper bound of the
datatype. If fype; requires alignment to o byte address that 1= 2 multiple of &y,

then ¢ is the least nonnegative increment needed to round ezteni{Typermap) to the
next multiple of max; k;. (The definition of extent is expanded in Section 3.6.}

Example 3.2 Assume that Type = {{deuble, 0}, {char,8}] {2 deuble at displace-
ment gerc, followed by a char at displacement eight}. Ascume, furthermore, that
doubles have to be strictly aligned at addresses that are muliiples of eight. Then,
the extent of thiz datatype 1= 16 (D rounded to the next multiple of). A datatype
that consizsts of a character immediately followed by a double will also have an
extent of 16.

Rationale. The rounding term that appears in the definition of upper bound i= to
faclitate the definition of datatypes that correspond to arrays of structures. The
extent of a datatype defined to describe a structure will be the extent of memory a
compiler will normally allocate for this structure entry m an array.

More explicit control of the extent 1= described in Section 3.6. Such explicit control
15 needed In cases where this assumption does not hold, for example, where the
compiler offers different alignment options for structures. {End of rationafe.)

Advice to implementors. Implementors should provide information on the “de-
fault” alignment cption used by the MPI library to define upper bound and extent.
Thi should match, whenever pozsitle, the “defanlt” alignment opticn of the com-
piler. (End of advice to implementors.)

The following functions return infermation on datatypes.

MPLTYPE_EXTENT(datatype, extent}
IN datat}rpe dalaly pe
ouUT extent dalaly pe exlenl

int MPI Typesxtent(MPI Datatype datatype, MPI_Aint wextent)

MPI_TYPE EXTENT(DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR

MPI_TYPE_EXTENT returns the extent of a datatype. In addition to its use with
derived datatypes, it can be used to inquire about the extent of primitive dataiypes.

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 105

For example, MPILTYPE_EXTENT{MPILINT, extent) will return in extent the size,
in bytes, of an int — the same value that would be returned by the C call sizeof{int).

Advice o users. Since datatypes in MPI are opagque handles, it is important to uze
the functicn MPI_.TYPEEXTENT to determine the “size” of the datatype. As anex-
ample, it may be tempting (in C} to use sizecf{datatype}, e.g., sizecf{ MPIDAUBLE).
However, thiz will return the sige of the opague handle, which £ mest likely the
gize of a pointer, and usually a different value than sizecf{double). (End of adrice

o users.}

MPLTYPESIZE(datatype, size)

IN datatype dalaly pe
ouT size dalaly pe slxc

int MPI Type siza(MPI Datatyps datatype, int *siza)

MPI_TYPE SIZE{DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE SIZE reiurns the total size, m bytes, of the entries in the type sig-
nature associated with datatype; that iz, the total size of the data in 2 message
that would be created with thi= datatype. Entries that occur muliiple times in the
datatype are counted with their multipliaty. For primitive datatypes, the function
returns the same information as MPITYPE_EXTENT.

Examplc 3.3 Let datatype have the Type map Type defined m Exampk 3.2. Then
acall to MPLLTYPE_EXTENT (datatype, i} will return i = 18; a call to MPLTYPE._-
S1ZE[datatype, 1) will return 1 = 4.

3.3 Datatype Constructors

Thie cection presents the MPI funciions for constructing derived datatypes. The
functions are presented in an order from simplest 1o most complex.

106 ﬂ}.lath:r 3

3.3.1 Contiguous

MPLTYPE_.CONTIGUQUS{ count, cldtype, newtype)

IN count replicallon couonl
IM oldtype old dalalype
ouUT newty pe oew dalalype

int MPI Typecontignons{int connt, MPI Datatype oldtype,
MPI Datatype *newtype)

MPI_TYPE_CONTIGUOUS (COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEVWTYFE, IERROR

MPI_TYPE_CONTIGUQUS iz the simplest datatype constructor. It comstructs a
typemap consisting of the replication of a dat atype into contiguous locations. The
argument newtype iz the datatype cbtained by concatenating count copies of oldtype.
Concatenation is defined using extend/ ol ditge) as the size of the concatenated copies.
The action of the Contiguous constructor is represented schematically in Figure 3.2.

aldtyps

count = 4

ns wiyps

Figure 3.2
ect of datatype congtructoer MPI_TYPE_CQNTIGUQUS.

Example 3.4 Let oldtype have type map {{double,(}, (char, 8}], with extent 16,
and ket count = §. The type map of the dataiype returned by newtype i=

{(double, 0}, (char, 8}, (double, 16}, (char, 24}, (double, 32}, (char, 40},
that iz, alternating double and char elements, with displacements (, &, 16, 24,32, 40,

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 10

In general, assume that the type map of oldtype i=

{[Wn:dﬁiﬂn} 1= [twen—lsdisﬁa—l}]':

with extent exz. Then newtype has a type map with count - ¢ entries defined by:

{[iweﬂsdisi}ﬂ} LI [twen—lsdisﬁa—l}:
[twﬂs‘ﬁ@ﬂ +EI}: LR [tmmn—lsdi@n—l + 'EI}:

-+« (typeg, dispg+ ex - (count — 1)}, ..., (fypen_ 1, Fisp, 1 + &z - (count — 1}}]

3.3.2 Veocotor

MPLTYPEVECTOR{count, blecklength, stride, cldtype, newtype)

IN count ouwaber of blocky

IN bl cklength oweber of clancoly 1o cach blodk

IN stride upacing belween slad of cach blodk, inea-
surcd ay nwmber of clancoly

IN oldtype old dalalypc

ouUT mewly pe new dalalype

int MPITypavector(int comnt, int blocklength, int stridae,
MPI Datatype oldtype, MPI Datatype *newbypsa)

MPI_TYPE VECTOR({COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_TYPEVECTOR £ 2 constructor that sllows replication of a datatype into
locations that consizt of equally spared Blocks. Each block iz obtained by concate-
nating the same number of copies of the old dataiype. The sparing between bBlodks
15 & multiple of the extent of the cld datatype. The action of the Vector construcior
15 represented schematically in Figure 3.3.

Example 3.5 As before, assume that oldtype has type map {(double, 0}, (char, 8},
with extent 16. A call to MPLTYPEVECTOR(2, 3, 4, cldtype, newtype) will create
the datatype with type map

108 ﬂ}.lath:r 3

oldtype

count= 3, blocklenpth =2, siride = 3

newtype

Figure 3.3
Databy pe conetructar MPI_TYPENECTQR.

{(double, 0}, {char, 8}, (double, 16}, (char, 24}, {double, 32}, {char, 40},

{deuble, 84}, {char, 72}, (doukle, 80}, (char, 88}, (double, 56}, (char, 104}]

That iz, two blocks with three copies each of the old type, with a stride of 4 elements
{4 16 bytes) between the Blocks,

Example 3.6 A call to MPLTYPENVECTOR(3, 1, -2, cldtype, newtype) will creaie
the datatype with type map

{{deuble, 0}, {char, §}, (double, —32}, {(char, —24}, (double, — 84}, {char, —58}].

In general, assume that oldtype hasz type map

{[iﬂP‘ED:disFﬂ} 'ERRY! [tyP‘En—lsdisﬁa—l}]':

with extent er. Let bl be the blocklength. The new datatype has a type map with
count - bl - & entries:

{{typeo, dispo}, .. ., (bypen—1, dispu 1},

(tpeo, dispo + ez}, - . ., (typen—1, dispui + ez}, . -,

(tapeo, dispo + (bl — 1} - ez}, - . ., (types—1, disp_y + (bl — 1} ez},

(tapeo, dispo + stride - ez}, ..., [{gpen_1, dispn_, + stride - ez}, . .,

(tapeo, dispo + [stride + bl — 1} -z}, . .., (Hypen1, dispn_1 + (stride + bl — 1} - ez},

-+ ooy (Fypeg, dispe + stride - (eount — 1} - ex},...,

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 105

{typen 1, dispr, 1 + stride - (count — 1} - ex},...,
{typeo, dispo + (stride - jeount — 1) + bl — 1} . ez}, ...,

(type.._1,disp,,_1 + (stride - {ecunt — 1} + bl — 1} - ex}].

A call to MPLLTYPE_CONTIGUQUS{count, oldtype, newtype) is equivalent to a
call to MPLTYPE VECTQR({ecunt, 1, 1, oldtype, newtype}, or to a call to MPL
-TYPEVECTQR(1, count, num, cldtype, newtype]), with num arbitrary.

3.3.3 Hwoctor

The Vecicr type constructor assummes that the stride between successive blocks
i1t o multipke of the oldtype extent. This avoids, most of the time, the need for
computmg stride in bytes. Scmetimes it i= useful to relax thi assumption and
allow a stride which consizts of an arbitrary number of bytes. The Hvector type
constructor below achieves this purpose. The usage of both Vector and Hyvector is
Mluztrated in Examples 3.7-3.10.

MPLTYPE_HVECTOR(count, blecklength, stride, oldtype, newtype)

IN count ownber of blocks

IN blocklength ownber of clancoly io cauh blodk

IN stride spadog belweoen slard of cach blodk, inca-
sured as bylo

IM oldtype old dalalype

ouT newty pe oew dalalype

int MPI Type hrector{int comnt, int blocklength, MPI Aint stride,
MPI Datatype oldtype, MPI Datatype *newbypsa)

MPI_TYPE HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYFE,
IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_HVECTOR is identical to MPLTYPEVECTOR, except that stride is
given in bytes, rather than in elements. {H stands for “hetercgenecus")}. The action
of the Hvector constructor iz represented schematically in Figure 3.4.

110 ﬂ}.lath:r 3

oldtype

count = 3, blocklenpth =2, sride =7

newtype

Figure 3.4
Dataty pe canetructar MPILTYPE_HVECTQR.

Examplc 3.7 Consider a call to MPI_TYPE_HYECTOR, using the same arguments
az in the callio MPLTYPENECTOR in Example 3.5. As before, assume that oldtype
has type map {{double,0}, (char, 8}}, with extent 16.

Acall to MPLTYPE HVECTQR(2, 3, 4, oldtype, newtype) will create the datatype
with type map

{(double, 0}, {char, 8}, (double, 16}, (char, 24}, {double, 32}, {char, 40},
{deouble, 4}, {char, 12}, (double, 20}, (char, 28}, (double, 36}, (char, 44} 1.

Thiz derived datatype specfies overlapping entries. Since 2 DOUBLE cannot start
both at dizsplacement zerc and at displacement four, the vsze of this datatype in a
send operation will canse a type match error. In order to define the zame type map
as in Example 3.5, one would use here stride = 64 {4 = 16).

In general, assume that oldtype has type map

{[iypeﬂ:disi}ﬂ} LERRS [tmra—lsdis.pn—l}]':

with extent ez. Let bl be the blocklength. The new datatype has a type map with
count - bl - » entries:

{[iypeﬂ:disi}ﬂ} LR [tmra—lsdis.pn—l}:
(typeo, dispe +ex),. .., (P 1, disp, 1+ ez}, .. .,
(typeo, dispe + (bl — 1} - ex), ..., (fypen_1, disp, 1 + (bl — 1} - ez},

(typeo, dispo +stride), .. ., (Pypen—1, dispn—1 +stride}, ...,

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 111

(type , dispg + stride + (bl — 1} e}, ..,
(t4Pes_ 1, dispy_, + stride + (bl — 1} -z},,

{typeg, dispg +stride - (count — 1}},. .., (typen— 1, disp, _; +stride - {eount — 1}},...,
(typeo , dispp + stride - (count — 1} + (bl — 1} - ex), ...,

(type.._1,disp,,_1 + stride . {ceunt — 1} + (bl — 1} - ex}].

Examplc 3.8 Send and receive a section of a 2D array. The layout of the 2D array
section 15 showm in Fig 3.5. The first call to MPI.TYPEVECTOR defines a datatype
that describes one column of the section: the 1D array section (1:8:2) which
consite of three REAL’s, spaced two apart. The second call tio MPI_TYPE_HVECTOR
defines a datatype that describes the 2D array section (1:8:2, 1:5:2): three
copies of the previcus 1D array section, with a stride of 12#sizeacfreal; the stride
1¬ 2 multiple of the extent of the 1D section, which iz E#sizecfraal. The usage
of MPLTYPE_COMMIT i= explained later, m Section 3.4.

REAL a(6,5%, a(3,3)

INTEGER cneglice, twoslice, sizecfresl, myrank, ierr

INTEGER statns (MPI_STATUS_SIZE)

C extract the section afi:8:2,1:6:2)
C and store it im af:,:).

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myTank, ierr)
CALL MPI_TYFE_EETENT(MFI_REAL, sizecfraal, ierT)

c create datatype for a 1D section
CALL MPI_TYPE_VECTOR(3, 1, 2, MPFI_REAL, coneslice, ierT)

c create datatype for a 20 sactien
CALL MPI_TYFE_HVECTCOR(Z, 1, 12+sizecfreal, oneglice, twoslice, ierr)

112 ﬂ}.lath:r 3

CALL MPI_TYPE_COMMIT{ twoslice, ierr)

c gend and recr on =ame pTOCASE
CALL MPI_SENDRECY(a(1,1,1), 1, twoslice, myrank, O, &, 9,
WFI_REAL, myrank, O, MPI_COMM_WORLD, statms, ierr)

Figure 3.5
Memcry layont of 2D array eection for Example 2.8, The chaded blocks are gent.

Example 3.9 Transpoce 2 matr. To do =0, we create o datatype that describes
the matroc layout in row-major order; we zend the matroc with thi= datatype and
receive the matrix in natural, cclumn-major order.

REAL a(100,100), w{100,100)

INTEGER row, Ipose, sizecfreal, myrank, ierr

INTEGER statns (MPI_STATUS_SIZE)

c transpose matrir a inte b
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MFI_TYFE_EXTENT(MFI_REAL, sizeofreal, ierT)

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 113

c creats datatype for one row
C {vector with 100 real entriez and stride 100}
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, Tow, ierr)

c create datatype for matriz in rew-major order

L]

fone hundred copies of the row datatype, strided one word
c apart; the snccessive Tow datatypes are interleaved)
CALL MPI_TYPE_HVECTOR(100, 1, sizeofreal, row, Ipose, ierr)

CALL MPI_TYFE_COMMIT(xpome, ierT)

c gend matrir in roew-majer order and receive in colmmn majer order
CALL MPI_SENDRECY(a, 1, xpose, myrank, 0, b, 100%100,
WMPI_REAL, myrank, O, MFI_COMM_WORLD, statns, ierr)

Examplc 3.10 Each entry m the array particle is a structure which contains several
fields. Ome of this fields consistz of six coordinates (location and welocity}. Cme
needs to extract the first three {location) coordinates of all particles and send them
in one message. The relative displacement between successive tripkts of coordinates
may not be a multiple of sizeef{double); therefore, the Hvector datatype constructor
1= used.
gtrnct Partstrmct

{

char class; /% particle class =/

denble d[8]; /+ particle coordinates =/

char ®[7]; /% some additicmal infermation */

};
strnct Partstrmct particle [1000] ;
int i, dest, rank;
MFI_Comm COMmm;

MFI_Datatype Locationtype; J» datatype for leocations */

MPI_Type_hvector{1000, 3, sizeof(Partstrnct),
MPI_DOUBLE, Elocationtype);
MPI_Type_connit(ELocationtype);

MPI_Send{particlelo].d, 1, Locationtype, dest, tag, comm);

114 ﬂ}.lath:r 3

3.3.4 Indexed

The Indexed constructor allows one to specify 2 noncontiguous data layout where
dizplacrements between successive blocks need not be egqual. This allows cne to
gather arbitrary entries from an array and zend them in one message, or receive
cne message and scatter the received entries into arbitrary Jocations in an array.

MPLTYPE_INDEXED{ccunt, arrayof blecklengths, array_of displacements, oldtype,
newtype)

IN count ownber of blocks

IN array_of_blocklengths ownber of clancoly per blodk

IN array_of displacements dizplaccincol for cach blodk, mcaxurcd
ay nwmber of clancoly

IM oldtype old dalalype

ouT newty pe oew dalalype

int MPI Type indexred(int comnt, int sarray of blocklengths,
int ®arrayef displacements, MPI Datatypa oldtypa,
MPI Datatype *newtype)

MPI_TYPE_TNDEXED (COUNT, ARRAY OF BLOCKLENGTHS, ARRAY _OF DISPLACEMENTS,
OLDTYPE, NEVWTYFE, IERROR)
INTEGER COUNT, ARRAY OF BLOCKLENGTHS(#),
ARRAY OF DISPLACEMENTS (#Y, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_IMNDEXED allows replication of an cld datatype mio a sequence of
Hodks {each block & a concatenation of the old datatype}, where each block can
contain a different number of copies of oldiype and have a different diplacement.
Al block dizsplacements are measured in unit= of the oldtype extent. The action of
the Indexed constructor i= represented schematically in Figure 3.6.

Example 3.11 Let oldtype have type map

{{deuble, 0}, {char, 8},
with extent 18. Let B =(3, 1} and let D = {4, Q). A call to MPLTYPEINDEXED({2,
B, D, cldiype, newtype) returns a datatype with type map

{(double, 84}, (char, 72}, {double, 80}, {char, 88}, (double, 6}, (char, 104},

{double, 0}, {char, 8} .

—

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 115

oldiype

counl= 3, blocklengih = (2,31}, dizplacemeanl = (0,3 21

newlype

Figure 3.5
Datatype congtructer MPILTYPE_INDEXED.

Thai iz, three copies of the cld type stariimg at displacement 4 = 16 = 4, and cne
copy starting at displacement (.

In general, assume that oldtype hasz type map

{[in'ED:disFﬂ} 'ERRY! [tw}'ﬂn—lsdisﬁa—l}]':

with extent er. Let B be the array_of blocklengths argument and D be the array_of-
count—1 B[]

=0

displacermnents argument. The new datatype has a type map mith =3
ent ries:

{{#ypec, dispo+ D[0]- ez}, .. ., (ypen_ ., disp, _, + D[0]-ez),. ..,
(t4peo, dispo + (D[0] + BIO] - 1} - ea), ...,

(t4Pen—1, dispas + (D[O] + B[O] - 1} -ex),...,

(typeo , dispo + Dlcount — 1] - ex}, ..., {typen—1 , dispu_1 + Dlcount — 1] -ez), ...,
(tapeo , dispo + (Dcount — 1] + Blcount — 1] — 1} -ez}, ...,

{typen 1, dispr— 1 + (D[count — 1] + Bleount — 1] — 1} - ez} I

A call to MPLTYPEVECTOR([ceunt, blecklength, stride, cldtype, newtype) is
equivalent to a call to MPLTYPEINDEXED({count, B, D, eldiype, newtype) where

Ojl=j strde, j =10,...,count — 1,

116 ﬂ}.lath:r 3

and
B[j] = blocklength, j =10,...,count — 1.

The use of the MPILTYPE_INDEXED function was lllustrated in Example 3.1, on
page 102; the function was vsed to transfer the upper triangular part of 2 square
matrix.

3.3.5 Hindcxed

A= with the Vector and Hvector constructors, it is usually convenient to measure
dizplacements in multiples of the extent of the oldiype, but sometimes necessary
to allow for arbitrary dplacements. The Hindexed constructor satisfies the later
need.

MPLTYPE_HINDEXED(ecunt, array of blocklengthe, array_of displacernents, oldtype,
newtype)

IN count ouwaber of blocky

IN arra}r_nf_blncklengths number of clancoly per block
IN array_of displacements byle displacemenl for cach blodk
IN oldtype old dalalype

ouUT newnrty pe new dalalype

int MPI Type hindexed(int count, int *arTay_of blocklengths,
MPI Lint sarray of dizplacements, MPI Datatypa oldtyps,
MFI Datatypa snewtypa)

MPI_TYPE HINDEXED {COUNT, ARRAY OF ELOCKLENGTHS,
ARRAY [F DISPLACEMENTS, OLDTYPE, NEVWTYPE, IERROR}
INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*),
ARRAY OF DISPLACEMENTS (%Y, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_HINDEXED iz identical to MPI_TYPEINDEXED, except that block
dizplacements in array_of displacements are specified in bytes, rather than in mulii-
Fles of the oldtype extent. The action of the Hindexed constructor & reprezented
schematically m Figure 3.7.

—

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 117

oldtype

count = 3, blocklenpth = (2.3,1%, displ acement = (0,7 1)

newiype

Figure 3.7
Dataty e congtruectar MPI_TYPE_HINDEXED.

Example 3.12 We uze the same arguments a5 for MPLTYPE_INDEXED, in Exam-
ple 3.11. Thus, cldtype has type map, {{double, 0}, (char, 51}, with extent 18 B =
{3, 1}, and D = {4, 0}. A call to MPLLTYPE_HINDEXED(2, B, D, cldtype, newtype)
returns a datatype with type map

{{deuble, 4}, {char, 12}, {deuble, 20}, {char, 28}, (double, 38}, (char, 44},

{deuble, 0, {char, 81}.

The partial overlap between the entries of type DOUBLE mmplies that a type
matching error will occur if thiz datatype is used in 2 send operation. To get the
same datatype as in Example 3.11, the call would have D = (64, 7.

In general, assume that oldtype has type map

{[in‘ED:disFﬂ} IERES! [tﬂ?'en—lsdisﬁi—l}]':

with extent exr. Let B be the array_of blocklength argument and O be the array_of-
«displacerments argument. The new datatype hasc a type map with «. Zf:g"t_l B[]
ent ries:

{[iy?aﬂ!disi}ﬂ—l' D[ﬂ]}, LR [t]ﬂmn—l !diSPn—l + D[U]},- gy
{typeo, dispe + D0] + (B[] — 1} - ez}, ...,
[twra—lsdisi}ra—l+ D[U]"' [B[U] - 1} 'EI},- ey

(typeg, dispg + Dleount — 1]},.. ., (typen_1, disp, 1 + Dlecunt — 1},.. .,

118 ﬂ}.lath:r 3

{typeg, dizpe + Dlcount — 1] 4 (Bleeunt — 1] — 1} -e£},.. .,

(typen—1,dispu—1+ Dleount — 1] + {Blecunt — 1] — 1} - ex} .

3368 Struct

MPLTYPESTRUCT (ecunt, array_of blocklengthe, array_of displacermnents, array of types,
newtype)

IM count oumber of blocks

IM arra}r_nf_blncklengths number of clancoly per block
IN array_of displacements byle displacemenl for cach blodk
IN array_of types Lype of demncoly in cach blodk
ouT newnrty pe new dalalype

int MPI Typestruct{int comnt, int *array_of blocklengths,
MPI Lint sarray of displacements,
MFI Datatype sarray.of types, NFI Datatype snewtype)

MPI_TYPE STRUCT(COUNT, ARRAY OF ELOCKLENGTHS, ARRAY OF DISPLACEMENTS,
ARRAY OF TYPES, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY OF BLOCKLENGTHS(#),
ARRAY OF DISPLACEMENTS (%Y, ARRAY OF TYPES(#), NEVWTYPE, IERROR

MPI_TYPE STRUCT % the mcet general type constructer. It further generalizes
MPLTYPE_HINDEXED in that it allows each block to consist of replications of
different datatypes. The intent iz to allow descriptions of arrays of structures, a= a
single datatype. The action of the Struct constructor is represented schematically
in Figure 3.5.

—

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 115

oldtypez

count = 3, blocklenpth = (2,240, displacerment = (0,7,14)

newtype

Figure 3.5
Dataty pe canetructar MPILTYPESTRUCT.

Example 3.13 Let typel have type map

{{deuble, 0}, (char, §}1,
with extent 16. Let B = (2, 1, 3}, D = [0, 16, 26}, and T = [MPLFLOAT, typel,
MPI_CHAR). Then a call to MPITYPESTRUCT(3, B, D, T, newlype] returns a
datatype with type map

{(fleat, O}, (fleat, 4}, (double, 18}, {char, 24}, (char, 26], {char, 27}, (char, 28}].

That is, two copies of MPIFLOAT starting at 0, followed by one copy of typel
starting at 16§, followed by three copies of MPILCHAR, starting at 26. (We assume
that a float occupies four bytes.)

In general, let T be the array_of types argument, where T[1] is 2 handle to,

typernap; = { (typeo, dispe), - . -, (tyPen; -1, Fsph, 1)1,

with extent ez;. Let B be the array of blocklength argument and D be the ar-
ray of_displacements argument. Let ¢ be the count argument. Then the new datatype
has a type map with Z::: B[i] - =; entries:

{[in‘Eg:ding+ D[U]}, SRR [iypeﬂu,disp:i’ + D[U]}, SRR

(typeg, dispg + D]+ (B[0] — 1} - exg),...,

(types,,, disphl, + DO]+ (B[0] — 1} - ez},,

(typeg ' dispg " +Dlc — 1}, .., [typeic _1dispe’ 1 +Dc— 1],...,

{types ', dispg ' +D[c — 1] +(Bfc — 1] - 1} - eze—1},-- -,

120 ﬂ}.lath:r 3

(typeS;" _y, displ! _, +Dle— 1+ (Ble — 1] - 1} -eze1}-

l'l:c_l

A call to MPLTYPE_HINDEXED{count, B, D, cldtype, newtype) i= equivalent to
a call to MPLLTYPESTRUCT{ecunt, B, D, T, newtype), where each entry of T is
equal to oldtype.

Example 3.14 Sending an array of struct ures.
strnct Fartstrmct
{
char class; /% particle class */
double d[8]; /* particle coordinates s/
char ®[%¥]; /% some additicnal information =/

};
strmet Partstrmet particle [1000] ;
int i, dast, rank;
WMPI_Comm COomm;

/% bunild datatype describing structure +/

MPI_Datatyps Particletyps;

MPI_Datatype typel[3] = {MPI_CHAR, MPI_DOUELE, MPI_CHARI;

int blecklen[3] = {1, &, 7};

MPI_iint displ3] = {0, sizecf{donble}, 7+sizeof (domble}};

MPI_Type_struct(3, blocklen, disp, type, EParticlaetypa);
MPI_Tvwpe_comnit(EParticletypa);

/% zend the array */

MPI_Send{particle, 1000, Particletype, dest, tag, comm);

The array disp was initialized assuming that 2 double is double-word aligned. If dou-
ble’s are smgle-word aligned, then digp chould be imtialized to (0, sizeof(int}),
gizeof (int)+8ssizaol (donbla)). We show in Examplk 3.21 on page 128, how to
avoid this machine dependence.

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 121

Examplc 3.15 A more complex example, using the same array of structures as in
Example 3.14: process gerc sends a meseage that consisic of all particles of class
gerc. Process one receives thece particles in contiguous locations.
strnct Partstrmct

{

char «class; /% particle class */

doukle d[8]; /* particle coordinates +/

char ©®[7]; /% some additicnal information %/

};
strnct Partstrmet particla [1000];
int i, j, myrank;
WPI_Statns statns;

MPI_Datatype Particletype;
MPI_Datatype typal3] = {MPI_CHAR, MPI_DOUBLE, MPI_CHAR};

int klecklen[3] = {1, 8, 71;
MPI_hint displ[3] = {0, sizeof{double), ¥ssizeof (double)}, sizeaint;
int base;

MPI_Datatype Zparticles; J/+ datatype describing all particles
with class zerc [needs to be recomputed
if classes change) =/

MFI_Aiint *zdigp;

int ¥zhlocklen;

MPI_Type_struct(3, blocklen, disp, type, EParticletypa);
MPI_Comm_rank{comm, Emyrank];

if{myrank = 0} {

/% send massage consisting of all class zerc particles */
/% allocate data structnres for datatype creation =/
MPI_Type_extent(MPI_dint, Esizeaint)
zdigp = (MPI_Rints)nalloc(i000xsizeaint);

zblocklen = (int*lmallec{1000ssizeer (int))

/% compute displacements of class zero particles */

122 ﬂ}.lath:r 3

J=0;
Tor{i=0; 1 < 1000; i+=k)
if (particlelil.clase=0} {

zdispli]l = i;
zblocklen[j] = 1;
J++s

}

/% create datatype for class zero particles =/

MPI_Typa_indexred(j, zblocklen, zdisp, Particletype, EZparticles);
MPI_Typa_commit(EZparticles);

/% send =/

MFI_Send(particle, 1, Zparticles, 1, 0, comm);
j;

else if (myrank — 1}
/% Taceive class zero particles in contignmons locations =/

MPI_recv{particle, 1000, Particletyps, 0, O,
comm, Estatms);

Example 3.16 An optimzation for the last example: rather than handling each
class zero particle as a separate block, it i= more efficient to campute largest conszecu-
tive blocks of class zero particles and usze these blocks in the call to MP L Type.indexed.
The modified loop that computes zblock and adisp 1= shown below,

J=0;
for (i=D; i < 1000; i++)
if {particleli]l.class=—0) {
for (k=i+1; (k < 1000)Ekk(particlelk].class =— 0} ; k++);
zdisplj]l = i;
zblocklenl[j] = k=i;
J+*s

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 123

MPI_Tvpe_indexed(j, zblocklen, zdisp, Particletypa, EZparticles);

3.4 TUse of Derived Datatypes

3.41 Commit

A derived datatype must be committed before it can be uszed in a communication.
A committed datatype can continue to be used a& an input argument in dataiype
constructors (so that other datatypes can be derived from the committed datatype).
There is no need to commit primitive datatypes.

MPLTYPE_.COMMIT(datatype}
INOUT datatype dalaly pe Lhal i» Lo be comunilled

int MPI Typeconnit(MPI Datatype *datatype)

MPI_TYPE COMMIT(DATATYFE, IERROR)
INTEGER DATATYPE, IERROR

MPI.TYPE_COMMIT commits the datatype. Clommit chould be thought of 2z a
possiblke flattening” or “compilation™ of the formal description of 2 type map into
an efficient reprezentation. Commit does not imply that the datatype i= bound to
the current content of a communication buffer. After a datatype has been comimit-
ted, it can be repeatedly reused to communicate different data.

Advice {o implemeniors, The systemn may “compile” at commit time an internal
reprezentation for the datatype that facilitates communication. {End of advice o
implementors.)

3.4.2 Deallocation
A datatype object i= deallocated by a call io MPI_TYPE_FREE.

124 ﬂ}.lath:r 3

MPLTYPE_FREE{datatype)
INOUT datatype dalaly pe Lo be [med

int MPITypafree(MPI Datatype wdatatypel

MPI_TYPE FREE({DATATYPE, IERROR)
INTEGER DATATYFE, IERROR

MPI_TYPE_FREE marks the datatype object ascociated with datatype for deal
location and zets datatype to MPIDATATYPEMULL. Any commumication that is
currently using thi datatype will complete normally. Derived datatypes that were
defined from the freed datatype are not affected.

Advice to implementors. An implement ation may keep o reference count of active
communications that use the datatype, in corder to decide when to free it. Al=o,
cne may implement constructors of derived datatypes =o that they keep pomters
to their datatype arguments, rather then copying them. In thi= caze, one needs to
keep track of active datatype definition references in order to Jmow when adataiype
cbject can be freed. {End of aduice to implementors.)

Example 3.17 The following code fragment gives examples of using MPLTYPE-
COMMIT and MPI_TYPE_FREE.
INTECER typel, type2
CALL MPI_TYPE_CONTICUOUS(E, MPI_REAL, typel, ierr)

| new type object created
CALL MPI_TYFE_COMMIT(typei, ierr)

| now typel can be nsed for commonicaticon
typeZ = typal

| typeZ can b nsed for commonication

| {it i® a handle to same ohject as typei}
CALL MPI_TYPE_VECTOR(2, 5, &, MPI_REAL, typal, iarr)

| new mncommitted type object creatad
CALL MPI_TYPE_COMMIT(typel, ierr)

| now typel can be nsed anew for commmnication
CALL MPI_TYFE_FREE(type2, ierr)

| fres beforsa ocverwurite handle
typel = typal

| type2 can be nEed for commmnication
CALL MPI_TYFE_FREE({typeZ, ierr)

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 125

| both typel and typeZ? are nnavailable; typeZ
| has valne MPI_DATATYFE_NULL and typel is
| mndafined

3.4.3 Rclation to count

A call of the form MPISEND{buf, count, datatype , ...}, where count = 1, is
interpreted a= if the call was pasced 2 new dataiype which iz the concatenation of
count copies of datatype. Thus, MPI.SEND{buf, count, datatype, dest, tag, comm)

15 equivalent io,

MPI_TYPE_CONTIGUOUS(count, datatyps, newbypal
MPI_TYPE_COMMIT{newtype)
MPI_SEND(buf, 1, newtype, dest, tag, comm).

Similar statements apply to all cther communication functions that have 2 count
and datatype argument.

3.44 Typc Matching

Suppose that a zend operation MPLSEND{buf, ccunt, datatype, dest, tag, comm] is
executed, where datatype has type map

“twmﬂsdisl}ﬂ}: (REY [tyP‘En—lsdiSEa—l}]':
and extent extent. The send operation sends # -count entries, where entry (4, §} is at
location eddr; ; = buf +extent -i4disp; and has type fype;, fori=10,...,comt -1
and § =0,...,2— 1. The variable sicred at address addr; ; in the calling program
ghould be of a type that matches #ype;, where type matching iz defined as in
Secticm 2.3.1.

Similarly, suppose that areceive operation MPI_LRECV(buf, count, datatype, scurce,
tag, comm, status) is executed. The receive operation receives up to & -count entries,
where entry (i, j] & at location buf + extent . i + disp; and has type type;. Type
matching iz defined according to the type signature of the corresponding datatypes,
that iz, the sequence of primitive type components. Type matching does not de-
pend on other aspect= of the datatype definition, such a= the displacements [layout
in memory) or the intermediate types used to define the datatypes.

For sends, a datatype may specify overlapping entries. Thi is not true for re-
ceives. If the datatype uzed in a recefve operation specifies overlapping entries then
the call iz erroneous.

Examplc 3.18 Thi example shows that type matching 3= defined only in terms
of the primiiive types that constitute 2 derived type.

126 ﬂ}.lath:r 3

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, typeZ, ...)
CALL MPI_TYPE_CONTIGUOUS(&, MPI_REAL, typed, ...)
CALL MPI_TYPE_CONTIGUOUS(2, type2, type22, ...J

CALL MPI_SEND(a, &, MPI_REAL,
CALL MPI_SEND{ a, 2, type2, ...}
CALL MFI_SEND{ a, 1, type22, ...J
CALL MFI_SEND{ a, 1, typed, ...J

CALL MPI_RECY{ a, &4, MPI_REAL, ...)}
CALL MPI_RECY{ a, 2, typeZ2, ...}
CALL MPI_RECY({ a, 1, type22, ...}
CALL MFI_RECY{ a, 1, typed, ...J

Each of the sends matches any of the receives.

3.45 Mocssage Length

H 2 message was recelved using a user-defined datatype, then a subsequent call to
MPILGET_COUNT[status, datatype, count} {(Section 2.2.8} will return the number
of “copies” of datatype received {count}. That is, if the receive operation was
MPI_LRECV(buff, count datatype,...) then MPILGET_CQUNT may return any integer
value &, where) < k < count. If MPLGET_CQUNT returns &, then the number of
primitive elements received is 7 - &, where ¢ 15 the number of primitive elements in
the type map of datatype. The received message need not fill an integral number of
“copies” of datatype. If the number of prirmitive elements received is not a multiple
of 7, that is, if the receive operation has not received an miegral number of datatype
“copies,” then MPI.GET_CQUMNT returns the value MPI_UNDEFINED.

The function MPILGET_ELEMENTS below can be used to determine the number

of primiiive elements received.

MPLGET_ELEMENTS(status, datatype, count}

IN statue slalm of roocive
IN datatype dalaly pe wed by recdve operalion
ouUT count ownber of primilive cemeuly reccived

int MPIGetelenents{MPI Statns *statns, MPI Datatype datatype,

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 12r¥

int *comnt)

MPI_GET ELEMENTS (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

Example 3.19 Usage of MPLGET_COUNT and MPLGET_ELEMENT.

CALL MPI_TYFE_CONTIGUOUS(Z, MPI_REAL, TypeZ, ierr)
CALL MFI_TYFE_COMMIT(TypeZ, ierr)

CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN
CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierT)
CALL MPI_SEND(a, 3, MPI_REAL, 1, 1, comm, ierT)
ELEE
CALL MPI_RECY(a, 2, TypeZ2, O, 0, comm, stat, ierr)
CALL MFI_GET_COUNT{stat, TypeZ, i, ierr) | retnrns i=1
CALL MPI_CET_ELEMENTS(stat, Type2, i, ierr) | retmrns i=2
CALL MPI_RECY(a, 2, Type2, O, 1, comm, stat, ierr)
CALL MPI_CET_COUNT(stat, Type2, i, ierr)
| retorns i=MFI_UNDEFINED
CALL MFI_GET_ELEMENTS(stat, TypeZ, i, ierr) | retorns i=3
END IF

The function MPILGET_ELEMENTS can also be used afier a probe to find the
nunber of primitive datatype elements in the probed meszage. Note that the
two functions MPLGET_COUNT and MPLGET_ELEMENTS return the same val-
ues when they are uzed with primitive datatypes.

Rationale. The definition of MPILGET_COUNT & consitent with the use of the
count argument in the receive call: the function returns the value of the count
argument, when the receive buffer iz filled. Sometimes datatype reprezents a basic
unit of daia one wants to transfer. One should be able to find cut how many
components were received without bothering to divide by the number of elements
in each component. The MPILGET_COUNT iz used in such cases. However, on
ot her occasions, datatype is vsed to define a complex layout of data in the receiver
memory, and does not represent a basic unit of data for transfers. In such cases,
one must use MPIGET_ELEMENTS. (End of rationale.)

128 ﬂ}.lath:r 3

Advice to implementors, Structures often contam padding space uszed to align
entries correcily. Assume that data 3= moved from a send buffer that describes
a structure into a receive buffer thai describes an identical struciure on ancther
procezs. In such acaze, it iz probably advantageous to copy the structure, together
with the paddimg, 2= one contiguous Block. The uszer can “force” thi= optimization
by explicitly including padding as part of the meszage. The implementation i free
to do this optimzation when it does not impact the outcome of the computation.
However, it may be hard to detect when this optimization applies, since data zent
from a siructure may be received into o cet of digjoint variables, Also, padding will
differ when data i= communicated in a heterogenecus envircnment, or even on the
same architecture, when different compiling opticns are used. The MPI-2 forum is
conzidening options to alleviate this problem and support more efficient transfer of
structures. (End of aduice io implementors.)

3.5 Address Function

Az shown in Example 3.14, page 120, one sometimes needs to be able to find the
dizplacement, in bytes, of a structure component relasiive to the structure start.
In {J, one can use the sizeof cperator to find the size of ' objects; and one will
be tempted to use the & operatcr to compute addressez and then displacements.
However, the { standard does not require that {int)éev be the byte address of vari-
able v: the mapping of pointers to integers is implementation dependent. Some
systemns may have “word” pomters and “byte” pointers; other systems may have a
segmented , noncontiguous address space. Therefore, a portable mechanism has to
be provided by MPI to compute the “address" of a vanable. Such a mechamsm is
certainly needed in Fortran, which has no dereferencing operator.

MPILADDRESS (locaticon, address)
IN location variable mprosenling a memory localion
ouT address addrevy of localion

int MPI_Addregs{void* location, MPI_Aint *address)

MPI_ADDRESS (LOCATION, ADDRESS, IERROR)
<type> LOCATION(*}
INTEGER ADDRESS, IERROR

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 125

MPI_ADDRESS iz uzed to find the address of a kocation in memory. It retums
the byie addrecs of location.

Example 3.20 Usmg MPIADDRESS for an array. The value of DIFFP i st to
808+ sizecfTeal, while the values of 11 and IZ are implementation dependent.
REAL A{100,1007
INTEGER I1, IZ, DIFF
CALL MPI_ADDRESS(A({1,1%, I1, IERROR)
CALL MPI_ADDRESZ(A({10,10), I2, IERROR)
DIFF =I2 - IT1

Examplc 3.21 We modify the code m Example 3.14, page 120, =0 as to avoid
architectural dependencies. Calls to MPIADDRESS are used to compute the di
placements of the structure components.
gtrnct Partstrmct

{

char class; /% particle class */

double d[8]; /* particle coordinates +/

char ©®[7]; /% some additicnal information %/

};
strmet Partstrmet particle [1000] ;
int i, dest, Tank;
WMPI_Comm COomm;

MPI_Datatype Particletype;

MPI_Datatype typel[3] = {MPI_cHAR, MPI_DOUELE, MPI_CHAR;
int bBlecklenl[3] = {1, 8, 7};

MPI_iint displ3] ;

/% conpute displacenents */
MPI_Address(particle, Edispl0]);
MFPI_hddress(particlel0].d, kdispl1]};

MPI_nddress(particlel0].b, kdispl2]);

for (i=2; i »=0; i--}
displi] -= displo];

/% build datatype »/

130 ﬂ}.lath:r 3

MPI_Type_struct(3, blocklen, disp, type, EParticletype);
MPI_Tvwpe_comnit(EParticletypa);

/% zend the entire array */

MPI_Send{particle, 1000, Particletype, dest, tag, comm);

Advice to implementors. The abeclute value returmed by MPILADDRESS & not =ig-
nificant; cnly relative displacements, that & differences between addresses of differ-
ent variables, are significant. Therefore, the implementation may pick an arbitrary
“starting point” as Jocation zero in memory. (End of advice io implemeniors.)

3.4 Lower-bound and Upper-bound MMarkers

Sometimes it i= necessary to override the definition of extent given m Section 3.2.

Conzider, for example, the code in Example 3.21 in the previous zection. Assume
that a double occupies & bytes and must be double-word aligned. There will be 7
byiez of padding afier the firct field and one byte of padding after the last field
of the structure Partstruct, and the structure will occupy §4 bytes. If, on the
other hand, & double can be word aligned only, then there will be only 3 bytes of
padding after the first field, and Partstruct will cocupy 60 bytes. The MPI library
will follow the alignment rules uszed on the target systems =0 that the extent of
datatype Particletype equals the amount of storage ocoupied by Partstruct. The
catch & that different alignment rules may be specified, on the same system, using
different compiler opticns. An even more difficult problem iz that some compilers
allow the use of pragmas in order to specify different abgrmment rules for different
structures within the same program. [(Many architectures can correctly handle
mizaligned values, but with lower performance; different alignment rules trade speed
of access for storage density.) The MPI hibrary will assume the default alignment
rules. However, the user should be able to overrule this assumption if structures
are packed otherwie,

To allow thk capability, MPI has two additional *peeudo-datatypes,” MPILE
and MPILUE, that can be used, respectively, to mark the lower bound or the upper
bound of a datatype. These pseudo-datatypes occupy no space (exteri{MPILB} =
extent(MPI_UB} = 0}. They do nct affect the size or count of a datatype, and
do not affect the the content of a message created with thi= dataivpe. However,

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 131

they do change the extent of a datatype and, therefore, affect the cutcome of a
replication of this datatype by 2 datatype constructor.

Example 3.22 Tet D ={-3, 0. 6); T = (MPLLB, MPLINT, MPI.UB}, and B =
{1, 1, 1). Then a call to MPLLTYPESTRUCT(3, B, D, T, typel) creates a new
datatype that has an extent of § (from -3 to 5, § included), and contains an integer
at displacement 0. This datatype has type map: {{lb, -3}, {int, 0}, {ub, &)} . If
this type is replicated twice by a call to MPLLTYPE_CONTIGUQUS{2, typel, type2)
then type2 has type map: {[Ib, -3}, {int, 0], {int,§], {ub, 10}] . {An eniry of type b
can be deleted if there i= another entry of type |b at a lower address; and an entry
of type ub can be deleted if there iz another entry of type ub at a higher address.}

In general, if

Typemap = {[typeﬂ:disi}ﬂ}: ey ﬁmra—lsdi'g?n— 1}]’:

then the lower bound of Typemap i defined o be
[min; disp; if no entry has basic type |b
W (Typemap) = { miny{disp; such that #ype; — b} otherwise
Similazly, the npper bound of Typeinaep = defined io be
_ | max; disp; +sizeofitype;)+ € ff no entry has basic type ub
ub{Typemap) = { maxy {disp; such that type; = ub]l otherwize
And
extent (Typemap) = wb(Typemap) — W({Typemagp)
If type; requires alignment to a byie address that 1= 2 muliiple of k;, then ¢ iz the
least nonnegative increment needed to round extent(Typemap) to the next multiple

of max; k;. The formal definitions given for the various datatype constructors con-
tinue to apply, with the amended defimition of extent. Also, MPI.TYPEEXTENT
returns the above as jts value for extent.

Examplc 3.23 We modify Example 3.21, =0 that the code explicitly zet= the extent
of Particletype to the right value, rather than trusting MP| to compute fills correcily.
gtrnct Partstrmct

{

char class; /% particle class =/

denble d[8]; /+ particle coordinates =/

char ©B[%¥]; /% some additiomal information */

};
strmct Partstrmct particle [1000] ;
int i, dest, rank;

132 ﬂ}.lath:r 3

MFI_<Comm COMmm;

MPI_Datatype Particletyps;

MPI_Datatype typal4] = {MPI_CHAR, MFI_DOUBLE, MPI_CHAR, MPI_UE};
int blocklen[s] = {1, &8, 7, 1};

MPI_Aint displa] ;

/% compute displacenents of structure components */

MPI_nddress(particle, Edisplo]d;
WPI_hddress(particle[0].d, kdispl1]);
MPI_Address{particle[0]. b, Edispl[2]);
MPI_Address(particlel1], Edispl[3]};

for (i=3; i »= 0; i--) displi] -= displol;
/% build datatype for structure =/

MPI_Type_struct(4, blocklen, disp, type, EParticletypa);
MPI_Type_connit(EParticletype);

/% zend the entire array »/

MPI_Send{particle, 1000, Particletype, dest, tag, comm);

The two functions below can be used for finding the lower bound and the upper
bound of a datatype.

MPILTYPE_LB{datatype, displacement)

IM datat}rpe dalaly pe

ouT d'lsplacement disnplaceinenl of lower bowl
int MPI Type lb{MPI Datatype datatype, MPI_Aint+ displacement)

MPI_TYPE LE{DATATYPE, DISFLACEMENT, IERROR)
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI_TYPE_LB returns the lower bound of a datatype, in bytes, relative to the
datatype onigin.

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 133

MPLTYPE_UB({datatype, displacement)

IN datatype dalaly pe
ouT dis pl acement displacemncnl of upper bownd

int MPI Typenb{MPI Datatvpe datatypa, MPI_Aints displacement)

MPI_TYPE UE{DATATYPE, DISPLACEMENT, IERROR}
INTEGER DATATYPE, DISPLACEMENT, IERROR

MPI_TYPE_UB reiurns the upper bound of 2 datatype, in bytes, relative to the
datatype origin.

3.7 Ahszolnte Addresces

Conzider Example 3.21 on page 129. {One computes the “abeclute address" of the
structure compeonents, using calls to MPLLADDRESS, then subiracts the starting
addrezs of the array to compute relative displacements. When the send operation
1z executed, the starting address of the array & added back, in order to compute the
send buffer location. These superfluous arithmetics could be avoided if “abeclute”
addresses were used in the derived datatype, and “address zero” was pasced a= the
buffer argument in the send call.

MPIl supports the uze of such “absclute” addresces in denived datatypes. The di=-
Placement arguments used in datatype constructors can be “abeclute addreszes",
1&., addresses returned by calls to MPI_ADDRESS. Addrese zerc 1= mdicated to
communication functions by passing the constant MPLBOTTAOM as the buffer argu-
ment. Unlike derived datatypes with relative displacements, the uze of “abeclute”
addrezze= restricts the uze to the speafic structure for which it was created.

Example 3.24 The code in Exampk 3.21 on page 128 i modified to use absclute
addrezzes, rather than relative dizplarements.
strnct Partstrmct
{
char «class; /% particle class */
denble d[8]; /+ particle coordinates =/
char ®[7]; /% some additional infermation %/
}s
strnct Partstract particle [1000] ;
int i, dast, rank;

134 ﬂ}.lath:r 3

MFI_<Comm COMmm;
/% build datatype describing structure =/

MPI_Datatype Particletypa;

MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUELE, MPI_CHARI;
int blecklenl[3] = {1, 8, 7};

MPI_iint displ3] ;

/% compute addressas of comnponents in 15t strnctures/

MPI_Address(particle, disp);
MPI_iddress(particle[0].d, disp+i);
MPI_Address(particlel0].b, disp+2);

/% build datatype for ist strmcture =/

MPI_Type_struct(3, blocklen, disp, type, EParticletypa);
MPI_Type_connit(EParticletype);

/% zend the entire array »/

MPI_Send {MPI_BOTTOM, 1000, Particlatype, dest, tag, comm);

Advice to implementors. Omn systems with a flat address space, the implemen-
tation may pick an arbitrary addrese a= the value of MPIBOTTOM in O (or the
address of the variable MPILBOTTOM m Foriran). All that & needed is that calls
to MPI_LADDRESS{loeation, address) return the displacement of locatien, relative to
MPILBOTTOM. (End of advice io implementors.)

The use of addresses and displacements in MPIl & best understood m the context
of a flat addresz space. Then, the “address” of a location, a= computed by calk to
MPILADDRESS can ke the regular address of that location {or a shift of it}, and
integer arthmetic on MPI *addresses” yields the expected resuli. However, the uze
of a flat address space i= not mandated by C or Fortran. Anciher potential source
of problems i that Fortran INTEGER's may be too short to store full addreszes.

Varables belong to the same sequential storapge f they belong to the zame
array, to the same COMMON block i Foriran, or to the same structure in O,
Implementations may resirict the use of addresses =0 that arsthmetic on addreszes

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 1358

15 confined within sequential storage. Namely, in a communication call, either

The comimunication buffer specified by the buff, count and datarype arguments iz all
withmn the same sequential storage.

The initial buffer address argument buff iz equal to MPIEGTTOM, count=1 and all
addrezze= in the type map of datatype are abeclute addresses of the form v+, where
v iz an absclute address computed by MPILADDR, | is an integer displacement, and

v+ iz in the same sequential storage a= v.

Advice to users. Current MPlimplementations impose no restrictions on the use of
addresses. If Fortran INTEGER's have 32 bits, then the the use of absclute addresces
in Fortran programs may be restricted to 4 (3B memory. Thiz may require, in the
future, to move from INTEGER addresses to INTEGER*S addresses. (End of advice
o tsers.)

3.8 Pack and Unpack

Some exkting communication libraries, such 3 PVM and Parmacs, provide pack
and unpack functions for sending noncontiguous data. In these, the application
explictly packs data into & contiguous buffer before sending it, and vnpacks it from
a contiguous buffer after receiving 1t. Drerived dat atypes, described in the previous
sections of thiz chapter, allow cne, In most caszes, to avoid explicit packing and
unpacking. The application specifies the layout of the data to be sent or received,
and MPI directly accesses a noncontiguous buffer when derived datatypes are used.
The pack/unpack routines are provided for compatibility with previous libraries.
Ake, they provide some functicnabty that iz not otherwize available m MPI. For
instance, a message can be received in several parts, where the receive operation
done on a later part may depend on the content of a former part. Ancther use is
that the availabibity of pack and unpack cperations facilitates the development of
additional commumnication libraries layered on top of MPL.

136 ﬂ}.lath:r 3

MPI_PACK[inbuf, incecunt, datatype, cutbuf, cutsize, pesition, comm)

IN inbuf wpul buller

IN incount ownber of lopul conpoocoly

IN datatype dalaly pe of cach lopul compooecnl
ouT outbuf oulpul. buller

IN cutsize oculpul. buller sive, in byloy
INOUT position currcul posilion o bufler, o byl
IN cornm comununicalor for packed ncysage

int MPIPack{void* inbuf, int inceunt, MPI Datatype datatype,
void =omtbuf, int cntzize, int *positiem,
MPI Comm comm)

MPI_PACK(INEUF, INCOUNT, DATATYPE, OUTEUF, OUTSIZE, POSITION, COMM,
IERROR)
<typa> INEUF(*), OUTEUF(*)
INTEGER INCOUNT, DATATYPE, QUTSIZE, POSITION, COMM, IERROR

MPI_PACK packs a message specified by inbuf, incount, datatype, comm into the
buffer spare speafied by outbuf and cutsize. The input buffer can be any communi-
cation buffer allowed in MP1 SEND. The output buffer i= & contiguons storage area
containing outsize bytes, starting at the addrese outbuf.

The input value of pesition 1= the first position in the cutput buffer to be uszed for
packang. The argument pesition & incremented by the size of the packed message =c
that it can be uzed as input to a subsequent call to MPI_PACK. The comm argument
15 the communicator that will be subsequently used for sending the packed message.

MPLLUNPACK(inbuf, insize, pesition, eutbuf, cutccunt, datatype, comm)

IN inbuf wpul buller

IN insize sive of lnpul buller, o bylo

INOUT position currcal posilion o byl

ouT outbuf oulpul. buller

IN cutcount ownber of componecnls Lo be unpadked
IN datatype dalaly pe of cach oulpul conponcol
IN cornm comununicalor for packed ncysage

int MPIImpack{void* inbuf, int insize, int *position, veid soutbuf,
int omtcomnt, MPI Datatype datatype, MPI Comm comm)

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 13r

MPI_UNPACK(INEUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE,
COMM, IERROR)
<typa> INEUF(*), OUTEUF(*)
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

MPI_UNPACK unpacks a message into the receive buffer specified by cutbuf, cut-
count, datatype from the buffer space specified by inbuf and insize. The output buffer
can be any communication buffer allowed in MPI_RECY. The input buffer iz a con-
tiguous storage area containing ingize bytes, starting at address inbuf. The input
value of pezition i= the position in the input buffer where one wizhes the unpacking
to begin. The output value of position i= incremented by the swe of the packed
message, =0 that 1t can be uszed as= input to a subsequent call to MPILUNPACK. The
argument comm was the communicator used to receive the packed message.

Rationale. The Pack and Unpack calls have a communicator argument in crder
to facilitate data conversion at the source in a heterogeneous envircnment. E.g.,
thiz will allow for an implementation that uses the XDR format for packed data
in & heterogenecus communication domain, and performs no data conversion if
the communication domain & homogeneous. If no communicator was provided , the
implementation would always use XDR. If the destination was provided, in addition
to the communicator, then one would be able to format the pack buffer specifically
for that destination. But, then, one kozes the ability to pack a buffer once and send
it to multiple destinations. {End of rationae.)

Advice to users. Note the difference between MPI_RECY and MPIUNPACK: in
MPLRECY, the count argument specifies the maxamum mumber of components that
can be receved. In MPILUNPACK, the count argument specifles the actual number
of components that are unpacked; The reazon for that change i that, for a regular
receive, the incoming message sige determines the number of components that will
be received. With MPLUNPACK, it iz up to the user to specify how many compo-
nents he or she wants to unpack, since one may want to unpack only part of the
message. (End of aduice io users.)

The MPI_LPACK /M PIUNPACK callz relate to mescage pascing as the sprintf fsscanf
callz in O relate to file I/}, or internal Fortran file= relate to external units. Basi-
cally, the MPI_PACK function allows one to “send” a message mto 2 memory buffer;
the MPILUNPACK function allows one to “receive” a message from a memory buffer.

Several communication buffers can be succeszively packed into cne packing unit.
Thie iz effected by zeveral, successive related calls to MPILPACK, where the first

138 ﬂ}.lath:r 3

call provides position = 0, and each successive call inputs the value of pesition that
was output by the previous call, and the same values for outbuf, outcount and comm.
Thi paddng unit now contains the equivalent information that would have been
stored in o meszage by one send call with a send buffer that iz the “concatenation™
of the individual send buffers.

A paddng unit must be sent using type MPIFPACKED. Any point-to-point orx
collective communication function can be used. The message =ent 1= identical to
the meszage that would be zsent by a zend operation with 2 datatype argument
dezcribing the concatenation of the send buffer{s} used in the Pack calk. The
message can be received with any daiatype that maiches thiz zend datatype.

Example 3.25 The following two programs generate identical messages.
Derived dat atype 1= uzed:

int 1i;

char c[100];

int displ2];

int Blecklenl2] = {1, 100}

MPI_Datatype typa[2] = {MPI_INT, MPI_CHAR};
WPI_Datatyps Typa;

/% create datatype */

WPI_hddress(ki, kdisp[0]);

MPI_nddress(c, Edispl[1]3;

MPI_Tvpe_struct(2, blocklen, disp, type, ETypel;
MPI_Type_commit (ETypa);

A% zend =/

MPI_Send (MPI_EBOTTOM, 1, Type, 1, O, MPI_COMM_VORLD);
Packing 1= uzed:

int 1i;

char e[100];

char boffer[i110];
int position = O;

iw pack =/
MPI_Pack(ki, 1, MPI_INT, buffer, 110,kposition, MPI_COMM_WORLD);

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 135

MPI_Pack{c, 100, MPI_CHAR, buffer, 110, Eposition, MPI_COMM_WORLD);

/% zend =/
MPI_Send(buffer, position, MPI_PACKED, 1, 0, MPI_COMM_VORLD);

Any meszage can be received in a point-to-point or collective communication
ucing the type MFIPACKED. Such 2 mecage can then be unpacked by calls to
MPLUMPACK. The mezzage can be unpacked by several, successive calls: to MPL
-UNPACK, where the first call provides position = (), and each successive call inputs
the value of position that was cutput by the previous call, and the same values for

inbuf, insize and comm.

Example 3.26 Any of the following two programs can be used to receive the
message sent in Example 3.25. The outcome will be identical.
Dernved datatype iz uszed:
int 1i;
char <[100];

MFI_statne statns;

int displ2];

int bBlecklen[2] = {1, 100}

MPI_Datatype typal2] = {MPI_INT, MPI_CHAR};
MPI_Datatype Typa;

/% create datatypa s/

MPI_lddress(ki, Edisp[0]);

MPI_Address(c, Edispl1]};

MPI_Type_struct(2, blocklen, disp, type, EType);
MPI_Type_comnit (EType);

f* Tecaiva x/

MPI_Recv(MPI_BOTTCM, 1, Type, O, O, MPI_COMM_WORLD, Estatns);
Unpacking i= uzed:

int 1i;

char c[100];

140 ﬂ}.lath:r 3

MFI_Statns statuns;

char bnffer[110];
int positien = O;

/% Teceiva »/f
MPI_Recv(buffer, 110, MPI_PACKED, 1, 0, MPI_COMM_WORLD, Estatus);

/% anpack =/
MPI_Unpack(buffer, 110, kposition, ki, 1, MPI_INT, MPI_COMM_WORLD);
MPI_Unpack(buffer, 110, kposition, ¢, 100, MPI_CHAR, MPI_COMM_WORLD);

Advice to veers. A packing unit may contain, in addition to data, metadata. For
example, it may contain in a header, information on the encoding used to reprezent
data; or mformation on the size of the unit for error checlang. Therefore, such a
packang unit has to treated as an “atomic” entity which can only be zent using type
MFPIFACKED. Ome cammot concatenate two such paddng units and zend the result
in one send operation {however, a collective communication operation can be used
to zend multiple pacling units I one operations, to the same extent it can be used
to zend multiple regular messages}. Also, one cannot sphit 2 packing unit and then
unpack the two halves separately (however, a collective communication operation
can be uzed to receive multiple packing units, to the same extent it can be used to
receive multiple regular messages). (End of aduice io users.)

MPI_PACK SIZE{inccunt, datatype, comm, size}

IMN incount counl argumenl Lo packing call

IMN datat}rpe dalalype argunenl Lo packing call

IMN co M comununicalor argumnenl Lo packing call

ouUT gize upper bound oo size of pa.clmrl JLCYEET,
n byles

int MPIPacksizaelint incoont, MPI Datatype datatype, MPIConn comm,
int #siza)

MPI_PACK SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 141

MPI_PACKSIZE allows the application to find out how much space 1= needed
to pack a2 message and, thus, manage space allocation for buffers. The function
returns, in gize, an upper bound on the increment in pesition that would occur in a
call to MPI_PACK with the zame values for incount, datatype, and comm.

Rationale. The MPI_PACKSIZE call returns an upper bound, rather than an exact
bound, since the exact amount of space needed to pack the meszage may depend on
the communication domain {see Chapter 5} (for example, the first meszage packed
in a packing unit may contain additional metadata). {End of retionale.}

Examplc 3.27 We return to the problem of Example 3.15 on page 120. Process
zero sends to process one a message containing all class zero partides. Process
cne recelves and stores these structures in contiguous locations. Process sero uses
callz ic MPI_PACK io gather class gero particles, whereas process cne uses 2 regular
TECEIVE.
gtrnct Partstrmct

{

char class; /% particle class */

double d[8]; /* particle coordinates +/

char ©®[7]; /% some additicnal information %/

};
struct Fartstrmct particle [1000] ;
int i, siza, position, myrank;
int connt; /+ noober of class zero particles */
char wvbuffer; /+ pack buffer +/

MFI_Statns statns;
/% variables nsed to create datatype for particle =/

MPI_Datatype Particletypa;

MPI_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE, MPI_CHARI;

int blecklenl[3] = {1, 8, 7};

MPI_hint disp[3] = {0, sizeof{double), ¥ssizeof (doublae)};

/% define datatype for one particle =/
MPI_Type_structf 3, blocklen, disp, type, EPatticletype);

MPI_Type_conmit{ EParticletypel;
MPI_Conm_rank{comm, Eoyrank);

142 ﬂ}.lath:r 3

if {myrank == 0} {
/% send massage that consists of class zero particlas #*/
/% allocate pack boffer »*/

MPI_Pack_size([1000, Particletype, comm, Esize);
buffer = {char*)malloc(eizeal;

/* pack class zero particlas */

position = 0;
Tor{i=0; i < 1000; i++)
if (particlaeli].class — 0O}
MFI_Pack(kparticlalil, 1, Particletype, buoffar,
siza, Eposition, comm);

/% send */
MPI_Send(buffer, position, MPI_PACKED, 1, O, comn);
1

elga if (myrank — 1) o

/% Teceive class zero particles in contignons locations in
arTay particle +/

MFI_Recv{particle, 1000, Particletype, 0, O, comn, Estatms);
1

Example 3.28 Thk iz a vanant on the previous example, where the cass zero
particks have to be received by process one in array particle at the same locations
where they are in the array of process zero. Process zero padks the entry index with
each entry it zends. Process one uszes this mformation to move meoming data to the
night locations. As a further optimEation, we avoid the transfer of the class field,
which iz Jmown to be zero. {We hawve ignored in thiz example the computation of a
tight bound on the size of the pack/unpack buffer. Ome could be rigorous and define
an additional derived datatype for the purpoze of computing such an estimate. Or

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g

CIe Can use an approximate estimate,)
strnct Fartstrmct
{
char class; /% particla class »/
double d[8]; /# particle coordinates s/
char ®[%¥]; /% some additicnal information =/
};
struct Partstrmct particle [1000] ;

int i, =ize, myrank;

int positien = O;

WPI_Statns statns;

char btoffar [BUPSIZE]; /* pack-unpack buffer =/

/% variables nsed to create datatype for particlae,
not incloding class field =/

MPI_Datatype Particletypa;

MPI_Datatype type[2] = {MPI_DOUELE, MPI_CHAR};
int blocklenl[2] = {8, 7};

MPI_hint displz] = {0, Ossizeof {donbla)l;

/% define datatype =/

MPI_Type_struct(?, blocklen, disp, type, EParticletypa);
MPI_Type_connit(EParticletype);

MPI_Comm_rank(MPI_COMM_WORLD, Emyrank);

if (myrank == 0} {

/% send nessage that consists of class zero particles #/
/% pack class zero particles and their index =/
Tor{i=0; 1 < 1000; i+=k)

if {particleli].class = 0} {
MPI_Pack(ki, i, MPI_INT, buffer, EUFSIZE,

kposition, MPI_COMM_WORLD); /+ pack index =/

143

144 ﬂ}.lath:r 3

MPI_Pack{particlelil.d, 1, Particletype, buffer,
BUFSIZE, Ekposition, MPI_COMM_WORLD); /% pack struct =/
b
/% pack negative inder as end of list matker */

1 ==1;
MPI_Pack(ki, 1, MPI_INT, buffer, BUFSIZE,
Eposition, MPI_COMM_WORLD);

/% zend =/
MPI_Send(buffer, position, MPI_PACKED, 1, O, MPI_COMM_VORLD);
1

else if (oyrank — 1) {
/% Taceive class zero particles at original lecations %/

i Teacaive =/
MPI_Recv(buffer, EUFSIZE, MPI_PACKED, O, ©, MPI_COMM_WORLD, Estatus);

/% mnpack =/
while ({MPI_Unpack{bnffer, BUFSIZE, Eposition, Ei, 1,
MPI_INT, MPI_COMM_WORLD); i) »= 03 { /* nnpack inder =/
MPI_Unpack{bnffer, BUFSIZE, kposition, particle[i].d,
1, Particletype, MPI_COMM_WORLD }; /% mnpack struct */
particleli].class = 0;
1
1

3.8.1 Decrived Datatypes ve Pack/Unpack

A companison between Example 3.15 on page 120 and Exampk 3.27 m the previous
section is instructive.

First, programming convenience. It is somewhat lese tedious to pack the class
gero particles in the loop that locates them, rather then defining in thi oop the
datatype that will later collect them. On the cther hand, it would be very tedious
{and inefficient} to pack separately the components of each structure entry in the
array. Defining a datatype 1= more convenient when thi definition depends= only
on dedarations; packing may be more converdent when the communication buffer

Duer-Drelined DaLa.LJ.'pt:a and Pat;l:lj:g 145

layout i= data dependent.

Second, storage use. The packng code uses at least 53,000 bytes for the pack
buffer, e.g., up to 1000 copies of the structure {1 char, § doubles, and 7 char
is 148 2 647 = 56 bytes). The derived datatype code uses 12,000 bytes for
the three, 1,000 long, integer arrays used to define the derived datatype. It al=c
probably uses a similar amount of storage for the mternal datatype reprezentation.
The difference i= likely to be larger in realistic codes. The usze of packing requires
additional storage for a copy of the data, whereas the use of derived daiatypes
requires additional storage for 2 description of the data layout.

Finally, compute time. The packing code executes a function call for each packed
itemn whereas the derived datatype code executes only a fixed number of function
calls. The packing code i likely to require one additional memeory to memory copy
of the data, as compared to the denved-datatype code. One may expect, on most
implementations, to achieve beiter performance with the derived dataiype code.

Both codes send the came size message, so that there 1 no difference in com-
munication time. However, if the buffer described by the derived datatype is not
contiguous in memory, it may take longer to accese.

Example 3.28 above fllusirates ancother advantage of packfunpack; namely the
receiving process may use information in part of an Incoming message in order to
decide how to handle subzequent daia in the meszage. In order to achieve the same
outcome without padk/unpack, one would have to zend two mescages: the first with
the lit of indices, to be uzed to comsiruct 2 derived datatype that is then uzed to
receive the particle entries zent in a second message.

The use of derived datatypes will ofien lead to improved perdformance: data
copying can be avoided, and information on daia layout can be reused, when the
same communication buffer 1= reuzed. Om the other hand, the definition of derived
datatypes for complex layouts can be more tedicus than explict packdng. Derived
datatypes should be used whenever data layout i= defined by program declaraiions
{eg., structures), or iz regular {e.g., array sections}. Packing might be considered
for complex, dynamic, data-dependent layouts. Packang may result in more efficient
code in situations where the zender has to communicate to the recerver information

that affects the layout of the recerve buffer.

146

ﬂ}.lath:r 3

4 Collective Communieations

4.1 Introdoetion and Overview

Collective communications transmit data among all proceszes in 2 group specified
by an intracommumnicator object. Ome function, the barrier, serves to synchronize
processes without paszsing data. MPI provides the followmg collective commumnica-
tion functions.

» Barrier synchronization acrozs all group members (Section 4.4},
¢ (lobal cormmunication functions, which are illustrated in Figure 4.1. They in-
clude.

—Broadeast from one member to all members of 2 group {(Section 4.5).
—(3ather data from all group members to one member [Section 4.6).
—Scatter data from one member to all members of a group (Section 4.7).

—A vanation on (Jather where all members of the group receive the result [Sec-
tion 4.8}, Thiz is showm as “allgather” in Figure 4.1

—Scatter/{(lather data from all members to all members of a group (also called
complete exchange or all-to-all} {Section 4.8). This iz shown as “alkicall” in
Figure 4.1.

¢ (lobal reduction operations such as sum, max, min, or user-defined functions.
This includes

—Reductiocn where the result is returned to all group members and a variation

where the resuli iz returned to only one member (Section 4.10}.

—A combined redurction and scatter operation (Section 4.10.5).
—Scan across all members of 2 group (also called prefix) (Section 4.11}.

Figure 4.1 gives a pictorial reprezentation of the global commumication functions.
M theze functions {broadeast excepted) come in two variants: the simple vanant,
where all communicated items are messages of the same size, and the “vector”
variant, where each item can be of a different size. In addition, m the simple
varnant, multiple items criginating from the same process or received at the same
process, are contiguous in memory; the vector variant allows to pick the distinct
items from non-contiguous locations.

Some of these functions, such 2z broadeast or gather, have a single origin or a
single receiving process. Such a process iz called the root. {3cobal communicaticn
functions baszically comes in three patterns:

147

148 ﬂ}.lath:r 4

data —=

@ | 2y A

& &

g broadcast d

5 .

| m—

Ao

Ag

Ag| Ay | Azl Az| 4| A5 S Ay

—>

A2

gather Ao

< [

A5
g #g5| Ba| So| Po| Bo| Fo
By *o| Fa| %0 Po| Ba| Fo
Ty allgather a5l Bal SolBgl Eol Fy
By |:> *a| Bo| “o|Po| Ba| Fo
By *o| Fa| %0 Po| Ba| Fo
Fo *5| Ba| ©o|Po| Bo| Fo
Ag| Ay | Azl Az| 4| A5 #g5| Ba| So| Po| Bo| Fo
Byl B1|P2| Ba| B4|Bs alitoall A B 5P B |y
Cg|C1|%2|C3| C4|Fs A2|Bz| Cp|Dp| Bz| P2
AERCREREALEE :> Ao Byl CalDa| Eol Fy
ACACAEACAEE MEACACAE
Fo|Fi|Fz|Fa[Fa|Fs *5| FBs| ©5|Ps| Bs| Fs

Figure 4.1

Clallective move fanetiong illustrated for a group of gir proceases. In each case, each row of baxea
reprecentz data locatiang in one process. Thus, in the brosdosst, initially just the firet process
containg the itess Ap, but after the bromleast all processzes contain it.

Collcclive Comsnunicalion 145

Hoot sends data to all processes (itself included): broadcast and scatter.
oot receives data from all processes (itself included}): gather.

Each process communicates with each process (itself mduded): allgather and all-
toall.

The syntax and semantics of the MPI collective functions was designed to be
consitent with poini-to-point communications. However, to keep the number of
functions and their argument lizts to a reazom able level of complesty, the MPI com-
mittee made collective functions more restrictive than the pomt-to-point functions,
in several ways. One restriction is that, in contrast to pomt-to-point communica-
ticn, the amount of data sent must exactly match the amount of data speafied by
the receiver.

A major simplification is that collective functions come in blocking versions only.
Though =z standing joke ai committee meetings concerned the *non-blocking bar-
rier,” such functions can be quite useful' and may be included in a future versicn
of MPL.

Collective functions do not use a tag argument. Thus, withm each intragroup
communication domain, collective calls are matched strictly according to the order
of execution.

A final simphfication of collect ive functions concerns modes. Collective functions
comie in only one mode, and this mode may be regarded 2= analogous to the standard
mode of point-to-point. Specifically, the semantics are as follows. A collective
function {on a given process} can return as soon as its participation in the overall
communication is complkte. As usual, the completion indicates that the caller is
now free to access and modify locations in the communication buffer(s}. It does
not indicate that other processes have completed, or even started, the operation.
Thus, 2 collective communication may, or may not, have the effect of synchronizing
all calling processes. The barnier, of course, 1= the exception to this statement.

This choice of semantics was made =0 as to allow a vanety of implementaticns.

The uzer of MPl must keep these ksues in mind. For examplk, even though a
particular implementation of MPl may provide 2 broadcast with the side-effect of
synchronigation (the standard allows this), the standard does not reguire this, and
hence, any program that relies on the symchromization will be non-portsble. Om
the other hand, a correct and portable program must allow a collective function to
be synchronizing. Though one should not rely on synchronization side-effects, one
must program so as to allow for it.

LOf couree the non-blocking tarrier would block ab the test-for-completion call.

150 ﬂ}.lath:r 4

Though theze 1ssues and statements may seem unusually obscure, they are merely
a consequence of the desire of MPI to:

allow efficient implementations on a variety of architectures; and,

be clear sbout exactly what is, and what iz not, guaranteed by the standard.

4.2 Operational Details

A collective operation iz executed by having all processes in the group call the
communication routine, with matching arguments. The syntax and semantics of
the ccllective operaticns are defined to be consistent with the syntax and semantics
of the point-to-point operations, Thus, user-defined datatypes are allowed and must
match between sending and receiving processes = specified m Chapter 3. Ome of
the key arguments is an intracommunicator thai defines the group of participating
procesees and provides a communication domain for the operation. In calls where a
root process & defined, scine arguments are specified 2z “zsignificant only at roct,”
and are ignored for all participanis except the root. The reader & referred to
Chapter 2 for information concerning communication buffers and type matching
rules, to Chapter 3 for user-defined dat atypes, and to Chapter 5 for information on
how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than
the corresponding conditions between sender and receiver n point-to-point. Namely,
for collective operaticns, the ameount of data sent must exactly match the amount
of data specfled by the receiver. Dhistmci type mape (the layout in memory, see
Section 3.2} between zender and receiver are still allowed.

Collective communication calls may use the same communicators as point-to-
point communication; MPl guarantees thai messages generated on behalf of collec-
tive communication calls will not be confused with messages generated by point-
to-point communication. A more detailled dEcussion of correct use of collective
routines is found in Secticn 4.13.

Rationafe. The equal-data restriction (on type maiching} waz made =0 as to
avoid the complexdty of providing a facility analogous to the status argument of
MPLRECY for dizcovering the amount of data sent. Some of the collective routines
would require an array of status values. This restriction also simplifies implemen-
tation. (End of miionafe.)

Advice to users. MAs described in Section 4.1, it & dangerous to rely on synchroniza-

Collcclive Comsnunicalion 151

ticn side-effects of the collective operations for program correciness. These izsues
are discusced further in Secticn 4.13. { End of advice to uzers.)

Advice lo implementors. While vendors may write optimied collective routines
matched to their architectures, a complete library of the collective communicaticn
routines can be written entirely usmg the MPl point-to-point cormmunication func-
ticns and a few awaliary functions. If implementing on top of point-to-point, a
hidden, special communicator must be created for the collective operation =o a= to
avoid interference with any on-going point-ic-point communication at the time of

the collectrre call. This i disrussed further in Section 4.13.

Alhough collective communicat ions are described in terms of messages sent directly
from sender{s} to receiver{z}, mnplementations may use a communication pattern
where data 15 forwarded through intermediate nodes. Thus, one could use a loga-
rithmic depth tree to implement broadeast, rather then sending data directly from
the root to each other process. Messages can be formwarded to intermediate nodes
and split {for scatter) or concatenated (for gather). An optimal implementation
of collective communication will take advantage of the specifics of the underlying
communication network (such as support for multicast, which can be uzed for MPI
broadcast), and will uze different algorithms, according to the number of partic-
ipating proceszez and the mmounts of data communicated. See, e.g. [4]. (End of
adtice to implementors.)

4.8 Communicator Argument

The key concept of the collective functions & to have a *group® of participating
processes. The routmes do not have a group identifier as an expliat argument.
Instead, there i= a commumnicator argument. For the purposzes of thi= chapter, a
communicator can be thought of a= a group identifier inked with a communication
domain. An intercormmunicator, that is, 2 communicator that spans two grougs, is
net allowed 2z an argument to a collective function.

152 ﬂ}.lath:r 4

4.4 Barrier Synchronization

MPIBARRIER{ comm)

I oo comununicalor

int MPI Barrier{MPI Comm comm}

MPI_BARRIER{COMM, IERROR)
INTEGER COMM, IERROR

MPI_BARRIER blocks the caller until all group members have called it. The call
returns at any process only after all group members have entered the call

4.5 DBroadeast

MPI_BCAST(buffer, count, datatype, rect, comm)

INGLUT buffer slarlime addrevy of buller
IN count owaber of colrie 1n buller
IMN datat}rpe dala Lype of buller

IMN rooct rank of broadeasl rool

IMN commm coununicalor

int MPI Bcast({void+ boffer, int count, MPI Datatype datatype,
int reet, MPICommn comm

MPI_BCAST(EUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<typa> BUFFER({*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_BCAST broadcasiz 8 message from the process with rank root to all proceszes
of the group. The argument root must have identical values cn all proceszes, and
comm must reprezent the same intragroup communication domain. Om return, the
contents of root’s communication buffer has been copied to all processes.

(leneral, derived datatypes are allowed for datatype. The type signature of count
and datatype on any process must be equal to the type signature of count and
datatype at the root. Thiz implies that the amount of data sent must be equal to

Collcclive Comsnunicalion 153

the amount received, pairwize between each process and the root. MPI.LBCAST and

all other data-movement collective routimes make thi resiriciion. Distinct type
maps between sender and receiver are still allowed.

4.5.1 Example Using MPILBCAST

Examplc 4.1 Broadcast 100 ints from process O to every process in the group.
MPI_Comm comm;
int array[100];
int root=0;

MPI_Ecast{ array, 100, MPI_INT, Toot, comm};

Rationale. MPI does not support a multicast function, where a broadcast executed
by a root can be matched by regular receives at the remaining processes. Such
a function 3= easy to implement if the root directly zends data to each receiving
process. But, then, there iz little to be gained, 2z compared to executing muliiple
send operations. An implementation where processez are used a= intermediate
nodes in a broadeast tree is hard, since only the root executes a call that identfies
the cperation a= a broadeast. In contrast, in a collective call o MPI_BCAST =l
processes are aware that they participate in a broadceast. (End of rationafe.)

154 ﬂ}.lath:r 4

4.8 Gather

MPLGATHER(sendbuf, sendcount, sendtype, recvbuf, reevecunt, reevtype, rect, comm)

IM sendbuf ularling addrevs of send buller

IN sendcount ownber of clancoly in send buller

IN sendtype dala Lype of scod buller clancoly

ouT recwbuf addrevy of recdve buller

IN recvoount ownber of clomcoly for any slogle -
cdre

IN recviype dala Lype of recr buller cloancoly

IN root rank of rooclving procey

IN comm comunuuicalor

int MPIGather{void* sendbuf, int sendcount, MFI Datatype sendtypa,
volide reacvbnf, int recvecemnt, MPI Datatype Tacvtyps,
int roeet, ¥WPILomm comm)

MPI_GATHER(SENDEUF, SENDCOUNT, SENDTYPE, RECVEUF, RECVCOUNT,
RECYTYPE, ROOT, COMM, IERROR)
<typa> SENDEUF({*), RECVEUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM,
IERROR

Each procezss (root process included) zends the contents of its zsend buffer to
the root process. The root process receives the messages and stores them in rank
crder. The outcome 1= as i each of the n proceszez m the group {(including the root
process} had executed a call to MPlSend{sendbuf, sendeount, sendtype, roct, .},
and the root had executed n calls io M Pl_Recv{recvbuf4- -recveount-extent{recviype],
recvcount, recviype, i ..}, where extent{recviype) & the type extent cbtamed from
a call to MPl_Type _extent().

An alermnative description is that the n mescages sent by the proceszez in the
group are concatenated in rank order, and the resulting mescage is received by the
root as if by a call to MPLRECV{reevbuf, recveount.n, recviype,],

The receive buffer iz ignored for all non-root processes.

(leneral, derived datatypes are allowed for both sendtype and recviype. The type
signature of sendcount and sendtype on process i must be equal to the type signature
of recvcount and recviype at the rooi. Thiz implies that the amount of data zent

Collcclive Comsnunicalion 155

must be equal to the amount of data received, pairwise between each process and
the root. DEtinct type maps between sender and receiver are still allowed.

Al arpuments to the function are significant on procese root, while on other
processes, only arguments sendbuf, sendcount, sendtype, root, and comm are signif-
icant. The argument root must have identical values cn all processes and comm
must reprezent the same intragroup communication domain.

The specification of counts and types should not cause any location on the root
to be written more than once. Such a call & erroneous.

Note that the recveount argument at the root indicates the number of itemns it
receives from each process, not the total number of items it receives.

4.8.1 PExamples Using MPLGATHER

Example 4.2 QGather 100 intz from every process in group to root. See Figure 4.2,
MFI_Comm comm;
int geize,sendarrayl100];
int root, *rbuf;

MPI_Comn_size{ comm, Egsize);
rbuf = {int *)pallec{geizesiOOssizect (int));

MFI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MFI_INT, root, comm);

Example 4.3 Previous example modified — only the root allocates memory for the
receive buffer.

MPI_Comm comm;

int gsize,sendarray[100];

int reet, myrank, #rbmf;

MPI_Como_rank{ comm, myrank);

if { myrTank = root) {
MPI_Comm_siza{ comn, Egeize);
rhof = {int #)malloc{gsizer100%sizact {int)};
}

MPI_Gather{ sendarTay, 100, MPI_INT, rbaf, 100, MPI_INT, root, comm);

1f6 ﬂ}.lath:r 4

all preee s s

iy

Figure 4.2
The root process gathers 100 ints from each process in the group.

Examplc 4.4 Do the same as the previous example, but use a derived datatype.
Mote that the type cannot be the entire zet of geize*100 ints since type matching
15 defined pairwize between the root and each process in the gather.

MPI_Comm comm;

int geize,sendarrayl[100] ;

int root, wrbmf;

WPI_Datatype rtypea;

MPI_Comn_size{ comm, Egsize);

MPI_Tvwpe_contignens(100, MPI_INT, Ertype J;

MPI_Twpe_comnit(Ertype J;

rbuf = {int *)pallec{geizesiO0ssizact (int));

MPI_Gather(sendarTay, 100, MPI_INT, rbof, i, rtype, Toot, comm);

Collcclive Comsnunicalion 157

4.6.2 Gathcr, Voctor Variant

MPLGATHERV(sendbuf, sendeount, sendtype, reevbuf, recvcounts, displs, recviype,
rect, cormm)

IM sendbuf ularling addrevs of send buller
IN sendeount nwnber of cloneoly in send buller
IN sendtype dala Lype of scod buller clancoly
ouT recvbuf addrey of recdve bufler

IN recvcounts loleoper array

IN displs lleger array of divplaccimenly

IN recviype dala Lype of recr buller clancoly
IN root rank of rocclvimy procoy

IN CO comununicalor

int MPI Gatherv{void+ sendbonf, int sendcomnt, MPI Datatype sendtype,
vold+ recvbof, int *recvecomnts, int +displs,
MPI Datatype recvtype, int root, MPI Comm comm)

MPI_CATHERY (SENDEUF, SENDCOUNT, SENDTYFE, RECVEUF, RECVCOUNTS,
DISFLE, RECYTYFE, ROOT, COMM, IERRORD
<type> SENDEUF(+), RECVBUF{+)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(+), DISPLS(*), RECVTYFE,
ROOT, COMM, IERROR

MPI_GATHERY extends the functionality of MPLGATHER by allowing a varyving
count of data from each process, zince recveounts is now an array. It also allows
more Rexbility a= to where the data is placed en the root, by providing the new
argument, displs.

The cutcome i= as if each process, including the roct process, sends a message to
the root, MPl Send{zendbuf, sendecunt, sendtype, reot,) and the root executes n
receives, MPI_Recv{reevbuftdispls[i]-extent{recviype), recvecunts[i], recviype, 1,).

The data zent from process j is placed in the jth portion of the receive buffer
recvbuf cn process root. The jth portion of recvbuf begins at offzet displs[j] elements
{in terms of recviype} into recvbuf.

The receive buffer iz ignored for all non-root processes.

The type signature implied by sendcount and sendtype cn procezss i must be equal
to the type signature implied by recveounts[i] and recvtype at the root. Thi imples
that the amount of dai a cent must be equal to the amount of data received, pairwize

158 ﬂ}.lath:r 4

between each process and the roct. Dhistinct type maps between sender and receiver
are £till allowed, as illustrated m Example 4.6.

Al arpuments to the function are significant on procese root, while on other
processes, only arguments sendbuf, sendcount, sendtype, root, and comm are signif-
icant. The argument root must have identical valies on all processes, and comm
must reprezent the same intragroup communication domain.

The speafication of counts, types, and deplacements should not canse any loca-
ticn on the roct to be written more than once. Such a call is erronecus. On the
other hand, the succescive displacements in the array digpls need not be a monotonic

SEQUETICE.
4.8.3 Examples Using MPLGATHERY

Example 4.5 Have each process send 100 ints to root, but place each set {of 100}
stride intz apart at recerving end. UJse MPILGATHERY and the displs argument to
arhieve thiz effect. Ascume stride > 100. See Figure 4.3.

MPI_Comm comm;

int gsize,sendarray[100] ;

int root, *rbuf, stride;

int sdispls,i,sTconnts;

MPI_Comnm_size{ comm, kgsize);
rtmf = {int *Jmalloc(gsizerstride*sizect (int)};
displs = {int *)malloc(gsizetsizect (int});
reomnts = (int sjmalloc(gsizessizeol [int));
for (i=0; i<geizae; =i} |
disgplsli] = is=stride;
reconntsli] = 100;
j;
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcomnts, displs, MPI_INT,
root, comm);

Note that the program is erromecus if — 100 < stride < 100.

Collcclive Comsnunicalion 155

all preee s s
af yeef
atride
buf
Figure 4.3
The root process gathers 100 ints from each process in the gronp, eadh set s placed strida ints
apart.

Example 4.6 Same s Example 4.5 on the receiving side, but send the 100 inis
from the Oth cohunn of 2 100 = 150 int array, in . See Figure 4.4,

MPI_Comm comm;

int gsize,sendarrayl100] [160];

int root, #rbuf, stride;

MPI_Datatype styps;

int sdispls,i,sTconnts;

MPI_Comnm_size{ comm, kgsize);
rtmf = {int *Jmalloc(gsizerstride*sizect (int)};
displs = {int s)malloc(gsizessizeof (int));
reomnts = (int sjmalloc(gsizessizeol [int));
for (i=0; i<geiza; =i} |
disgplsli] = is=stride;
reconntsli] = 100;
b
/% Create datatype for 1 colmmn of arTay
L7
MPFI_Tvwpe_wactor(100, 1, 1B0, MPI_INT, kstypa);
MPI_Type_commit{ Estype J;
MPI_Catherv(sendarray, 1, stype, rbof, rconnts, displs, MPI_INT,
root, comm);

160 ﬂ}.lath:r 4

all precesses
=iride
rbmf
Figure 4.4
The rout procees gathers column 0 of & 100% 150 € array, and each got 18 placed stride ints
apart.

Example 4.7 Process i sends (100-) ints from the ith column of 2 100 ¢ 150 int
array, in O It i= received into a buffer wath stride, as in the previous two examples.
See Figure 4.5.

MPI_Comm comm;

int gsize,sendarrayl[100] [160] ,ssptr;

int root, srbnf, stride, myrTank;

MPI_Datatype stypa;

int sdispls,i,srconnts;

MFI_Comn_sizef comm, Egsize);
MPI_Comn_rank{ comm, Foyrank J;
rtmf = (int *imalloc(gmizerstridessizact (int));
displs = {int *)malloc(gsizetsizect (int});
rconnts = (int *)oalloc({gsize+sizect (int)};
for (i=0; i<gsize; ++ri) {
displs[i] = isstride;
reonntsli] = 100=-i; /% note change from previons exrample =/
1
/% Create datatype for the column we are sending
"}
MPI_Type_vector{ 100-myrank, 1, 150, MPI_INT, Estype);
MPI_Tywpe_comnit(Estype J;
/% gptr is the address of start of "myrank" columon

Collcclive Comsnunicalion 161

all precesses

Figure 4.5
The rodt proceas gathers 1001 inte from eolumn 1 of & 100 150 O array, and each get iz placed
gtrida intz apart.

/
eptT = ksendarray[0] [oyrank] ;
¥PI_Catherv(sptr, 1, stype, rbof, rcomnts, displs, MPI_INT,
root, comm);

Note that a different amount of data is received from each process.

Example 4.8 Same a5 Example 4.7, but done in 2 different way at the sending
end. We create a dataiyvpe that canszes the correct siriding at the sending end =c
that that we read a column of a O array.

MPI_Comm comm;

int gsize,sendarray[100] [160] , #sptT;

int root, srbof, stride, myrank, disp[2], blocklen[z];

MPI_Datatype stype,typel2];

int sdigpls,i,sTconnts;

MPI_Comn_sizef comm, Egsize);
MFI_Comm_rank{ comm, Foyrank J;
rbuf = {int *)pallec{geizesstridessizeol (int));
displs = {int *)malloc(gsizetsizect (int});
rconnts = [int *)malloc{gsizessizect (int)};
for (i=0; i<gsize; ++i) {

displs[i] = isstride;

162 ﬂ}.lath:r 4

reonntsli] = 100-1i;

}

/% Create datatype for one int, with extent of entire rew
/

disp[0] = 0O; disp[1] = 160*sizect (int);

typel0] = MPI_INT; typel1] = WPI_UB;

blecklen[0] = 1; Blecklen[1] = 1;

MPI_Type_stronctf 2, blocklen, disp, type, Estype J;

MPFI_Twpe_comnit(Extype J;

eptT = ksendarray[0] [oyrank] ;

MPI_Catherv(gptr, 100-myrank, stype, rbuof, rcennts, displs, MPI_INT,
root, comm);

Examplc 4.9 Same as Example 4.7 at sending side, but at receiving side we make
the siride between received blocks vary from block to block. See Figure 4.6
MPI_Comm comm;
int gesize,sendarray[100] [160] ,ssptr;
int rect, »rbof, *stride, myrank, bnfsize;
WPI_Datatype stypa;
int sdigpls,i,srconnts,offeet;

MPI_Comn_sizef comm, Egsize);
MPI_Comm_tank({ comm, Emyrank);

stride = {int *)malloc{gsizersizect(int});

/v gtrideli] for i = 0 to gsize-1 is set somehow

LT

/% set np displs and rcounts vectors first
w/

displs = {int *)malloc(gsizetsizect (int});
reomnts = (int *jmalloc(gsizessizeol [int));
offsat = 0;

for (i=0; i<geiza; =i} |

Collcclive Comsnunicalion 163

all precesses

siridafl]

rbmf

Figure 4.6
The rout proceas gathers 1001 inte from eolumn 1 of & 100 150 O array, and each get iz placed
strida[1] ints apart (a varying stride].

displs[i] = offset;
offset += stridelil;
recennts[i] = 100-i;
}
/% the regunired boffer size for rbof is now easily obtained
w/
bofsize = displs [geize=1]+rconnts[geize=1];
ot = {int *)malleoc{bnfEizessizect (int)) ;
/% Create datatype for the column we are sending
/
MPI_Type_vecter{ 100-myrank, 1, 160, MPI_INT, Estype);
MPFI_Twpe_comnit(Extype J;
sptr = Esendarray[0] [myrank] ;
MPI_Gatherv(gptr, 1, stype, rbof, rcemnts, displs, MPI_INT,
root, comm);

Examplc 4.10 Process 1 sends non ints from the 1th column of a 100 « 150 int
array, in {. The complicatmg factor iz that the various values of nom are not kmown
to Toot, s0 & separate gather must first be run to find these cut. The data iz placed
contiguously at the receiving end.

MPI_Comm comm;

int gsize,sendarray[100] [16Q] , *sptT;

int root, #rbmf, stride, myrank, displ[2], blocklenlZ];

MPI_Datatype stype,types[2];

164

ﬂ}.lath:r 4

int *displs,i,*Tconnts,nom;

MPI_Comnm_sizel comm, kgsize);
MPI_Comn_rank{ comm, Emyrank J;

/w FPirst, gather nmms to Toot
L7
reconnts = (int *)malloc(geizassizact (int));
WPI_Gather(knom, 1, MPI_INT, rcemnts, 1, MPI_INT, root, comm);
/% root now has correct rconnts, nsing these we szet displs[] sc
* that data is placed contigoously (or concatenated) at receive end
L7
digpls = {int s)malloc(gsizessizeof (int));
digple[0] = O;
for {i=1; i<gmize; ++i} {
displs[i] = displsli-1]+rconntsli-1];
1
/% And, create receive bnffer
L7
rbuf = (int *)palleclgeizes(displslgeize=1]+rcomnts[geiza=1]]
sgizect (int));
/% Create datatype for one int, with erxtent of entire row
L7
disp[0] = 0; displ1] = 160*sizect (int);
typa[0] = MPI_INT; typal[1] = MFI_UE;
bleocklenlD] = 1; blocklenl1] = 1;
MPI_Type_struct(2, blocklen, disp, typa, Estype };
MPI_Type_commit{ Estype J;
sptr = ksendarray[0] [oyrank] ;
MPI_Gatherv(sptr, nom, stype, rtof, rcomnts, displs, MPI_INT,
root, comm);

Collcclive Comsnunicalion 165

4.7 Seatter

MPILSCATTER(sendbuf, sendeount, sendtype, reevbuf, recveount, reeviype, reet, eomm)

IN sendbuf addrevy of send buller

IN sendcount ownber of demcoly vcol Lo cach proccyy
IN sendtype dala Lype of scod buller clancoly

ouT recwbuf addrevy of recdve buller

IN recvoount ownber of clancoly in roccive buller
IN recviype dala Lype of roccve buller clomcnls

IN roct rank of vonding proco

IN comm comunuulcalor

int MPI Scatter{veids sendbof, int sendcount, MPI Datatype sendtype,
volds recvbnf, int recvcennt, MPI Datatype racvtypsa,
int reet, WPIComm comm)

MPI_SCATTER(SENDEUF, SENDCOUNT, SENDTYPE, RECVEUF, RECYCOUNT,
RECYTYPE, ROOT, COMM, IERROR)
<typa> SENDEUF({*), RECVEUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECYVCOUNT, RECVTYPE, ROOT, COMM,
IERROR

MPISCATTER is the inverse operation tc MPI_.GATHER.

The cutcome is as if the root executed n send cperations, MPl Send(sendbuf4--
sendeount-extent{sendtype), sendecunt, sendtype, i}, i = 0 to n - 1. and each
process executed a receive, MPI_Reev{recvbuf, reeveeunt, recvtype, roet,.).

An alternative description is that the root sends 2 message with MPl_Send{zendbuf,
sendcount.n, sendtype, _.}. This message i= split into n equal segments, the ith seg-
ment iz zent to the {th process in the group, and each process receives this meszage
az above,

The type signaiure associated with sendcount and sendiype at the root must be
equal to the type signature ascociated with recvcount and recviype at all processes.
Thi imples that the amount of data cent must be equal to the amount of data
received, pairwize between each procese and the root. Dhstinct type maps between
sender and receiver are =till allowed.

All arguments to the function are significant on process root, while on ciher
proceszes, only arguments recvbuf, recvcount, recvtype, root, comm are significant.

166 ﬂ}.lath:r 4

all prove fre s

& Far

mendbuf

Figure 4.7
The rodt procees ecatters gets of 100 ints to each process in the group.

The argument root must have identical values on all processes and comm must
reprezent the same intragroup communication domain. The zsend buffer iz ignored
for all non-root processes.

The =pecification of counts and types should not cansze any location on the root
to be read more than cnce.

Rationale. Though not escential, the last restriction iz impesed so 2= to achieve
symmetry with MPI_GATHER, where the corresponding restriction (2 multiple-write
restrichion} 1= necessary. (End of raticnafe.}

4.7.1 An Example Using MPISCATTER

Examplc 4.11 The reverzse of Example 4.2, page 155. Scatter setz of 100 int= from
the root to each process in the group. See Figure 4.7.

MPI_Comm comm;

int gsize,*ssendbnf;

int roet, reof[100];

MPI_Comnm_sizel comm, kgsize);
sendbnf = (int *)malloc(gsizeri00%sizect (int)};

MPI_Scatter{ sendbmnf, 100, MPI_INT, rbaf, 100, MPI_INT, root, comm);

Collcclive Comsnunicalion 167

4.7.2 Scatter: Vector Variant

MPLSCATTERY(sendbuf, sendeounts, displs, sendtype, recvbuf, reevecunt, recviype,
rect, cormm)

IM sendbuf addrevy of vend boller

IM sendcounts loleoper array

IN displs lleger array of divplaccimenly

IN sendtype dala Lype of scod buller clancoly
ouUT recvbuf addrevy of recdve buller

IN recvcount ownber of clancoly in reocive buller
IN recviype dala Lype of recelve buller cloinenly
IN root rank of vending proco

IN comm comunuuicalor

int MPI Scatterv{void+ sendbmf, int *sendcomnts, int *displs,
MPI Datatype sendtypa, veid+ recvbnf, int recvcomnt,
MPI Datatype recvtype, int root, MPI Comm comm)

MPI_SCATTERY(SENDEUF, SENDCOUNTS, DISPLZ, SENDTYPE, RECVEUF,
RECYCOUNT, RECVTYPE, ROOT, COMM, IERROR)
<type> SENDEUF(+), RECVBUF{+)
INTEGER SENDCOUNTS(+), DISPLS(«), SENDTYFE, RECYCOUNT, RECVTYFE,
ROOT, COMM, IERROR

MPI SCATTERY iz the inverse operation to MPILGATHERY.

MPI_SCATTERY extends the functionality of MPLSCATTER by allewing a vary-
ing count of dat a to be sent to each process, since sendcounts i= now an array. It alsc
allows more flexdbility 2= to where the data is taken from on the root, by providing
the new argument, displs.

The cutcome i as if the root executed nsend operations, MP1 Send({sendbuf4displs
[(lextent(sendtype], sendcounts[i], sendtype, i,..), i =0ton - 1, and each process
executed a receive, MPl Recv(recvbuf, recvecunt, recviype, root,).

The type signature implied by sendcount[]] and sendtype at the root must be
equal to the type signature impled by recvcount and recviype at process 1. This
implies that the amount of data zent must be equal to the amount of data received,
pairmize between each process and the rooi. Distinct type maps between zender
and receiver are still allowed.

168 ﬂ}.lath:r 4

All arguments to the function are significant on process root, while on cther
processes, only arguments recvbuf, recvcount, recvtype, root, comm are significant.
The arpuments root must have ideniical values on all processes, and comm must
reprezent the same intragroup communication domam. The zend buffer i= ignored
for all non-root processes.

The speafication of counts, types, and dieplacements should not canse any loca-
ticn on the roct to be read more than once.

4.7.3 Examples Using MPI.SCATTERY

Examplc 4.12 The reverse of Example 4.5, page 158. The root process scatters
setz of 100 mni= to the cther processes, but the sets of 100 are stride ints apart in
the sending buffer, where stride > 100. This requires use of MPI.SCATTERY. See
Figure 4.3,

MFI_Comm comm;

int geize,*sandbuf;

int root, rbof[100], i, *displs, *scomnts;

MFI_Comn_sizef comm, Egsize);
gsendbof = (int *jomallocfgsizesstridessizacl(int));

displs = {int *)malloc(gsizetsizect (int});
sconnts = (int *)malloc(gsize+sizect (int)};
for (i=0; i<gsize; ++ri) {

displs[i] = isstride;

sconnteli] = 100;
1

WPI_Scatterv(sendbnf, sconnts, digpls, MPI_INT, rbmf, 100, MPI_INT,
root, comm);

Example 4.13 The reverse of Example 4.5, We have a varying siride beiween
Elocks at sendmg (root}) side, ai the receiving side we receive 100 — i elements into
the ith columm of a 100150 { array at process 4. See Figure 4.9,

MPI_Comm comm;

int gsize,recvarrayl[100] [160] ,sTptr;

Collcclive Comsnunicalion 165

all prove fre s

& Far

.

afride

mendbuf

Figure 4.8
The root process seatbers sets of 100 ints, moving by strides ints from zend to gend in the
ecatter.

int reet, *sendbnf, myrank, bofsize, *=stride;
MFI_Datatype rtyps;
int i, *displs, *sconnts, offsat;

MPI_Comn_sizef comm, Egsize);
MPI_Comm_tank({ comm, Emyrank);

stride = {int *)malloc{gsizersizect(int});

/v gtrideli] for i = 0 to gsize-1 is set somehow
* gendbof comes from elsewhere s/

displs = {int *)malloc(gsizetsizect (int});
sconnts = (int *}malloc{gsizessizect (int)};
offsat = O;
for (i=0; i<gsize; +i) {
displs[i] = offset;
offeet += strideli];
sconntsli] = 100 - i;
b
/% Create datatype for the colomn we are receiving */
MPI_Type_vector(100-myrank, i, 1B0, MPI_INT, Ertype);
MPI_Twpe_comnit(Ertype J;
rptr = Erecvarray[0] [myrank] ;
MPI_Scatterv{ sendbnf, =comnts, digpls, MPI_INT, rptr, 1, rtyps,
root, comm);

170 ﬂ}.lath:r 4

all precesses

mirida[l]
zendbnf

Figure 4.2
The root ecatters blocks of 100-1 ints into eolumn 1 of a 1002150 & array. At the sending gide,
the blocks are atrida[1] intz apart.

4.8 Gather to All

MPIALLGATHER(sendbuf, sendcount, sendiype, recvbuf, recvecunt, recviype, comm)

IN gendbuf slarling addrevy of vend bulfer

IN gendcount owaber of clancoly 1o vend buller

IN sendt}rpe dala Lype of send buffer clomenly

OuUT recvbuf address of recdre bufler

IN recveount nunber of clonenly recdved fromm any
proco

IN recviype dala Lype of recdve buller cloincnly

IM COmrm couununicalor

int MPIA11lgather(voids sendbof, int sendcount,
MPI Datatype sendtypa, voids recvbof, int reacvrcomnt,
MPI Datatype recvtype, MPI Comn comm)

MPI_ALLGATHER(SENDEUF, SENDCOUNT, SENDTYPE, RECYEUF, RECVCOUNT,
RECYTYPE, COMM, IERROR)
<typa> SENDEUF({*), RECVEUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECYCOUNT, RECVTYFE, COMM, IERROR

Collcclive Comsnunicalion 171

MPI_ALLGATHER can be thought of az MPILGATHER, except all processes receive
the result, instead of just the root. The jth blodk of data sent from each process is
received by every process and placed in the jth Block of the buffer recvbuf.

The type signature azsociated with zendeount and sendiype at o process must
be equal to the type signature associated with recveount and recviype at any cther
Frocess.

The outcome of a call to MPILALLGATHER{...) is as if all proceszes executed
n calls to MPLGATHER {sendbuf, sendcount, sendtype, reevbuf, reeveount, recviype,
reet, comm), for reet =0, ___, n-1. The mles for correct usage of MPILALLGATHER
are easily found from the corresponding rules for MPLGATHER.

4.8.1 An Example Using MPIALLGATHER

Example 4.14 The all-gaiher version of Example 42, page 155. Using MPLALL-
GATHER, we will gather 100 intz from every process in the group to every process.
MFI_Comm comm;
int gsize,sendarray[100];
int srbuf;

MPI_Comn_sizef comm, Egsize);
rbuf = {int *)pallec{geizesiODssizact (int));
MPI_lgather(sendarray, 100, MFI_INT, rbuf, 100, MPI_INT, comm);

After the call, every process has the group-wide concatenation of the sets of data.

—

172 ﬂ}.lath:r 4

4.82 Qather to All: Vector Variant

MPLALLGATHERV(sendbuf, sendeount, sendtype, reevbuf, recvecunts, displs, recviype,

comm)

IM sendbuf ularling addrevs of send buller

IM sendcount ownber of clancoly in send buller
IN sendtype dala Lype of scod buller clancoly
ouUT recvbuf addrevy of recdve buller

IN recvcounts loleoper array

IN displs lleger array of divplaccimenly

IN recviype dala Lype of recelve buller cloinenly
IN comm comunuuicalor

int MPI M 1gatherv{void* sendbof, int sendcount,
MPI Datatype sendtype, voids recvbnf, int srecvcomnts,
int +displs, MPI Datatype recviype, MPI Comn comm)

MPI_ALLGATHERY (SENDEUF, SENDCOUNT, SENDTYPE, RECVEUF, RECYCOUNTS,
DISFLE, RECVTYFE, COMM, IERROR)
<type> SENDEUF(*), RECVBUF{+}
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(+), DISPLS(*), RECVTYFE,
COMM, IERROR

MPI_ALLGATHERY can be thought of as MPILLGATHERY, except all processes
receive the result, instead of just the roct. The jth blodk of data sent from each
process i= received by every process and placed in the jth block of the buffer recvbuf.
Theze blocks need not all be the same sie.

The type signature associated with sendcount and sendtype at process j must be
equal to the type signature ascocated with recvcounts(j] and recviype at any other
Process.

The cutcome is as if all proceszes executed calls to MPLLGATHERY{ sendbuf,
sendcount, sendtype, recvbuf, recvecunts displs, reeviype, root,comm), for reet =0,
n-1. The rules for correct usage of MPILALLGATHERY are easily found from the
corresponding rukes for MPI_GATHERY.

Collcclive Comsnunicalion 173

4.9 All to All Seatter/Gather

MPILALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvecunt, recviype, comm)

IN sendbuf ularling addrevs of vend buller

IN sendcount ownber of demcoly vcol Lo cach proccyy

IN sendiype dala Lype of scod buller clancoly

ouT recvbuf addrey of rocdve bufler

IN recvcount ownber of cloncoly recdved (o aoy
procouy

IN recviype dala Lype of recelve buller cloinenly

IN CO comununicalor

int MPI A1 1toall{void* sendbmf, int sendcount, MPI Datatype sendtype,
volds recvbnf, int recvcemnt, MPI Datatype Trecviyps,
MPI Comm comm)

MPI_ALLTOALL(SENDEUF, SENDCOUNT, SENDTYPE, RECVEUF, RECVCOUNT,
RECYTYPE, COMM, IERROR)
<type> SENDEUP(*), RECVEUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYFE, COMM, IERROR

MPI_ALLTQALL iz an extension of MPLALLGATHER to the case where each pro-
cess sends distinet data to each of the receivers. The jth block sent from process 1
1z received by process j and is plared in the ith Blodk of recvbuf.

The type signature associated with sendecount and sendiype at o process must
be equal to the type signature associated with recveount and recviype at any cither
process. This implies that the amount of data sent must be equal to the amount
of data received, pamrwize between every pair of proceszes. As usual, however, the
type maps may be different.

The cutcome & as if each process exeruted a zend to each process (ftzelf included}
with a call to, MP|_Send{sendbuf{-i-sendecunt-extent(sendtype), sendeount, sendtype,
i, ...}, and a receive from every other process with a call to, MPI_Reev{recvbufti-
recveount-extent{ recviype), recvecunt, 1,...), where i =0, -- -, n- 1,

All arpuments on all processes are significant. The argument comm must repre-
gent the same intragroup communication domain on all processes.

Rationale. The definition of MPLLALLTQALL gives a= much flexability 2= come
would achieve by specifying at each process n independent, point-to-point commu-

174 ﬂ}.lath:r 4

nications, with two exceptions: all messages uze the same datatype, and messages
are scattered from (or gathered to} sequential storage. {End of rationale.}

491 Al to All: Vector Variant

MPIALLTOALLY(sendbuf, sendeounts, sdispls, sendiype, reevbuf, recveounts, rdispls,

recviype, comm)

IN sendbuf ularling addres of send buller

IN sendcounts loleoger array

IN sdizpls lleper array of send displaccimenly
IN sendt}rpe dala Lype of send buffer clomenly
ouUT recvbuf addrey of rccdve buller

IN recvoounts luleper array

IN rdis pls lnleper array of recdve displaccmenly
IM recviype dala Lype of rocelve buller cloimenly
I comm comununicalor

int MPI M1 1toallv{void* sendbmnf, int *sendcomnts, int *sdispls,
MPI Datatype sendtype, voids recvbnf, int srecvcomnts,
int *rdispls, MPI Datatype recvtype, MPI Comm comm)

MPI_ALLTOALLY(SENDRUF, SENDCOUNTS, SDISPLZ, SENDTYPE, RECVEUF,
RECYCOUNTS, RDISFLS, RECYTYPE, COMM, IERROR)
<type> SENDEUF(+), RECVBUF{+)
INTEGER SENDCOUNTS(+), SDISFLS(*), SENDTYFE, RECYCOUNTS(*),
RDISPLS(*), RECYTYFE, COMM, IERROR

MPI_ALLTQALLY adds flexibility to MPLALLTQALL in that the location of data
for the send % specified by edispls and the location of the plarement of the data on
the receive zide iz specified by rdispls.

The jth Hock zent from process i i= received by process j and 1= placed in the
ith block of recvbuf. Theze blocks need not all have the same size.

The type signature ascocated with sendcount[j] and sendtype at procezs i must
be equal to the type signature associaied with recvcount[i] and recviype at process
j. This implies that the amount of daia cent must be equal to the amount of data
received, pairwize between every pair of processes. Distinct type mape between
sender and receiver are =till allowed.

The cutcome is as if each process sent a message to procezs 1 with MPl Send(
sendbuf + displs[i]-extent{sendtype), sendecunts[i], sendiype, i, ..}, and received a

Collcclive Comsnunicalion 175

message from process 1 with a call to MPI_Recv{ recvbuf + displs[i]-extent[recvtype).
recvecunts[i], recvtype, i, ..}, where i=0...n- 1

All arguments on all processes are significant. The argument comm must specify
the zame intragroup communication domain on all proceszes.

Rationale. The definition of MPLALLTQALLY gives ac much flexdhility 2 one
would achieve by specifying at each process n independent, point-to-point commu-
nications, with the exception that all messages uze the same datatype. (End of

rationiale.)

4.10 Glohal Reduetion Qperations

The functions in this section perform a global reduce operation [such as sum, max,
logical AND, etc.}) across all the members of a group. The reduction operation
can be erther one of a predefined list of operations, or 2 uzer-defined operation.
The global reduction functions come in several flavors: 2 reduce that returns the
rezult of the reduciion at one node, an all-reduce that returms thizs result at all
nodes, and a scan (parallel prefix) operation. In addition, areduce-scatter operation
combines the functionality of a reduce and of a scatter cperation. In order to
improve performance, the functions can be passed an array of values; one call will
perform a sequence of element-wise reductions on the arrays of values. Figure 4.10
gives 2 pictorial representation of theze operations.

4.10.1 Redueco

MPI_REDU CE{ sendbuf, recvbuf, count, datatype, op, rect, comm)

IN gendbuf addrevy of vend buller

ouUT recvbuf address of recdre buller

IN count owaber of clancoly 1o vend buller
IN datat}rpe dala Lype of domncoly of send bufler
IN op reduce operalion

IN rooct rank of rool proocuy

IN comm coununicalor

int MPIRedncelvoids sendbnf, voids recvbonf, int comnt,
MPI Datatype datatypa, MPIOp op, int root,
MPI Comm comm)

176 ﬂ}.lath:r 4

datg ——==

AD EOQ] AMHAL+AZ | BOHE 4B 2 | CHCL+C2

reduce
Al El Cl

== PIOCESEES

A2 EZ2 C2

Al ED Loy] AMAI4AZ | EHE 4B Z | COHCL4C2
allreduce

Al El Cl AMAI4AZ | BHE 4BZ | COHCIHT2

A E2) AHAI4+AZ | EHE 4B 2 | CORCI4+C2

Al ED L] A& I4A2

reduce-scatter

al | Bl | 2L |:'I> EO4EL4E3

AZ Bz CZ Lo X T T
AN EO i AD EN on
SCdl
Al El 1l :> A+ AL BHEL CHCL
AZ Ez T2 Aral+az | BHE 4B | Coo L4z
Figure 4.10

Rednee funetions illustrated for a group of three proceszes. In each case, each row of boxes
reprecents data ibemne in ne process. Thue, in the reduce, initially each process haz three items;
after the reduce the roct process has thres guma.

Collcclive Comsnunicalion 177

MPI_REDUCE(SENDEUF, RECVEUF, COUNT, DATATYPE, OF, ROOT, COMM,
IERROR)
<typa> SENDEUF({*), RECVEUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_REDUCE combines the elements provided in the input buffer of each pro-
cezz in the group, using the operation op, and returms the combined value in the
cutput buffer of the process with rank roct. The input buffer iz defined by the ar-
guments sendbuf, count and datatype; the output buffer iz defined by the argumenis
recvbuf, count and datatype; both have the same number of elements, with the same
type. The arguments count, op and root must have identical values at all processes,
the datatype arguments should maich, and comm should reprezent the same mtra-
group communication domain. Thus, all processes provide input buffers and cutput
buffers of the same lengih, with elemeniz ofthe same type. Each process can provide
cne element, or a sequence of elements, in which caze the combine operation iz exe-
cuted element-wise on each entry of the sequence. Feor example, if the operation is
MPIMAY and the send buffer contams two elements that are floating point numbers
{count = 2 and datatype = MPI_FLOAT}, then recvbuf({} = global maxq{sendbuf{{}}
and reevbuf(1} = global max{sendbuf{1}}.

Section 4.10.2 lits the zet of predefined operations provided by MPI. That zection
alzo enumerates the allowed datatypes for each operation. In addition, users may
define their owm operaticns that can be overloaded to operate cn several dataiypes,
either basic or derived. This is further explamed in Section 4.12.

The cperation op i= always assumed to be associative. All predefined operations
are also commutative, Jsers may define operations that are assumed to be aseo-
aative, but not commutative. The “canonical” evaluation order of a reduction is
determined by the ranke of the processes in the group. However, the implemen-
tation can take advantage of associativity, or associativity and commutativity in
crder to change the order of evaluation. This may change the result of the reducticn
for operations that are not strictly associative and commutative, such as floating
point addition.

Advice to implementors. It iz strongly recommended that MPI_REDUCE be im-
Plemented =0 that the same result be cbtained whenever the function i= applied
cn the same arpuments, appearing in the same order. Note that this may prevent
cptimizaticns that take advantage of the phy=ical location of processors. (End of
adtice to implementors.)

178

ﬂ}.lath:r 4

The datatype argument of MPI_REDUCE must be compatible with op. Predefined
operators work only with the MPI types listed in Section 4.10.2 and Section 4.10.3.
Ilser-defined operatcrs may operate on general, derived datatypes. In thic caze,

each argument that the reduce cperation iz applied to iz one element described by
such a datatype, which may contain several basic values. Thi i= further explamed

in Secticn 4.12.

4.10.2 Predofined Redouce Operations

The following predefined cperations are supplied for MPI_ REDUCE and related func-
tions MPI_ALLREDUCE, MPI_LREDUCE SCATTER, and MPI SCAN. Theze opera-
ticns are invoked by placing the following in op.

Marwe

MPIMAX
MFPIMIN
MFILSUM
MFIFROD
MFILAND
MFIBAND
MFILOR
MPILEOR
MPILXOR
MPILEXOR
MPIMAXLOC
MPIMINLOC

Meaning

AU
MM
sum
product
legical and
bit-wise and
legical or
Lit-wise or
legical xorx
hat-wise xor
max value and location

mmin value and location

The two operations MPIMINLOC and MPILMAXLOC are discussed separately in
Secticm 4.10.3. For the other predefined cperations, we enumerate below the allowed
combinaticns of op and datatype arguments. First, define groupe of MPI basic

datatypes in the following way.

C inbeger:

Fortran integer:
Floating peint:

MPLINT, MFPFILLOMNG, MPISHORT,
MPLUNSIGMNED _SHORT, MPLUNSIGNED,
MPILLUNSIGNED_LONG

MPIINTEGER

MPLFLOAT, MPI_DAUELE, MPLREAL,

MPLDAOUBLE_PRECISKON, MPILLONG
-DALELE

Collcclive Comsnunicalion 170

Logical - MPILOGICAL
Complex: MPLCOMPLEX
Byte: MPIEYTE

Mow, the valid datatypes for each option i= specified below.

ap Allewed Types

MPIMAX, MPIMIN Cintager, Fartran Tnteger, Flaating paint

MFPIL=EUM, MPILPROD Cintager, Fortran integer, Flaating point,
Camplex

MPILAND, MFILLOR, MPILXAOR C integer, Logical

MPIEAND, MPIEOR, MFILLEXOR C integer, Fortran integer, Byte

Examplc 4.15 A routme that computes the dot product of two vectors that are
dizinbuted acrozs a group of processes and returns the answer at node zerc.
SUBROUTINE FAR_BLAS1(m, a, b, c, comm)

REAL afm}, B{m) | local slice of array
REAL « | raznlt [at node zaro)
REAL sum

INTECER m, comm, i, ierT

| local smm
gnm = 0.0
mi=1, o
gnm = snm + afiisb(i}
END DO

| global smm
CALL MFI_REDUCE(Emm, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierT)
RETTURHN

Example 4.16 A routine that computes the product of a2 vector and an array that
are distributed acrose & group of processes and returns the answer at node zero.
The distribution of vector a and matrix b i= illustrated in Figure 4.11.
SUBROUTINE PAR_BLASZ(m, n, a, b, c, comm}

REAL afm}, b{m,n} | local slice of array

REAL cf{n} | resnlt

180 ﬂ}.lath:r 4

Figure 4.11
vectar-matrir product. Vector a and matrix b are digtributed in ane dinwngion. The digtribution
iz illustrated for four processes. The slices need not be all of the same gize: each process may

have a different value for m.

REAL snm{n}
INTECER m, n, comm, i, j, ilerTr

| local smm
o0 j=1, n
som{j) = 0.0
0 i=1, m
sun(j) = sun(j) + a(i)sb(i,j}
END DO
END DO

| global smm
CALL MPI_REDUCE(Emm, ¢, m, MPI_REAL, MPI_SUM, 0, comm, ierTr)

| retnrn resnlt at node zero (and gathbage at the other nodes)
RETLURN

4.10.3 MINLOC and MAXT.OC

The operaztor MPIMINLOC iz used to compute a global minimum and also an
index attached to the minmmum value. MPIMAXLOC similarly computes a global
maximum and mdex. Ome application of theze iz to compute a global minimrum
{maximum} and the rank of the process containing this value.

Collcclive Comsnunicalion 181

The operation that defines MPILMAXLOC i=:

(‘f)o(l:l): (‘;) where 1 — max(u, v} and k = iﬁn[i,j} :i:i:

: i J ifu<u
MPIMINLOC ic defined similarly:
i fu<u
u v w . C .
({)o(.):(k)wherew:mm{u,u}andk: min{i,j} fu=u
/ J fuzw

Both operations are associative and commutative. Note that if MPIMAXLOC is
applied to reduce a sequence of pairs {ug, 0}, (1, 1},. .., (21, 2 —1}, then the value
returned is (, v}, where ¢ = max; w; and r & the mdex of the first global maxdmmum
in the sequence. Thus, if each processz supplies a value and itz rank within the
group, then a reduce operation with op = MPILMAXLOC will return the maximum
value and the rank of the first process with that value. Similarly, MPILMINLOC can
be uzed to return a minimum and its index. More generally, MPLMINLOC com-
putes a lezicographic minimum, where elements are ordered according to the first
component of each pair, and ties are resolved according to the second component.

The reduce cperation iz defined to operate on arguments that consist of a pair:
value and index. In order to use MPIMINLOC and MPIMAXLOC in 2 reduce
operation, cne must provide o datatype argument that represents a pair {value and
index}. MPI provides nine such predefined datatypes. In (, the index iz an int and
the value can be a short or long int, a fleat, or 2 deuble. The potentially miced-type
nature of such arguments 3= a problem in Fortran, The problem i: circumvented,
for Fortran, by having the MPl-provided type consist of a pair of the same type as
value, and coercing the mdex to this type al=o.

The operations MFPIMAXLOC and MPILMINLOC can be used with each of the
following datatypes.

Fortran:

Matme Description

MPI2REAL pair of REAL=
MFPI2DAOUBLE_PRECISION pair of DOUBLE PRECISION variables
MFPI2INTEGER pair of INTEGER=

c:

Mame Description

MPIFLOAT_INT float and int

MFPIDAUEBLEINT double and int

182 ﬂ}.lath:r 4

MPILONGINT long and int
MPIL2INT pair of int
MPISHORT_INT short and int
MPILONG DAOUELE_INT long deuble and int

The dat atype MPI2REAL 3= as #f defined by the followmg {see Section 3.3}.
MPI_TYPE_CONTICUOUS(2, MPI_REAL, MPI_2REAL)

Simnilar statements apply for MP1 2INTEGER, MFP12DOUELE_PRECISION, and MPL
ZINT.

The datatype MPIFLOAT_INT iz a= if defined by the followmg sequence of in-
structions,

typal0] = MPI_FLOAT
typal1i] = MPI_INT
displo] = ©

displi] = sizeof {float)
block[o] = 1

block[1] = 1

MPI_TYPE_STRUCT(Z, block, disp, type, MPI_FLOAT_INT)
Similar stat ements apply for the other mixed types in C.

Examplc 4.17 Each process has an array of 30 donbles, in {. For each of the 30
locations, compute the value and rank of the process contaiming the largest value.

/% each process has an array of 30 doobles: ain[30]
w/
denble ainl30], acnt[30];
int ind[30];
stroct {
denbkle vwal;
int rank;
} inl20], emt[301;
int i, myrank, root;

MPI_Comm_rank (MPI_COMM_WORLD, Ekmyrank);
for (i=0; i<30; i3 {
inlil.val = ainli];

Collcclive Comsnunicalion 183

in[i].rank = myrank;
1
MFI_Redncefl in, ont, 30, MPI_DOUELE_INT, MPI_MARLOC, root, comm J;
/% At this point, the answer resides on process Toot
L7
if (myrank = root) {
/% Tead ranks ont
"/
for (i=0; i<30; +~+i) o
acnt[i] = ontl[i] .val;
ind[i] = ewnt[i]. rank;

Examplc 4.18 Same examplk, in Fortran,
| each process has an array of 30 doobles: ain(30)
DOUBLE PRECISION ain(20), aout(30)
INTEGER ind{30);
DOUELE PRECISION infZ2,30), omt(2,30)

INTEGER i, myrank, root, ierT;

MPI_COMM_RANK (MPI_COMM_WORLD, myTrank);

DO i=1, 20

inf{1,1i} = ain(i)

inf{2,1} = oyTank | myrank 15 coerced to a dounble
END DO

MPI_REDUCE(in, omt, 30, MPI_2DOUELE_PRECISION, MPI_MAXLOC, Toot,
comm, ierT);
| At this peint, the answer reazidex on process root

IF (myrank .Ef. root) THEN
| read ranks ont
g I=1, 30
aent({i} = ontfl, 1)

184

indf{i) = cmt(2,i}
END DO
END IF

ﬂ}.lath:r 4

| rank is coerced back to an integer

Example 4.19 Each process has a non-empty array of vales. Find the minomum
global value, the rank of the process that holds it and its index on thi= process.

itdefine LEN 1000

float vallLEN]; /% local array of values */
int comnt; /% local nomber of valnes */

int myrank, ninrank, minindex;
float minwal;

strmct {
float valnoa;
int index;
} in, ont;

/% local minloec w/f
in.valne = val[D];
in.index = 0;
for {i=1; i < commt; i++)
if {in.valme » wvallil) o
in.valne = va1lil;
in.index = 1i;

}

/% global minloc »/

MPI_Comm_rank (MPI_GOMM_WORLD, Emyrank);

in.index = nyrank*LEN + in.index;

MPI_Redncel in, omt, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm)
/% At this point, the answer resides on process Toot

"}
if (myrank == root) {
/% raad answer ont

w/

minval = ont.valna;

Collcclive Comsnunicalion 185

minrank = ont.index / LEN;
minindex = cnt.index ¥ LEN;

Rationale. The definition of MPIMINLOC and MPIMAXLOC given here has the
advantage that it does not require any special-case handling of these two operations:
they are handled like any other reduce cperation. A programmer can provide
hiz or her cwm definition of MPIMAXLOC and MPIMINLAE, F =0 desired. The
dizadvantage is that values and indices have to be first interleaved, and that mdices
and values have to be coerced to the same type, in Fortran, (End of raticnale.)

4.10.4 Al Reducec

MPI includes variants of each of the reduce cperations where the result is returmed
to all proceszes in the group. MPI requires that all procesces participating in these
operaticns receive identical recults.

MPILALLREDUCE(zendbuf, recvbuf, ceunt, datatype, op, cemm)

IN gend buf ularling addrevs of vend buller
ouUT recvbuf ularling addrevs of recdve buoller
IN count ownber of clancoly in send buller
IN datatype dala Lype of cdlancols of svend buoller
IN op opcralion

IN cornm comunuuicalor

int MPI A1 lrednce(void+ sendbnf, voids recvbuf, int comnt,
MPI Datatype datatype, ¥PIOp op, MPI Comm comm)

MPI_ALLREDUCE(SENDEUF, RECVEUF, COUNT, DATATYPE, OF, COMM, IERROR)
<typa> SENDEUF({*), RECVEUF(*)
INTEGER COUNT, DATATYPE, OF, COMM, IERROR

Same as MPILREDUCE except that the result appears in the receive buffer of =ll
the group members.

Advice to implementors. The all-reduce operations can be implemented as a
reduce, followed by a broadeast. Heowever, a direct implementation can lead to
better performance. In thi= caze care must be taken to make sure that all processes

receive the same result. (End of aduice to implementors.)

186 ﬂ}.lath:r 4

Examplc 4.20 A routine that computes the product of a vector and an array that
are distributed acrces 2 group of processes and returns the answer at all nodes (zee
also Example 4.16, page 179).

SURROUTINE FAR_RLAS2(m, n, a, b, o, comm)

REAL alm}, b{m,n} | local slice of array
REAL c(n} | resnlt
REAL snmin)}

INTEGER m, n, comm, i, j, ierT

| local =nm
DO j=1, n
sunfj} = 0.0
DOi=1, n
sum{j) = som(j} + ali)*b(i,j}
END DO
END DO

| global snm
CALL MPI_ALLREDUCE(smm, =, n, MPI_REAL, MPI_SUM, comm, ierT)

| ratnrn resolt at all nodes
RETURHN

4.10.5 Redoce-Scattor

MP| mdudes variants of each of the reduce operations where the result is scattered
to all proceszes in the group on return.

MPLREDUCE SCATTER[sendbuf, recvbuf, recvcounts, datatype, ep, eomm)

IN gend buf ularling addrevs of vend buller

ouT recvbuf ularling addres of recdve buoller

IN recvoounts luleper array

IN datatype dala Lype of dancoly of Inpul bofler
IN op opcralion

IM 00 M comunuulcalor

int MPIRednce scatter(void+ sendbnf, voild+ recvbof, int *recvconnts,
MPI Datatype datatypa, MPI Op op, MPI Comnn comm)

Collcclive Comsnunicalion 187

MPI_REDUCE SCATTER(SENDEUF, RECVEUF, RECYCOUNTS, DATATYPE, OP, COMM,
IERROR)
<typa> SENDEUF({*), RECVEUF(*)
INTEGER RECYCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI_REDUCESCATTER actz as if it first does an element-wize reduction on
vector of count = 3 - recveounts[i] elements m the send buffer defined by sendbuf,
count and datatype. MNext, the resulting vector of resulis iz split into n digjoint
segments, where n iz the number of procesces in the group of comm. Segment 1
contains recveounts[)] elements. The ith segment is sent to process 1 and stored in

the receive buffer defined by recvbuf, recvoounts[i] and datatype.

Examplc 4.21 A routine that computes the product of a vector and an array that
are distributed across 2 group of processes and returns the answer in a ditributed
array. The diztribution of vectors a and ¢ and mairix b i illustrated in Figure 4.12.
SUBROUTINE FAR_BLAS2(m, n, k, a, b, c, comm)

REAL afm), b{m,n}, =(k} | local slice of array

REAL snm{n}

INTEGER mw, n, k, comm, 1, j, geizae, ierr

INTEGER, ALLOCATAELE recvconnts(:)

| digtribtmte to all processes the sizes of the glices of

| array ¢ {in real life, this wonld ba pracomputed)

CALL MPI_COMM_SIPE{comm, gsize, ierr)

ALLOCATE recvcounts(gsize)

CALL MPI_ALLGATHER(E, 1, MPI_INTEGER, recvcomnts, 1,
MFI_INTEGER, comm, ierT)

| local =nm
DO j=1, n
sunfj} = 0.0
DOi=1, n
sum{j) = som(j} + ali)*b(i,j}
END DO
END DO

| glebal =om and distribonticn of wecter c
CALL MPI_REDUCE_SCATTER(smm, ¢, recvcomnts, MPI_REAL,
MPI_SUM, comm, ierTr)

188 ﬂ}.lath:r 4

Figure 4.12
vectar-matrir product. All vestors and matrices are digtributed. The distribution iz illustrated
for four proceszes. Each process may have a different value for mand k.

| retnrn resnlt in distritmted vactor
RETURN

Advice to implementors. The MPILREDUCESCATTER routine is functionally
equivalent to: A MPI_REDUCE operation function with count equal to the sum
of recvcounts[i] followed by MPISCATTERY with sendcounts equal to recvoounts.
However, a direct implementation may run faster. {End of advice {0 implementors.}

4.11 Sean

MPILSCAN(sendbuf, recvbuf, count, datatype, op, comm)}

IN gend buf ularling addrevs of vend buller

ouUT recvbuf ularling addrevs of recdve buoller

IN count ownber of clancoly io lnpul buller
IN datatype dala Lype of cdancols of inpul buller
IN op opcralion

IN oM comununicalor

int MPIScan{void+ zendbnf, void+ recvknf, int comnt,
MPI Datatype datatype, MPIOp op, MPI Comm comm)

MPI_SCAN(SENDEUF, RECVEUF, COUNT, DATATYPE, OF, COMM, IERROR)

Collcclive Comsnunicalion 185

<typa> SENDRUF({*), RECVEUF(+*}
INTEGER COUNT, DATATYPE, OF, COMM, IERROR

MPI SCAN i uzed to perform = prefix reduction on data detributed arross the
group. The operation returns, in the receive buffer of the process with rank i,
the reduction of the values in the send buffers of processez with ranks 0,...,1
{inclusive}. The type of cperations supporied, their semantics, and the constramis
on send and receive buffers are a= for MPI_REDUCE.

Rationale. The MPI Forum defined an inclusive scan, that is, the prefix reducticn
cn process i includes the data from procese i. An alternative is to define scan
in an exclusive manner, where the result on i only incdudes data up to i=1. Both
definitions are useful. The latter has some advantages: the mchisive scan can always
be computed from the exchusive scan with no additional communication; for non-
invertible cperations such as max and min, communication i= required to compute
the exdusive scan from the inclusive scan. There 15, however, 2 complication with
exclusive scan since one must define the “unit” element for the reduction in this
caze. That iz, one must explicitly say what ocours for process 0. Thi= was thought to
be complex for user-defined operations and hence, the exclusive scan was dropped.
{End of retionale.}

412 TUszer-Defined Operations for Reduce and Sean

MPLOP_CREATE(functien, commute, ep)

IN function wuer defined funclion
IN cormmute trua I coominolalive; falea olherwive,
ouT op opcralion

int MPIOp create(MPI User foanction sfunction, int commnta,
MPI Op *op)

MPI_OF CREATE(PUNCTION, COMMUTE, OF, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER OF, IERROR

MPIQP_CREATE binds a user-defined global cperaiion to an op handle that can
subzequently be used m MPI_REDUCE, MPI_ALLREDUCE, MPILREDUCE SCATTER,

1000 ﬂ}.lath:r 4

and MPI_SCAN. The user-defined operation 15 assumed to be associative. If com-
mute = trne, then the operation should be both commutative and ascociative. If
commute — falsa, then the order of operations iz fived and & defined to be in
ascending, process rank order, beginning with process zero. The order of evalu-
ation can be changed, taling advantage of the associativity of the cperation. If
commute = troe then the order of evaluation can be changed, talang advantage of
commutativity and associativity.

function is the user-defined function, which must have the following four argu-
ments: invec, inoutvec, len and datatype.

The ANSI-C prototype for the function is the following.

typedel void MPI_User_function{ void #invec, void *inoutvec, int *len,
MPI_Datatype *datatype);

The Fortran declaration of the vzer-defimed functicn appears below.

FUNCTION USER_FUNCTION(INVEC(=)Y, INQUTVEGC(+), LEN, TYPE}
<type> INVEC(LEN), INOUTVEC(LEN])
INTEGER LEN, TYPE

The datatype argument iz a handle to the data type that was passed inio the
call to MPIREDUCE. The uszer reduce function should be written such that the
following holds: Let off], ... , u[len-1] be the len elements in the communication
buffer described by the arguments invec, len and datatype when the function is
imvoked; Jet w[Q], ... , v[len-1] be len elemenis in the communication buffer described
by the arguments incutvec, len and datatype when the function i invoked; let w{(], ...
, wllen-1] be len elements in the communication buffer described by the arguments
incutvec, len and datatype when the function returns; then wli] = ufi]ev[i], for =0,
... . len-1, where ¢ is the reduce cperation that the function computes.

Informally, we can think of invec and inoutvec as arrays of len elements that
function iz combining. The resuli of the reduction over-writes values in inoutvec,
hence the name. Each mvocation of the function rezult= in the pointwize evaluation
of the reduce cperator cn len elements: i.e, the function returns in incutvec|i] the
value invec[i]einoutvec(i], for 1 =0, .. ., count — 1, where ¢ i= the combining operation

computed by the function.

Rationale. 'The len argument allows MPILREDUCE tc avoid calling the function
for each element in the input buffer. Rather, the system can chocee to apply the
function to chunks of input. In O, it is passed in az a reference for reasons of
compatibility with Fortran.

Collcclive Comsnunicalion 191

By internally comparing the value of the datatype argument to kmown, global han-
dles, it iz pozsible to overload the use of a cingle vser-defined function for several,
different data types. (End of rationafe.)

(leneral datatypes may be paszed to the user function. However, use of dat atypes
that are not contipuous i likely to lead to inefficiencies.

No MPI communication function may be called inside the user funciion. MPI_A-
BORT may be called incide the function in case of an error.

Advice to users. Suppoze one deflnes a hibrary of user-defined reduce functions
that are overloaded: the datatype argument iz uzed to zelect the right execution
path ai each invocation, according to the types of the operands. The uzer-defined
reduce function cannot “decode” the datatype argument that it ic pasced, and can-
not identify, by itzelf, the correspondence between the datatype handles and the
datatype they represent. Thi= correspondence was established when the dataiypes
were created. Before the hibrary is used, a library mitialization preamble must be
executed. Thiz preamble code will define the datatypes that are used by the library,
and store handles to these datatypes in global, static variables that are shared by
the uzer code and the library code.

The Foriran version of MPILREDUCE will invoke & user-defined reduce function ns-
ing the Fortran calling conventicns and will pase 2 Fortran-type dat atype argument;
the ! version will use calling convention and the O representation of 2 dataiype
handle. Users who plan to mix languages should define their reduction functions
accordingly. (End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation

of MPILREDUCE.

if (rank > 0 4
MPI_RECY(tempbuf, count, datatype, rank-1,...}
User_reducef tenpbof, sendbnf, counnt, datatype)
}
if (rank < grompsize-1) {
MFI_SEND({ sendbunf, count, datatype, rank+i, ...J
¥
/% answer now resides in process gronpsize-1 ... now send to root
*/
if {rank — groupsize-1} {
MPI_SEND({ sendbnf, count, datatype, root, ...)}

102 ﬂ}.lath:r 4

}
if (rank — reot) |

MPFI_RECY(recvbof, count, datatype, gronpsize=-i,...J
j;

The reduction computation proceeds, zequentially, from process 0 to process
groupsize—-1. Thiz order iz chozen =0 as to respect the order of a possibly non-
commutative operator defined by the funciion User redncef). A more efficient
implementation i achieved by taking advantage of assocativity and using a loga-
rithmic tree reduction. Commutativity can be used to advantage, for thosze cazes
in which the commute argument to MPILOP_CREATE iz true. Also, the amount
of temporary buffer required can be reduced, and communication can be pipelmed
with comput ation, by transferring and reducing the elements in chunks of size len
< connt.

The predefined reduce operations can be implemented as a hibrary of uzer-defined
operaticns. However, better performance might be achieved if MPI_REDUCE han-
dles these functions as a special case. (End of advice to implementors.)

MPIQOP_FREE(op]

IN ﬂp DIJG].'EI.L].D.LI.

int MPIop freaf MPI Op wop)

MPI_OP FREE({ OF, IERROR)
INTEGER OF, IERROR

Marks a uzer-defined reduction operation for deallocation and zets op to MPILLOP-
_NULL.
The following two examples illustrate usage of user-defined reduction.

Example 4.22 {ompute the product of an array of complex numbers, in .
trpedel struct |

denbla real,imag;
} Complex;

/% the nser-defined fonction

v/

Collcclive Comsnunicalion 183

void myProd{ Complexr #in, Complex *incut, int +len, MPI_Datatype *dptr)}
{

int i;

Complaxr c;

for {i=0; i< *lan; +i) {
c.raal = inont->real*in-rraal -
incnt-rinagrin->imag;
c.imag = inont->realsin->imag +
inent->inagrin->real;
®inont = c;
int=+; inowt+-+;

}

A% and, to eall it...
LT

/% aach process has an array of 100 Conplexes
w/
Complexr al100], answer[i00];

WPI_Op myOp;
WPI_Datatype ctypea;

/% explain to MPI how type Conmplex is defined
L7
MFI_Twpe_contignous(2, MPI_DOUBELE, Ectype J;
MPI_Type_commit{ Ectype J;
/% create the compler-produoct nser—op
"/
MPI_Op_create(oyFrod, True, EoyOp J;

MFI_Reduoce(a, answer, 100, ctype, mylp, root, comm J;

/% At this point, the answer, which consists of 100 Complexes,
* ragides on process root

"/

104 ﬂ}.lath:r 4

Example 4.23 Thi example uses 2 user-defined operation to produce a regmented
soai. A segmented scan takes, as input, a set of values and a =et of logicals, and
the logicals delineate the vanious segment= of the scan. For example:

wrlues s U Uy Us Ug L Ug

logicals 0 0 1 1 1 0 0 1

Tesult i 1tvz s w4 WU Ve WU Us
The operator that produces the effect 15,

(5)e(5)=(5)
. @ , = , '
i J J
where,

_Jutv ifi=j

=1 ity

MNote that thiz 1= 2 non-commutative operator. ¢ code that implements it iz given
below.
typedef strmct {

denble val;

int log;
} SegScanPair;

/% the nsar-defined fonction
*/
void seg3can{ SegScanPair #in, SegScanPair *incmt, int *len,
MPI_Datatype *dptr J
{
int i;
SegScanPair c;

for {i=0; i< #lan; ++i) {

if { in-»log = inont-»log J
c.val = in=»wval + inowt->val;

alse
c.val = inomt=>val;

c.leg = incnt=->log;

®inont = c;

int=+; inowt+-+;

Collcclive Comsnunicalion 105

/% Note that the inont argnment to the nser-defined

¥ fonction corresponds to the right-hand cperand of the

* aperater. VWhen neing this oparater, we mnst ke carefnl

* to spacify that it iz non—commmtative, as in the felleowing.

*/

int i,base;
SeqScanPalr a, ANEWET;

WPI_Op my(p;

¥PI_Datatype typel2] = {MPI_DOUBLE, MPI_INT};
¥PI_Aint displ=];

int blocklenl2] = { 1, 1};

MPI_Datatype EE5pair;

/% axplain to MFI how type SegScanFair is defined
L7

MPI_Address(a, disp);

MPI_Address(a.log, disp+i);

base = displo];

for (i=0; i<2; ++i) displ[i] -= base;
MPI_Twpe_stronct{ 2, blocklen, disp, type, Eksspair J;
MPI_Type_commit{ Esspair };

/% create the segmented-scan nser—op

i

MPI_Op_create(seglScan, False, EoyOp J;

MPFI_Scan{ a, answer, 1, sspair, oyOp, root, comm J;

4.19% The Semantice of Collective Communieations

A correct, pertable program must imoke collective communications so that dead-
lodk will not occur, whether collective communications are synchronizing or not.
The follbwing examples illustrate d angerous usze of collective routines.

106 ﬂ}.lath:r 4

Examplc 4.24 The following is erroneous.
gwitchi{rank) o
caga 0:
MPI_Bcast(bnfl, count, typa, O, comm};
MPI_Bcast{bufZ, count, type, 1, comm};
braak;
caga 1:
MPI_Bcast(bufZ, comunt, type, 1, comm};
MFI_Bcast(bufi, comunt, type, O, comm);
braak;

We assume that the group of commis {0,1}. Two processes execute two broadcast
operaticns in reverse order. MPI may match the first broadeast call of each process,
rezulting in an errcr, since the calls do not specify the same root. Altermatively, if
MP| maiches the calk correctly, then a deadlock wall occur if the the operation is
synchronizing,.

Collective cperations must be executed in the same order at all members of the
communication group.

Examplc 4.25 The following is erronecus.
switch{rank) {
cagsa 0:

MFI_Bcast({bufi, comunt, type, O, comml);
MFI_Ecast(buf2, count, type, 2, comm2);
braak;

caga 1:
MPI_Bcast({bufl, count, type, 1, comml};
MPI_Bcast(bufZ, count, type, 0, commd);
braak;

caga 2:
MPI_Bcast(bnfl, count, typa, 2, comm2);
MPI_Bcast{bufZ, count, type, 1, commi};

break;

Aszzumme that the group of commQ is {0,1}, of comml iz {1, 2} and of comm?2 is
12,0}, If the broadeast 35 a synchronking operation, then there 3= a cyclic depen-

Collcclive Comsnunicalion 1%7

dency: the broadcast in comm2 completes only after the broadeast in cormm(; the
broadeast in commi completes only after the broadeast in comml; and the broad-
cast m comml completes cnly afier the broadeast in comm?2. Thus, the code will
deadlock.

Collective operations must be executed in an order so that no cyclic dependendes

OCCUr.

Example 4.26 The following is erronecus.
gwitchi{rank) o
caga 0:
MPI_Bcast{bufl, connt, type, 0, comm};
MPI_Send(bufZ2, count, type, 1, tag, comm);
braak;
caga 1:
MFI_Recv{bofZ, count, type, 0, tag, comm);
MFI_Bcast(bufi, comunt, type, O, comm);
break;

Process zero executes abroadcast, followed by a blocking send operation. Process
cne first execuies 2 blocking receive that maiches the send, followed by broadeast
call that matches the broadeast of procese zero. This program may deadlock. The
broadeast call on process zero may block until process one executes the matching
broadeast call, so that the send iz not executed. Process one will definitely block
cn the receive and =0, n this case, never executes the broadcast.

The relative order of execution of collective operations and point-to-pomt opera-
ticns should be such, o that even if the collective operations and the point-to-point
operations are synchromzing, no deadlock will occur.

Examplc 4.27 A correct, but non-deterministic program.
switch{rank} o
caga 0:
MPI_Bcast(bufi, comunt, type, O, comm};
MFI_Send{bofZ, count, type, 1, tag, comm);
braak;
caga 1:
MPI_Recv{bnfZ, comunt, type, MPI_ANY _SOURCE, tag, comm);
MPI_Bcast({bufl, count, type, 0, comm};
MPI_Recr{bofZ, comnt, type, MPI_ANY_SOURCE, tag, comm);

108 ﬂ}.lath:r 4

braak;

caga 2:
MFI_Send(bofZ, count, type, 1, tag, comm);
MPI_Bcast(bnfl, count, typa, O, comm};
break;

All three proceszes participate in 2 broadcast. Process) sends a message to
process 1 after the broadcast, and process 2 sends a mescage to process 1 before
the broadeast. Process 1 receives before and after the broadeast, with a wildeard
source argument.

Two possible executions of th program, with different matchings of zends= and
receives, are illustrated in Figure 4.13. Mote that the second execution has the
peculiar effect that a send executed after the broadeast is received at another node
before the broadesst. This example illustrates the fact that one chould not rely
on collective communication functions to have particular synchromzation effects.
A program that workes correctly only when the first execution cccurs {only when
broadeast is synchromizing} 3= erronecus.

Finally, in multithreaded implementaticns, one can have more than one, concur-
rently executing, collective communication calls at a procese. In these situations,
it 1= the user's responsibility to ensure that the same communicator i= not used
concurrently by two different collective communication calls at the same process.

Aduice to implementors. Aszume that broadesst 3= implemented using point-to-
point MPl communication. Suppose the following two rules are followed.

1. All receives specify their source expliatly (no wildcards).

2. Each process sends all messages that pertain to cne collective call before zend-
Ing any meszage that pertam to a subsequent collective call.

Then, messages belonging to successive broadeasts cannot be confused, as the order
of point-to-peint messages iz preserved.

It iz the implementor’s responsibility to ensure that point-to-point messages are
not confused with collective messages. Omne way to accomplizh this is, whenever
a communicatcr & created, to also aeate a “ludden communicator” for collective
communication. One could achieve a similar effect more cheagply, for example, by
uzing & hidden tag or context bit to indicate whether the communicator is uzed for
point-to-point or collective communication. {End of advice io implementors.)

Collcclive Comsnunicalion

First Execution

Procass: 0 1
maleh
acy
broadcast broadcast
ok
send = ecy
Second Execution
broadcast
Lirad]
send e ecy
broadcast
match
ecyY
Figure 4.13

send
broadcast

send
broadcast

1545

A race condition cangee non-deterministic matching of getids and receives. One cannot rely on
gynchronization from a broadeast to make the program deterministie.

200

ﬂ}.lath:r 4

5 Communicators

.1 Introduection

It was the intent of the creators of the MPl standard to address several izsues that
angment the power and usefulnese of point-to-pomt and collective communications.
These issues are mainly concerned with the the creation of port able, efficient and
safe libraries and codes with MPI, and will be discussed in this chapter. Thiz effort
was driven by the need to overcome several limitations in many message passing
systems. The next few zections describe these limitations.

5.1.1 Division of Proccescs

In some applications it i= desirable to divide up the processes to allow different
groups of processes to perform independent work. For example, we might want an
application to utilize 2 of its processes to predict the weather based on data already
processed, while the other ¢ of the processes initially process new data. This would
allow the application to regularly complete o weather forecast. However, if no new
data is available for processing we might want the came application to uze all of iis
processes to make a weather forecast.

Being able to do thiz effidently and easily requires the application to be able
to Jogically divide the processes into independent subsetz. It iz important that
these subzets are logically the same as the inmial zet of processes. For example, the
module to predict the weather might use process) as the master process to dole
out work. If subsets of processes are not numbered in a consistent manner with the
initial set of processes, then there may be no process () in one of the two subsets.
Thi would canuse the weather prediction model to fail.

Applcations also need to have collective operations work on a subset of processes.
I collective operations only work on the mitial set of processes then it is impeesible
to create independent subsetz that perform collective operations. Even if the ap-
plication does not need independent subsets, having collective operations work on
subzet= iz desirable. Since the time to complete meet collective operaticns increases
with the number of processes, limiting a ccllective operation to only the processes
that need to be mvolved yields much better scaling behavice. For example, if a
matrix computation needs to broadeast information along the diagonal of a matnx,
cnly the processes containing diagonal ekements should be involved.

201

202 ﬂ}.lath:r i1

5.1.2 Avolding Mcssage Conflicts Between Modules

Library routines have historically had diffieulty in &clating their own message pase
ing calls from these in other libraries or in the user’s code. For example, suppese
the user's code posts a non-blocking receive with both tag and source wildearded
before it enters a library routine. The first send in the hibrary may be received
by the user’s posted receive instead of the cne posted by the hibrary. Thiz will
undoubtedly cansze the library to fail.

The solution to this difficulty is to allow 2 module to izolate its message passing
calls from the other modules. Scme applications may only determine at run time
which modules will run so it can be impossibk to statically izclate all modules in
advance. Thiz necessit atez a run time callable sy=tem to perform thi= function.

5.1.3 Extcnsibility by Uscrs

Writers of libraries often want to expand the functionality of the message passing
system. For example, the library may want to create = own special and unique
collective operation. Such a collective operation may be called many times ff the
library 1= calked repetitively or if multiple libranes use the same collective routine.
To perform the collective operation efficiently may require 2 moderately expensive
calculation up front such a= determining the best communication pattern. It is
most efficient to reuse the up fromt caleulations if the same the et of processes are
involved. This is most easily done by attachmg the result= of the up front caleulation
to the =et of processes involved. These types of optimization are routinely done
internally in message passing systems. The desire iz to allow others to perform
similar optimizations in the same way.

514 Bafcty

There are two philoscphies used to provide mechanizms for creatmg subgroups,
1eclating messages, etc. Ume point of view is to allow the user total control over the
process. This allows maxdmum fleability to the user and can, in some cazes, lead
to fast implementations. The other point of view 1z to have the message passing
syetemn control these functions. Thic adds a degree of zafety whik limiting the
mechanisms to those provided by the system. MPI chese to use the laiter approach.
The added safety was deemed to be very mmportant for writing portabl message
passing codes. Since the MP| system controls these functions, modules that are
written independently can =afely perform these cperations without worrying about
confliciz. As in other areas, MPI ako decided to provide a rich zet of functions =0
that uzers would have the functionality they are likely to need.

Comnunicalory 203

E.2 QOverview

The sbove features and several more are provided in MPI through communicators.
The concepts behind communicators encompass several central and fundamental
ideas in MPIl. The importance of communicators can be seen by the fact that they
are present in most calls in MPIl. There are several reasons that theze feaiures are
encapsulated mto a single MPIl cbject. Omne reason iz that it simplifles calls to
MPI functicns. Grouping logically related items into communicators substantially
reduces the number of calling arguments. A second reaszon ic it allows for easier
extenszibility. Both the MPI systemn and the user can add information ento commu-
micators that will be passed in calls without changing the calling arguments. This
15 consistent with the vsze of opagque cbjects throughout MPI.

5.2.1 Groups

A group iz an ordered zet of process identifiers (henceforth processes}; procesces are
implementation-dependent cbjects. Each process in a group i= associated with an
integer rank. Ranks are contiguous and start from zero. {roups are reprezented
by opague group objoctzs, and hence cannot be diectly transferred from ome
process to another.

There iz & spedal pre-defined group: MPLGROUP_EMFPTY, which i 2 group with
no members. The predefined constant MPILGROUFP_MULL & the value used for in-
valid group handles. MPLGRAOUP EMPTY, which £ a valid handle to an empty
group, should not be confuzed with MPLGROUP NULL, which & an invalid handle.
The former may be used as an argument to group operations; the latter, which is
returned when a group 1= freed, in not a valid argument.

{(iroup operations are discussed in Section 5.3.

522 Communicator

A commumicator is an opaque object with a number of atinbutes, together with
simpl rules that govern its creation, use and destruction. The communicator spec-
ifiez 2 communication domain which can be used for point-to-point communica-
ticns. An intracommunicator is used for communicating within a single group of
procesges; we call such communication imtro-grovp communioation. An intracom-
municator has two fixed attributes. Thesze are the process group and the topology
describing the logical layout of the processes i the group. Process topologies are
the subject of chapter §. Intracommunicators are also used for collective operations
within 2 group of proceszes.

204 ﬂ}.lath:r i1

An intercommunicator is used for point-to-point communication between two
digjoint groups of processes. We call such communication infer-group communi-
catiori. The fived attributes of an intercommunicator are the two groups. No
topolegy i= aseocated with an mtercommunicator. In additien to fixed atiributes a
communicator may ako have user-defined attributes which are associated with the
communicator using MPI's caching mechanizm, as described in Section 5.86. The
table below summarizes the differences between intracommunicators and intercom-
municators.

Functionality Intracommunicator | Intercomimunicator
of groups 1 2

Communication Safety Yes Yes

Collectrve Operations Yes No

Topologies Yes No

Caching Yes Yes

Intracommunicator operations are described in Section 5.4, and intercommuni-
cator operations are discussed in Section 53.7.

5.2.3 Communication Domaing

Any point-to-peint or collective communication occurs in MPl within 2 commu-
nication domain. Such a commumication domain is reprezented by 2 set of com-
muniators with consistent values, one at each of the partxipating processes; each
communicator is the local reprezentation of the global communication domain. If
thiz domain 3= for intra-group communication then all the communicators are in-
tracommunicators, and all have the same group atiribute. Each communicator
identifies all the other corresponding communicators.

One can think of a communicator a= an array of bnks to other communicators.
An intra-group communication domain 1= specfled by a et of communicators such

that

their links form a complkte graph: each communicator is linked to all communica-
tors in the zet, including itzelf; and

links have consistent indices: at each communicator, the i-th link points to the

communicator for process .

The distributed data structure iz dlusirated m Figure 5.1, for the case of a three
member group.
We dizcuse inter-group communication domains in Section 5.7.

Comnunicalory 205

.
(o0 Q)
1@ O Q)

©
i !

Digtributed data structure fur intra-communication doamain,

O 0l
[l

In point-to-peoint commumnication, matching send and receive calls should have
communicator arguments that represent the same communication domains. The
rank of the processes iz interpreted relative to the group, or groups, associated with
the communicator. Thus, in an nira-group comumunicat ion domain, process ranks
are relative to the group ascociated with the communicator.

Similarly, a collective communicat ion call involves all processes in the group of an
intra-group communication domain, and all processes should use a communicater
argument that represent= this domain. Intercommunicators may not be used in
collective commumication operaticns.

We shall sometimes say, for simplicity, that two commumnicators are the same, if
they represent the same communication domam. One should not be miled by this
abuze of language: Each communicator is really a distinet object, local to 2 process.
Furthermere, communicateors that represent the same communication domam may
have different attribute values attached to them at different processes.

Advice to implementors. An often-used design & that each communicatoris ascoc-
ated with an id which iz processunique, and which iz identical at all communicators
that define one intra-group communication domain. This id i= referred as the com-
munication confert. Thus, each message & tagged with the context of the send
communicator argument, and that context identifies the matching communicator
at the receiving process.

In more detail: a group can be reprezsented by an array group such that groupli]
15 the addresz of the process with rank 1 in group. An intracommumicator can be
reprezented by a structure with components group, myrank and context.

When 2 process posts 2 zend with arguments dest, tag and comm, then the address

206 ﬂ}.lath:r i1

of the destmation iz computed a= comm_group[dest]. The meszage sent carries a
header with the tuple [eomm.myrank, tag, comm.context).

If a process posts a receive with argument source, tag and comm, then headers of
incoming messages are matched to the tuple (source, tag, comm context) (first two
may be dontcare).

Ancther design iz to v=e ids which are process-unique, but not necessarily identical
at all procesges. In such case, the context component of the communicator siructure
15 an array, where commcontext[l] iz the id chosen by the process with rank | for
that communication domain. A message £ zent with header comm.myrank, tag,
cormm_context[dest]; a receive call causzes incoming messages to be matched agamst
the tuple [source, tag, comm_ contexdt[myrank]}.

The later design uses more storage for the commumicator object, but simplifies the
creation of new communicators, since ids can be zelected locally (they =till need to

be broadeast to all other group members).

It 3= important to remember that MPl does not require a unique context to be aseo-
azted with each communicator. *Clontext™ iz a pozsible implementation structure,
not an MPI object.

With both designs we assumed s “fat” representation for groups, where each pro-
cesz holds a complete list of group members. This requires, 2t each process, storage
of size proportional to the size of the group. Whilke this presentz no problem with
groups of practical size (100°: or 1000’ of processes} it iz not a scalable design.
Other represent ations will be needed for MPl computations that spawn the Inter-
net. The group information may be distributed and managed hierarchically, as are
Internet addreszes, at the expenze of additional communication. { End of advice ic
implementors.)

MPI iz dezigned to ensure that communicator constructors always generate con-
sistent communicators that are a valid representation of the newly created com-
munication domain. Thiz 1= done by requiring that a new intracommumnicator be
constructed out of an exdsting parent communicator, and that this be a collective
cperation over all processes in the group associated with the parent communicator.
The group asscciated with a new intracommumnicator must be a subgroup of that
aszociated with the parent miracommumicator. Thus, all the intracommunicater
constructor routines described in Section 5.4.2 have an exdsting communicator as
an mput argument, and the newly creaied intracommunicator 2 an output argu-
ment. Thiz leads to a chicken-and-egg situation smce we must have an exdsting

Comnunicalory 207

communicator to create a new communicator. Thi problem is solved by the provi-
sicn of a predefined intracommunicator, MPLCOMMMWORLD, which iz available for
uze once the routine MPI_INIT has been called. MPLCOMMMWORLD, which has as
itz group attribute all procesces with which the local process can communicate, can
be used as the parent communicator in constructing new commumicators. A second
pre-defined communicator, MPLCOMM_SELF, i= alsc available for use after calling
MPLINIT and has as 1ts associated group just the process itzelf. MPLCOMMSELF i
provided as & convenience =ince it could easily be created cut of MPLCOMM WORLD.

5.2.4 Compatibility with Corrent Practice

The current practice in many codes is that there i= a unique, predefined commu-
nication umiverse that mcludes all processes available when the paralle]l program is
initiated; the processes are assigned consecutive ranks. Participants in & point-to-
point communication are identified by their rank; a collective communication (such
a5 broadeast} always involves all processes. As such, most current meszage passing
librariez have no equivalent argument to the communicator. It i= implicitly all the
proceszes as ranked by the system.

This practice can be followed in MPl by using the predefined communicator
MPLCOMM_WORLD wherever 2 communicator argument iz required. Thus, using
current practice in MPIl & very easy. Ulzers that are content with it can ignore most
of the mformation in thi chapter. However, everyone should seriously consider
understanding the potential risks in usimg MPLLCOMM _WQRLD toc avecid unexpected

behavior of their programs.

5.3 Group Management

Thi zection describes the manipulation of process groups in MPI. These operations
are local and their execution do not require interprocess commumnication. MPI allows
manipulation of groups outside of commumnicators but groups can only be uszed for
message passing incide of & commumicator.

208 ﬂ}.lath:r i1

5.3.1 Group Acccesors

MPLGROUPSIZE(group, size)
IN group group
ouUT gize ownber of proccyse o group

int MPI Gronpsize{MPI Oronp gromp, int *size)

MPI_GROUP SIFE(GROUFP, SITE, IERROR}
INTEGER GROUP, SIFE, IERROR

MPI_GROUP SIZE returns the number of processes in the group. Thus, if group
= MPILGRQUP EMPTY then the call will return size = 0. [Om the other hand, a
call with greup = MPILGROUP NULL is erronecns.}

MPILGRQUP_RANK[group, rank)}

IN group group

ouUT rank rank of Lhe calling procmy in group
int MPI Grouprank(MPI Gromp gromp, int srank)

MPI_CROUP _RANK(GROUP, RANK, IERROR)
INTEGER GROUP, RANK, IERROR

MPI_GROUP RAMK returns the rank of the calling process in group. If the process
1= not 2 member of group then MPLUNDEFINED iz returned.

MPLGROUP_TRANSLATE_RANKS {greupl, n, ranksl, greup2, ranks2)

IN groupl groupl

IN n ownber of ranks in ranksl amd ranks2
arrayy

IN ranksl array of xerm or snore valid rankyio groupl

IN group2 group?

ouUT ranks2 array of cormeuponding ranks in group?

int MPI Gronptranslate ranks (MPI Gromp grompl, int n, int sranksi,
MPI Group gronpZ, int +ranksZ)

Comnunicalory 200

MPI_GROUP_TRANSLATE RANKS(GROUFL, N, RANKS1, GROUP2, RANKSZ, IERROR)
INTEGER GROUPL, N, RANKS1(#), GROUP2, RANKS2(*), IERROR

MPI_GROUP TRANSLATE_RAMNKS maps the ranks of a set of proceszes in groupl
to their ranks in group2. Upcon return, the array ranks? contains the ranks in group?
for the processes in groupl with ranks histed in ranksl. If a process in groupl found
in ranksl does not belong to group? then MPILUNDEFIMNED i= returned in ranks2.

Thiz function is important for determining the relative numbering of the same
proceszes in two different groupe. For instance, if cne Jmows the ranks of certain
proceszes in the group of MPILCOMMMWORLD, one might want to Jmow their ranks
in a subset of that group.

Example 5.1 Let groupl be a handle to the group {a,b.cd.e f} and let group?
ke a handle to the group {de,acl. Let ranksl = [0,5,0,2). Then, a call to
MPLGROUP_TRAMNSLATE_RANKS will return the ranks of the processe= {a fac]
in group?, namely ranks2 = (2,12 3). (L denctes the value MPI_LUNDEFINED.}

MPILGRQUP_COMPARE(groupl, group2, result)

IN gmupl [irul group
IN group? secomd group
ouUT result reull

int MPI Groupconpare (MPI Gronp gronpl,MPI Gronp groupZ, int sresolt)

MPI_GCROUP _COMPARE(GROUP1, GROUP2, RESULT, IERROR)
INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GRAUP _COMPARE returns the relationship between two groups. MPIIDENT
rezults if the group members and group oxder & exactly the same in both groups.
Thie happens, for instance, if groupl and group? are handles to the same object.
MPLSIMILAR resuliz ff the group members are the came but the order iz different.
MPIUNEQUAL results otherwee.

532 Group Constructors

(Group constructors are used to construct new groups from exdsting groups, using
various et operaiions. These are local operations, and distinct groups may be
defined on different processes; o process may also define a group that does not

210 ﬂ}.lath:r i1

inchude 1tzelf. Consistent definiticns are required when groups are used as argu-
ments in communicator-builldmg functions. MPl does not provide 2 mechanizm
to builld & group from scratch, but only from other, previcusly defined groups.
The base group, upon which all other groups are defined, i= the group associated
with the initial communicater MPLCOMM MWORLD [accessible through the func-
tion MPI_COMM_GROUP).

Local group creation functions are uzeful since some applications have the needed
information distribuied on all nodes. Thus, new groups can be created locally
without communication. This can significantly reduce the necessary communication
In creaimg & new communicator to use this group.

In Section 5.4 2, communicator creation functions are described which also create
new groups. These are more general group creation functions where the information
does not have to be kocal to each node. They are part of communicator creaticn
since they will normally require communication for group creation. Since commu-
nicator creation may also require communication, it 1= logical to group these two
functions together for this case.

Rationale. In what follows, there i= no group duplication function analogous
to MPI.COMM_DUP, defined later in thic chapter. There £ no need for a group
duplicator. A group, once created, can have several references to #t by maling
copies of the handle. However, care should be talen when ®aliasmg” groups in

thiz way since a call io free a group using MPLLGRQUP_FREE may leave dangling
references. (End of rationafe.}

Advice to implementors. Fach group constructor behaves as if #t returmed a new
group object. When this new group & a copy of an exsting group, then one can
avoid creating such new cbjects, using a reference-count mechanem. {End of advice
v implermentors.)

MPI_COMM_GRQUP{cermm, group)

IM cornrn couununicalor
ouT group group corrcup onding: Lo eamin
int MPI Comn group{MPIComm comm, MPI Gromp *gronp)

MPI_COMM_GROUF (COMM, GROUF, IERROR)
INTEGER COMM, GROUP, IERROR

Comnunicalory 211

MPI_COMM_GROQUP return= in group a handle to the group of comm.
The following three functions do standard et type operations. The only differ-
ence is that ordering is important so that ranks are consistently defined.

MPILGRQUP_UNIQN{groupl, group2, newgroup)

IM groupl firul group
IM group2 yccond group
ouUT newgroup woion group

int MPI Gronpanion{MPI Gronp gronpl, MPI Group groupZ,
MPI Group *newgIonp)

MPI_GROUF _UNION(GROUF1, GROUFZ, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUF, IERROR

MPILGRQUP_INTERSECTIQMN{greupl, group2, newgroup)

IN groupl firl group
IN group? secomd group
ouUT MEg FoUp nlerseclion group

int MPIGroupintersection(MPI Gronp grompl, MPI Gronp gronpZ,
MPI Group *newgroup)

MPI_GCROUP_INTERSECTION(GROUP1, GROUPZ, NEWGROUP, IERROR)
INTEGER GROUP1, GROUP2, NEWGROUF, IERROR

MPLGROUP_DIFFERENCE({groupl, group2, newgroup)

IN groupl firul group
IN group2 souond group
ouUT NEVVg oL p differenee group

int MPIGroupdifference(MFI Gronp groupl, MFI Group group2,
MFI Group *neawgroup)

MPI_CROUP DIFFERENCE({GROUP1, GROUPZ, NEWGROUP, IERROR)
INTEGER GROUF1, GROUPZ2, NEWGROUF, IERROR

212 ﬂ}.lath:r i1

The operations are defined as follows:

union All elements of the first group (greupl}, followed by all elements of second
group (group2) not in first.

intersection All elemenis of the first group that are also in the second group,
crdered as in first group.

difference All elements of the first group that are not in the second group, ordered

2z in the first group.

Mote that for these operations the order of processes m the cutput group i= deter-
mined primarily by order in the first group (if pessible} and then, i necessary, by
crder in the second group. Neither unicn nor intersection are commutative, but
both are associative.

The new group can be empty, that iz, equal to MPLGROUF EMPTY.

Example 5.2 Let groupl = {a,b,c,d} and group? = {d,a,e}. Then

gmuplUgmupﬂ = {a,b,c,d, e} {union};

gmuplﬂgmupﬂ = {a,d] (intersecticn};
and

groupl Y greup2 = {b,c] [difference}.

MPIGRQUP_INCL {greup, n, ranks, newgroup)

IN group group

IN n]'.I.Lllll.hﬂl' Df ﬂ].ﬂlllﬂ.l'.ll.!l ll'.l. array rﬂul(ﬂ {dﬂ.l'].
ulee of newgrou p)

IN ranks ranky of procowo 1o grolp bo appear 1o
HEAEROL b

ouT MEwgroup oew gooup derived [mun above, n Lhc

order defined by ranks

int MPIGromp incl(MPI Gromp gromp, int n, int *ranks,
MPI Gronp *newgTonp)

MPI_GROUP_INCL{GROUP, N, RANKS, NEWGROUP, IERROR)

Comnunicalory 213

INTEGER GROUP, N, RANKS(+), NEWGROUF, IERROR

The function MPLGRQUP_INCL creates a group newgroup that consists of the
n processes in group with ranks rank[0],..., rank[n-1]; the process with rank i in
nevrg roup 1s the process with rank ranks[|] in group. Each of the n elements= of ranks
must be a valid rank in group and all elements must be distinct, or else the call is
errcnecus. If n = 0, then newgroup i= MPLGRAOUF EMPTY. The function can, for
instance, be used to recrder the elements of a group.

Examplc 5.3 Let group be a handle to the group {a,bcd,ef} and let ranks =
{3,1,2}. Then, a handle to the group {d.b.c] is returned in newgroup.

Assume that newgroup was created by a call to MPILGRQUP INCL [greup, n, ranks,
newgroup). Then, a subsequent call to MPLGROUP_TRANSLATE RANKS{group, n,

ranks, newgroup, newranks) will return nesranks[i]=4i, i=0,...,n—1(m C} or
newranks(i +1} =1, i =0,...,n —1 {in Fortran}.

MPLGRQUP_EXCL{group, n, ranks, newgroup)

IN group group

IN n ouwnber of clomcoly lo army raoks

IN ranks array of loloper ranks in group nol Lo
appcar Lo newWgroUp

ouT MEwgroup oew group derived [rom above, provery-

lng Lbe order defined by group

int MPIGrompexcl{MPIGromp gromp, int n, int *ranks,
MPI Gronp *newgTonp)

MPI_GROUP _EXCL{GROUP, N, RANKS, NEWGROUP, IERROR)
INTEGER GROUF, N, RANKS(#), NEWGROUF, IERROR

The function MPLGRAUP EXCL creates a group of processes newgroup that is
cbtamed by deleting from group those processes with ranks ranks[0Q].. .., ranks[n-1]
mm or ranke[1],..., ranks[n] n Foriran. The ordening of proceszes in newgroup is
identical to the crdering in group. Each of the n elements of ranks must be a valid
rank in group and all elements must be distinct; otherwise, the call & erronecus. If
n =0, then newgroup % identical to group.

Examplc 5.4 Let group be a handle to the group {a,b.cd.ef} and let ranks =
{3.1,2). Then, a handle to the group {a.ef}is returned in newgreup.

214 ﬂ}.lath:r i1

Suppoze one calls MPLGRQUP_INCL{greup, n, ranks, newgreupi} and MPLGRQUP-
-EXCL{group, n, ranks, newgreupe). The call MPLGROUP_UNIQN{newgroupi, new-

groupe, newgroup) would return in newgreup a group with the same members as

group but peezibly i adifferent order. The call MPLGRAQUPINTERSECTION{groupi,

groupe, newgroup) would return MPLGROUP EMPTY.

MPILGRQUP_RANGE_INCL{group, n, ranges, newgroup)

IN group group
IN n ouaber of Lrlpl-c:LH 1 array ranges
IN ranges an array of].ul.cq;c:r Lrlplt:LH, of Lhe form

(firsl rank, laul rank, slide) indicaliog
ranks 1o groU p ol procese Lo be locluded
Lo hewgrou p

ouT newgroup oew grooup derived [mun abore, In Lhe
order defined by ranges

int MPIGromprange incl{MPI Gronp gromp, int n, int ranges[][3],
MPI Group *newgIonp)

MPI_GROUF _RANGE INCL(GROUF, N, RANGES, NEWGROUF, IERROR)
INTEGER GROUF, N, RANGES(3,s), NEWCROUF, IERROR

Each triplet in ranges specifies a sequence of ranks for proceszes to be included in
the newly created group. The newly created group contams the proceszes specified
by the fir=t toplet, followed by the processes specified by the second triplet, etc.

Examplc 5.5 Let group be a handle to the group {a,b,cd,e fg,h,l,j} and let ranges
= [(6.,7.1),{1.6,2).00,94)). The first triplet (6,7,1)] specifies the processes {g.h},
with ranks [6,7); the second triplet [16,2) specifies the processes {bd f}, with
ranks [1,3,0}; and the third triplet (0,94} specifies the processes {a,e,i}, with ranks
{0.4,8). The call creates the new group {g.hb.d faeil.

Grenerally, if ranges consist of the triplets
{first,,last, stride),...,(first,,last,, sivide,)

then newgroup conskts of the sequence of proceszes in group with ranks
iﬂs‘il - _ﬁrsil

. gtride,, ...
siride, J oL,

First,, first, + stride, , ..., first; + [

—

Comnunicalory 215

last,, — first,
stride,

Each computed rank must be a valid rank in group and all computed ranks must
be diztinct, or elze the call is exronecus. Mote that a call may have first; = lest;,
and stride; may be negative, but cannot be zero.

The functionality of thic routine iz specified to be equivalent to expanding the
array of ranges to an array of the included ranks and passmg the resulting array
of ranks and other arguments to MPLGROUP_INCL. A call to MPLGROUPINCL i=
equivalent to a call to MPI_.GRQUP RANGE_INCL with each rank i in ranks replaced
by the troplet {i,1,1) in the argument ranges.

First,, , firsd, + stvide,,..., first, + \‘ J - shride, .

MPLGRQUP_RANGE_EXCL{greup, n, ranges, newgroup)

IN group group
IN n owaber of cloancoly in army ranky
IN ranges an array of inleper Loplely of Lhe form

(il raok, lask rank, sloide), indicaliog
Lbe ranks In group of procosoy Lo be cx-
cluded [roun Lhe oulpul group newgrou p.

ouUT newgroup oew group derived [rom above, provery-
lng Lhe order n group

int MPI Gronprange excl{MPI Gronp gromp, int n, int ranges[][3],
MPI_Group *newgIonp)

MPI_GROUF _RANGE EXCL(GROUF, N, RANGES, NEWGROUF, IERROR)
INTEGER GROUF, N, RANGES(3,s), NEWCROUP, IERROR

Each triplet in ranges speafies a sequence of ranks for processes to be excluded
from the newly created group. The newly created group contains the remaining
processes, ordered #= in group.

Examplc 5.6 Let, a= n Example 5.5, group be a handlk to the group {a,b,cd,e f.g.-
h,i,j} and let ranges = {{6,7,1),{1.6.2},{0,9,4)). The call creates the new group {c.j},
conzisting of all proceszes in the old group comitted by the hist of triplet=.

Each computed rank must be a valid rank in group and all computed ranks must
be distinct, or else the call 1= erronecns.
The functionality of thi= routine 1= specified to be equivalent to expanding the

array of ranges to an array of the excluded ranks and passing the resulting array of

216 ﬂ}.lath:r i1

ranks and other arguments to MPI_GROUP EXCL. A call to MPI.GROUP_EXCL i
equivalent to & call to MPLLGRQUP RANGE EXCL with each rank 1in ranks replaced
by the trplet (i,i,1) in the argument ranges.

Advice to users. The range operations do not explicitly enumerate ranks, and
therefore are more scalable if implemented efficiently. Hence, it & recommend that
MFP| programmers use them whenever possible, az high-quality implementations
may take advantage of thiz fact. (End of advice {6 users))

Aduice te implementors. The range operations should be implemented, if possible,
without enumerating the group members, in crder to obtain better scalahbility (time
and space). {End of advice {0 implemeniors.)

5.3.3 Group Destructors

MPLGROUP_FREE{group)
IMNGUT group group

int MPI Gronpfres(MPI Oronp *gronp)

MPI_GROUP _FREE({GROUF, IERROR)
INTEGER GROUP, IERROR

This operation marks a group cbject for deallocation. The handlke group is =t to
MPLASRAUP_NMULL by the call. Any ongoing operation using thi group will complete
normally.

Advice to implementors. Omne can keep a reference count that is incremented

for each call tc MPIL.COMM_CREATE and MPLCOMM_DUP, and decremented for
each call tic MPILGROQUP_FREE or MPI_COMM_FREE; the group object iz ultimately
deallocated when the reference count drops to zerc. (End of advice fo implemen-
tors.)

K4 Communicator Management

Thie cection describes the manipulation of communicators in MPL. Orperations that
arcesse communicators are Jocal and their execution does not require interprocess
communication. (perations that create communicators are collective and may

Comnunicalory 217

require interprocess communication. We describe the behavior of these functions,
assuming that their comm argument is an intracommunicator; we describe later in
Section 5.7 their cemantice for intercommunicator arguments.

541 Communicator Acccssors

The following axe all local operations.

MPLCOMM_SIZE{cermm, size)

IN oM conununicalor
ouT size ownber of procese o Lhe group ol comm

int MPIComn siza(MPI Comm comm, int *size)

MPI_COMM STZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM SIZE returns the size of the group associated with comm.

This function indicates the number of processes invohred in an intracommunica-
tor. For MPLEOMM WORLD, it indicates the total number of processez awailable
at initialization time. [For this version of MPI, thiz is also the total number of
processes available throughout the computation).

Rationale. This function is equivalent to arcessing the communicator’s group with
MPILCOMM_GROUP {see above}, computing the size using MPI.GROUPSIZE, and
then freeing the group temporary via MPILGROUP_FREE. However, thi= function is
s0 commaonly used, that this shortcut was miroduced. (End of rationafe.)

MPILCOMM_RANK {comm, rank)

IN cormmm comununicalor
ouUT rank rank of Lhe r.:a]]i:.g procoy i group ol
COMIm

int MPIComn rank(MPI Comm comm, int srank)

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

218 ﬂ}.lath:r i1

MPI_COMM_RANK indicates the rank of the process that calk it, in the range
from (.. size—1, where size iz the retum value of MPI_.COMM SIZE. The rank is
relative to the group ascociated with the intracommunicatior ecomm. Thus, MPL
COMM_BANK{MPI_COMM_WQRLD, rank) returns in rank the “absolute’ rank of
the calling process in the global communication group of MPI.COMM _WQRLD;
MPLCOMM_RANK{ MPI_COMM_SELF, rank) returns rank = 9.

Rationale. This function is equivalent to arcessing the communicator’s group with
MPLCOMM_GRQUP (see above}, computing the rank using MPIL.GRQUP _RANK,
and then freeing the group temporary via MPILGRQUP FREE. However, this func-
tion is so0 commonly used, that this shorteut was introduced. (End of nationale.)

Advice to users. Many programs will be wniten with the master-clave model,
where one process (such as the rank-gero process} will play a supervisory rok,
and the other proceszes will zerve as compute nodes. In this framework, the two
preceding calls are useful for determining the roks of the various processez of a
communicator. (End of advice to urers.)

MPLCOMM_COMPARE[coram1, comm2, result}

IN cormrml firul vommuonicalor
IN oo socond cosmnunicalor
ouUT result renull

int MPIComn compare{(MPI Conn comml,MPI Comm comn?, int sresolt)

MPI_COMM_COMPARE(COMM1, COMMZ, RESULT, IERROR)
INTEGER COMM1, COMMZ2, RESULT, IERROR

MPI_COMM_COMPARE 1= used to find the relationship between two intra-com-
municators. MPLIDENT results if and only if comml and comm2 are handles for the
same object (representing the same communication domain). MPILCONGRUENT re-
sults if the underhring groups are identical in constituents and rank order (the com-
municators represent two distinet communication domains with the same group at-
tnbute}. MPISIMILAR results if the group members of both communicators are the
same but the rank crder differs. MPI_UNEQUAL results ctherwize. The groups asso-
azted with two different communicators could be gotten via MPILCOMM_GRQUP
and then uszed in a call to MPLGROUP_COMPARE. If MPLCOMM_COMPARE
gives MPLCOMGRUENT then MPLGROUP _COMPARE will grve MPILIDENT. If MPL

Comnunicalory 215

COMM_COMPARE gives MFISIMILAR then MPLGRQUP _COMPARE will give MPL
SIMILAR.

542 Communicator Constroctors

The following are collective functions that are invoked by all processes in the group
azsociated with cornm.

MPLCOMM_DUP{cemm, newecormm)

IM O coumnunicalor
ouUT MEWYEE M copy of comin

int MPI Comn dup (MFI Comm comm, MFI Comm snewcomn)

MPI_COMM DUP({COMM, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR

MPI_.COMM_DUP creates a new intracommunicator, newcormm, with the same
fixed attributes {group, or groups, and topology) as the mput intracommunicator,
comm. The newly created communicators at the processes in the group of comm
define a new, distinct communication demain, with the same group as the old
communicators. The function can also be used to replicate intercommunicators.

The association of user-defined {or cached) attributes with newecernm iz controlled
by the copy callback function specified when the attribute was attached to comm.
For each ey value, the respective copy callback function determines the atiribute
value associated with this key in the new communicator. User-defined attributes
are discussed mn Section 5.6.

Aduice to weers. Thiz operation can be used to provide = paralle] library call
with a duplicate communication space that has the came properties a= the original
communicator. This includes any user-defined attributes {see below}), and topolo-
gies [see chapter §}. This call 1= vahd even if there are pending point-to-point
communications mvolving the communicator comm. A typical call might invelve a
MPLCOMM_DUP zt the begmning of the parallel call, and an MPI_COMM_FREE
of that duplicated comimunicator at the end of the call — see Example 5.11. Other
models of communicator management are also pessible. {End of advice to uzers.)

Advice o implementors. Assume that commumnicators are implemented a= de-
scribed on page 205. If a unique context & used per communication domain, then
the generation of 2 new communicator requires 2 collective call where proceszes

220 ﬂ}.lath:r i1

agree on a new context value, E.g., this could be 1+ max{already used contexts],
computed wsing an MPIALLREDUCE call {assuming there iz no need to garbage
collect comtexts}. If a different context ic used by each process, then a collective
call iz needed where each process exchange with all other proceszes the value of the
contert 1t selected, using an MPILLALLGATHER call.

It iz theoretically possible to agree on 2 group-wide unique context with no commu-
mication: e.g. one could uze as context a unigque encoding of the group, followed by
a sequence number for intracommunicat ors with this group. Since all processes in
the group execute the same zequence of calls to MPILCOMM_DUP wiih thiz group
argument, all processes will locally compute the same . This design & not be
practical because it generates large context ids. Implementations may sirike var-
ous compromises between communication overhead for communicator creation and
context size.

Important : If new cormmunicators are created without synchromzing the processes
involved then the communication system should be able to cope with messages
arriving for a commumnicator that has not yet been aeated at the receiving process.
When a communicator 3= duplicated, one need not actually copy the group infor-
mation, but only add a new reference and increment the reference count. {End of
adrice o implementors.)

MPLCOMM_CREATE{comm, greup, neweomnmy)

IM cornnm conununicalor

IN group {roup, which v a subucl of Lhe group of
COMIm

ouUT MEVWED M ncw coumnuicalor

int MPIComn rreate(MPI Comn comm, MFI Group group,
MPI Comm *newcomm)

MPI_COMM CREATE(COMM, GROUF, NEWCOMM, IERROR)
INTEGER COMM, GROUP, NEWCOMM, IERROR

The function createz 2 new miracommunicator newcornm with communication
group defined by group. Mo attributes propagates from comm to newcornm. The
function returns= MPLCOMM MULL to processes that are not in group. The commu-
nicators returned at the processes in group define a new mira-group communication
domain.

Comnunicalory 221

The call iz erronecus if not all group arguments have the same valie on different

processges, or if group i= not a subset of the group associaied with comm (but it
does not have to be a proper subset}). Note that the call is to be executed by all
processes in comm, even o they do not belong to the new group.

Rationale. The requirement that the entire group of comm participate in the call
stems from the following considerations:

¢ It alows the implementation to layer MPI_LCOMM_CREATE on top of regular
collective commumnications.

¢ It provides additional safety, in particular in the caze where partially overlap-
Fing groups are used to create new communicators.

¢ It permiiz implementations somet imes to avoid communication relaied to the
creation of communicators.

{End of raticnale.)

Advice to vsers. MPILCOMM_CREATE provides a means to subset a group of
processes for the purpose of separate MIMD computation, with 2 separate commu-
nication space. newoornm, which emerges from MPLCOMM_CREATE can be used
in subsequent calls to MPILCOMM_CREATE {or other communicator constructors)

further to subdivide & computation into paralle] sub-computations. A more general
service iz provided by MPILCOMM_SPLIT, below. (End of advice to users.)

MPLCOMM_SPLIT[comm, ecler, key, newecomm)

IN cornm comunuuicalor

IN wlor coolrol of subucl asulrmncol
IN key coolrol of ok asyipmncnl
ouT MEAVEC T oew comununicalor

int MPIComn split(MPI Comm comm, int color, int key,
MPI Comm *newcomm)

MPI_COMM SPLIT{COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

Thie funciion partitions the group ascociated with comm into digjoint subgroups,

cne for each value of coler. Each subgroup contains all processes of the same cdlor.

Within each subgroup, the processes are ranked in the order defined by the value

222 ﬂ}.lath:r i1

of the argument key, with ties broken according to their rank in the old group.
A new communication domain & created for each subgroup and 2 handle to the
representative comimunicator is returned in newcomm. A process may supply the
color value MPILUNDEFINED to not ke a member of any new group, in which caze
newcormnm returms MPLCOMMNULL. Thi=s £ a collective call, but each process is
permitted to provide different values for color and key. The value of color must be
nonnegative.

Example 5.7 Assume that a collective call to MPI_.COMM _SPLIT iz executed in a
10 element group, with the arguments histed in the table below.

rank 0 1 2 3 4 5 & 7T & B
process |a b ¢ d e £ g h i1 j
color 0 L 3§ 03 00 5 3§ 1
key 4 1 2 53 1 1 1 2 1 0

The call generates three new communication domains: the first with group
{fg.ad}, the second with group {e,ic}, and the third with singleton group {h}.
The processes b and j do not participate in any of the newly created communica-
ticn domains, and are returned a null communicator handle.

A call to MPILCOMM_CREATE([cemm, group, newcemm) is equivalent to a call
to MPLCOMM_SPLIT{comm, celer, key, neweomm), where all members of group
provide color = () and key = rank in group, and all proceszes that are not members
of group provide color = MPLUNDEFINED. The function MPILCOMM SPLIT allows
more general partitioning of a group into one or more subgroups with optional

recrdering.

Advuice to ueers. This iz an extremely powerful mechanism for dividing a single
communicating group of processes into k subgroups, with £ chosen implicitly by the
user {by the number of colors asserted over all the processes). Each resulting com-
munication domain will be umigque and their associated groups are non-cverlappmg.

Such a division could be uszeful for defining a hierarchy of computations, such as
for multigrid, cr linear algebra

Multiple calls to MPI_COMM SPLIT can be uzed to overcome the requirement that
any call have no overlap of the resuliing communicators {each process i= of only one
color per call}. In this way, multiple overlapping communication structures can be
created.

Mote that, for a fixed color, the keys need not be unique. It = MPI.COMM_SPLIT s
responsibility to sort processez in ascending order according to this key, and to

—

—

Comnunicalory 223

break txs according to old rank. If all the keys are spectfied with the zame value,

then all the processzes in & given color will have the same relative rank order a2z they
did in their parent group. (End of advice {0 users.)

5.4.3 Communicator Destroctor

MPLCOMM_FREE{comm)
INOUT comm comununicalor lo be delroyed

int MPIComn frea(MPI Comm *comm)

MPI_COMM_FREE({COMM, IERRORD}
INTEGER COMM, IERROR

Thiz collective operation marks the communication object for deallocation. The
handle & =zet to MPLCOMMMNULL. Any pending operations that vse thiz commu-
nicator will complete normally; the object iz actually deallocated only if there are
no other active references to it. Thi call apples to intra- and mtercommunicators.
The dekete callback functions for all cached atiributes {see Section 5.6} are called
in arbitrary crder. It ic erronecus to attempt to free MPILCOMM_NULL.

Advice {0 implementors. Though collective, it is antigpated that thiz operation will
normally be implemented with no communicaticn, though the debugging versicn
of an MPI library might chocse to synchronize. (End of advice to implementors.}

Advice io users. Aliasing of communicators (e.g., comma = commb} is possible, but

1z not generally advised. After calling MPI_COMM_FREE any abased communicator
handle will be left in an undefined state. {End of aduice to users.)

K.5 Safe Parallel Libraries

Thie section illusirates the decign of parallel libraries, and the uze of communicators
to ensure the safety of internal ibrary communications.

Aszsume that a new parallel bbrary function i needed that is similar to the MPI
broadeast function, except that it i= not required that all processes provide the rank
of the root process. Instead of the root argument of MPI_ BCAST, the functicn takes
a Boolean flag mput that is true if the callmg process i= the root, false, otherwize.
To simplify the example we make ancther asawmption: namely that the dataiype

224

of the send buffer iz identical to the datatype of the receive buffer, o that only
cne datatype argument is needed. A possible code for such a modified broadeast

function is shown below.

Example 5.8 Code for modified broadeast function meast{). The algorithm uses a
broadcast tree that & built dynamically. The root divides the sequence of processes
that follows the root into two segments. I sends a message to the first process
in the second zegment, which becomes the roct for the segment. The process is

ﬂ}.lath:r i1

repeated, recursively, within each subsegment.

In thi example, we use Blodang commumnication. Also, we select the two segments
to be of equal size; performance can be mmproved by using a biased tree, and by

using nonblodang communication.

roid meast({ veoid sbaff,

int comnt,
MPI_Datatype typs,
int isroot,

MPI_Comm comm)

{

int siza, /% gronp size
rank, /% rank in gromp

L
FL
FiL
£
L
L
FL
L

address of ontpunt btnffer at
root; addrezs of inpnt boffer
at other processes.

nunber of itemz te broadcast
types of items to broadecast
=1 if ealling process is Toot
=0, otherwisea

conmunicater for broadcast

nonlaavres, /% number of leaves in broadcast tree
child, /% rank of corrent child in broadcast tree
childleaves; /* noober of leaves in child’s broadcast tTes

MFI_Statns statuns;

MPI_Comm_gize(comm, Exize);
MPI_Comm_rank({comm, Erank);

if {isToot) 4
numlearas = 5iza-1;
b

alsa |

*/
*/
LT
LT
LT
LT
*/
*/

LT
LT
LT3
*/
*/

Comnunicalory 228

/% Teceive fron parent leaf count and message */
MPI_Recv({Enmmleaves, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, Estatng);
MFI_Recv{boff, count, typa, MPI_ANY_SOURCE, O, comm, Estatms);
j)

while (nomleaves > O) o
/% pick child in middle of corrent leaf processes */
child = {(rank + (nomleaves+1)/2 %eizs;
childleares = nunleaves/2;
/% gend to child leaf count and message */
MPI_Send(Ekchildleaves, 1, MPI_INT, child, 0, comm);
MPI_Send(buff, count, type, child, O, comm);
/% compnte remaining number of leaves */
nunleares —= (childleawas+1);

}

Conszider a collective invocation to the broadeast function just defined, in the
context of the program semment shown in the example below, for 2 group of three
Processes.

Examplc 5.9 Before the collective invocation to meast(), process 2 zends a mes
sage to procese 1; process 1 posts a receive with a dontcare source. meast is invoked,
with process (§ 2= the root.

MPI_Comm_rank{comm, Emyrank];
if (myrank == 2}
MPI_Send(ki, 1, MPI_INT, 1, O, comm);
elge if (myrank — 1)
MPI_Recv(ki, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, Estatne);

mcast(ki, 1, MPI_INT, (myrank =D}, comm};

A (correct) execution of this code is illustrated in Figure 5.2, with arrows used
to indicate cormmunicatons.

Since the invocation of mcast at the three processes 1= not simultanecus, it may
artually happen that mcast is invoked at procezz) before process 1 execuied the

226 ﬂ}.lath:r i1

Calles code
Send 2—:—-Rm.', -

Send 2 ———— 2w po o

Figure 5.2
Carrect invosation of meast
Froce== 0 Frocess 1 Fmce== 2
Caller code [__,.o-""'?' Recy ¥ Send L j
Send 1/ Recy * /
Send 1 Recw v
Callee code Send 2 Recy
Send 2 Recy *

Figure 5.3

Erranecus mvocation of rmcast

receive in the caller code. Thi receive, rather than being matched by the caller
code send at process 2, might be matched by the first cend of process § within
mcast. The erronecus execution illustrated in Figure 5.0 results.

How can such erronecus execution be prevented? Omne option & to enforce sym-
chronization at the entry to mcast, and, for symmetnc reascns, at the eat from
mcast. E.g., the first and last executakble statements within the code of meast would
be acall to MPI Barrier{feemm). This, however, introduces two superfluons synchro-
nigations that will slow down execution. Furthermore, this synchronization works
cnly if the caller code obeys the convention that messages sent before a collective
imvocation should ako be received at their destination before the matching inve-
cation. Consider an invocation to meast() in a context that does not obey this
restriction, as shown in the example below,

Examplc 5.10 Before the collective mvocation to meast(), process 2 sends a mes-
sage to process 1; process 1 posts a maiching receive with a dontcare source after
the invocation to meast.

Comnunicalory 207

Froce== 0 Frocezs 1 FPmoce=s 2

Zeller code [fScnd 1]

Send] ——————==Recw ¥
Send]l —————— == Recw ¥
Send 2
Send 2

Calles code

[Recw ¥]
Figure 5.4

Uarrect Invocation of meast

MPI_Comm_rank{comm, Emyrank];
if {myrank == 2}
MPI_Send(ki, 1, MPI_INT, 1, O, comm);

meast(ki, 1, MPI_INT, (myrank —0), comm);

if {(myrank == 1)}
MPI_Recv(ki, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, Estatmns);

The desired execution of the code in thiz example 1= illustrated m Figure 5.4.

However, 2 more likely matching of send= with recerves will lead to the erronecus
execution iz illustrated in Figure 5.5. Erronecus resultz may alsc ocour if a process
that iz not in the group of comm and does not participate in the collective invocation
of mecast sends 8 meszage to processez one or two in the group of comm.

A more robust solution to this problem is to use a distinct communication domain
for communication within the library, which 1= not used by the caller code. This
will ensure that messages sent by the library are not received cutside the library,
and vice-versa. The modified code of the function meast i= shown below.

Example 5.11 Code for modified broadeast function meast) that uses a private
communicator. The code is identical to the one in Example 5.8, with the following
exceptions: [Tpon entry, a duplicate poomm of the input communicator comm is
created. This private communicator & uzed for communication within the library

228 ﬂ}.lath:r i1

Froce== 0 Frocezs 1 FPmoce=s 2
Caller code [Send |]
Send 1 Recvy ¥ /
o Send Recw ¥
Calles =
Send 2 Recw *
Send 2 Recw *

Figure 5.5

Erranecus mvocation of rmcast

code. It 1= freed before exat.

void mcast{ void *buff, int comnt, MPI_Datatype type,
int isTect, MPI_Comm comm)
{
int size, rank, nomleaves, child, childleaves;
MFI_Statne statns;
MPI_Conm poomm; /% private commmnicator, for internal commnnication =/

MPI_Conn_dopfcomnmn, EFpcomm);

MPI_Comm_size (pcomm, Esize);
MFI_Conm_rank(pcomm, Erank);

if (isroot) {
nunlearas = size-1;
b
else |
/% raceive fron parent leaf count and message =/
MFI_Recv{knumleaves, 1, MPI_INT, MPI_ANY_SOURCE, O, pcomn, Estatus);
MFI_Recv{buff, count, typa, MPI_ANY_SOURCE, O, pcomm, kstatus);
j)
while (nomleaves > 0O) o
/% pick child in middle of corrent leaf processes */

Comnunicalory 210

child = {(rank + (nomleaves+1)/2 %eizs;

childleaves — numleaves/2;

/% geand to child leaf count and message */
MPI_Send(kchildleaves, 1, MPI_INT, child, O, pcomm);
MPI_Send(buff, comnt, type, child, O, pcomm);

/% compute remaining nuober of leaves */

nunleares —= (childleawas+1);

}

MPI_Comm_fres(EFpcomm) ;
}

This code suffers the penalty of one communicator allocation and deallocation at
each invocation. We show in the next section, m Example 5.12, how to avoid this
overhead, by using a preallocated communicator.

K8 Caching

5.68.1 Introduoction

As the previous examples chowed, 2 communicator provides 2 “ecope” for collective
imvocations. The communicator, which iz passed a= parameter to the call, specifies
the group of processes that participate in the call and provide a private commu-
nication domain for commumications within the callkee body, In addition, it may
carry information about the logical topology of the executing proceszes. It 1= often
useful to attach additiomal persistent values to this scope; eg., intialization pa-
rameters for a library, or additional communicators to provide 2 separate, private
communication deomain.

MP| provides a caching facility that allows an application to attach arbitrary
pieces of information, called attributes, to both intra- and mtercommunicators.

More precizely, the caching facility allows a portable library to do the following:

¢ pass information between calls by associating it with an MPl mira- or inter-com-
municator,

+ quickly retrieve that infermation, and

¢ be guaranteed that cut-cf-date information & never retrieved, even ff the com-
muniator iz freed and itz handle subsequently reuzed by MPI.

230 ﬂ}.lath:r i1

Each attribute & assodated with a koy. To provide safety, MPI internally
generates key values. MPIl functions are provided which allow the user to allocate
and deallocate key values (MPILKEYVAL _CREATE and MPIKEYVAL FREE}. Omce
a key iz allocated by a process, it can be used to attach one attribute to any
communicator defined at that procese. Thus, the allocation of a key can be thought
of 2z creating an empty box at each current or future communicator object at that
process; thi=s box has a Jock that mat ches the allocated key. (The box 35 “virtual™:
cne need not allocate any actual space before an attempt i= made to store something
in the bex.}

Once the key i allocated, the uszer can set or access attributes associated with
thiz key. The MPI call MPILATTR PUT can be used to set an atiribute. This call
stores an attribute, or replaces an attribute m one box: the box attached with the
specifled communicator with a lock that matches the specified key.

The call MPILATTR_GET can be used io access the attribute value associated
with 2 given key and communicator. Le., 3t allows one to access the content of the
box attached with the specified communicator, that has a lock that maiches the
specified key. This call i= valid even if the beox is empty, e.g., if the atinbute was
never set. In such casze, a special “empty” value is returned.

Finally, the call MPIATTR.DELETE allows cne to delete an attnibute. Le., it
allows one to empty the box attached with the specified communicator with 2 Jock
that matches the specified key.

To be general, the attribute mechanism must be sbk to store arbitrary vser
information. On the cther hand, attributes must be of 2 fixed, predefined type,
both in Fortran and O — the type specified by the MPI functicns that access or
update attributes. Attributes are defined in C to be of type void *. (Jenerally, such
an attribute will be a pomter to a user-defined data structure or a handle to an MPI
opaque object. In Fortran, attributes are of type INTEGER. These can be handles
to opagque MPI cbjects or indices to user-defined tables.

An attribute, from the MPl viewpeint, is a pointer or an integer. An attribute,
from the application viewpomt,, may contain arbitrary information that i= attached
to the “MPI attribute”. Userdefined attributes are “copied” when a new com-
munikator & created by a call o MPILCOMM_DUP; they are “deleted” when a
communicator 15 deallocated by a call to MPI_COMM_FREE. Because of the arbi-
trary nature of the information that i copied or deleted, the user has to specify
the semantice of attribute copying or deletion. The user does =0 by providing
copy and delete callback functicns when the atinibute key i= allocated (by a call to
MPILKEYVAL_CREATE). Predefined, default copy and delete callback functions are

availakble.

Comnunicalory 231

All attribute manipulation functions are local and require no communication.
Two communicator objects at two different proceszes that represent the same com-
munication domain may have a different =et of attribute keye and different atiribute
values associated with them.

MPI| reserves a set of predefined key values in order to associate with MPLEOMM-
MORLD information about the execution environment, ai MPI initialization time.
These attnbute keys are discussed in Chapter 7. These keys cammot be deallocated
and the associzied attributes cannot be updated by the user. Otherwise, they
behave like uzer-defined attributes.

Rationale. A much smaller interface, consisting of just a callback facility, would
allowr the entire caching facility to be implemented by portable code. However, such
a munimal interface does not provide good protection when different hbraries try
to attach attributes to the same communicator. Some convention will be needed to
avoid them using the same key values. With the current design, the initialization
code feor each library can allocate a separate key value for that library; the code
written for one library is independent of the code used by ancther library, Further-
more the more complete interface defined here allows high-quality implement at ions
of MPI to implement fast aitribute access algorithme {e.g., using an incrementable
dicticnary data structure}.

Atiribute kevs are allocated process-wide, rather then spectfically for one commu-
nicator. This often simplifies usage, since & particular type of atiribute may be
azzocated with many communicators; and simplfies implementation.

The uze of callback functions for attribuie copying and deletion allows one to define
different behavicrs for these operations. For example, copying may involve the
allocaticn of a new data structure, if the attribute = mod#fiable; or, it may mwolve
cnly the increment of a reference count if the attribute i= not modifiable. With
the current design, the implementation of attribute copying and deletion & defined
when the attribute key is allocated, and need not be vicible to all program modules
that uze this key. {End of raticnade.}

Advice to users. The communicator MPLCOMM SELF can be used to store procese-
local attributes, via this attribute caching mechanism. {End of aduice io users.)

Advice {0 implementors. O Attnibules are scalar values, equal in size to, or larger
than a C-language pointer. Fortran attributes are of type INTEGER. Adtributes can
always hold an MP| handle. It iz very desirable to have identical attribute types,
both for Fortran and ¢, in crder to facilitate mixed language programming. E.g.,

232 ﬂ}.lath:r i1

cn systems with 64 bit C pomters but 32 bit Fortran INTEGER, one could uze 64 bit
attribute values. Fortran calk will convert from INTEGER(4) to INTEGER(E), and
VIOE VETSH.

Caching and callback functicns are only called synchronously, in response to ex-
plicit application requests. This avoid problems that result from repeated crossimgs
between user and system space. [Thi= synchronons calling rule i= 2 general property
of MPL} (End of aduice io implementors.)

562 Caching Functions

MPI provides the following services related to caching. They are all process local.

MPIL_KEYWAL _CREATE{copy fn, delete_fn, keyval, extra_state}

IN mp}r_fn Copy callback lunelion for keyval

IN delete_fn Drdele callbadk [unclion for keyval
ouUT keyval key wloe for fulure acoo

IN extra_state Baxlra slale for callback [lioony

int MPIKeyval create (MPI Copy fanction *copy_fn, MPI Delete function
rdelete In, int skeyval, voids extra state)

MPI_KEYVAL CREATE(COPY FN, DELETE FN, KEYVAL, EXTRA STATE, IERROR)
EXTERNAL COPY_FN, DELETE FN
INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI KEYVAL UREATE allocates a new attribute key vwalue. Key values are
unique in & procese. Onee allocated, the key value can be used to ascociate
attributes and arcese them on any locally defined communicator. The special key
value MPLLKEYVALINVALID is never returned by MPI_LKEYVAL CREATE. Therefore,
1t can be uszed for st atic initialgation of key variables, to indicate an “unallocated”
key.

The copy_fn function iz invoked when & commmunicator i duphcated by MPI-
COMM_DUP. copy_fn chould be of type MFLCopy function, which & defined a= fol-

lowrs:

typedel int MPI_Copy_function{MPI_Comm oldcomm, int keyval,
void sextra_state, void sattribomte_val_in,
void sattribote_wval_out, imt sflag)

Comnunicalory 233

A Foriran dedaration for such a function & as follows:
SUBROUTINE CCOPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA _STATE,
ATTRIEUTE VAL_IN, ATTRIBUTEVAL OUT, FLAG, IERR)
INTEGER. OQLDCOMM, KEYWAL, EEKTRA STATE, ATTRIBRUTE AL _TH,
ATTRIBUTE ¥AL O0UT, IERR
LOGICAL FLAG

Whenever a cormmunicator is replicated vsing the function MPI_COMM_DUP, 21
callback copy functions for atiributes that are currently et are invoked (in arbi-
trary order}. Each call to the copy callback & passed az mput parameters the
cld communicator oldecomm, the key value keyval, the additional state extra_state
that was provided to MPLLKEYVAL.CREATE when the key value was created, and
the current attnibute value attribute_valin. If it returns flag = false, then the ai-
tribuie iz deleted in the duplicated commumicator. Otherwize, when flag = wue,
the new attribute value is set to the value reiwrned m attribute val_out. The func-
ticn returns MPISUCCESS on success and an errcr code on failure (in which caze
MPLCOMM_DUP will £ail}.

copy_fn may be specfied a= MPLHULL_.COPY FM or MPILDUP_FM from either
C or FORTRAN. MPLHULL_CQOPY FH & a function thai does nothing cther than
returning flag = 0 and MPISUCCESS; Le., the attribute iz not copied. MPI_DUP_FH
sete flag = 1, returns the wvalue of attribute val_in in attribute_val oot and retums
MPILSUCCESS. 1.e., the attribute value 1= copied, with no side-effects.

Rationale. The use of the extra_state argument allows one to spedalize the behavior
of a generic copy callback function to a particular attribute. E.g., one might have a
generic copy function that allocates m bytes of storage, copy m bytes from address
attribute val_in mto the newly allocated space, and returns the address of the allo-
cated space m attribute val out; the value of m, 1.e., the size of the data structure
for a specific atiribute, can be specified via extra_state. (End of nationale.)

Advuice to wsers. Even though both formal arguments attribute_valin and at-
tribute val_out are of type void *, their usage differs. The C copy function is passed
by MPl in attribute val_in the vafuwe of the atiribute, and in attribute_valout the
address of the attribute, =0 as to allow the function to retum the {new} atinbute
value. The uze of type void * for both 1= to avoid mesey type casts,

A valid copy function 1z one that completely duplicates the mfcrmation by malang
a full duplicate copy of the data structures implied by an atinibute; ancther might
just make anciher reference to that data structure, while using a reference-count
mechanizm. Other types of attributes might not copy at all (they might be specfic

234 ﬂ}.lath:r i1

to eldeomm only). (End of advice to users.)

Advice to implementors. A C interface should be assumed for copy and delete
functions associated with key values created in O; 2 Fortran calling interface should
be aszsumed for key values created in Foriran. (End of advice to implementors.)

Analegous to copyfn & a callback deletion function, defined as follows. The
delete_fn funciion is invoked when a communicator is deleted by MPILCOMM_FREE
cr by a call to MPILATTR_DELETE o MPLATTR PUT. delete_fn should be of type
MPFPI Delete funetion, which iz defined as follows:

typedel int MPI_Delete_fonction(MPI_Comm comm, int keyval,
roid sattribote_wal, void sextra_statel;

A Foriran dedaration for such a function & as follows:
SUBROUTINE DELETE FUNCTION{COMM, KEYVAL, ATTRIBUTEYAL, EXTRA STATE,
TERR}
INTEGER COMM, KEYVAL, ATTRIBEUTE VAL, EXTRASTATE, IERR

Whenever a communicator is deleted using the function MPI_COMM_FREE, =1l
callback delete functions for atiributes that are currently set are invoked (in ar-
bitrary order}. In addition the callback delete function for the deleted attribute
is invoked by MPILATTR_.DELETE and MPI_ATTR_PUT. The function is passed as
input parameters the communicator comm, the key value keyval, the current ai-
tribute value attribute val, and the additional state extra state that was passed to
MPLKEYVAL_CREATE when the key value was allocated. The function retums
MPISUCCESS on success and an error code on failure {in which caze MPILCOMM-
-FREE will fail}.

delete fn may be specified az MPINULL_DELETE_FN from either ' or FOR-
TRAN; MPILHULL_DELETE_FHN 1= = function that does nothing, other than returm-
ing MPILSUCCESS.

Advuice to wsers. The delete callback function may be invoked by MPI asyn-
chronously, after the call to MPI_.COMM_FREE returned, when MPI actually deletes

the communicator object. (End of advice to users.)

Comnunicalory 235

MPLLKEYVAL_FREE({keyval}
INOUT keyval Frow Lbe loleger key valuc

int MPIXeyval frealint skeywal)

MPI_KEYVAL FREE(KEYVAL, IERROR)
INTEGER KEYVAL, IERROR

MPI KEYVAL_FREE deallocates an attribute key value. This function zets the
value of keyval to MPILEEYYVAL INVALID. Note that it 3= not errcnecus to free an
attribute key that iz in use (i.e., has attached vales for some communicators};
the key value £ not actually deallocated until afier no attribute values are locally
attached to the key. All such atiribute values need to be explicitly deallocated by
the program, exther via calls to MPIATTR_DELETE that free one attribute instance,
cr by calle to MPLCOMM_FREE that free all attribute instances assocated with

the freed commumicatcr.

MPIATTE_PUT{eermm, keyval, attribute_val}

I Cornnm cosununicalor Lo which allribole will be
allached

IMN ke_wal key waloe, av relumed by
MFPLKEYVYALLCREATE

IN attribute val allobule value

int MPIAttr put (MPIComm comm, int keyval, woids attribmte wal)

MPI_ATTR PUT{COMM, KEYVAL, ATTRIEUTE VAL, IERROR)
INTEGER COMM, KEYVAL, ATTRIEUTE VAL, IERROR

MPI_ATTR PUT asscciates the value attribute_val with the key keyval on commu-
nicator comm. If 2 value iz already associated with this key on the communicator,
then the outcome i as if MPILLAT TR DELETE was first called to delete the previ-
ous value {and the callback function delete fn was executed), and 2 new value was
next stored. The call iz erronecus if there is no key with value keyval; m particular
MPILKEYVAL INVALID & an errcnecus vale for keyval.

236 ﬂ}.lath:r i1

MPIATTR_GET{comm, keyval, attribute_val, flag)

IN cornm comunuuicalor Lo which allribuole i al-
Lached

IN koeyrval key wlue

ouUT attribute _val allribuole value, unlow flag = lalue

ouT flag truail an alliobule value way cxlracled;
falsa Il oo allribole 1y avsocialed wilk
Lhe key

int MPIAttr get (MPIComn comm, int keyval, void sattritmteval,
int *flag)

MPI_ATTR GET{COMM, KEYVAL, ATTRIEUTE VAL, FLAG, IERROR)
INTEGER COMM, KEYVAL, ATTRIEUTE VAL, IERROR
LOGICAL FLAG

MPI_ATTR GET retrieves an attribute value by key. The call iz erronecus if
there & no key with value keyval. In particular MPILKEYYAL INVALID i an erronecus
value for keyval. Om the ciher hand, the call & correct if the key value exdsis, but
no attribute iz attached on comn for that key; in such a case, the call returns flag
false. If an attribute & attached cn comm to keyval, then the call returns flag
troe, and returmns the attnibute value in attribute _val,

Advice to users. The call to MPLAtr put passes in attribute val the value of the
attribute; the call to MPI_Attr_get paszses in attribute val the address of the the loca-
ticn where the attnbute value is to be returned. Thus, if the atinibute value itzelf
15 a pointer of type void*, then the actual attribute_val parameter to MPLALtr_put
will be of type void* and the actual attribute_val parameter to MPLLAtEr get will be
of type void**. [(End of advice fo users.)

Rationale. The use of a formal parameter attribute val of type void* (rather than
woid**) in MPLAttr_get avoids the messy type casting that would be needed if the
attribute iz declared with a type other than veid*. (End of rationale.}

Comnunicalory 237

MPIATTR_DELETE([comm, keyval)

I ©ornrn comununcalor Lo which allribole i al-
Lached
IN koeyval The key value of Lhe decled allaobule

int MPIAttr delete(MPI Comm comm, int keywal)

MPI_ATTR DELETE{COMM, KEYVAL, IERROR)
INTEGER COMM, KEYVAL, IERROR

MPI_ATTR DELETE deletes the attribute attached to key keyval oncomm. This
function invckes the attribute delete function delete fn specified when the keyval
was created. The call will £ail if there is no key with value keyval or if the delete_fn
function returns an errcr code other than MPISUCCESS. Om the other hand, the
call iz correct even if no aitnibute & currently attached to keyval on comm.

Example 5.12 We come back to the code in Examgle 5.11. Rather than duplicai-
ing the communicator comm at each invocation, we desire to do it once, and stcre
the duplicate communicator. It would be inconvenient to require initialgation code
that duplicates all communicators to be used later with mecast. Fortunately, this is
not needed. Instead, we chall use an initialization code that allocates an atiribute
key for the exclusive use of meast(). Thiz key can then be used to store, with each
communicator comm, & private copy of comm which is used by mecast. Thi= copy is
created once at the first invocation of meast with argument comm.

static int *extra_state; /% not nsed =/
gtatic wold smeast_key = MPI_KEYVAL INVALID;
/% attribmte key for mcast LY

int mcast_delete_fn(MPI_Comn comm, int keywal, woid sattr_val,
void *extra_state)
/% delete function to be nsed for mcast_key */
/% attritmte. The callback fmnction frees =/

/% the private communicator attached to LY
/% this key ./
{
retonrn MPI_Comm_freef(MPI_Comm *)Ekattr_val);
}

roid mecast_init(} Jv initialization fonction for mcast. It */

238 ﬂ}.lath:r i1

/% shonld be invoked once by each process +/
/% before it invokes mcast Ly
{
HPI_Keyval_create{ MFPI_NULL_COFY_FHN, mcast_daleta_In,
Imcast_key, extra_state);

1

void wcast(void sboff, int comnt, MPI_Datatype typa,
int isrect, MPI_Comm comm)

1

int size, rank, nomleaves, child, childleaves, flag;

WPI_Comm poomm;

vold sattr_val;

MFI_Statns statuns;

MPI_ittr_get(comn, wecast_key, Eattr_wal, Eflag);

if {(flag} /% private commmmicater cached L7
poeonm = (MPI_Comm)attr_val;
else /% first invecatieon; no cached commonicater »/
/% create private commmnicater LY
MFI_Comm_duop{comn, EFpcomm);
/% and cache it /!
MPI_Attr_put{comm, mcast_key, poomm);
h)

/% continne now as before */

MPI_Conm_size(pconn, Esize);
MPI_Comm_rank(pcomm, Erank);

if {(isToot) o
numleavras = BizZa-1;
1
alse o
/% receive fron parent leaf count and message */
MPI_RECY(knumleaves, 1, MPI_INT, MPI_ANY_SOURCE, O, pcomm, Estatms);
MPI_RECY(buff, comunt, type, MPI_ANY_SOURCE, O, pcomm, Estatns);
b

Comnunicalory 230

while (nomleaves > 0) o
/% pick child in middle of corrent leaf processes s/

child = med{rank + (nomleaves+1)/2, sizae);
childleaves = numleaves/2;
/% send to child leaf conunt and message */
MPI_SEND(kchildleaves, 1, MPI_INT, child, 0, pcomm);
MPI_SEND(buff, count, type, child, 0, pcomm);
/% compute remaining noonber of leaves =/
nunleaves == (childleavas+1];

}

The code above dedicates a statically allocated private communicator for the uze
of mcast. This segregates communication within the hibrary from communication
cutzide the library. However, the approach does not provide separation of com-
munications belonging to distinct invocations of the same hibrary function, since
they all use the same communication domain. Consider two successive collective
invocations of meast by four processes, where process () & the broadeast root in the
first cne, and procese 3 i= the root in the second one. The mtended execution and
communication low for these two invocations is illustrated in Figure 5.6.

However, there iz a race between messages sent by the first invocation of mcast,
from process () to process 1, and messages zent by the second imvocation of mcast,
from process § to procese 1. The erronecus execution illustrated in Figure 5.7 may
occur, where messages sent by second invocation overtale messages from the first
imvocation. This phenomenen i= known as backmasking.

How can we awoid badonazlang? Ome option is to revert to the approach in
Example 5.11, where a separate communicat ion domain i= generated for each invo-
cation. Another cption is to add a barner synchrongation, either ai the entry or
at the exdt from the library call. Yet another option 3= to rewriie the library code,
g0 35 to prevent the nondeterministic race. The race ocours because receives with
dontcare’s are used. It iz often possible to avoid the use of such constructs. Un-
fortunately, avoiding dontcares leads to a less efficient implement ation of mecast. A
pozsible alternative is to use increasing tag numbers to disambiguate successive in-
vocations of meast. An “imvocation count” can be cached with each communicator,

az an additional hibrary aitribute. The resulting code iz chown below,

240 ﬂ}.lath:r i1

Proces= 0 Process L Process 2 Proces 3
STt T TS ST T TSI T T T T r T T T T s s e 1
| Hend 2 Recv * :
| Send 2 Recv * :
First call i I
} Zendl —— =Recv ¥ Semd 3 — ==HRecw ¥
| Send | ————=~TFRuecy * Serd 3 ————=Recv ¥ |
I I
Secondcall |
Figure 5.6

Correct execution of two suecessive invocations of meoast

First call

Secondcall |

Figure 5.7
Erranecue executicn of two suecessive invocationeg of meast

Comnunicalory 241

Examplc 5.13 Code in previous exampk i= modified, to prevent bacdanaslang:
successive invocations of meast with the came communicator vse distinet tags.

gtatic int *extra_state; /% not nzed =/

static void *mcast_key = MPI_KEYVWAL _THVALID;

typedef struct { /% mcast attribute strmcture */
MPI_Comm poomm; /% private commnnicator "
int invcomnt; /% invocation comnt w7

1 Mcast_attr;

int mcast_delete_fn{MPI_Comn comm, int keyval, woid wattr_val,
void sextra_state)

{

MPI_Conm_free(k({Mcast_sattr sJattr_val)=->pcomm);

freel{attr_val);

}

roid meast_init(} F# initialization fonctien for mcast. w/
{
HPI_Keyval_create{ MFPI_MNULL_COFY_FN, mcast_deleta_TIn,

Imcast_key, ertra_stata);

}

void mcast{void #buff, int comnt, MPI_Datatype type,
int isTect, MPI_Comm comm)
{
int ®ize, rank, nomleaves, child, childleaves, flag, tag;
MPFI_Comm poomm;
roid *attr_wal;
Mcast_attr sattr_strmct;
WPI_ZStatns =tatns;

MPI_ittr_get(comn, mcast_key, Eattr_wal, Eflag);

if (flagy o /% attribmte cached w/
attr_stronet = (Mcast_attr =)attr_val;
pcomm = attr_struct->poomm;
tag = ++rattr_strnect->invconnt;

}

240 ﬂ}.lath:r i1

elsa | /% first invocation; no cached commonicater »/
/% create private commmnicater LY

MFI_Conm_duop{comn, EFpcomm] ;
F# create attribote strmctnra L

attr_strnct = (Mcast_attr *)malloc(sizect (Mcast_attr));
attr_stroct—=rpconn = poomm;

attr_stract=rinvcomnt = 0;

MPI_httr_put{comm, mcast_key, attr_strmct);

3

/% broadcast code, using tag LT

MPI_Comm_size (pcomm, Esize);
MPI_Conm_rank(pcomm, Erank);

if (isreoot) |
nunlearas = size-1;
b
else |
/% raceive fron parent leaf count and message =/
MFI_RECY(Enumleaves, 1, MPI_INT, MPI_ANY_SOURCE, tag, pcomm, Estatus);
MFI_RECY(buff, count, typa, MPI_ANY SOURCE, tag, pcomm, Estatus);
j)
while (nomleaves > O) o
/% pick child in middle of corrent leaf processes */
child = ned(rank + (nomleaves+13/2, size);
childleares = nunleaves/2;
/% gend to child leaf count and message */
MPI_SEND(kchildleaves, 1, MPI_INT, child, O, pcomm);
MPI_SEND(buff, comnt, type, child, O, pcomm);
/% compnte remaining number of leaves */
nunleares —= (childleawas+1);

}

Comnunicalory 243

K.T Intercommunication

5.7.1 Introduoction

The secticn introduces the concept of inter-communication and describes the por-
ticnz of MPI that support it.

Al point-to-point communication described thus far has invwolved communica-
ticn between processes that are members of the same group. In modular and
multi-disciplinary applications, different process groups execute distinct modules
and processes within different modules communicate with one another in a pipeline
cr a mere general module graph. In these applications, the mest natural way for
a process to specify a peer process is by the rank of the peer process within the
peer group. In applications that contain internal user-level servers, each server may
be 2 procesz group that provides zervices to one or more clients, and each client
may be a process group that uses the services of one or more servers. It i= again
most natural to specify the peer process by rank within the peer group in these
applications.

An mter-group communication domain is specified by a zet of intercommumnicators

with the pair of disjoint groups (AB) as their atiribute, such that

their lirks form a bipartite graph: each communicator at a process m group A is
linked to all communicators at processes in group B, and vice-versa; and

links have consistent indices: at each communicator at a process in group A, the
i-th link points to the communicator for process 1in group B; and vice-versa.

This distributed data structure i= illustrated in Figure 5.8, for the case of a pair
of groups [A,B), with two (upper box) and three {lower box) processes, respectively.

The communicator struciure distinguiches between a ool group, namely the
group containing the process where the siruciure reside, and a remote group, namely
the other group. The structure 1z symmetric: for processes in group A, then A is
the local group and B is the remote group, whereas for processes in group B, then
B iz the local group and A i= the remote group.

An intergroup communication will mvolve a process in one group executing a
gend call and ancther process, in the other group, executing a maiching receive
call. A m mira group comimumication, the matching process {destimation of zend
or source of receive} ic specified using a {eermmunicater, rank) pair. Unlike mtra-
group communication, the rank i= relative to the second, remote group. Thus, in
the communication domain illustrated in Figure 5.8, process 1 in group A sends a

244 ﬂ}.lath:r i1

Figure 5.8
Digtributed data etructure for inter-communication dopsain.

message to process 2 m group B with a call MPISEND(..., 2, tag, comm); pro-
cess 2 in group B receives thi mescage with a call MPILRECV(. .., 1, tag, eemm).
Conversely, process 2 in group B zends a message to process 1 in group A with
a call to MPISEND(..., 1, tag, comm), and the message is received by a call to
MPILLRECV(..., 2, tag, comm); a remote process is identified in the same way for
the purposzes of sending or recerving. All point-to-point communication functions
can be used with intercommunicators for inter-group communication.

Here iz a summary of the properties of inter-group communication and intercom-
municators:

¢ The syntax of point-to-point communication is the same for both inter- and int-
ra-commumnication. The same communicator can be used both for send and for
receive operations.

o A target process iz addressed by its rank in the remcie group, both for sends
and for receives.

¢ Communications using an intercormmunicat or are guaranteed not to conflict with
any communications that use a different communicator.

¢ An intercommunicator cannot be used for collective communication.

¢ A communicator will provide either inira- or mter-communication, never both.

The routine MPLCOMM_TEST_INTER may be uzed to determine if acommunicator
15 an inter- or intracommumnicator. Intercommunicators can be uszed as arguments
to some of the other communicator access routmes. Intercommunicators cannot
be used a= mput to some of the constructor routines for intracommumnicators (for

instance, MPILCOMM_CREATE).

Rationale. The correspondence between inter- and mt racommunicatorscan be best
understood by thmkang of an mira-group communication domain as a special caze of

Comnunicalory 245

an inter-group commumication domain, where both communication groups happen
to be identical. Thk mterpretation can be uszed to derive a consiztent semantics

for communicaior inquiry functions and for point-to-point communication, or an
identical implementaticn for both types of cbjects.

Thi correspondence indicates how collective communication functions could be
extended to inter-group communication: Rather than a symmetric design, where
proceszes in the group both send and receive, cne would have an asymmetric design,
where one group sends (either from a single roct or from all proceszes} and the
cther group receives {either to a single root or to all proceszes). Additional syntax
i1t needed to distinguish sender group from receiver group. Such extensions are

discuszzed for MPI1-2.

Mote, however, that the two groups of an intercommunicator are currently required
to be disjoint, for reasons explained later in this section. (End of rationdle.}

Advice {0 implementors. An intercommunicator can be implemented with a data
structure very similarto that used for an intracommunicator. The intercommunica-
tor can be represented by a siruciure with components group, myrank, local_context
and remote_context. The group array represents the remoie group, whereas myrank
15 the rank of the process in the local group.

When 2 process posts 2 send with arguments dest, tag and comm, then the addresc

of the destmation iz computed 2= comm_group[dest]. The meszage zent carries a

header with the tuple [comm_myrank, tag, comm_remote_context).

I a process posts a receive with argument source, tag and comm, then headers of

Incoming messages are matched to the tuple (source, tag, comm local_context) (first

two may be dontcare’s).

Thi design provides a safe nter-group communication demain provided that

the local context ¥ procese unigue and iz identical at all procesze= in the zame
group; and

the local context of cne group equak to the remote_context of the cther group.

Mote that thiz data structure can be used to represent intracommunicators merely

be setting local_context — remote context. It is then identical to the firct represen-

tation discussed on page 205.

Another design iz to v=e ids which are processunique, but not necessarily identical

at all processes. In such casze, the remotecontext component of the communica-
tor structure 1z an array, where comm.remote context[l] i= the contexd chosen by

246 ﬂ}.lath:r i1

process | in remote group to identify that communication domain; local_context is
the context chosen by the local process to identify that communication domaim.
A meseage 35 sent with header comm.myrank, tag, comm.remote context[dest]; 2 re-
ceive call cauzes incoming messages to be matched against the tupk {scurce, tag,
comm_local_context).

Comparing with the second implementation cutlined on page 205, we see again
that the same data structure can be used to reprezent an mira-group communi-
cation domam, with no changes. When used for an intracommumnicator, then the
identity comm local_context = comm.remote context[myrank] holds. {End of advice
o implementors.)

It iz often convenient io generate an mter-group communication domain by join-
ing together two mira-group communication domains, i.e., building the pair of
communicating groups from the individual groups. Thi requires that there exdsis
cne process in each group that can communicate with each other through a com-
munication domain that serves a: s bridge between the two groups. For example,
suppose that comml has 3 processes and comm2 has 4 processes {see Figure 5.5).
In terms of the MPI_COMM WORLD, the processes in comml are (), 1 and 2 and
imm comm?2 are J, 4, 5 and §. Let local procese 0 in each miracommunicator form
the bridge. They can communicate via MPI_COMM _WORLD where process () in
comml has rank { and procese § in comm2 has rank 3. Omce the mtercommunicator
1= formed, the onginal group for each intracommunicaior is the local group in the
intercommunicator and the group from the other intrarommunicator becomes the
remote group. For communication with this intercommunicator, the rank in the
remote group is used. For example, ff a process in comml wants to zend to process
2 of comm?2 (MPILCOMM _WORLD rank 5} then it uses 2 as the rank in the send.

Intercommumicators are created in this fashion by the call MPLINTERCOMM-
_CREATE. The two joined groups are required to be digjoint. The converse function
of buillding an intracommunicator from an intercommunicater i provided by the
call MPLINTERCOMM_MERGE. Thi= call generates a communication domain with
a group which is the union of the two groups of the inter-group communication do-
main. Both calls are Hodang., Both will generally require collective communicaticn
within each of the imwolved groups, a: well 2= communication acrross the groups.

Rationale. The two groupe of an inter-group communication domain are required
to be dijoint in order to support the defined mtercommunicator creation function.

If the groups were not digjomt then a process in the intersection of the two groups
would have to make two calls to MPLINTERCOMM_CREATE, one on behalf of each

Comnunicalory 247

K. ot ca aber ot commlator
MFI_C O WORLTD counenl Lol grop P
VIORLD mok Jocal mak Jool ok (MOFLD@nK beol ook (AOFLD ok
[0 — 0] o oy
1 1 -_— 1i1] 104)
2 2 2T HE
30
Bridge comm?
Jocal ok loal groop = ot group
(s 0 loalmok(WOFDEnk ol ok (WORLD ok
4 1 —_— o oo
- 2 10d) 1)
] 3 E1=1] H ¥
28

Figure 5.2
Example of twn intraconmnnicators merging to becone ane intercomnminicatar,

group it belongs to. This i not feasible with a blocking call. Ome would need to
uze 2 nonblockdng call, omplemented wsing nonblocking collective communication,
in order to relax the disjointness condition. (End of rationae.)

5. 7.2 Iptcrcommunicator Accossors

MPLCOMM_TEST_INTER{comm, flag)

IN ool Lut | comununicalor

ouUT flag Lruc I coon v lnleroomumunicalor

int MPI Comm test inter (MPI Comm comm, int *flag)

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
INTEGER COMM, IERROR
LOGICAL FLAG

MPI OOMM _TEST INTER i= a local routine that allows the calling process to
determine if a communicator i an intercommunicator or an intracommunicator. It
returns wue if 3t 35 an mtercommunicator, otherwize false,

When an intercommunicator & used s an input argument to the communicator
arcezsors described in Section 5.4.1, the following table describes the behavior.

248 ﬂ}.lath:r i1

MPLLCOMM_* Function Behavior

{in Inter-Communication Mode}

MPI_COMM_SIZE returns the size of the local group.
MPI.COMM_GRQUP | returns the local group.
MPI_COMM_RANK | returns the rank in the local group

Furthermcre, the operation MPILLCOMM_COMPARE iz valid for intercommunica-
tore. Both communicaiors must be either intra- or intercommunicators, or else
MFPILUNEQUAL resultzs. Both corresponding local and remote groups must compare
correctly to get the resultz: MPILCONGRUENT and MPISIMILAR. In particular, it is
pozsible for MPISIMILAR to resuli becausze either the local or remote groups were
gimilar but not identical.

The following accessors provide consistent access to the remote group of an in-
tercommunicator; they are all local operations.

MPLCOMM_REMQTESIZE{comm, size)

IN cornm lercomnunicalor
ouUT gize ownber of procewey o Lbhe remole group
of comm

int MPIComm rencte size(MPI Comm comm, int *sizae)

MPI_COMM_REMOTE SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

MPI_COMM_REMQTE SIZE returns the size of the remote group in the intercom-
municator. Note that the size of the local group i= given by MPI_LCOMM SIZE.

MF‘|_CUMM_REMUTE_GR'DUF[cnmm, gmup}

IN cormm nleromminunicalor

ouUT group romole groap ED.L'I‘GHPD.I’.I’].‘LI’.IH Lo camim
int MPI Comn rencte gronp{MPI Conm comm, MPI Gronp *gronp)

MPI_COMM_REMOTE GROUP (COMM, GROUP, IERROR)
INTEGER COMM, GROUP, IERROR

MPI_COMM_REMQTE GRQUP returns the remote group in the intercommunica-
tor. Mote that the local group 1= give by MPILCOMM_GRQUP.

Comnunicalory 240

Advice to implementors, It 15 necessary to expand the representation cutlined on
page 245, in order to support intercommunicator accessors that return information
cn the local group: namely, the daia siructure has to carry informaiion on the
local group, n addition to the remote group. This information is also needed in
crder to support conveniently the call MPILINTERCOMM MERGE. [End of advice

o implermentors.)

5.7.3 Intercommumicator Constractors

An intercommunicator can be created by a call to MPLCOMM_DUP, see Sec-
ticn 5.4.2. As for intracommunicators, this call generates a new inter-group com-
munication domain with the same groups az the old one, and also replicates uzer-
defined attributes. An intercommunicator is deallocated by a call to MPLCOMM-
-FREE. The other int racommunicaior constructor functions of Section 5.4.2 do not
apply to intercommunicaters. Two new functions are specific to intercommunica-
tors.

MPLINTERCOMM_CREATE(local comm, local_leader, bridge_eormm, remote_|eader,

tag, newintercomm)

IN loealcomm lowal inlracosmununicalor

IN localleader raok of local group leader i lecal_comm

IN bridge_comm "bridegd® comnunicalor; significanl ooly
al Lwo local leaders

IN rernote_leader rauk of remole group leader o bridge cormm;
wignificanl ooly al lwo local leadery

IN tag “wale® Lag

ouUrT newintercomm oew lnlcroomununicalor (uandle)

int MPI Intercomm create(MPI omm local comm, int leocal leader,
MPI Comm bridge comm, int remcte leader, int tag,
MPI Comm *newintercomm)

MPI_INTERCOMM CREATE(LOCAL COMM, LOCAL LEADER, PEER COMM,
REMOTE_LEADER, TAG, NEWINTERCOMM, IERROR)
INTEGER LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,
NEWINTERCOMM, IERROR

MPIINTERCOMM CREATE creates an mitercommunicator. The call iz col
lective over the umion of the two groups. Processes should provide matching

250 ﬂ}.lath:r i1

local comm and identical local_leader arguments within each of the two groupe.
The two leaders specify matching bridge_comm arguments, and each provide in re-
mote_eader the rank of the other leader within the domain of bridge_cormm. Both
provide identical tag values.

Wildcards are not permitted for remote_leader, local_leader, nor tag.

This call uses point-to-point communication with communicator bridge_commiy,
and with tag tag between the leaders. Thus, care must be taken that there be no
pending comimunication on bridge_comm that could interfere with this communica-
tiom.

MPLINTERCOMM_MERGE[interecrmm, high, newintracomm)

I intercomm Ioler osmunics lor
IN high ucc below
ouUT newintracomm oew inlracom smurnicalor

int MPI Intercommmerge (MPI Comm intercomm, int high,
MPI Comm *newintracomm)

MPI_INTERCOMM MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)
INTEGER INTERCOMM, NEWINTRACOMM, IERROR
LOGICAL HIGH

MPIINTERCOMM MEROE createz an miracommunicator from the union of
the two groups that are assccated with intercomm. All processes should provide
the zame high walue within each of the two groups. H processez m one group
provided the value high = false and processes m the other group provided the value
high = true then the union crders the “low™ group before the “ligh” group. If all
processes provided the same high argument then the order of the unicn is arbitrary.
Thi call i= blocking and colkective within the union of the two groups.

Advice to implementors. In crder to implement MPLINTERCOMM_MERGE,
MPLCOMM_FREE and MPLCOMM_DUP, it is necessary to suppert collective com-
munication within the two groups as well 2= communicat ion between the two groups.
Omne peesible mechanism i= to create a data structure that will allow one to run code
similar to that uzed for MPLINTERCOMM_CREATE: A private communication deo-
main for each group, & leader for each group, and & private bridge communication
domain for the two leaders. (End of advice fo implemeniors.)

Comnunicalory 251

Group 0 Group 1 (Group 2

0@ oW | 0@

I B el B

206) | 2 L 208)

39 | EELTE BEIE
Figure 5.10

Three-group pipeline. The figure shows the local rank and (within brackets] the global rank of
each pracess.

Example 5.14 In thi= example, processes are divided in three groups. Groups
and 1 communicate. Groups 1 and 2 communicate. Therefore, group O requires cne
intercominunicator, group 1 requires two intercomimunicators, and group 2 requires
1 intercommunicator. See Figure 5.10

#tinclode <npi.h>

wain{int argec, char s*argy)

{
MPI_Comm myComm; /% intra-communicater of local sub-group =/
MPI_Comm oyFirstComm; /% inter-commonicater =/
MFI_Comm mySecondConm; /% seacond inter-comomnnicator {gromp 1 onlw) =/
int membarshipKey, rank;

MPI_Init{karge, Eargv);
MPI_Comm_rank(MPI_COMM_WORLD, Erank);

/% Generate membershipKey in the range [0, 1, 2] =/
nenbershipKey = rank ¥ 3;

/% Bnild intra-commonicator for local sub-gronp */
MPI_Comm_split (MPI_COMM_WORLD, menbershipKey, rank, EmyComm);

/% BEnild inter-communicators. Tags are hard-coded. %/

252

if {membershipKey — 03 {
/% Group 0 commonicates with gromp 1. =/
MPFI_Intercomm_createl oyComm, 0, MPI_COMM_¥WORID, 1,
}
else if (membershipKey — 1) {
/% Gronp 1 commonicates with groups © and 2. */
MPI_Intercomm_createl onyComm, 0, MFI_COMM_WORLD, O,
MPI_Intercomm_createl oyComm, 0, MFI_COMM_¥WORLD, 2,
}
elge if (membershipkey — 2) {
/% Gronp 2 communicates with gromp 1. */
¥PI_Intercomm_createf myComm, O, MPI_COMM_WORLD, 1,
}

/% Do work ... (mot showm) =/

/% fres commmnicators appropriately */

MPI_Comm_free(EnyComm) ;

MPI_Comm_free(EnyFirstComm) ;

if {menbershipkey — 13}
MFI_Comn_free(fonySecondComn) ;

MPI_Finalize();

o1,

o1,
12,

12,

ﬂ}.lath:r i1

FnyFirstComm);

EnyFirstComm) ;
EnySacondComn) ;

EnyPirstComm) ;

6 Process Topologies

4.1 Introduction

Thie chapter dicusses the MPI topology mechanism. A topology is an extra,
opticnal atiribute that one can give to an intra-communicator; topologies cammot
be added to intercommunicators. A topology can provide o convenient naming
mechanizm for the processes of a group {within a communicator}, and additionally,
may assist the runtime system in mapping the processes onto hardware.

Az stated in Chapter 5, a process group in MP| iz a collection of n processes.
Each process in the group is assigned a rank between 0 and n=1. In many parallel
applications a linear ranking of processes does not adequately reflect the logical
commmunication paitern of the processes (which iz usually determined by the under-
Iymg problem geometry and the numerical algorithm used}. Often the proceszes
are arranged in topclogical patterns such as two- or three-dimenzional grids. More
generally, the logical procese arrangement 1= described by a graph. In this chapter
we will refer to thie logical process arrangement as the “virtual topdogy.”

A clear distinction must be made between the virtual process topology and the
topology of the underlying, physical hardware. The virtual topology can be ex-
Floited by the system in the assignment of proceszes to physical processors, if thi
helps to improve the communication performance on a given machine. How this
mapping i= done, however, 1= outzide the scope of MPI. The description of the vir-
tual topology, on the other hand, depends only on the application, and iz machine-
independent. The functions in thiz chapter deal only with machine-independent

mappmng.

Rationale. Though physical mapping & not discussed, the exastence of the virtual
topology information may be used as advice by the runtime system. There are well-
knowrn techniques for mapping grid ftorus structures to hardware topologies such as
hypercubes or grids. For more complicated graph structures good heurktice often
vield nearly optimal results 21]. Om the other hand, if there & no way for the
uzer to speafy the logical process arrangement as a “virtual topolegy,” a random
mapping is most hikely to result. Om some madhines, this will lead to unneces-
sary contention in the interconnection network. Some details about predicted and
meazured performance improvements that result from good process-to-procezzor
mapping on modern wornmhole-routing architectures can be found in [8, §].

Bezides poszible performance benefits, the virtual topology can function as a conve-
nient, process-naming structure, with tremendous benefits for program readability

233

254 ﬂ}.lath:r 6

and notational power In message-passing programming. (End of raticnafe.)

8.2 Virtual Topologies

The communication patiern of a get of proceszes can be represented by agraph. The
nodes stand for the processes, and the edges connect processes that communicate
with each other. Since communication is most often symmetric, communication
graphs are assumed to be symmetric: if an edge uv connect= node u to node v,
then an edge vu connects node v to node «.

MPI provides message-passing between any pair of processes in a group. There
15 no requirement for opening a channel explicitly. Therefore, a “mizsing link™ in
the ucer-defined process graph does not prevent the corresponding proceszes from
exchanging messages. It means, rather, that this comnection i= neglected in the
virtual topclogy. The strategy implies that the topology gives no convenient way
of naming thiz pathway of communication. Ancther peossible consequence is that
an automatic mapping tool (if one exdsts for the runtime environment) will not take
acrcount of thiz edge when mapping, and cormmunication on the “missing” link will

ke lez= efficient.

Rationale. As previously stated, the message passing in a program can be rep-
rezented as a directed graph where the vertices are processesz and the edges are
messages., On many systems, optimigng communication speeds requires 4 1mini-
mization of the contention for physical wires by messages occurring simultaneously.
Performing the cptimization requires kmowledge of when meseages occur and their
rescurce requirements. Mot only is this information dificuli to represent, it may
not be availabk at topology creation time in complex programs. A simpler alter-
native is to provide information about “patial” distribution of commumication and
ignore “temporal” distribution. Though the former method can lead to greater op-
timizations and faster programs, the later method ic used in MPIto allow a simpler
interfare that i= well understocd at the current time. As a result, the programmer
tells the MPI system the typical connections, e.g., topology, of their program. This
can kad to compromises when a specific topology may over- or under-=pecify the
connect ity that is used at any time m the program. Overall, however, the chozen
topology mechanikm was seen 35 a useful compromize between functionality and
eace of uzage. Experience with similar techniques m PARMACS [3, 7] chow that
this mformation & vsually sufficient for 2 good mapping. (End of nedionale.}

Procos Topologie 285

oa (0,1 0.2) 0.3

4 5 & 7
(1.5 (1,11 (1,2) 1,31
& 9 10 11

=20 (2,1 (2.2] 23

Figure 6.1
Relationship between ranks and Cartecian coordinates for & Zxd 2D topology. The upper numter
in each box iz the rank of the pracess and the lower value iz the (raw, column)] eoordinates.

Specifying the virtual topology in terms of & graph is sufficient for all applications.
Heowever, m many applications the graph structure & regular, and the detailed zet-
up of the graph would be moonvenient for the user and might be less efficient at run
time. A large fraction of all parallel applications use process topologies like rings,
two- or higher-dimenzional grids, or tori. These structures are compktely defined
by the number of dimensions and the numbers of processez m each coordinate
direction. Also, the mapping of grids and tori i generally an easier problem than
general graphs. Thus, it iz desirable to address these caze= explictly.

Process coordinates in a Clartesian structure begin their numbering at 1. How-
major numbering iz always used for the processes in a Clartesian structure. This
means that, for example, the relation between group rank and coordinates for twelve
procesges in 2 3 » 4 grid iz as showmn in Figure §.1.

8.3 Overlapping Topologies

In somme applications, it 1= desirable to use different Cartesian topologies at different
stages in the computation. For example, in a QR factorization, the {'® transforma-
ticn is determined by the data below the diagonal in the F column of the matrix.
It i= often easiest to think of the upper right hand comer of the 21 topokogy as
starting on the process with the i'* diagonal ekement of the matrx for the 't
stage of the computation. Since the onginal matrix was laid out in the onginal 25
topology, it is necessary to maintain a relationship between it and the shifted 2D
topology in the i stage. For example, the processes forming a row or column in

286 ﬂ}.lath:r 6

the original 2D topolegy must also form a row or column in the shifted 2D topol
ogy in the i'" stage. As stated in Section 6.2 and shown in Figure 6.1, there is a
clear correspondence beiween the rank of a process and ite coordinates in a Clarte-
sian topology. Thiz relaticn=hip can be used to create multiple Cartesian topologies
with the desired relationzhip. Figure §.2 shows the relationship of two 2D Cartesian
topologies where the second one & shifted by two rows and two columns.

oso0 | 120D | 202 | 3rm3
sl | 7eam | 4m | sAD

410 | S | sz | 7
Wil 1resn| s | 9

g2 | 92y | 10| 110
2002 [3035 | o0 1/16,1)

Figure 5.2

The relationship between two overlaid topologies an a 3 ¢ 4 torus. The upper values in each
proceas is the rank f (roweeol] in the original 2D topology and the lower valnes are the zame for
the shifted 2D topology. Note that rows and eolumne of processes remain intant.

8.4 Embedding in MPI

The support for virtual topolegies as defined in this chapter i= consistent with
cther part= of MPI, and, whenever possible, makes uze of funciions that are defined
elsewhere. Topology mfcrmation is associaied with communicators. It can be
implemented using the caching mechanizm described m Chapier 5.

Rationale. A= with colleciive communications, the virtual topology features can
be layered on top of point-topoint and communicator functicnality, By deoing
thiz, a layered implementation iz possible, though not required. A consequence of
thiz design & that topology information is not given directly to point-to-point nor
collective routines. Instead, the topology interface provides functions to translate
between the virtual topology and the ranks vsed in MP| communication routines.
{End of redionale.}

Procos Topologie 287

fi.5 Cartesian Topology Functions

Thi zection describes the MPI functicns for creating Cartesian topologies.
8.51 Cartesian Copstructor Function

MPILLCART _CREATE can be uszed to describe (lartesian structures of arbitrary di-
menszion. For each coordinate direction one specifies whether the process siructure
i1 periodic or not. For a 1D topology, it is linear if 1t 3= not periodic and & ring
ifit & periodic. For a 2D topology, it i= a rectangle, cylinder, or torus as it goes
from non-peniodic to pericdic in cne dimension to fully pericdic. Mote that an
n-dimensional hypercube iz an n-dimensional torus with 2 processes per coordinate
direction. Thus, special support for hypercube structures 3= not necessary.

MPLCART _CREATE{commeld, ndims, dims, perieds, reorder, comm cart)

IN comm_old wpul compuncalor
IN ndims owaber of dincriom of Carleian grid
IN dims lleper array of sive ndims spedfying Lhe

ownber of proceysc o cach dimemion

IN periods logical array of sze ndims spodlyiog whelher
Lhe grid v periodic (true} or ool (false)
in cach dimemmion

IM reorder ranky mmay be reordered [true} or ool
(falze)

ouUT comm cart comununicalor wilh new Carlesian lopel-
oy

int MPICart creata(MPI Comm comm old, int ndims, int +dims,
int sperieds, int reorder, MPI Comm *comm cATt)

MPI_CART CREATE(COMMOLD, NDIMS, DIMS, FERIODS, RECORDER, COMM_CART,
IERROR)
INTEGER COMMOLD, NDIMS, DIMS(s), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER

MPI_.CART_CREATE returns 2 handk to 2 new communicator to which the Carte-
sian topology information is attached. In analegy to the function MPLCOMM-
-CREATE, no cached information propagates to the new communicater. Ako, this

258 ﬂ}.lath:r 6

function is collective. As with other collective calk, the program must be wmitten
to work correcily, whether the call synchronkes or not.

If reorder = falge then the rank of each process in the new group & identical
to itz rank in the old group. (Otherwise, the function may recrder the processes
{possibly =0 as to chooze a good embedding of the virtual topology cnto the physical
machine}. If the total size of the (artesian grid is smaller than the size of the
group of comm old, then some processes are returned MPLCOMM_NULL, in analogy
to MPLLCOMM_SPLIT. The call iz erronecus if it speafies a grid that & larger than
the group size.

Advice lo implementors. MPI.CART_CREATE can be implkmented by creating a
new communicator, and caching with the new communicator & description of the
Cartesian grid, e.g.,

1. ndims (number of dimensions},
2. dins {numbers of proceszses per coordinate direction},
3. perieds (penodicity information},
4. evm_positien (own pesition m grid)
{End of advice io implemeniors.)

£.5.2 Cartesian Convenicnoe Function: MPI_DIMS_CREATE

For Clartesian topologies, the function MPI_DIMS CREATE helps the user zelect
a balanced distribution of processes per cocrdinate dmection, depending on the
number of processes in the group to be balanced and optional constraints that can
be specified by the user. Ome possible use of this function i= to partiticn all the
processes (the size of MPILCOMM MWAORLD's group) into an #-dimensicnal topology.

MPLDIMS_CREATE{ nnodes, ndims, dims)

IN nno des ownber of mode 1o a grid
IN ndi ms ownber of Carleian dimcoyions
INOUT dims loleoger array of vlve ndime spodfying Lhe

mmober of nodey in cach dimension

int MPIDims creatalint nnodes, int ndime, int *=dime}

MPI_DIMS CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(+), IERROR

Procos Topologie 255

The entries in the array dims are set to describe a Cartesian grid with ndims
dimensions and a total of nnodes nodes. The dimensions are set to be as close to
each other ac possible, using an appropriate divisibility slgorithm. The caller may
further constrain the cperation of thiz routine by specifying element= of array dins.
I dims[i] is set to o positive number, the routine will not modify the number of
nodes in dimension i; only those entries where dins[i] = 0 are modified by the
call.

Megative input values of dims[i] are erronecus. An error will occur if nnodes i=
not 2 multiple of H dirns[i].

$ dimras 0

Fordins[i] zet by the call, dims[i] will be crdered in monotonically decressing
crder. Array dims is suitable for use s input to routine MPI_LCART_CREATE.
MPLDIMS_CREATE iz local. Several sample callz are shown m Exampk 6.1,

dims function call dims

before call on return

(0,0} MPLDIMS_CREATE(6, 2, dms) | (3,2}
Example 6.1 (4 o) MPLDIMS_CREATE(7, 2, dims) | (7,1}

{0,3,0} MPLDIMS_CREATE(é, 3, dims) | (2,3,1}

{0,3,0} MPIDIMS_CREATE(7, 3, dims) | erronecus call

6.5.3 Cartcsian Inguiry Functions

Omee o Cartesian topology is et up, 1t may be necessary to inquire about the
topolegy. These functicns are given below and are all local calls.

MPI_CARTDIM_GET{eerm, ndims)

IN cormm comununcalor wilh Carleian slmuclure
ouUT neli s owaber of dispenvions of Lhe Cadcyian
ulroclure

int MPICartdim get(MPI Comm comm, int *ndims)

MPI_CARTDIM GET{COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

MPI_CARTDIM_GET returns the number of dimensions of the Cartesian structure
azzociated with comm. Thiz can be used to provide the other Cartesian inguiry

260 ﬂ}.lath:r 6

functions with the correct size of arrays. The communiator with the topology in
Figure §.1 would return ndims = 2.

MPLCART _GET{cermm, maxdims, dims, perieds, cocrds)

IN CO comununicalor wilh Carlelan slouclore

IN rmaxdims leoglh of veclors dims, periods, and
coords in Lhe calling prograun

ouUT dims ownber of proccysey for cach Cardeydian
dimncosion

OUT periods periodicily ftrueffalse} for cach Carle-
slan dincosion

ouUT coords coordinaley of calling procos in Jarle-

uian ulrocluns

int MPICart get (MPI Comm comm, int mardims, int *dims, int sperieds,
int *coords)

MPI_CART CET{COMM, MAXDIMS, DIMS, FERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(+), COORDS(*), IERROR
LOGICAL PERIODS(#)

MPI_.CART _GET returns information cn the Cartesian topology ascociated with
comm. maxdims must be at least ndimz as returmed by MPLCARTDIM_GET. For
the example in Figure §.1, dime = (3,4}. The coords are as given for the rank of
the calling process as shown, e.g., process § returmns coords = (1, 2).

6.5.4 Cartesian Translator Functions

The functions in this section transzlate to/from the rank and the Cartesian topology
coordinates. These calls are local.

MPICART _RANK{comm, coords, rank)

IN comm comununicalor wilh Carleian slruclure

IN coords lnleper amay speclying Lhe Cadcsan
coordinales of a proccs

ouUT rank rank of specificd procos

int MPICart rank(MPI Comm comm, int *ceoorde, int *rank)

Procos Topologie 261

MPI_CART RANK(COMM, COORDS, RANK, IERRORD
INTEGER COMM, COORDS(=), RANK, IERROR

For a process group with Cartesian structure, the function MPI_.CART_RANK
translates the logical process coordinates to process ranks as they are used by the
point-to-point routines. coords iz an array of size Wdims as returned by MPILCART-
DIM_GET. For the example in Figure §.1, coords = (1,2} would return rank = 6.

Fordimension 1 with paricds(i} = trme, ifthe coordinate, coords(i}, & out of
range, that ic, coords(i}) « 0 or coords(i} > dims{i}, it iz shifted back to the
interval 0 = coords(i) < dims(i) automatically. If the topology in Figure 6.1 i
periodic m both dimensions {torus}, then coords = (4, §} would alzo return rank = 6.
Out-of range coordinates are erronecus for non-periodic dimensicns.

MPLCART_COOQRDS{cemm, rank, maxdims, coerds)

IN comm comumunicalor wilh Carleian slruclure

IN rank rank of a procoy wilhin group of camm

IN rmaxdims lenglh of voolor coord in Lhe calling: pro-
gram

ouT coords lnloger army coolaining Lhe Cardedan

coordinales of ypedficd procoy

int MPICart coords(MPI Comm comm, int rank, int mardime,
int #coords)

MPI_CART COCORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(), IERROR

MPI_CART_COQQRDS & the rank-to-coordinates tranzlator. It iz the inverse map-
ping of MPILCART RAMK. maxdims i= at least as big as ndims a= returned by
MPLCARTDIM_GET. For the example in Figure §.1, rank = § would retum coords =
(1,2).

6.5.5 Cartesian Shift Function

I the process topokgy is a Cartesian structure, a MPISENDRECY cperation is
likely to be uzed along a coordinate direction to perform a shift of data. A= input,
MPISENDRECY takes the rank of a source process for the receive, and the rank of
a destination process for the send. A Cartesian chift operation iz specified by the
coordinate of the shift and by the size of the chift step {positive or negative}. The

—

262 ﬂ}.lath:r 6

function MPLLCART SHIFT inputs such speafication and returmns the informaticn
needed to call MPILSENDRECY. The function MPLCART SHIFT is local.

MPLCART SHIFT{cermm, directicn, disp, rank souree, rank_dest)

IN comm comunuuicalor wilh Carlalan sluclure

IN direction coordinale dimcosion of dhifll

IN disp dizplaccincnl [O opwands hill, < 0:
downwardy ahill}

ouT rank_source rank of yource procoyy

ouT rank_dest raok of deulinalion proccss

int MPICart shift(MPIComm comm, int diractiomn, int disp,
int #rank scmrce, int srank dest)

MPI_CART SHIFT(COMM, DIRECTICON, DISP, RANK SOURCE, RANKDEST, IERROR)
INTEGER COMM, DIRECTION, DISF, RANK SOURCE, RANK DEST, IERROR

The direction argument indicates the dimension of the =hifi, i.e., the coordinate
wheee value iz modified by the shift. The coordinates are numbered from Q@ to
ndims-1, where ndims i= the number of dimensions.

Depending cn the peniodicity of the Cartesian group in the speafied coordinate
direction, MPI_.CART_SHIFT provides the identifiers for a circular or an end-off
shift. In the caze of an end-off shift, the value MPI FROC NULL may be returned in
rank_source andfor rank_dest, indicating that the source and for the destination for
the =hift iz out of range. This is a valid input to the sendrecy functions.

Meither MPI_CART SHIFT, nor MPISENDRECY are collective functions. It is
not required that all processes in the grid call MPILCART SHIFT with the same
direction and disp arguments, but only thai sends maich receives m the subzequent
calls to MPISENDRECY. Example 6.2 cshows such use of MPILCART SHIFT, where
each columm of 2 2D grid 3= shifted by a different amount. Figures 6.3 and §.4 show
the result on 12 processors.

Example 6.2 The communicator, comm, has a 3 » 4 periodic, Cartesian topology
azzociated with it. A two-dimensional array of REALs 3= stored one element per pro-
cesz, in varizbk a. Ome wiches to skew thiz array, by shifting column i {vertically,
1., along the column} by i steps.

INTEGER comm_Z2d, rank, ceords(2), ierr, sonrce, dest

INTEGER statuns(MPI_STATUS_SIZE), dims(2)

LOGICAL reorder, periods(Z2)}

Procos Topologie 263

REAL a, b

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, isize, ierr)
IF (isize.LT.12) CALL MPI_ABORT(MPI_COMM_YURLD, MPI_ERR_OTHER, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

| initialize arrays
a = rank
B==-1

| create topology
| valmes to ron on 12 processes

dims({1} = 3

dins({2) = &
| change te .FALSE. for non-pericdic

periods(1) = .TRUE.

peTicds(2) = .TRUE.

racrder = .FALSE.

CALL MPI_CART_CREATE(MPI_COMM_WORLD, 2, dims, periecds,

recrder, comm_2d, ierTr)

| first 12 processes of MPI_COMM_WORLD are in gronp of comm_Z2d,
| with sama rank as in MFI_COMM_WORLD

| find Cartesian coordinates

CALL MPI_CART COORDS(comm_2d, rank, 2, coords, ierr)

| compnte shift sonrce and destination

CALL MPI_CART SHIFT(comm_2d, 0, coords(2), sonrce, dest, ierr)

| gkew A into b
CALL MPI_SENDRECY(a, 1, MPI_REAL, dest, 13, b, 1, MPI_REAL,
scnrce, 1%, comm_2d, statms, ierr)

Rationale. The effect of returming MPILFROC NULL when the source of an end-off
shift i= out of range iz that, in the subsequent shift, the destination buffer stays
unchanged. This i= different from the behavior of a Fortran 90 EOSHIPT intrinsic
function, where the uzer can provide a fill value for the target of a shift, ff the scurce
15 out of range, with a defauli which iz zerc or Blank. To achieve the behavior of
the Fortran function, one would need that a receive from MPILLFROC_NULL put a

264 ﬂ}.lath:r 6

o 1 2 3 5 a . 3
.0 ol 0.2 03
040 35 6410 303

4 2 G 7 4 1 10 7
EL L0 (13 P13 —_—
404 1ig 10/ 32 T

g 9 10 11 s 5 5 1
2,00 r2.1) (2,2 (2,3
gi8 arl 26 1ill

Figure 6.3

Outeome of Example 6.2 when the 23 topalogy iz periodic (& torms] on 12 procesges. In the
boxes an the left, the npper number in each boxr reprecente the process rank, the middle values
are the [row, column)] eoordinate, and the lower values are the sourcefdest for the sendrec
operation. The value in the boxes on the right are the reaults in b after the sendrecy has
completed .

o 1 2 3 n -1 -1 -l
.o (.1} 02 (0.3
orsa -ra B] -1

4 5 & 7 4 | B 1
(W] 1.1} 1,2 (1.3 _—
404 Lig -i- i~

8 B 10 1 s 5 5 n
2.0 [2.1) (2.2 (23
] al- 24 -f-

Figure 6.4

Similar to Fignre 6.5 excert the 2D Cartedian topology ie not periodic (& rectangle] . Thiz reeulta
when the values of parleda(l} and parledz{2} are made FALSE. A ‘-* in a gource or dest
value indicates WP _CﬁRTﬁHlFF returng MFILPROC_MULL.

Fxed fill value in the receive buffer. A default £ill cannot be easzily provided, since
a different fill value is required for each datatype argument uszed in the sendreceive
call. Since the user can mimic the EQSHIFT behavior with little additional code, it
was felt preferable to choose the simpler interface. {End of raticnafe.}

Advice to users. In Fortran, the dimension indicated by DIRECTION = 1 has
DIMS{i41) processes, where DIMS is the array that was used to create the grid. In
, the dimension indicated by direction = i is the dimension specified by dims|i].
{End of advice io users.)

—

Procos Topologie 265

£.5.86 Cartesian Partition Fonction

MPLCART SUB{ecrmm, remain_dims, newecormm)

IM commm comununicalor wilh Carleian vluclure

IM rerain.dims Lhe ilh eolry of remain_dims wpedlicy
whelher Lhe ilh disension s kepl in Lhe
subgrd (trua) or v dropped [falaa)

ouUT MEWEE 7 Y comununicalor conlaining Lhe subgend Lhal
eludey Lhe calling procos

int MPICart sobk(MPI Comm comm, int #remain dims, MPI Comm #newcomm)

MPI_CART SUB{COMM, REMAIN DIMS, NEVWCOMM, IERROR)
INTEGER COMM, NEVWCOMM, IERROR
LOGICAL REMATN DIMS ()

If 2 Clartesian topology has been created with MPILCART_CREATE, the function
MPIL.CART SUB can be used to pariition the communicator group into subgroups
that form lower-dimensional Cartesian subgrids, and to build for each subgroup a
communicator with the azsociated subgrid Cartesian topology. This call i= collec-

tive.

Advice to users. The same functionality 2= MPI_CART SUB can be achieved with
MPLLCOMM_SPLIT. However, since MPLCART SUB has additicnal informaticn, it
can greatly reduce the communication and work needed by logically working on
the topolegy. As such, MPILCARTSUB can be easily implemented in a scalable
fashion. (End of advice to users.)

Aduice to implermentors. The function MPI_CART SUB{eermm, remain_dims, comm-
-new) can be implemented by a call to MPLCOMM_SPLIT({ cemm, cclor, key, comm-
_new }, using a single number encoding of the lost dimensions as celer and a single

nunber encoding of the preserved dimensions as key. In addition, the new topology
information has to be cached. {End of aduice to implementors.)

Example 6.3 Ascume that MPLLCART_CREATES. .., comm) has defined a (2 »
3 4) grid. Let renain dins = (trme, false, trne). Then acall to,

MPI_CART SUB({comm, remain_dims, comm_new),

266 ﬂ}.lath:r 6

will create three commumnicators each with eight processes in a 2 % 4 Cartesian
topology. If Temain dims = (false, false, trone) then the call ioc MPILCART-
SUB[ecernm, remain_dims, eomm_new) will create six non-overlapping communica-
tors, each with four processes, in 2 one-dimensicnal Cartesian topology.

6.5.7 Cartesian Low-lcvel Functions

Typically, the functions already presented are used to create and use Cartesian
topologies. However, some applications may want more control over the process.
MPLCART _MAP returns the Clartesian map recommended by the MPl system, in
crder to map well the virtual communicaiion graph of the applicaiion on the phys=
ical machine topology. Thi call is collective.

MPLCART _MAP{cemm, ndims, dims, perieds, newrank)

IN comm pul compunicalor

IN ndi mg ownber of duncmsiom of Caresan sl oo
Lure

IM dims loleger array of vive ndime spocdfyiog Lhe
mnber of proccuscy In cach coordinale
direclion

IN pefiods logieal army of size nd ime vpodlying: Lhe
poriodidly spedlicalion in cach coordi-
pale dircclion

ouT newrank reomdermd mok of Lhe calling proces; MPE
_UNDEFIMNED il calling procms dom ool

belong Lo grid

int MPI Cart map (MPIComn comm, int ndims, int *dims, int *perieds,
int *nawrank}

MPI_CART MAP{COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(s), NEVRANK, IERROR
LOGICAL PERIODS(*)

MPI_CART_MAP computes an “optimal” placement for the calling process on the
phyzical machine.

Advice to implementors. The function MPLCART_CREATE{cermm, ndims, dims,
perieds, recrder, comm cart), with recrder = troe can be implemented by calling

Procos Topologie 267

MPLCART MAP{cemm, ndims, dims, perieds, newrank)}, then calling
MPLCOMM_SPLIT{cemm, celer, key, commcart), with celer = 0 if newrank
MPI UNDEFINED, coler = MPI_UNDEFINED otherwise, and key = newrank. {End of
adftice to implementors.)

8.4 Graph Topolegy Funetions

Thi secticn describes the MPI functicns for creating graph topologies.

6.6.1 Graph Constructor Function

MPLGRAPH_CREATE[eommeld, nnedes, index, edges, recrder, comm_graph)

IN comm _old pul compunicalor

IN nnodes ownber of modey 1o graph

IN index array of lnlepery deseribiog node degrecs
(uoc below)

IN edges array of nlegers describing praph cdpes
(oo below)

IM reorder ranking may be reordercd [true) or ool
(falze)

ouUT comm_graph comununicalor wilh graph Lopology added

int MPIGraphcreate(MPI Comn comm old, int nnodes, int +index,
int wadges, int reorder, MPI Comm *comn graph)

MPI_CRAPH CREATE(COMM OLD, NNODES, INDEX, EDGES, REORDER, COMM GRAPH,
IERROR)
INTEGER COMMOLD, NNODES, INDEE(#), EDGES(*), COMMGRAPH, IERROR

LOGTCAL REORDER

MPI_GRAPH_CREATE returns a new communicator to which the graph topology
information 3= attached. If reorder — false then the rank of each process in the
new group is identical to it rank in the ol group. Otherwize, the function may
recrder the processes. If the size, nnodes, of the graph i= smaller than the size
of the group of comm_old, then some processes are returned MPLCOMMMNULL, in
analogy to MPI.COMM SPLIT. The call iz erronecus if it spedfies a graph that is
larger than the group ske of the input communicator. In analogy to the function
MPLCOMM_CREATE, no cached information propagates to the new communicator.

268 ﬂ}.lath:r 6

Ako, this funciion & collective. As with other collective calls, the program must
be written to work correcily, whether the call synchromizes or not.

The three parameters nnodes, index and edges define the graph structure. nnodes
15 the number of nodes of the graph. The nodes are numbered from 0 to nnodas-1.
The ith entry of array index stores the total number of neighbors of the first i
graph nodes. The lits of neighbors of nodes 0, 1, ..., nnodes-1 are stored in
conzecutive locations in array edges. The array edges i= a flattened representation of
the edge listz. The total number of entries in index 3= nnodes and the total number
of entries in edges iz equal to the number of graph edges.

The definitions of the argument: nnodes, indar, and edges are illustrated in
Example §.4.

Example 6.4 Ascume there are four processes (), 1, 2, 3 with the following adja-
cency matric:

| process | neighbors
0 1,3
1 0
2 3
3 0,2

Then, the input arguments are:

nnodes = 4
index = (2, 3, 4, 6}
adges = [1: 40,30, 2}

Thus, in), index[0] % the degree of node zerc, and index[i] - index[i=-1i]
it the degree of node i, i=1, ..., nnodes=1; the bzt of neighbors of node zero is
stored in edges[j], for 0 < j < index[0] — 1 and the kst of neighbore of node 1,
i = 0, iz stored in edges[j], index[i — 1] = j = index[i] — 1.

In Fortran, index{1} iz the degree of node zero, and index{i+1} - index{i}
15 the degree of node 1, i=1, ..., nnodes-1; the list of neighbors of node zerc
is stored in edges(j}, for 1 < j < index(1} and the hist of neighbors of node i1,
10, is stored in edges(j), index{i}+ 1 < j < index{i +1}.

Rationale, Since bidirectional communicaticn i= assumed, the edges array is
symunetric. To allow input checking and to make the graph construction easier for

Procos Topologie 265

the user, the full graph i= given and not just half of the symmetric graph. (End of
rationafe.}

Advice lo implementors. A graph topology can be implemented by caching with
the communiator the two arrays
1. index,

2. adgex

The number of nodes iz equal to the number of procezzes in the group. An additional
zero entry at the siart of array index simplifies access to the topology mformation.
{End of aduice io implementors.)

6.62 Graph Inquiry Functions

Omnce a graph topology i= et up, it may be necessary to mquire about the topoleogy.
These functicns are given below and are all local calls.

MPILGRAPHDIMS GET [cemm, nnedes, nedges)

IN comm comununicalor for grooup wilh graph slose-
Lure

ouT nnodes ownber of modey 1o graph

ouT nedges ownber of cdgey o graph

int MPIGraphdims get(MPI Comm comm, int *nnodes, int *nedges)

MPI_CRAPHDIMS GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

MPI_GRAPHDIMS GET returns the number of nodes and the number of edges
in the graph. The number of nodes i= identical to the zsize of the group aseociated
with comm. nnodes and nedges can be used to supply array= of correct size for index
and edges, respectively, in MPI.GRAPH GET. MPLLGRAPHDIMS_GET would return
nnodes = 4 and medges = 6 for Example 6.4,

270 ﬂ}.lath:r 6

MPILGRAPH_GET{cernm, maxindex, maxedges, index, edges)

IN comm comununicalor wilh graph sloselore

IN raxi ndex leoglh of veclor index in Lbe calling: poo-
gram

IN maxedges leoglh of veclor edges in Lhe calling pro-
gram

ouUT index array ol lnlepern coolaliniog Lhe graph
alrue:lure

ouUT edges array of Inlopen coolaining Lhe graph
alrue:lure

int MPIGraphget{MPI Comnm comm, int maxindexr, int maxredges,
int sindex, int wedges)

MPI_CRAPH GET(COMM, MAXINDEX, MATEDGES, INDEE, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(#), EDGES(+), IERROR

MPIGRAPH_ GET returns index and edges as was supplied to MPI.GRAPH_CRE-
ATE. maxindex and maxedges are at least a= big 2= nnodes and nedges, respectvely,
az returned by MPLGRAPHDIMS GET abowe. Ucing the comm created im Exam-
Fle 6.4 would return the index and edges given i the example.

6.6.3 Graph Information Functions

The functions in this section provide information about the structure of the graph
topology. All calls are local.

MPIGRAPH_NEIGHBQRS_COUNT{eemm, rank, nneighbers)

IM comm comununicalor wilh graph Lopology
IN rank rank of provew o group of cofmnim
ouUT nmeighbors ownber of ocighbor of vpedilied proccys

int MPI Graphneighbors connt(MPI Comn comm, int rank,
int *nneighbors)

MPI_GRAFH NEIGHEORS COUNT(COMM, RANK, NNEIGHECRS, IERROR)
INTEGER COMM, RANK, NNEIGHEORS, IERROR

MPI_GRAPH_NEIGHBORS_CQUNT retumns the number of neighbors for the pro-
cezz =ignified by rank. It can be used by MPI.GRAPH_NEIGHBORS to give an

Procos Topologie 271

array of correct zize for neighbors. Using Exampk 6.4 with rank = 3 would give
nneighbors = 2.

MPLGRAPH_NEIGHBQRS{cernm, rank, maxneighbers, neighbors)

IN comm comununicalor wilh graph Lopology

IN rank rank of proccw 1o group of cofnim

IN maxneighbors sixc of army neighbors

ouUT neighbors array of ranky of procoso Lhal arc neighe

bor Lo spedlicd proccuy

int MPIGraphmneighbors(MPI Comm comm, int rank, int marneighbors,
int #neighbors)}

MPI_GRAPH NEIGHBEORS (COMM, RANK, MAXNEIGHEORS, NEIGHEORS, IERROR)
INTEGER COMM, RANK, MAXNEIGHEORS, NEIGHEORS(+), IERROR

MPI_GRAPH_NEIGHBORS returns the part of the edges array ascocizied with
process rank. Using Example §.4, rank = § would return neighbors =10, 2. Ancther
uze i= given in Example §.5.

Example 6.5 Suppece that conn is 2 communicator with a shufle-exchange topol-
ogy. The group has 2* members. Each procese iz labeled by a,, ..., 2, with 2; €
{0,1},and has three neighbors: exchange({a;,..., 8.} =a1,...,8, 1,8, (2= 1—a},
unshulfle{a,,...,a.} = az,...,a8,,a:, and shuffle(a,,...,2.) = au,a1,..., 80 1.
The graph adjacency list iz Mlustrated below for o = 3.

nodc cxchange unshuflc shufflc
neighbors{1} neighbors{2} neighbors(3}
0 (000} 1 0 0
1 {001} 0 2 4
2 (010} 3 4 1
3 (011} 2 i L]
4 (100} 5 1 2
5 (101} 4 3 G
& (110} 7] 3
T (111} ¢ 7 7

Suppose that the communicator conn has this topology asscoated with it. The
following code fragment cycles through the three types of neighbors and performs

272 ﬂ}.lath:r 6

an appropriate permutation for each.

| assmme: sach process has stored a real noonber 4.

| axrtract neighborheed infoermation

CALL MPI_COMM_RAWNK({comm, myrank, ierT)

CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierT)

| perform exchangs permmtation

CALL MPI_SENDRECY_REPLACE(A, 1, MPI_REAL, neighbors(i}, O,
naighbors{i), 0, comm, statns, ierr)

| perform nnshoffle permotation

CALL MPI_SENDRECY_REPLACE(A, 1, MPI_REAL, neighbors(2}, O,
neighbors(3), 0, comm, statns, ierr)

| perferm shoffle permotation

CALL MPI_SENDRECY_REPLACE(A, 1, MPI_REAL, neighbors(3}, 0O,
naighbors(2), 0, comm, statns, ierr)

6.64 Low-lewl Graph Functions
The Jow-level function for general graph topologies as in the Cartesian topologies
given in Section §.5.7 15 as follows. This call 1= collective,

MPILGRAPH_MAP{cemm, nnedes, index, edges, newrank)

IN comm pul compunicalor

IN nnodes number of graph node

IN index].qu;c:r array Hpt:r.if}'lug Lhe g,rap}.l. ulmac-
Lure, voc MPILGRAFH_CREATE

IN edges lqu;c:r array Hpt:r.if}'lug Lhe g,rap}.l. ulmac-
Lurc

OuUT newrank roomdered mok of Lhe r....:L]lLr.lg procey; MPI

-UMDEFIMED if Lhe calling proccss docy
ool belooyg Lo graph

int MPI Graphmap{MPI Comm comm, int nmodes, int *index, int *edgas,
int #*nawrank}

MPI_GRAPH MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)
INTEGER COMM, NNODES, INDEK(*), EDGES(+), NEWRANK, IERROR

Advice o implemeniors. The function MPI.GRAPH_CREATE({comm, nnodes,

index, edges, reorder, comm_graph), with recrder = trme can be implemented

Procos Topologie 273

by calling MPILGRAPH_MAP{cemm, nnodes, index, edges, newrank), then calling
MPLCOMM_SPLIT{comm, ecler, key, eomm _graph), with celer = 0 if newrank
MPI UNDEFINED, coler = MPI_UNDEFINED otherwise, and key = newrank. {End of
adftice to implementors.)

8.7 Topology Inguiry Funetions

A routine may receive & communicator for which it & unkmown what type of topol-
cgy 15 assodated with 3. MPLTOQPO_TEST allows cne to answer thi= gquestion.
Thi 15 alocal call.

MPLTOPO_TEST [comm, status)
I comm comununcal.or

ouT status Lopology Lype of comununicalor comm

int MPITopo test{MPI Comn comm, int sstatms)

MPI_TOPO_TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR

The function MPLTQPO_TEST returns the type of topology that & assigned to
a communicator.

The cutput value statns iz one of the following:

MPLGRAFH graph topology
MPLCART Clartesian topology
MFIUNDEFINED no topology

8.8 An Application Example

Examplc 6.6 We prezent here two algonihmes for parallel matnx product. Both
codes compute a product € = A % B, where A & an #; ¥ »p mainx and B 35 an
2z ¥ 7tz matrix {the result matrix C has size 7; ¥ 2=). The input matrices are
initially available on process zero, and the result matrix is returned at process zero.

The first paralkel algorithm maps the computation onto a gy % gz 2-dimensional
grid of processes. The matrices are partitioned as shown in Figure 6.5: matric 4
1z partiticned mto gy hereontal slices, the matnix B 15 partitioned into go vertical
slices, and matrix ¢ i= partitioned into g, # pz submatrices.

<hon b o4 kD

T4

ﬂ}.lath:r 6

A B C

Figure 6.5
Data partition in 21 parallel matrir prodoet algarithm.

Each process (4, j} computes the product of the i-th slice of & and the j-th clice
of B, resulting in submatrix (f, j} of C.
The succeszsive phases of the computation are Mlustrated in Figure §.6:

. Matrnix A iz scattered into slices on the (z, 0} line;
. Matrix B is scattered into slices on the {0, y} line.
. The slices of & are replicated in the y dimension.
. The slices of B are replicated in the r dimension.

. Each process computes one submatrix product.
. Matnx C iz gathered from the (z,y} plane.

SUBROUTINE PMATMULT &, B, €, n, p, comm}

I
INTEGER
I

gnbrontine argnments are meaningfnl only at process O
n(3)

matriz dimensicns

A(n(1),n(2}),

B(n(2),n(2)),

c(n(1),n(3}

data

pi2)

dimensions of processor grid. pll) divides n{i}, p(Z)
divides n{3) and the prodnct of the 2 dimensions
mnst egoal the size of the gromp of comm

Comn

comnunicater for processes that participate in compuntation

nnf2d

Procos Topologie 278

Axes
¥
2 scatter B x
® L
L.scatter & &
»
3. broadcast
submatrices of A
1
* — o —¢ [= =l
I:—I (NN l_:l
[T L L]
= = all
4 bro ad::,as.t 5. compute
submatrices of B
products of
submatrices

6. gather C

Figure 6.6
Fhasgee in 213 parallel matriz produet algorithm.,

276 ﬂ}.lath:r 6

| dinensions of local sobmatrices
REAL, ALLOCATAELE Ra(:), BE(:), CCf{:,:)

| local enbmatrices
INTEGER comm_2D, comm_iD{2}, pcomm

| commonicaters for 20 grid, for snbspaces, and cepy of comnm
INTEGER coords(2)

| Cartesian coordinates
INTEGER rank

| process rank
INTEGER, ALLOCATAELE dispc(:), commtec(:}

| displacemant and connt array for gather call.
INTEGER typea, typec, types(2), blen{2), disp(2}

| datatypes and arrays for datatype creation
INTECER ierr, i, j, k, sizecfTeal
LOGICAL pericds(2), remains(2)

CALL MPI_COMM_DUP{ comm, pcomm, ierT)

| broadcast parameters ni3) and p(2)
CALL MPI_ECAST(m, 3, MPI_INTEGER, O, pcomm, ierr)
CALL MPI_BCAST(p, 2, MPI_INTEGER, O, pcomm, ierr)

| ereaate 20 grid of processas
pericds = {/ .PALSE., .FALSE. /)
CALL MPI_CART CREATE(pcomm, 2, p, periods, .PALSE., comm_2D, ierr)

| find rank and Cartesian coordinates
CALL MPI_COMM_RANK(comm_2D0, rank, ierT)
CALL MPI_CART COORDS(comm_20, rank, 2, coords, ierr)

| compote commmmicaters for snbspaces
oi=1,2
oo j=1, =2
remains(j) = (i.EQ.J)
END DO
CALL MPI_CART_SUB{ comm_20, remains, comm_1iD({i}, ierr)
END DO

Procos Topologie

| allecate submatrices

(1} = n{1}/p(1)

(2} = n(3}/p(2)

END DO

ALLOCATE (AA(mn(1),nf23), BE(n(2),nn(23), CO(nn{1),nn(230)

IF {rank.BqQ.0) THEN
| compnte datatype for slice of A
CALL MPI_TYFE_VECTOR(n(2), nn{1), n{1), MPI_REAL,
types(l), ierT)
| and correct artent to size of subcolomn so that
| consecntive slices ba "comtignonsz"
CALL MPI_TYPE_EETENT({ MPI_REAL, sizecfreal, iaerTr)}
blen = [/ 1, 1 73}
disp = (/ 0, sizeofrealsnn{i} /)
types(2) = MPI_UE
CALL MPI_TYPE_STRUCT{ 2, blen, disp, types, typea, ierr)
CALL MPI_TYPE_COMMIT({ typea, ierr)

| compnte datatype for snbmatrirz of C

CALL MPI_TYFE_VECTOR(nn{2), nn{1}, nfi1), MPI_REAL,
types{i), ierr)

| and corract artent to size of snhcolnmn

CALL MPI_TYPE_STRUCT(Z, blen, disp, types, typec, ierr)

CALL MPI_TYPE_COMMIT(typec, ierr)

| compnte nuobar of snbcolmnmns preceeding each snccessive
| sombmatriz of C. Sobmatrices are ordersed in row-major
| erder, to fit the order of processes in the grid.
ALLOCATE (dispc(p{i)+p(2}), conntc{p{i)*p{23}}
Do i =1, pfi)
oo j =1, p(2)
aispc({i-1)sp(2)+j) = ((G=1)wp(1) + (i-1))snn(2)
comnte ({i=1)wp(23+j) = 1
END DO
END DO
END IF

27T

278 ﬂ}.lath:r 6

| and now, the compntation

| 1. scatter row slices of mwatrir A on x aAris
IF {(coord=s(2).E0.0) THEN
CALL MPI_SCATTER(A, 1, typea, AA, nn{1i)*n{2), MPI_REAL,
0, comm_1D{1Y, iserr}
END IF

| 2. scatter colmmn slices of matriz B on ¥ aris
IF {(coords(1).E0.0) THEN
CALL MPI_SCATTER(E, n{2)#nn{2), MPI_REAL, EE,
n{Zienn(2) , MPI_REAL, O, comm_1iD{2}), iarr}
END TF

| 3. broadcast matriz AL in ¥ dimensicn
CALL MPI_BCAST(AR, nnf{1Y#n(2), MPI_REAL, 0, comm_iD{2)Y}

| 4. broadcast matrix BE in x dimensicm
CALL MPI_BCAST(BE, n{2)+nn{2), MPI_REAL, 0, comm_1D{1}}

| B. componte =nbmatriz prodocts
Dg j =1, nn{2)
Do 1 =1, nnf1)}
ccfi,jy =0
o0k =1, nf2}
cofi,jy = cofi, i) + Anfi,k)+BEB(K,])
END DO
END DO
END DO

| 8. gather resnlts from plane to node O
CALL MPI_GATHERY({ CC, nn{iY+nn{2), MPI_REAL,
C, comntec, dispc, typec, O, comm 2D, ierr)
| clean op
DEALLOCATECAA, BB, CC)
MPI_COMM_FREE({ pcomm, ierr)
MPI_COMM_FREE(comm_20, ierr)
mi=1,2

Procos Topologie

A B

Figure 6.7
Data partition in S parallel matriz product algorithm,

MPI_COMM_FREE[comm_iD{i}, ierr]}
END DO
IF {rank.EBQ.0) THEN
DEALLOCATE{countc, dispc)
MPI_TYPE_FREE([typea, ierr)
MFI_TYFE_FREE([typec, ierr)
MPI_TYFE_FREE{ type=(1), ierr)
END IF

| retnrng matrix C at process O
RETURN
END

=)

270

Examplc 6.7 For large matrices, performance can be impreved by using Strazzen’s
algorithm, rather than the =% cne. Even if one uses the simple, 2% algonithm, the
amount of communication can be decreased by using an algorithm that maps the

comput ation on a 3-dimensicnal grid of processes.

The parallel computation maps the 2, » 25 % 2z wlume of basic products onto
a three-dimensional grid of dimensions gy ¥ po ¥ ps. The matrices are partitioned
gz chown in Figure §.7: matrix & & partitioned into g, ¥ p; submatrices, mairix

B i partitioned into p; ¥ py submatrices, and matrix C i= partitioned into p; % pg
submatrices. Process (i, j, £} computes the product of submatnx (4, j} of matnx A

and submatrix (f, £} of matnx B. The submatrix (i, £} of matrix ¢ i= cbtained by

summing the subproducts computed at processes (4, §,k), j=0,...,p2 — 1.

280 ﬂ}.lath:r 6

A
¥
1. scatter A
Z

Axes
3. broadeast
2 scatter B submatricas of A
4. broadcast
submatrices of B
3. compute products
of submatrices
6. reduce products 7. gather C

Figure 6.8
Fhasgee in 2D parallel matrix produet algorithm.,

N e e

Procos Topologie 281

The successive phazes of the computation are Mustrated in Figure 6.8,

. The submatrices of A are scattered in the (z,y, 0} plane;

The submatricez of B are scattered in the (0, y, 2} plane.
The submatrices of & are replicated in the z dimensicm.
The submatrices of B are replicated in the z dimensicn.
Each process computes one submatrix product.

. The subproducts are reduced in the y dimenszion.
. Matrix C is gathered from the (z,0,z) plane.

SUERQUTINE PMATMULT{ A, B, €, n, p, comm)
| snkrentine argmments are meaningfnl only at process O
INTEGER nf3}
| matrir dimensions
REAL Afn{1),n(233,
B(n(2),n(3}],
Cin{1),n(3))
| data
INTEGER p(3)}
| dimensions of processor grid. p{i) onst divide
exactly nf{i} and the prodoct of the 3 dimensions
| mnst egnal the size of tha gromp of comm
THNTEGER comm

| communicater for proceszses that participate in compmtatiem

INTEGER nni{3)}

| dinensiong of local snbmatrices
REAL, ALLOCATARLE AA(:,:), BRE:,:)Y, cof:,:), cC1(:,:)

| local snbmatrices
INTEGER comm_3D, comm_2D{3}, comm_iD{3}, pcomm

| commonicaters for 3D grid, for snbspaces, and copy of comnm
INTEGER coords(3)

| Cartesian coordinates
INTEGER rank

| procass rank
INTEGER, ALLOCATABLE dispa(:), dispb{:}, dispcf(:},

conntal:), conntb(:), comntc(:]}

| displacement and count arrays for scatter/gather calls.

INTEGER typea, typeb, typec, types(2), blen(2), disp(2)

282

| datatypes and arrays for datatype creation
INTEGER ierr, i, j, k, sizecfTesal
LOGICAL perieds(3), remains(3)

CALL MPI_COMM_DUP{ comm, pcomm, ierT)
| broadcast parameters ni3) and p(3)}
CALL MPI_ECAST(m, 3, MPI_INTEGER, O, pcomm, ierr)

CALL MPI_BCAST(p, 3, MPI_INTEGER, O, pcomm, ierr)

| create 30 grid of processes
pericds = (% .FALSE., .FALSE., .FALSE.\)

ﬂ}.lath:r 6

CALL MPI_CART CREATE(pcomm, 3, p, periods, .PALSE., comm_3D, ierr)

| find rank and Cartesian coordinates
CALL MPI_COMM_RANK(comm 30, rank, ierr)
CALL MPI_CART COORDS(comm_3D, rank, 3, coords, ierr)

| compute commmmicators for subspaces

| 2D =nbspaces
Doi=1, 2
Do =1, 3
renains(j} = (i.HE.j}
END DQ
CALL MPI_CART SUE{ comm_3D, remains, comm_=D({i), ierr)
END DO

| 10 snbspacas
Doi=1, 3
DO =1, 3
renains (i} = (i.BEQ.J}
END DO
CALL MPI_CART_SUE({ comm_3D, remaing, comm_1D{i), ierTr)
END DO

| allocate submatrices
DOi=1,3

Procos Topologie 283

anfi} = n{id/pli)
END DO
ALLOCATE (AA(nn(1},nn(2)}, BB(nn{2} ,nn(33), CC(nn(1} ,nn(3}3)

IF {rank.BQ.0) THEN
| compnte datatype for suobmatriz of A
CALL MPI_TYPE_VECTOR(nmn{=Y, nn{1)Y, n{1), MPI_REAL,

trpes{i), ierr)

| and correct artent to size of snhcolnmn
MPI_TY¥PE_EETENT{ MPI_REAL, ®izecfreal, ierr)
blen = {4 1, 1%}
disp = (\ 0, sizeocfrealsnn{i} 4}
types(2) = MPI_UR
CALL MPI_TYPE_STRUCT(2, blen, disp, types, trpea, ierr)
CALL MPI_TYFE_COMMIT(typea, ierr)

| compnte nombker of snbcolmmns preceseding each
| znbmatrix of A. Snbmatrices are crdered in rew-majer
| order, to fit the order of processes in the grid.
ALLOCATE (dispa(p(1)#p(2)), comnta(p{1)*p{2)})
Do i=1, pf1)
Do j =1, p(2)
digpal{i=13%p(23+j3 = ({j=1)#p{1) + (i-1)I*nn(2}
comntaf{i-13#p(23+j) = 1
END DO
END DO

| same for array B
CALL MPI_TYPE_VECTOR(nn{3), nn{2), n{2), MPI_REAL,
types{l), ierr)
disp(2) = sizecfrealsnn(>}
CALL MPI_TYPE_STRUCT(Z, blen, disp, types, typek, ierr)
CALL MPI_TYPE_COMMIT(typebk, ierr)
ALLOCATE (dispb(p(2)#p(3}), connth{p(2)*p(33})
Do i=1, pi2}
Do j =1, p(3)
dispb{(i-1)p(3)+]) = ((j-1)#p(2) + (i-1))#nn(3)
comntb{{i-13#p(33+i) = 1

284 ﬂ}.lath:r 6

END Dd
END DO

| same& for array C
CALL MPI_TYPE_VECTOR(nn(2), nnf{1), nf{1), MPI_REAL,
types(l), ilerz)
disp(2) = sizeocfrealtnn(l)}
CALL MPI_TYPE_STRUCT(Z, blen, disp, types, typec, ierr)
CALL MPI_TYPE_COMMIT(typec, ierr)
ALLOCATE (dispc(p{i)+p(3}), comntc(p{i)=p{3}})
DO i =1, pf1)
DO § = 1, p(3)
dispe((i-13*p(3)+3) = ({j-1)*p(1) + (i-13)*nn(3)
comnte ({i=1)wsp(33+j3 = 1
END DO
END DO
END IF

| and now, the compntation

| 1. scatter matrixz A
IF (coerd=(3).EQ.0)
CALL MPI_SCATTERY(A, comnta, dispa, typea,
AL, nn{1)*nn(2), WPI_REAL, 0, Comm_2D{3), ierr)
END IF

| 2. scatter matrixz B
IF {(coord=({1).E0.0) THEN
CALL MPI_SCATTERV(E, comntb, dispb, typeb,
BEE, nn{2)+nn(3), WPI_REAL, 0, Comm_2Df{1), ierr)
END IF

| 3. broadcast matrix A in 2 dimension
CALL MPI_BCAST(AR, nnf{1Y#nn(2), MPI_REAL, 0, comm_iD{3Y, ierr)

| &, broadcast matrix BB in x dimansicon
CALL MPI_BCAST(EE, nn(2)#nn({3), MPI_REAL, 0, comm_1iD{1}, ierr)

Procos Topologie 285

| B. conpote snbmatriz prodocts
Dg j =1, nn{3)
Do 1 =1, nnf1}
ccli,jy =0
Dok =1, nnf2)}
CCli,i3 = ¢Cfi,j) + An(i kK)*BE(K,]}
END DO
END DO
END DO

| 8. rednce snkprodoncts in ¥y dimenzion
| need additicnal matriz, since oene cannot rednce "in place"
ALLOCATE {CCifmnmf{1),nn{33)}
CALL MPI_REDUCE(CC, CC1, nn{1i)#nn{3), MPI_REAL, MPI_SUM,
0, comm_1D{2), ierr)

| 7. gather resnlts from plane (x,0,z) to node O
IF {coords{2).EQ.0) THEN
CALL MPI_GATHERY{CC1, nnf{i1Y+nn{3), MPI_REAL,
C, comntec, dispc, typec, O, comm_2D(2), iarr)
END IF

| claan op
DEALLOCATE{AX, BH, CC)
DEALLOCATE {CC1)
IF {rank.BqQ.0) THEN
DEALLOCATE (counta, comntb, countc, dispa, dispb, dispc)
MFI_TYFE_FREE([typea, ierr)
MPI_TYPE_FREE(typeb, ierr)
MPI_TYPE_FREE{ typec, ierr)
MPI_TYPE_FREE{ types(l), ierr)
END IF
MPI_COMM_FREE(pcomm, ierr)
MPI_COMM_FREE(comm_3D, ierTr)
Doi=1, 3
MPI_COMM_FREE(comm_2D(i}, ierr)
MPI_COMM_FREE(comm_iD{i}, ierr)
END DO

286 ﬂ}.lath:r 6

| retnrng matrix C at process O
RETURN
END

—

7 Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various
parameters thai relate io the MPl implementation and the execution environment.
It discusses error handling in MPl and the procedures available for contrelling MPI
errcr handling. The procedures for entering and leaving the MPl execution environ-
ment are also described here. Finally, the chapter discuszes the interaction between
MPI and the general execution envircnment.

7.1 Implementation Information

7.1.1 FEnvironmental Inquirics

A et of attributes that describe the execution envircnment are attached to the com-
municator MPLCOMM WORLD when MPI iz imtiakzed. The value of these atinibutes
can be inquired by using the function MPIATTR_GET described m Chapter 5. It
15 erronecus to delete these atiributes, free their keys, or change their values.

The lizt of predefined attribute keys include

MFPILTAGUE Upper bound for tag value.

MFIHOST Host process rank, if such exdsts, MPIFROC NULL, otherwie.

MFPILIO rank of 2 node that has regular 1/0 faalities (pessibly rank of calling pro-
cess}. Nodes in the same communicator may retum different values for this param-
eter,

MFPILWTIME_I5_GLOBAL Boclean variable that indicates whether clocks are symchro-
mized.

Venders may add implementation specific parameters [such as node number, real
Memory size, virtual memory size, etc.}

Theze predefined attmbutes do not change value between MPlimtialization [MPI-
JINIT} and MPI completion (MPI_FINALIZE}.

Adrvice to users. Note that in the { binding, the value returned by these attributes
is a printer to an int contaming the requested value. { End of advice to users.)

The required parameter values are discussed in more detail below:

Tag Valucs Tag values range from 0 to the value retumed for MPLTAGUB, in-
cluzive. Theze valuez are guaranteed to be unchanging during the execution of an
MPFPI program. In addition, the tag upper bound value must be at lezst 32767, An

237

28R ﬂ}.lath:r T

MP| implementaticn i= free to make the value of MPLTAG UE larger than this; for
example, the value 2%° — 1 iz also 2 legal value for MPLTAGUR {on a system where
this value is a legal int or INTEGER value).

The attribute MPLTAG UE has the same value on all processe= in the group of
MPLCOMM WARLD.

Host Rank The value returned for MPIHOST gets the rank of the HOST process
in the group aszociated with commumicator MPLCOMM WAORLD, if there iz such.
MFIPROC NULL is returned if there iz no host. The attribute can be used on
systems that hawe a ditinguizhed host processor, m order to identify the process
running on thi=s procesecr. However, MP| does not specify what it means for a
process to be a HOST, nor does it requires that a HOST exgsts.

The atinbute MPIHOST has the same valie on all processes in the group of
MPLCOMM WARLD.

I/0 Rank The value returned for MPLK) ic the rank of a2 processor that can
provide language-standard I/() facilities. For Fortran, this means that all of the
Fortran I /(> operations are supported (e.g., OPEN, REWIND, WRITE}. For , this means
that all of the ANSI-C I/0 operations are supported (e.g., fopen, fprintf, 1seek).

If every process can provide language-standard 170}, then the value MPILLANY-
SOURCE will be returmed. Otiherwize, if the calling process can provide language
standard I/}, then jiz rank will be returned. {rtherwize, if come process can provide
language-st andard 1/0 then the rank of one such process will be returned. The zame
value need not be returned by all processes. If no process can provide language-
standard I/0}, then the value MPI PROC NULL will be returned.

Advice to users. MPldoes not require that all proceszes provide language-standard
I/Q}, nor deoes it specify how the standard input or cutput of a process & Imled to
a particular fik or device. In particular, there & no requirement, m an interactive
environment, that leyboard input be broadcast to all processes which support
language-st andard I/Ch. [End of advice to wrers.)

Clock Bynchronization The value returmed for MPIWTIME K GLOBAL i= 1 if
docks at all processes m MPLCOMMMORLD are synchromized, {0 othermize. A
collection of clocks 3= considered synchromized if explicit effort has been taken to
synchromize them. The expectation is that the varnation in time, 2= measured by
calls to MPIWTIME, will be less then ome half the round-trip time for an MPI
message of length zerc. W time 1z measured at a process just before a zend and
at ancther procese Just afer a matching receive, the second time should be always

FEoviromnenlal Ll[au.‘:.gcmcuL 2D

higher than the first cne.

The attribute MPILWTIME_IE_GLOEBAL need not be prezent when the clodks are
not synchronized (however, the attribute ley MPILWTIME_E _GLOBAL & salways
valid}). Thi attribute may be aszociated with communicators other then MFPL
oMM WORLD.

The attribute MPIMWTIME_IS GLOBAL has the same value on all procesze= in the
group of MPLCOMMWORLD.

MPLGET_PRQCESSOR_ HAME(name, resultlen)

ouT na rme i unigue spedbicr for Lhe currenl, phys-
ouT resultlen Leoglh o prinlable characlers} of Lhe

resull, melorned in nama

int MPI Get processor name(char #name, int sTesnltlen)

MPI_GET PROCESSOR NAME(NAME, RESULTLEN, IERROR)
CHARACTER* (%) NAME
INTEGER RESULTLEN, IERROR

This routine returns the name of the proceseor on which it was called at the
moment of the call. The name iz a character string for maxnmmum flexability. From
thiz value 1t must be peesible to identify a specific piece of hardware; possible
values include “processor 4 in rack 4 of mpp.cs.org” and “231" (where 231 is the
artual processcr number in the running homogeneous system}. The argument name
must represent storage that i at keast MPILMAY PROCESSOR_NAME characters long.
MPLGET_PRQCESSOR NAME may write up to thi=s many characters mto name.

The number of characters actually written iz retumed m the cutput argument,
resultlen.

Rationale. The definiticn of this function deoes not predude MPIl implemen-
tations that do process migration. In such a casze, successive calls 1o MPILGET-
-PRACESS0OR HAME by the same process may return different values. Mote that

nothing in MP| requirez or definez process migration; this defimtion of MPI.GET-
-PRQCESSOR NAME simply allows such an implementation. (End of rationafe.)

Advice to users. The user must provide at least MPIMAX_PROCESSOR_MAME
space to write the proceszor name — processcr names can be thi= long. The vzer

L L ﬂ}.lath:r T

should examine the cutput argument, resultlen, to determine the actual length of
the name. {End of aduice to uszers.)

The constant MPILESEND_OVERHEAD provides an upper bound on the fixed over-
head per message buffered by a call to MPI_BSEND.

7.2 Timers and Synchronization

MPFPI definez a timer. A tomer iz specified even though it 3= not “mescage-passing
because timing parallel programe ic important in “performance debuggmg™ and be-
cauze exdsting timers (both in POSIX 1003.1-1888 and 100340 14.1 and in Fortran
00} are either inconvenient or do not provide adequate access to high-resclution
timers.

MPIWTIME()

denkle MPI ¥time(void)
DOUBLE PRECISION MPI STIME()

MPIWTIME returns a floating-point munber of seconds, reprezenting elapsed
wall clock time since some time in the past.

The “time in the past” ic guaranteed not to change during the life of the process.
The uzer iz respomsible for converting large numbers of seconds to other units if
they are preferred.

This function is portable (it retums seconds, not “tids"}, it allows high-resclution,
and carries no unnecessary baggage., Ome would use it like this:

{
denble starttima, endtime;
starttime = MPI_Wtimef);
stoff to e timed
endtime = MPI_Wtime();
printf("That tock %I seconds’n",endtime-starttime);

The times returned are local to the node that called them. There 1= no require-
ment that different nodes return “the same time.” [But see alzo the discussion of
MPIMWTIME_IS_GLOBEAL in Section 7.1.1}.

FEoviromnenlal Ll[au.‘:.gcmcuL 201

MPIWTICK[)
donble MPI ¥tick{veid}
DOUELE PRECISION MPI WTICK()

MPIWTICK returns the resclution of MPIWTIME in seconds. That is, it returns,
az a double precision value, the number of seconds between successive clock ticks.
For example, if the clodk iz implemented by the hardware a= a counter that is
incremented every millisecond, the value returned by MPIWTICK should ke 10-2.

7.9 Initialization and Exit

One goal of MPI iz to achieve source code portability,. By this we mean that a
program wrtten using MPI and complying with the relevant language standards
i& portable as written, and must not require any source code changes when moved
from cne system to another. This explicitly does not oy anything about how an
MPI program i= started or launched from the command line, ner what the user
must do to zet up the environment m which an MP| program will un. However, an
implementation may require some setup to be performed before other MPI routines
may be called. To provide for thie, MPl includes an initizlization routine MPLINIT.

MPLINIT{)
int MPI Init{int %argec, char w*sargy)

MPI_TNIT{IERROR}
INTEGER IERROR

This routine must be called before any other MPI routine. It must be called at
most once; subsequent calls are erronecus {see MPLINITIALIZED).

All MPl programs must contain a call to MPIINIT; this routine must be called
before any cther MPIl routine {apart from MPIINITIALIZED) i= called. The versicn
for AWSI C accepts the arge and argy that are provided by the arguments to nain:

int mainfarge, argv)
int arge;
char *%argwv;
{
MPI_Init(karge, Eargy);

200 ﬂ}.lath:r T

/% parse argnments =/
/% main program LT

MPI_Finaliza(); /% see below =/

The Fortran version takes only IERRGR.

An MPl implementaiion i free to require that the arguments in the O hinding
must be the arguments to main.

Rationale. The command line arguments are provided te MP1nit to allow an MPI
implementation to use them in initialzing the MPl environment. They are passed
by reference to allow an MPlimplementation to protide them in environments where
the command-line arguments are not provided to main. (End of rationafe.}

MPLFINALIZE()
int MPIFinalize(wroid)

MPI_FINALIZE(IERROR)
INTEGER IERROR

This routines cleans up all MPI state. Once thi= routine 1= called, no MPI routine
{even MPLINIT} may be called. The user must ensure that all pending communi-
cations imolving a process complete before the process calls MPILLFINALIZE.

MPLINITIALIZED{ flag }
ouUT flag Flag iz true ifMPLINIT has been called
and false otherwise.
int MPI Initialized{int *flag)

MPI_INITIALIZED(FLAG, IERROR)
LOGICAL FLAG
INTEGER IERROR

This routine may be used to determine whether MPLINIT has been called. It is
the only routine that may be called before MPILINIT i= called.

FEoviromnenlal Ll[au.‘:.gcmcuL 203

MPILABQRT(cornm, errercode)

IN cornm comununicalor of laaky Lo aborl
IN errorcode crror code Lo olurn Lo inveking covimoon-
1ol

int MPI Abort(MPI Comm comm, int errorcode)

MPI_ABORT({COMM, ERRORCODE, IERRORD
INTEGER COMM, ERRORCODE, IERROR

This routine makes 2 “best attemnpt” to abort all tasks in the group of comm.
The function does not require that the involang envircnment take any action with
the error code. However, a Unix or POSIX envircnment should handle thi as a
return errorcode from the main program or an abort {errorcoda).

M Pl implementations are required to define the behavicr of MPIABORT at least
for 2 conn of MPILCOMMMWAORLD. MP| implement ai ions may ignore the comm ar-
gument and act as if the conm was MPICOMMAMWARLD.

Adtice to tsers. The behavicr of MPILABQRT [eemm, errercede], for comm other
then MPILCOMM_WAORLD, iz implement ation-dependent. Ome the other hand, a call
to MPILABORT{MPI COMM_WOQRLD, errcrcode) chould always canse all proceszes
in the group of MPLCOMMAWARLD to short. (End of advice {0 users.)

7.4 Error Handling

MPI provides the user with reliable message transmission. A message zent is always
received correctly, and the uzer does not need to check for transmission errors, time-
cuts, or other error conditions. In other words, MP| does not provide mechanisms
for dealmg with failures in the communicationsystem. If the MPl implementation is
built on an unrelizble underlying mechanism, then it is the job of the implementor
of the MP| subeystem to insulate the uzer from thiz unreliakbility, or to reflect
unrecoverable errors as exceptions.

Of course, errors can occur during MP calls for a variety of reasons. A program
crror can occur when an MPI routine is called wath an incorrect argument [non-
existing destination in asend cperation, buffer too smallin areceive operation, etc.}
Thi type of error would occur in any implementation. In addition, a2 resourec
orror may occur when a program exceeds the amount of available system resources
{numkber of pending messages, system buffers, etc.}. The occurrence of this type of

20nd ﬂ}.lath:r T

errcr depends on the amount of available rescurces in the system and the resource
allocation mechanism used; thi may differ from systemn to system. A high-quality
implementation will provide genercus limits on the important resources o a: to
alleviate the portakbility problem this represents.

An MPI implementation cannot or may choosze not to handle some errces that
cocur during MPI calk. These can include errors that generate exceptions or traps,
such as floating point errors or access violations; errors that are too expensive to
detect in normal execution mode; or “catastrophic” errcrs which may prevent MPI
from returning control to the caller in & consistent siate.

Ancther subtle 1zsue arizes because of the nature of asynchronous communica-
ticns. MPlcan enly handle errcrs that can be attached to a specific MPI call. MPI
callz (both bleclking and nonblecdang) may imtiate operations that continue asyn-
chrenously after the call returned. Thus, the call may complete successfully, yet
the operation may later cause an error. If there iz 2 subzequent call that relates to
the same operation (eg., wait or test call thati completes a nonblocking call, or
a receive that completes a communication initiated by a bloddng send} then the
errcr can be associated with thi= call. In some cazes, the error may occur after all
calls that relate to the operation have completed. [(Consider the casze of a Hlock-
ing ready mode send cperation, where the cutgoing message 1= buffered, and it is
subsequently found that no matching receive is posted.}) Such errors will not be
handled by MPI.

The et of errore in MPI calls that are handled by MPl is implementation-
dependent. Each such error generates an MPl exception. A good quality im-
Plementation will attempt to handle as many errors as peesible a= MPI exceptions.
Erroxs that are not handled by MPl will be handled by the error handlmg mecha-
nizms of the language run-time or the cperating system. Typically, errors that are
not handled by MPI will cause the paralle]l program to abort.

The occurrence of an MPI exception has two effecis:

An MPIl crror handler w1l be involed.

H the error handler did not cause the process to halt, then a suitable error code
will be returned by the MPI call.

Some MPl calls may cause more than one MPI exception (see Section 28). In
such a caze, the MPI error handler will be invcked cnce for each exception, and
multiple error codes will be returmed.

Afier an error i detected, the state of MPl iz undefined. That i, the state of the

comput ation after the error-handler executed does not neceszarily allow the user to

FEoviromnenlal Ll[au.‘:.gcmcuL 205

continue to uze MPl. The purpose of these errcr handlers is to allow a user to izsue
user-defined errcr messages and to take actions unrelated to MPI {such ac flushing
L/O buffers) before a program exits. An MP|implementation iz free to allowr MPI
to continue after an error but is not required to do so.

Advice to implementors. A good guality implementation will, to the greatest
possible extent, circumscribe the ampact of an error, =0 that normal processing can
continue after an errcr handler was imvoked. The implementation document ation
will provide information on the poesible effect of each class of errors. (End of advice

o implementors.}

7.4.1 FError Handlcrs

A user can associate an error handler with a2 communicator. The specified er-
ror handling routine will be used for any MPI exception that occurs during a call
to MPI for 2 communication with this communicator. MPI callz that are not re-
lated to any communicator are conszidered to be attached to the communicator
MPLCOMM WORLD. The attachment of error handlers to communicators is purely
local: different processes may attach different error handlers to communicators for
the zame communication domain.

A newly created communicator inherits the error handler that is associated with
the “parent” commumnicator. In particular, the user can specify a “global” error
handler for all communicators by associating this handler with the communicator
MPLCOMM WORLD immediately after intialization.

Several predefined error handlers are available in MPI:

MPILERRORS_ARE _FATAL The handler, when called, canses the program to abort on
all executing processes. The has the same effect as if MPILABQRT was called by the
process that mvoked the handler (with communicator argument MPLCOMM MWAORLD).

MFPILERRORS_RETURN The handler has no effect (cther than returning the error
code to the user).

Implementations may provide additional predefined errcr handlers and program-
mers can code their own error handlers.

The error handler MPILERRORS_ARE_FATAL % ascociated by default with MFL
LOMMMWORLD afier initialization. Thus, if the user choozes not to conirol error
handling, every error that MPIl handles 1= treated as fatal. Since (almost) all MPI
callz return an error code, auser may chocse to handle error= in hi or her main code,
by testing the return code of MPI calk and executing a suitablk recovery code when
the call was not succeseful. In this casze, the error handler MPILERRORS_RETURN

Ll ﬂ}.lath:r T

will be uzed. Usually it iz more convenient and more efficient not to test for errors
after each MPI call, and have such an error handled by a2 non-trivial MPIl errcr
handler.

An MPI error handler &£ an opague cbject, which 1= acressed by 2 handle. MPI
calls are provided to create new error handlers, to associate error handlers with
communicators, and to test which error handker is assodated with a communicator.

MPI_ERRHANDLER_CREATE(functien, errhandler)

IN function wyer defined error haodling procedoun
oUT errhandler M crror handler

int MPI Errhandler create (MPI Handler fTonction #foncticon,
MPI Errhandler sarrhandler)

MPI_ERRHANDLER CREATE(FUNCTION, HANDLER, IERROR)
EXTERNAL FUNCTION
INTEGER ERRHANDLER, IERRCR

Regxier the user routine function for use 3= an MPI exception handler. Beturns
in errhandler a handle to the regiztered exception handler.

In the { language, the user routine should be a O function of type MPLHandler-
Sunction, which i= defined as:

typede! void (MPI_Handler_fonction) (MPI_Comm *, int #, ...};

The first argument i= the communicator in use. The second 35 the error code to
be returned by the MPl routme that raized the error. If the routine would have
returned multiple error codes (see Section 2.5}, it 35 the error code returned in the
status for the request that caused the errcr handler to be invoked. The remaining ar-
guments are “stdargs” arguments whose number and meaning iz implementat jon-
dependent. An implementation should clearly dooument these arguments. Ad-
dresces are used =0 that the handler may be written in Fortran.

Rationale. The variable argument list iz provided becauvse it provides an ANSI-
standard hook for providing additional mformation to the error handler; without
this hook, ANSI C prohibits additional arguments. (End of rationale.)

FEoviromnenlal Ll[au.‘:.gcmcuL 207

MPLLERRHANDLER SET{cemm, errhandler)

I ©ornrn comununicalor Lo zcl Lhe error bandler
lor

I errhandler new M crmor bandler for commom ca-
Lor

int MPI Errhandler set(MPI Comm comm, MPI Errhandler errhandler)

MPI_ERRHANDLER SET(COMM, ERRHANDLER, IERROR}
INTEGER COMM, ERRHANDLER, IERROR

Associates the new error handkr errorhandler with communicator comm at the
calling procese. MNote that an error handler 1= always associated with the commu-
nicator.

MPILLERRHANDLER_GET{cernm, errhandler}

IN oo comununicaler Lo gel Lhe crror handler
from
ouT errhandler MI*I crror handler currenlly assoclalod

wilh comunonicalor

int MPI Errhandler get{MPI Comn comm, MPI Errhandler serrhandler)

MPI_ERRHANDLER GET(COMM, ERRHANDLER, IERROR}
INTEGER COMM, ERRHANDLER, IERROR

Returns in errhandler {a handle to} the errcr handler that is currently associated
with commumnicator comm.

Example: A library function may register at iz entry point the current error
handler for a communicator, set its own private error handler for this communicator,
and resicre before exating the previous error handler.

MPILERRHANDLER_FREE({errhandler)
IN errhandler M crror handler

int MPI Errhandler frese{MPI Errhandler serrhandler)

MPI_ERRHANDLER FREE({ERRHANDLER, IERRCOR)

208 ﬂ}.lath:r T

INTEGER ERRHANDLER, IERROR

Marks the error handler associated with errhandler for deallocation and sets er-
rhandler to MPILERRHANDLER_NULL. The error handler will ke deallocated after all

communicators associated with it have been deallocated.
7.4.2 Frror Codes

Most MPI functions return an error code indicating successful execution [MPILSUC-
CESS), or providing information on the type of MPI exception that occurred. In
certain circumstances, when the MPl function may complete zeveral distimct op-
erations, and therefore may generate several independent errors, the MPI function
may return multiple error codes. This may occur with some of the calls described
in Section 2.9 that complete multiple nonblocking communications. As described
in that csection, the call may return the code MPI_ERR_IN STATUS, in which caze a
detailed error code i= returned with the statvs of each communication.

The error codes returned by MPIl are left entirely to the implementation {with
the exception of MPISUCCESS, MPLERR IN_STATUS and MPI_ERR_PENDING). This
15 done to alkbw an implementation to provide as much information a= possible in

the error code. Error codes can be translated mto meamingful messages uzsing the
function below.

MPLERRQR STRING[errorcode, string, resultlen)

IN errorcode Ermor code melurned by an M rouline
aLUT gtring Texl Lhal correupondy Lo Lhe errorcode
ouUT resultlen Leoglh fio prinlable characlers} of Lhe

reaull relurned o stHing

int MPI Error stringfint errorcodse, char sstring, int sTesnltlen}

MPI_ERROR _STRING(ERRORCODE, STRING, RESULTLEN, IERROR)
INTEGER ERRORCODE, RESULTLEN, IERROR
CHARACTER® {#3 STRING

Heturns the error string associated with an error code or class. The argument
string must represent storage that iz at least MPIMAY ERRORSTRING characters
long,

The number of characters actually written ic returmed i the output argument,
resultlen.

FEoviromnenlal Ll[au.‘:.gcmcuL 200

Rationale. The form of this function was chesen to make the Fortran and C
bindings cimilar. A wersion that returns a pointer to 2 string has two difficulties.
Firct, the return string must be statically allocated and different for each error mes—
sage [allowing the pointers returned by successive call= to MPI_LERRQR.STRING to
point to the correct message}. Second, in Fortran, a function declared as returning
CHARACTER*([*} can not be referenced in, for exampk, a PRINT statement. {End
of raticnafe.)

The usze of implementation-dependent errcr codes allows implementers to provide

more information, but prevents one from wrniting portable error-handling code. To
sohve thiz problem, MPI provides a standard zet of specified error values, called

crror classcs, and a function that maps each error code mic a suitable error class.

Valid error claszes are

MPIESUCCESS
MFILERR_BUFFER
MPLERR_COUNT
MFLERR_TYFE
MFPILERR_TAG
MPLERR_COMM
MPILERR_RANEK
MPIERR_REQUEST
MFLERR_ROOT
MFLERR_GROUF
MFLERR_OF
MFPLERRE_TOFALOGY
MFPLERE_DIMS
MPIERR_ARG
MFPLERR_UMKNOWN
MFPILERR_TRUNCATE
MFILERR_OTHER
MFPLERRE_INTERN
MPLERE_IN STATLUS
MPLERR_FENDING
MFLERR_LASTCODE

No error

Invalid buffer pomter
Invalid count argument
Invalid datatype argument
Invalid tag argoment
Invalid commumnicaior
Invalid rank

Invalid reques=t

Invalid root

Invalid group

Invalid operation

Invalid topclogy

Invalid dimension argument
Invalid argument of scme other kand
Unlmown error

Meszage truncated on receive
Known error not m this list
Internal MPI error

Error code 15 in status
Pending reques=t

Last error code

Mos=t of these classes are =elf explanatory. The uze of MPIERR_IN STATUS and
MPILERF_FENDING iz explaned in Section 2.9, The list of standard classes may be
extended in the future.

300 ﬂ}.lath:r T

The function MPI_LERRQR.STRING can be used to compute the error strng az
sociated with an error class.
The error codes satisfy,

0= MPILSUCCESS < MPIERE_.. < MPI_ERR 1ASTCQODE.

MPI_ERRQR _CLASS(errorcode, erronclass)

IN errorcode Error code mlurned by an MIPPT rouline
ouUT errorclass Error clavy assodalod wilh erorcode

int MPI Errorclass(int erTorcode, int #errorclass)

MPI_ERROR _CLASS (ERRORCODE, ERRORCLASS, IERROR)
INTEGER ERRORCODE, ERRORCLASS, IERROR

The functicn MPILERROR CLASS maps each error code mio a standard error

code [error class). It maps each standard error code onto itzelf.

Raticnale. The difference between MPLERR_UNKMNOWN and MPLERROTHER is
that MPLERRQRSTRING can return useful information about MPILERR_OTHER.

MNote that MPISUCCESS = 0 & necessary to be consistent with O practice.

The value of MPLERR LASTCAODE can be used for errorcheclang, or for zelecting
errcr codes for libraries that do not conflict with MPI error codes.

{End of redionale.}

Advuice to implementors. An MPIl implementation may use error clasces as the
errcr codes returned by some or all MPI functicns. Another choice is to use error
classes 2= *major error codes” , extended with additional bits that provide *minor”
errcr codes. Then, the MPI_ERRQR_CLASS function merely needs to truncaie the

full error code.

Implementations may go beyond this document in supporting MPI calls that are
defined here to be erronecus. For examplk, MP| specifies strict type matching rules
between matching send and receive operations: it 1= erronecus to send a foating
point variable and receive an integer. Implementations may go beyond thece type
matching rules, and provide automatic type conversion in such situations. It will
be helpful to generate wamings for such nonconforming behavior. [End of advice

o implementors.}

FEoviromnenlal Ll[au.‘:.gcmcuL o

7.5 Interaction with Execnting Environment

There are o number of areas where an MPl immplementation may interact with the
cperating environment and system. Whik MP| does not mandate that any services
{such a= I/ or signal handlng) be provided, it does strongly suggest the behavior
to be provided if those services are available. Thi is an important point in achieving
portability acrose platforms that provide the same zet of services.

7.5.1 Independence of Basic Runtime Routines

MP| programs require that library routines that are part of the basic language
environiment {such az date and write n Fortran and printf and malloc in ANSI
) and are executed after MPI_TNIT and before MPI FINALIZE operate independently
and that their completion & independent of the action of other proceszes in an MPI

Program.
Note that the in no way prevents the creation of library routines that provide

parallel services whosze operation is collective. However, the followmg program is
expected to complete in an ANSI O enviromment regardless of the size of
MPI_COMM WORLD (assuming that I/{} & available at the executing nodes).

int Tank;

MPI_Initf{ argc, argyr J;

MPI_Comm_rank({ MPI_COMM_WORLD, Erank):

if {(rank =— 0} printf{ "Starting program‘n” J;

MPI_Finalize(};

The corresponding Fortran 77 program i= also expected to complete,

An example of what ic not required is any particular ordering of the action of these
routines when called by several tacks. For example, M Pl makes neither requirements

nor recommend ations for the output from the following program (again assuming
that I/(iz available ai the executing nodes).

MPI_Comm_rank{ MPI_COMM_WORLD, Erank);
printf{ "Ootput from task rank ¥d'n", rank J;

In addition, calle that fail because of resource exhaustion or other error are
not considered a viclation of the requirements here (however, they are required to
complete, just not to complete successfully).

7.5.2 Intcraction with Signals in POSIX

MPI| does not specify eiiher the mieraction of processes with signals, in a UUNIX

302 ﬂ}.lath:r T

environment, or with other events that do not relate to MPl commumication. That
1%, sigmals are not significant from the view point of MPI, and implementors should
attempt to implement MPIl =0 that signale are trancparent: an MPI call suspended
by 2 signal should reswme and complete afier the signal is handled. (Generally, the
state of a computation that i= vizible or significant from the view-pomnt of MPI
should only be affected by MPI calls.

The intent of MPl to be thread and =ignal safe has a number of =ubile effects.
For example, on Unix systems, a caichable signal such as SIGATBM (an alarm
signal} must not cavse an MPI routine to behave differently than it would have in
the abzence of the signal. Of course, if the signal handler izeues MPI calk or changes
the environment in which the MPIl routine iz operating (for example, consuming =ll
available memory space}, the MPl routine should behave as appropnate for that
situation (in particular, in the case, the behavior should be the same as for a
multithreaded MP1 implementation}.

A second effect i= that a signal handler that performs M Pl calle must not mterfere
with the operation of MPl. For example, an MPI receive of any type that occurs
withm a signal handler must not cansze erronecus behavior by the MPl implemen-
tation. Note that an implementation i= permmitted to prolubit the use of MPI calls
from within a s3gnal handler, and iz not required to detect such uze.

It iz highly desirable that MPIl not use SIGALRBM, SIGFPE, or SIGIO. An im-
Plementation ic reguired to dearly document all of the signals that the MPIimple-
mentation uses; a pood place for this information is 2 Unix ‘oan’ page on MPLL

8 The MPI Profiling Interface

E.1 Requirements

To satkfy the requirements of the MPI profiling interface, an implementation of the
MPI funciions must

1. provide a mechanism through which all of the MPI defined functions may be
accessed with a name shift. Thus all of the MPI functions (which normally start
with the prefizz “MPI_*} should alzo be accessible with the prefix “PHPI".

2. enzure that those MPI functicns which are not replaced may =till be lirked inio
an executable image without cavsing name clashes.

3. document the implement ation of different langusge bindings of the M Pl interface
if they are layered on top of each other, so that the profiler developer kmows whether
the profile interface must be implemented for each binding, or whether it needs to
be implemented only for the bowest kevel routines,

4. enzure that where the implementation of different language bindings 3= done
through a layered approach (e.g. the Fortran binding ic a et of “arapper” funciions
which call the C implementaticn}, these wrapper functions are separable from the
rest of the library. This iz necessary to allow 2 separate profiling library to be
correctly mnplemented, smcee (at least with Unix linker semantics} the profiling
library must contain these wrapper functions if it i= to perform as expected. This
requirement allows the perscn who builds the profiling hibrary to extract these
functions from the original MPI library and add them inio the profiling library
without bringing along any other unnecessary code.

5. provide a no-op routine MPILPCONTROL in the MPI library.

B2 Disenssion

The chjective of the MPl profilmg mterface i= to ensure that it is relatively easy
for authors of profiling (and other somilar} tock to mierface their codes to MPI
implementations on different machines.

Since MPI iz 2 machine independent standard with many different implementa-
ticns, it & unreasonable to expect that the authors of profiling tocls for MP1 will
have arcess to the source code which implements MPl cn any particular machine.
It 1= therefore necessary to provide a mechankm by which the implementors of such
tock can collect whatever performance information they wish without access to the
underlymg impkmentation.

303

304 ﬂ}.lath:r)

The MPl Forum believed that having such an interface 1z important if MPl 3= to
be attractive to end users, since the availability of many different tools will be a
significant factor in atiracting users to the MPI standard.

The profiling interfare iz Just that, an interface. It =ays nothing about the way
in which it & nsed. Therefcre, there i= no attempt to lay dowm what information is
collected through the interface, or how the collected information is saved, filtered,
cr displayed.

While the initial impetus for the development of the interface aroze from the
desire to permit the implementation of profiling tocls, 3t & clear that an interface like
that sperified may al=o prove uszeful for other purpeses, such 2= “internetworking”
multiple MPl implementations. Since all that iz defined & an mierface, there iz no
impediment to it being vsed wherever it is useful.

Az the 1zsues being addressed here are mitmmately tied up with the way in which
executable images are built, which may differ greaily on different machines, the
examples given below should be treated colely as one way of implementing the MPI
profiling interface. The actual requirements made of an implement ation are those
detailed m Section 8.1, the whole of the rest of thiz chapter i= only present as
justification and dEcussion of the logic fer thoze requirements.

The examples below show one way in which an implementation could be con-
structed to meet the requirements on a Unix system (there are doubilese others

which would be equally valid).

£ .3 Logic of the Design

Provided that an MPlimplementation meets the requirements hsted in Section 8.1,
it iz pozsible for the implementor of the profiling sy=tem to intercept all of the MPI
calls: which are made by the uzer program. Whatever information & required can
then be collkected before calling the underlying MPI implementation (through its
name shifted entry points} to achieve the desired effects.

8.31 Miscollancons Control of Profiling

There is o dear requirement for the uzer code to be able to control the profiler
dynamically at run time. This iz normally used for (at least} the purposes of

¢ Enabling and dizabling profiling depending on the siate of the calculation.
¢ Flushing trace buffers at non-critical points in the caloulation
¢ Adding uzer events to a trace file,

The MP| Profiling Inlerlace 304

Theze requirements are met by use of the MPILPCONTROL.

MPLPCONTROL{level, ...}
IN level I’ mofiling level

int MPI Fecontrelfconst int level, ...D)

MPI_PCONTROL(level)
INTEGER LEVEL

MPI Libraries themselves make no use of this routine, and simply return imme-
diately to the user code. However the prezence of calls to this routine allows a
profiling package to be explicitly called by the user.

Since MPl has no control of the implkment ation of the profiling code, The MPI
Forum was unable to specify precizely the semantics which will be provided by calls
to MPI_LPCONTROL. This vaguenesz extends to the number of arguments to the
function, and their datatypes.

However to provide some level of portability of user codes to different profiling
libraries, the MPI Forum requested the following meanings for certain values of

level.

¢ lavel = 0: Profiling iz dizabled.

¢ lavel = 1: Profiling ic enabled at a normal default level of detail.

lavel = 2: Profile buffers are fluched. {Thizs may be ano-op in some profilers).
+ Al other values of lewal have profile library defined effertz and additicnal ar-

guments.

The MPI Forum also requested that the default state after MPIINIT has been
called iz for profiling to be enabled at the normal defanl level. (ie. as if MPLP-
CONTRQL had just been called with the argument 1}. This allows users to link
with a profiling hibrary and obtain profile cutput without having to modify their
source code at all.

The provizsion of MPILPCONTROL as a no-op in the standard MPI bibrary allows
uzers to modify their source code to obtain more detailed profiing mformation, but
still be able to link exactly the same code against the standard MP| library.

306 ﬂ}.lath:r)

B4 Examples

8.41 Profiler Implementation

Suppoze that the profiler wizhes to accumulate the total amount of data zent by
the MPI Send(} function, along with the ictal elapsed time spent in the function.
Thi could trivially be achieved thus

gtatic int teotalBytes;

static donble totalTima;

int MPI_Send({void * btmffer, const int connt, MPI_Datatype datatyps,
int dest, int tag, MPI_comm comm)

{
donkle tstart = MPI_Wtimef); /% Pags on all the argoments =/
int exrtent;
int resmlt = FMPI_Send(buffer,count,datatyps,dest,tag, comn) ;
MPI_Type_size{datatype,kextent); /+ Conpute size =/
totalBytes += connt * artent;
totalTime == MPI_¥timef) = tetart;
Tetorn resnlt;
}

8.4.2 MPI Library Implcmentation

Om & Unic systerm, in which the MPl library ic implemented in , then there are
varicus peesible options, of which two of the mest obvious are presented here. Which
1z better depends on whether the linker and compiler support weak symbols.

Bystcms With Weak symbols If the compikr and linker support weak external
symbdls {e.g. Solaris 2.x, other system V.4 machines}, then only a single library is
required through the vze of #tpragna weak thus

trpragna weak MFT_Zend = FMFI_Zend
int PMPI_Send(/s appropriate args /)
{
/% Usefnl content »/
}

—

The MP| Profiling Inlerlace 307
Application prof library mipi library
MP_Send p MPI_Send

PMP|_Send|——m PMP|_Send

MPl_Beast p PMPI_Ecast

Figure 8.1
FRecdution of M Pl allz an systems with weak linkes,

The effect of thi= #pragna i= to define the external symbcl MPI_Send a= a weak
definition. This means that the linker will not complam ff there & another def-
initicn of the symbol (for instance in the profiling library), however if no other
definition exdzts, then the linker will uze the weak definition. This type of situation
1 illustrated in Fig. 8.1, in which a profiling library has been written that profiles
calls to ¥PI Send(} but not calls to MPI_Bcast{). On systems with weak links the
link step for an application would be something like

% cc ... =lprof -lopi

Heferences to MPI Send() are resolved in the profiling library, where the routine
then call: PMPI Send(} which is resclved in the MPI library. In thk case the weak
link to PMPI Send(} & igncred. However, since HPI Becast () 35 not included in the

profiling library, references to it are resclved via a weak link to PMPI Beast() in
the MPI library.

Bystems withont Weak Symbols In the abzence of weak symbols then one
pozsibke sclution would be to use the {} macro pre-processcr thus

#ifdef FROFILELIR
i ifdef __STDC__
i define FUNCTION(name) Piinams
alsa

i def ine FUNCTIONname) F/#*/name
i endif

$alea

define FUNCTION(name) name

tendif

—

—

308 Chapler 8
Application prof library pmipl library
MPl_Send e MPI_Send

PMP1_Send|———m PMPI_Send

mipi library

MP|_Bcast | MP|_Bcast

Figure 8.2
FRecdution of M Pl calls an systens without weak links,

Each of the user vizible functions in the library would then be declared thus

int FUNCTION(MPI_Send)(/* appropriate atgs */)
{

/% Usefnl content »/
}

The zame source file can then be compiled to produce the MPl and the PMPI
vercions of the library, depending on the state of the FROFILELTE macro symbol.

It i= required that the standard MPI library be built in such a way that the
inchusion of MPI functions can be achieved one at a time. The E & somewhat
unpleasant requirement, since it may mean thai each external function has to be
compiled from a separate file. However this iz necessary so that the author of the
profiling library need only defme those MPI functions that are to be intercepted,
references to any others being fulfilled by the normal MPI Library. Therefore the
link step can look something bke thi

% cc ... =lprof =lpupi =lmpi

Here 1ibprof. a contains the profiler functions which intercept some of the MPI
functions. 1libpopi.a contains the “name shifted” MPI functions, and 1ibopi.a
contains the normal defimtions of the MPI functioms. Thus, on systems without
wesk links the example shown in Fig. 8.1 would be resclved as shewn in Fig. 8.2

The MP| Profiling Inlerlace 300

8.4.3 Complications

Multiple Counting Since partz of the MPl hbrary may themselves be imple-
mented using more basic MPI functions {e.g. a portable implementation of the
collective operations implemented using point to point commumnications}, there is
potential for profiling functions to be called from within an MPIHfunction which was
called from a profiling function. Thiz could kad to “double counting™ of the time
spent in the inner routine. Since thiz effect could actuslly be useful under some
arcumstances (e.g. it might allow one to answer the question “How much time is
gpent in the point to point routines when they're called from collective functions
Y}, the MPI Forum decided not to enforce any restrictions on the author of the MPI
library which would cvercome this. Therefore, the anthor of the profiling library
should be aware of this problem, and guard agamst it. In a single threaded world
thiz iz eazily achieved through uze of a static variable m the profiling code which
rememnbers if you are already inside a profiling routine. It becomes more complex
in a multi-threaded envircnment {as does the meaning of the times recorded!)

Linker Odditice The Unix linker traditicnally operates in one pass. The effect
of thi= & that functions from libranes are only incduded m the image if they are
needed at the time the hibrary iz scanned. When combined with wezk symbols,
cr multiple definitions of the same functicn, this can canse odd {and unexpected)
effects.

Conzider, for inst ance, an implkment ation of MPl in which the Fortran bindmg is
arhieved by using wrapper functicns cn top of the mplementation. The auther
of the profile library then assumes that 1t 3= reazonable to provide profile functions
cnly for the C binding, since Fortran will eventually call these, and the ccet of the
wrappers i assumed to be small. However, if the wrapper functions are not in the
profiling library, then none of the profiled entry points will be undefined when the
profiling library i= called. Therefore none of the profiling code will be induded in
the image. When the standard MPI library iz scanned, the Foriran wrappers will
be rezolved, and will also pull in the basze versions of the MPI functions. The overall
effect 1= that the code will link successfully, but will not be profiled.

To overcome this we must ensure that the Foriran wrapper functions are included
in the profiling version of the library. We ensure thai thi iz possible by requiring
that theze be zeparable from the rest of the base MPI library. Thiz allows them to
be extracted cut of the base library and placed mtc the profiling library using the
Unix ar command.

—

310 ﬂ}.lath:r)

B 5 Mnultiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions,
since it provides only 2 zingle alternative name for each MPI function. The MPI
Forum gave consideration to an implementation which would allow multiple levels
of call interception; however, 1t was unable to construct an implementation of this

which did not have the following disadvant ages

¢ assuming a particular implementation language.
¢ impceing & run time cost even when no profiling was taking place.

Since one of the objectives of MPliz to permit eficent, low latency implementaticns,
and it iz not the business of a standard to require a particular implementaticn
language, the MPI Forum decided to accept the scheme outlined above.

Note, however, that it & possible to use the scheme sbove to implement a multi-
level systern, since the funciion called by the vzer may call many different profiling
functions before calling the underlying MPI functien.

Unfort unately such an implementation may require more cooperation between
the different profiling libraries than £ required for the single level implementaticn
detailed above.

—

9 Conclusions

Thiz bock has attempted to give a complete description of the MPI specification,
and includes code examples to illustrate aspects of the use of MPI. After reading
the preceding chapters programmers should feel comfortable using MPI to develop
message-passing applications. Thiz final chapter addressez some important topics
that either do not easily fit into the other chapters, or which are best deali with after
a good overall understanding of MPl has been gained. These topics are concerned
more with the interpretation of the MPI specification, and the rationale behind some
azpects of ite design, rather than with semantics and syniax. Future exitensions to
MPI and the current status of MPl implementations will aleo be dEcusced.

9.1 Design Issnes

9.1.1 Why is MPI so big?

One aspect of concern, particularly to novices, i the large number of routines
comprising the MPI specification. In all there are 128 MPI routines, and further
extensions (see Section 9.5) will probably increase their number. There are two
fundamental reasons for the size of MPI. The firct reason i= that MPI was designed
to be rich in functionality. Thiz & reflected in MPI’s support for derived dataiypes,
modular communication via the communicator abstraction, caching, application
topolegies, and the fully-feaiured zet of collective communication routines. The
second reaszom for the size of MPI reflects the diversity and complexdty of today's
high performance computers. Thiz & particularly true with respect to the point-
to-point communication routines where the different communication modes (zee
Sections 2.1 and 2.13) arize mainly as a means of providing a zet of the most widely-
uzed communication protocols. For example, the synchronous communication mode
corresponds dosely to a protocol that minimizes the copying and buffermg of data
through a rendezwous mechanizm. A protoco that attempts to initiate delivery
of messages as soon as possible would provide buffering for messages, and this
corresponds dozely to the buffered communication mode {or the standard mode if
this is implemented with sufficient buffering). Ome could decrease the number of
functions by mncreasing the number of parameters in each call. But such approach
would increase the call overhead and would make the use of the most prevalent calls
more complex. The availability of a large number of call= to deal with more escteric
features of MPI allows one to provide a simpler interface to the more frequently used
functions.

311

312 ﬂ}.lath:r LE]

9.1.2 Shonld we be concerned abont the sizc of MPI?

There are two potential reasoms why we might be concerned about the size of
MPI. The firzt iz that potential users might equate size with complexty and decide
that MPI iz too complicated to bother learning. The second is that venders might
decide that MPI & too difficult 1o implement. The dezsign of MP| addrezze= the first
of theze concerns by adopting a layered approach. For example, novices can avoid
having to worry about groups and communicators by performing all communication
in the pre-defined communicator ¥PI_COMM WORLD. In fact, mest exdsting message-
passing applications can be ported to MP| simply by converting the communication
routines on a onefor-cne basi= {although the resulting MPI application may not
ke optimally efficient}. To allay the concerns of potential implementors the MPI
Forum at one stage consiered defining a core subeet of MP| knowm a= the MPI
subzet that would be substantially smaller than MP| and include just the point-
to-point communication routines and a few of the more commonly-uvzed collective
communication routines. However, early work by Luck, Gropp, Slgelhun, Doss,
Franke and others cn early implementations of MPl showed that it could be fully
implemented without a prohibitively large effert [12, 16]. Thus, the rationale for
the MPI subzet was lost, and this idea was dropped.

9.1.3 Why docs MPl not guarantec buffering?

MPI does not guarantee to buffer arbitrary meseages becanse memory & a finite
rescurce on all computers. Thus, all computers will fail under sufficently adverse
communication loads, Thiferent computers at different times are capable of provid-
ing differing amounts of buffering, =0 if a program relies on buffering it may fail
under certain conditions, but work correctly under cther conditions. This 1= clearly
undezirable.

(liven that no message passing system can guarantee that messages will be
buffered as required under all circumstances, it might be asked why MPI does
not guarantee a minimum amount of memory available for buffermg. Ome major
problem is that it iz not obvious how to speafy the amount of buffer space that
15 available, nor & it easy to estimaie how much buffer space iz consumed by a
particular program.

Different buffering policies make sense m different environments. Mescages can
be buffered at the sending node cor at the recerving node, or both, In the former

Ccasge,

buffers can be dedicated to one destination in one communication domain,

Comc]usion 313

cr dedicated to one destination for all communication domains,
cr shared by all cutgomg communications,

cr shared by all processe= running at a processcr node,

cr part of the buffer pocl may be dedicated, and part shared.

Similar choices occur if messages are buffered at the destination. Communication
buffers may be fixed m =ize, or they may be allocated dynamically cut of the heap,
in competition with the application. The buffer allocation policy may depend on
the sie of the messages (preferably buffering short messages), and may depend on
communication hitory (preferably buffering on busy channek}.

The choice of the night pelicy 1= strongly dependent on the hardware and software
environiment. For instance, in a dedicated environment, a processor with a process
blocked cn a zend i= idle and =0 computing resources are not wasted if this processor
copies the outgoing mescage to a buffer. In a time shared environment, the com-
puiing resources may be used by another process. In a sysiemn where buffer space
can be in paged memory, such cpace can be allocated from heap. I the buffer space
cannot be paged, or has to be in kernel space, then a separate buffer i= needed.
Flow control may require that some ameount of buffer space be dedicated to each
pair of communicat ing processes,

The optimal straiegy strongly depends on various performance parameters of the
syetemn: the bandwidth, the communication start-up time, scheduling and context
switching overheads, the amount of potential overlap between communication and
comput ation, etc. The choice of a buffering and scheduling policy may not be
entirely under the control of the MPl implementor, as it i= partially determined
Ly the properties of the underlying communication laver. Alsc, experience m this
arena ¥ quite limited, and underlying technology can be expected to change rapidly:
fact, user-space interprocessor communication mechankms are an active research
area [25, 2]

Attempts by the MPl Forum to design mechanisms for querymg or zetting the
amount of buffer space availabk to standard communication led to the condusien
that such mechanizms will either restrict allowed mplementations unacceptably,
cr provide bounds that will be extremely pessimistic on mest implementations in
most cages. Another problem iz that parameters such as buffer sizes work agaimst
poriability. Rather then restricting the implementation sirategies for standard
communication, the choice was taken to provide additional communication modes
for thosze users that do not want to trust the implementation to make the nght
choice for them.

314 ﬂ}.lath:r LE]

9.2 Paortable Programming with MPI

The MPI specfication was designed to make it possible to write poriable mescage
passing programs while avoiding unacceptable performance degradation. Within
the context of MPl, “portable” i= symonymous with %afe.” Unsafe programs may
exhibit a different behavicr on different systems becausze they are non-determmistic:
Several outcomes are consistent with the MPI specification, and the actual cutcome
to occur depends on the precize timing of events. Unsafe programs may require
resources that are not always guaranieed by MPI, in order to complkete successfully.
On systems where such rescurces are unavailable, the program will encounter a
rescurce error. Such an error will manifest itzelf 2= an artual program error, or will
rezult in deadleck.

There are three main issues relating to the portability of MPl programs (and,

indeed, message passing programs in general].

. The program should not depend on the buffering of meszages by MPIl or lower levels
of the communicat ion system. A valid MPlimplementation may, or may not, buffer
messages of a given size (in standard mode).

. The program should not depend upon whether collective communication routines,
such as MPI Becast(), act ac barrier synchronizations. In a valid MPl implemen-
tation collective commumnication routines may, or may not, have the side effect of
performing a barrier synchronization.

. The program chould ensure that messages are matiched by the mtended receive
call. Ambiguities in the specificaiion of communication can lead to incorrect or
non-deterministic programs since race conditions may arke. MPl provides message
tags and communicators to help avoid these types of problem.

If proper attention is not paid to these factors 2 message passing code may fail
intermittently on a given computer, or may werk correctly on one machine but not
cn another. {(learly such a program i= not portable. We shall now consider each of
the above factors in more detail.

9.21 Dcpeodency on Bufforing

A message passing program is dependent on the buffering of messages if ite commu-
nication graph has a cycle. The communication graph is a directed graph in which
the nodes reprezent MPl communication calls and the edges represent dependencies
between thesze calls: a directed edge uv indicates that operation v might not be
able to compleie before operation u iz started. Calls may be dependent because

Comc]usion 315

they have to be executed in succession by the same process, or becanse they are
matching send and receive calls.

Example 9.1 Code for periodic shift in which the processes are arranged with a
ring topology (ie. a one-dimensional, periodic topolegy} where communicates data
to its clockwie neighbor. A degenerate instance of thi= 3= when a process zends a
meszage to itzelf. The following code uses a blocking send in stand ard mode to send

a meszage to ite clockwize neighbor, and 2 bloddng receive to receive a mescage
from ite anti-clockwise neighbor.

MPI_Comm_size(comm, Esiza);
MPI_Comm_rank({comm, Erank);
clock = (rank+1%sizs;
anticleck = (rank+size-13¥size;

MPI_Send (bnfl, comnt, MPI_INT, clock, tag, comm);
MPI_Recy [bnf2, comnt, MPI_INT, anticlock, tag, comm, Estatmns);

The execution of the code results in the dependency graph illustrated m Fig-
ure 9.1, for the caze of a three process group.

Figure 9.1
Cycle in communication graph for ayclic shift.

The arrow from each zend to the following receive executed by the same process
reflectz the program dependency within each process: the receive call camnct be

L

316 ﬂ}.lath:r LE]

executed until the previous send call has completed. The double arrow between
each cend and the matching receive reflects their muival dependency: Obviously,
the receive cannot complete unless the matching send was invoked. Conversely,
since a standard mode send is used, it may be the case that the send Hocks until
a matching receive occurs.

The dependency graph has a cycde. This code will only work if the system
provides suffiaent buffering, in which case the send operation will complete locally,
the call to ¥PI Send(} will return, and the matching call io ¥PI Racv() will be
performed. In the absence of sufficient buffering MPl does not specify an cutcome,
but for most implement ations deadlock will cecur, ie., the call to MPI Sand () will
never return: each process will wait for the next procese on the ring to execute a
matching receive. Thus, the behavior of this code will differ frem system to systemn,
cr on the same system, when message size {count) iz changed.

There are 2 number of ways in which a shift operation can be performed portably
ucing MPI. Theze are

alternate send and receive calls {only works if more than one process},
uze a blockng send in buffered mode,
uze a nonblodkhng send and/or receive,

uze a call tc MPI Sendracv(],

If at least one process in a shift coperation calk the receive routine before the
send routine, and at least one process calls the send routine before the receive
routine, then at lesst ome communication can proceed, and, eventually, the chift
will complete succezsfully. One of the most effident ways of doing this iz to alternate
the zend and receive calls so that all processes with even rank zend first and then
receive, and all processes with odd rank receive first and then send. Thus, the
following code is portable provided there £ more than one process, i.e., clock and
anticlock are different:

if (rank¥2) o
MPI_Recvr (bnf2, comnt, MPI_INT, anticlock, tag, comm, Estatns};
MPI_Send (tmfl, comunt, MPI_INT, clock, tag, comm) ;
1

alse o
MFI_Send (bufl, coont, MFI_INT, clock, tag, comm];
MPI_Recvr (bnf2, comnt, MPI_INT, anticlock, tag, comm, Estatns};
b

Comc]usion 31T

The resulting communication graph is illustrated in Figure 9.2. This graph is
aryclic.

Figure 9.2
Cycle in communication graph iz broken by reard ering send and receive.

If there £ only one process then cearly bloddng send and receive routines cammot
be uszed since the send must be called before the receive, and o cannot complete
in the absence of buffering.

We now consider methods fer performing shift operations that work even if there
15 only one process involved. A blocking zend in buffered mode can be used to
perform a shift operation. In this case the application program passes a buffer

to the MPl communication systermn, and MPI can use thic to buffer messages. If

the buffer provided i large enough, then the shift will complete successfully. The
following code shows how to use buffered mode to create a portable shift operation.

MPI_Fack_szize [comnt, MPI_INT, comm, Ebnffeiza)

buffsize += MPI_BSEND_CVERHEAD

nserbnf = mallec (bonffsize)

MPI_Eunffer_attach (nsertnf, btonffsize);

MPI_Esend (bufl, count, MPI_INT, clock, tag, comm);

MFI_Recvr (bofZ, count, MPI_INT, anticleck, tag, comm, Estatus);

MPI guarantees that the buffer supplied by a call to ¥PI Boffer attach(} willbe
uzed if 1t & needed to buffer the meszage. {In an implementation of MPI that pro-

318 ﬂ}.lath:r LE]

vides sufficient buffering, the user-supplied buffer may be ignored.} Each buffered
send operations can complete locally, o that 2 deadlock will not occur. The acyclic
communication graph for thic modified code i= chown in Figure §.3. Each receive
depends on the matching send, but the zend does not depend anymere on the

matching receive.

Figure 9.3
Chycle in communication graph s broken by ueing buffered sends.

Ancther approach is to use nonbloddng communication. One can either use a
nonblocking zend, a nonblodang receive, or both. If a nonblocking send 15 used,
the call to ¥PI_Tsend() initiatesz the zend operation and then returnz. The call
to MPI Recv() can then be made, and the communication completes successfully.
Afier the call to MPI Tgend(), the dais in bof 1 must not be changed until one is
certain that the data have been zent or copied by the system. MPI provides the
routines MPI ¥ait() and ¥PI Tast() to check cn thi. Thus, the following code is
portable,

MPI_Isend (bufl, count, MPI_INT, clock, tag, comm, ETequest);
MPI_Recy (btnfZ2, comunt, MPI_INT, anticlock, tag, comm, Estatns);
MFI_Vait (kregqonest, kstatus);

Comc]usion 315

The corresponding acyclic communication graph i= shown in Figure 9.4. Each

-
I=end
r Becelve
2 l L
Wait 'y "
I=end |~ Ieem d
Ea:elvef [~ Becelre
Watt / f Wait
—— T — -

Figure 9.4
Chycle in communication graph 1= broken by ueing nonblocking sends.

receive operation depends on the matching =end, and each wait depend= cn the
matching communication; the zend does not depend on the matching receive, as a
nonblockmg send call will return even if no matching receive i posted.

{Posted nonbloclang communications do consume rescurces: MPl has to keep
track of such peeted communicaticns. But the amount of resources consumed is
propertional to the number of posted communicaiions, not to the total size of
the pending messages. {Jood MPl implkmentations will support a large number
of pending nonbloddng communications, =0 that this will not cause portability
problems.}

An alternative approach & to perform a2 nonblocking receive first to mitiate {or
“pozt*} the receive, and then to perform a blocking zend in standard mode.

MPI_Irecy (bofZ2, count, MPI_INT, anticleck, tag, comm, kregquest);
MPI_Send {bnfl, comnt, MPI_INT, clock, tag, comm):
MPI_Vait (Ereguest, Estatns);

320 ﬂ}.lath:r LE]

The call to MPI_Irecv(} indiates to MPI that incoming data should be stored in
bofZ; thus, no buffering iz required. The call to MPI ¥ait() & needed to block until
the dats has actually been received into bofZ2. Thiz alternative code will often result
in improved performance, since sends complete faster in many implementations
when the matching receive is already posted.

Finally, a portable shift cperation can be mplemented using the routine MPL
Sendreev(), which was explicitly designed to send to one process while receiving
from another im a safe and portable way. In thi caze only a single call is required;

MPI_Sendrecv (bofl, comnt, MPI_INT, cleock, tag.
btnf2?, cemnt, MPI_INT, amnticlock, tag, comm, Estatns);

9.2.2 Collective Communication and Synchronization

The MPI specification purpozefully does not mandaie whether or not oollective
communication operaiions have the side effect of synchronizing the proceszes over
which they operate. Thus, in one valid implment ation collective communication
cperations may synchronize processes, while in ancther equally valid implementa-
ticn they do not. Portable MPI programs, therefore, must not rely cn whether or
not collective commumnication operations synchromze processes. Thus, the following
azzum ptions must be avoided.

. We aszume MPI Beast() acts as a barrier synchrongation and it doesn’t.

MPI_Itecv (bufZ, count, MPI_INT, anticlock, tag, comm, Estatms);
MPI_RBcast (buf3, 1, MPI_CHAR, 0, comm);
MPI_Rsend (bufl, count, MPI_INT, clock, tag, comm);

Here if we want to perform the zend in ready mode we must be certain that the
receive has already been initiated at the destination. The above code iz nonportable
because if the broadeast does not act as a barrier synchronigation we cannot be sure
thiz & the caze.

. We assume that MPI Bcast(} does not act a= a barmer synchromsation and it
does. Examples of thiz caze are given in Examples 424, 425, and 4.2§ starting on

page 106,
9.2.3 Ambignons Communications and Portability

MPI employs the communicaior abstraction to promote software modulanty by al-
lowing the construction of independent communication streams between proceszes,

Comc]usion 31

thereby ensuring that messages sent in one phase of an application are not incor-
rectly intercepied by another phaze. Communicators are particularly important in
allowing libraries that male mescage passing calls to be vsed safely within an ap-
plicaticn. The point here i that the application developer has no way of kmowing
if the tag, group, and rank completely disambiguate the mescage traffic of differ-
ent libranies and the rest of the application. Communicators, in effect, provide an
additional critenion for message selection, and hence permits the construction of
independent tag spaces.

We diccusced in Section 5.5 possible hagards when a library uses the same com-
municator as the calling code. The mcorrect matching of zends executed by the
caller code with receives executed by the hbrary ocourred because the bibrary code
used wildcarded receives. Conversely, incorrect matches may oocur when the caller
code uses wildcarded receives, even if the hibrary code by itzelf i= determiniztic.

Consider the example in Figore 9.5, I the program behaves correctly processes)
and 1 each receive & message from process 2, using 2 wildcarded selection criterion
to indicate that they are prepared to receive a message from any process. The three
processes then pase data around in a ning within the library routine. If separate
communicators are not used for the communication mside and outside of the library
routine thi= program may mtermittently fail. Suppcse we delay the sendmg of the
second message sent by processe 2, for example, by inserting some computation, as
showm in Figure 9.8, In thk case the wildcarded receive in process [& satified by
a message sent from procese 1, rather than from process 2, and deadlock resulis.

Even if nerther caller nor callee use wildcarded receives, incorrect matches may
still occur if 2 zend initiated before the collective library invocation i to be matched
by a receive posted after the invocation (Ex. 5.10, page 226). By using a different
communicator in the library routine we can ensure that the program is executed
correctly, regardless of when the processes enter the library routine.

9.3 Heterogeneons Computing with MPI

Heterogeneous computing uses different computers connected by 2 network to sohve
a problem in parallel. With hetercgenecns computing 2 number of izsues arise that
are not applicable when using a homogeneous parallel computer. Feor example, the
computers may be of differing computational power, =0 care must be taken to d-
tribute the work between them to aveoid koad imbalance. Other problems may anze
because of the different behavior of floating point arithmetic on different machines.
However, the two most fundamental issues thai must be faced in hetercgeneous

322 ﬂ}.lath:r LE]

Process 0 Process 1 Process 2

recviany)| [recv(anyd| [send(1) |

3 sendid)

recv(0)

send(1) J

Figure 9.5

Uze of commumieatars. Mumbers in parentheses indicate the process to which Jdata are being
gent or received. The gray chaded area represents the library routine call. In thiz caee the
propram behaves az intended. Mate that the sesind nwasage sent by process 2 iz received by
proceas 0, and that the megsage zent by process 0 iz received by process 2.

computmg are,
incompatible data representation,
intercperability of differing implementations of the message passing layer.

Incompatible data representations arke when computers use different binary rep-
resentations for the same number. In MP| all communication routines have a
datatype argument =0 implementations can uvse thiz information to perform the
appropriate representation conversion when communicating data between comput-
Ers.

Intercperability refers to the ability of different mmplementations of a given piece
of software to work together as if they were a single homogeneous implementa-
ticn. A prerequisite of intercperability for MPl would be the standardmation of the
MPI's internal data structures, of the communication protocols, of the initializa-
ticn, termination and error handling procedures, of the implementation of collective
cperaticns, and =o cn. Since this has not been done, there iz no support for in-
tercperability in MPI. In general, hardware-specific implementations of MPI will
not be interoperable. However it & still possible for different architectures to work
together if they both use the same portable MPI onplement ation.

Comc]usion 313

Process 0 Process 1 Process 2

recviany)| [recv(anyd| [send(1) |

' end(ﬂ}i compute

reav(2)

Figure 9.6
Unintended behavior of program. In thiz case the nwesage from process 2 to process 0 iz never
received, and Jdeadlack resultsz.

9.4 MPI Implementations

At the time of wnting several portable implementaticns of MP| exast,

the MPICH implmentation from Argonne National Laboratory and Mississippi
State University [12], available by anenymous ftp at info_mez anl.gov/pubfmpi. This

version i= layered on PYM or P4 and can be run on many systems.

The CHIMP implementaticn from Edimburgh Parallel Computing Center, available
by anonymous fip at fip.epeced. ac_uk/pub/chimp/release /chimp tar 2.

the LAM implementation from the Ohio Supercomputing Center, o full MPI stan-
dard implementation using LAM, o UUNLX cluster computing environment. Avail-
able by anonymous fip at thag.osc.edu/pub/flam.

The UNIFY system provides o subzet of MPI within the P¥M environment, with-
cut sacrifiang the PVM calls already available. Available by anonymous fip at
ftp.erc_msstate edufunify.

In addition, hardware-specific MPl implment ations exdst for the Cray T3D, the
IBM 5P-2, The NEC Cinju, and the Fujitsu AP1000.

Information on MPlimplmentations and other vseful information on MPI can be
found on the MPIl web pages at Argonne Mational Laborat ery (http://wwaw mes anl -
gov/mpi}, and at Missksippi State Umiv (hitp:/ v erc_msstate edu/mpi}. Addi
ticnal informaticn can be found on the MPl newsgroup comp.parallel.mpi and on
netlib.

324 ﬂ}.lath:r LE]

0.5 Extensions to MPI

When the MPl Forum reconvened in March 1645, the main reason was to produce
a new version of MPI that would have significant new features. The criginal MPI
15 being referred to as MPI-1 and the new effert iz being called MPI-2. The need
and desire to extend MPIl-1 arose from zeveral factors. One consideration was that
the MPI-1 effort had a constrained scope. Thiz was done to avoid introducing a
standard thai was ceen ac too large and burdensome for implementors. It waz al=o
done to complete MPL-1 in the Forum-imposed deadline of one year. A second
conzideration for limiting MPI-1 was the feeling by many Forum members that
some proposed areas were still under investigation. As a result, the MPl Forum
decided not to propese o standard in these areas for fear of discouraging useful
imvestigaticns into improved methods.

The MPIl Forum is now actively meeting and discussing extensions to MPI-1 that
will becomme MPI-2. The areas thai are currently under discussion are:

Extornal Interfaccs: This will define interfaces to allow easy exdension of MPI
with libraries, and facilitate the implementation of packages such a= debuggers and
profilers. Among the issues considered are mechamsme for defining new nonblodang
operaticns and mechanisms for accessing internal MPl information.

Onc-8Bided Communications: Thiz will exdtend MPl to allow communication
that does not require execution of maiching calk at both comununicat ing processes.
Examples of such cperations are put/get operations that allow a process to access
data in another process’ memory, messages with interrupts {e.g., active messages),
and Read-Modify-Write operations {e.g., feich and add}.

Dynamic Resource Management: This will extend MPI to allow the acquizition
of computational resources and the spawning and destruction of processes after
MPLINIT.

Extended Collective: This will extend the collective calls to be non-blodkhng and
apply to inter-communicators.

Bindings: This will produce bindings for Fortran 90 and O+

Rcal Time: Thi will provide some support for real time processing.

Since the MPI-2 effort 3= cngoing, the topics and aress covered are still subject to
change.

The MP| Forum set a timetable at s first meeting in March 1885, The goal
15 releaze of a prebminary version of certam parts of MPIl-2 in Decemnber 1595 at
Supercomputing '95. This 15 to include dynamic processes. The goal of thiz early

Comc]usion 315

rekaze & to allow testing of the ideas and to receive extended public comments.
The compleie version of MPL-2 will be released at Supercomputing 66 for final
public comment. The final version of MPI-2 & scheduled for release in the spring
of 10497,

Bibliography

(1]

(2]

(2]

(4]

(]

(€]

[12]

Y. Bala and 5. Kipnis. Frocess groups: a mechanism for the eoordination of and wonmn-
nication among processes in the Yenue collective communication likrary. Technical report,
IEM T. J. Wateon Regearch Center, October 18502, Freprint.

¥. Bala, &. Kipniz, L. Rudalph, and Mare Snir. Designing efficient, scalable, and portable
collective commpmnication libraries. In STAM 7809 Clanference on Pamali! Proscssing far
Soientific Computing, pages 862872, March 1005,

Luc Homang and Rolf Hempel. The ArgonmefGMD macros in FORTRAN for portable
rarallel programming and their implementation an the Intel iIPSCOf2. Parallel Coas pubing,
15118132, 1860,

J. Bruek, K. Cypher, P. Elugtand, A. Ha, O-T. Ha, V. Hala, 5, Kipnig, , and M. Snir. Oel: A
partableand tunable collective eomwmn nicationlibrary for ecalable parallel computers. TEER
Frans on Parallel and DHrributed Syrderar, 6(2]:154-164, LOO5,

EK. Butler and E. Lugk. Uger'sz guide to the 4 programming syetem. Technical Keport
TM-ANL-£2/17, Argonne National Laboratary, 1902,

Ralph Hutler and Ewing Lugk. Monitars, meezages, and clngters: the pd parallel program-
wing eyetem. Journal of Panalle]l Corspuding, 20041]:547-564, April 18984,

Robin Calkin, Rolf Hempel, Hang-Christian Hoppe, and Peter Wipior. Portable program-
ming with the parmace message—pamsing Hbrary. Panallel Cwmputing, 20(4]615-632, April
1864,

%, Chittar and R. J. Enbady. Performance evalnation of mech—eonnected warmbole—manbed
netwarke for interprocessor communication in multicomputers. In Proa=dings of the 1890
Supsransnputing Canferencs, pages 617—656, 1900,

&, Chittor and R. J. Entady. Fredicting the efect of mapping on the communication per-
farmance of large multicompnters. In Proceedings of $he 1887 Ddernational Clonferencs on
Paraliel Procesring, vol, IT [Softwars), pages II-1 — II-1, 10091,

R. Uypher and E. Leu. The gemanticz of blodiing and nonblocking send and receive primi-
tives. In 84h Mdernational Paralls! Prasesing Syanparivi, pages T20-T35, April 1004,

J. I. Dongarra, K. Hempel, A. J. &. Hey, and 1. W. Walker. A proposal for a uger-level,
nwsgage pagsing interface in a digtribnted memory environment. Technical Report Thi-
12231, Oak Ridge National Laboratory, February 1603,

Mathan Daosz, William Gropp, Ewing Lusk, and Anthony Shjellum. A model implemyentation
of MFI. Technical repart, Argonne National Laberatory, 1O,

Edinburgh Farallel Conputing Centre, Universty of Edinburgh. CHIM® Cancepis, June
18601,

Edinburgh Farallel Computing Centre, University of Edinburgh, CHM™ Vereian 1.0 fn-
terface, May 1002,

Meazage Fassing Interface Forum. MFIL: A messape-passing interface standard . B bers adional
Journal af Supercaraputer 4 pplicationy, 8(374], 1994, Special izeue on MFPL

H. Franke, H. Wu, O E. Riviere, P.Fattnaik, and M. Snir. MFI programming environnwent
for IBM SFL/SFE. In 258k Mternationa Clopferencs on Distributed Computing Syrdems,
rages 1E7—135, June LEAG,

A, Qeist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PV 4

Crers’ Guide and Tutarial far Netuwwrked Parallel Clomputing. MIT Frees, 1994, The book
iz available electranically, the url iz ftp-/fwww. netlib org /pym3 fbook fpvm-book . ps.

G, A, Geigt, M. T. Heath, B. W. Feyton, and F. H. Worley. A user's guide to FICL:
a portable ingtmmented communication likeary. Technical Report TM-11616, Oak Ridge
Haticnal Latoratory, October 1000,

[L8] Wiliam D). Gropp and Barry Smith. Chameleon parallel programming tools ngers mannal,
Technical Report ANL-£E /23, Argonne Mational Laboratory, March 1603,

[20] ¥. Karanwheti and AA. Chien. Software overheads in meszaging layers: Where does the
timwe gof In Gih fndemadional Canfersne an Architectural Suppart for Prograsssiep Lan-
puager and Operading Syrterar (ASPLOS VI), pages 51-60, October 1984,

[21] ©. Kramer and H. Miihlenbein, Mapping strategies in meszage—tazed munltiproceszar gya-
temae. Parablsl Copeputing, 02153226, 1080,

[22] nCUBE Corporation. » CUBE 2 Pragramanens GQuids, w280, December 1000,

[22] Parasoft Corporation, Pasadena, CA. Beprers Drer's Cuids, version 3.2.5 edition, 1052,

[24] Faul Fierce. The NX/2 aperating syetem. In Procsmdingr of the Dhind Conference an
Hyperaube Concurrent Clomputers and 4 pplicaiony, pages 284-300. ACM Frees, 1088,

[25] A. Skjellum and A. Leung. Zipoode: a portable multicomputer comemmnicati on library abop
the reactive kernel. In I W. Walker and €. F. Stout, editars, Procedings of the Fifth
Dirtributed Merory Cancurrent Computing Conferenes, pages TET—TTE. [EEE Frecs, 1000,

[26] A. Skgellum, 5. Smith, €. &tll, A. Leung, and M. Marari. The Zipeode message passing
gyetem. Technical report, Lamrence Livermore National Laboratory, September 1E02,

[T] V5. Sunderam, G A, Geist, J. Dongarra, and K. Manchek, The FY"M concurrent eomputing
gyetem: Evalution, experiences, and trends. Pamalls? Cloanputing, 2001]:581-545, April 1084,

[2&] T.von Eicken, D .E. Culler, 5.0, Gaoldetein, and K.E. Shauzer. Active megzages: & mechan iom
far integrated conmmunicatiin and computation. In 7888 Anpual International Symnpa viven
o5 Covsputer Architechins, pages 256266, May 1002,

[28] D. Walker. 5tandards fur mesgage pagsing in a diztriboted mwemary enviromment. Technical
Repuort TM-12147, Oak Hidge National Labwratory, Angust 1962,

Index

active request handle, &6

anldres, 128, 123, 134

aliazed arguments, T

alignment, 104, 128, 130

all reduve, 185

all tw all, 172

all ta all, vectar variant, 171
ambiguity of eommmnicatione, 220
arguments, T

agpociativity and reduction, 177
agpociativity, and neer-deflned aperation, 100
aymnwetry, 24

abtribute, 220, 230

abtribute, ey, 230, 232, 235
abtribute, predeflned, 287
attribute, tapology, 253, 256

backmasking, 230
balance, hat gpat, 64
barrier, 152

Hacking, 8, 17, 52, 148
broadeast, 152

buffer attach, 05

buffer palicy, O7

buffer, receive, 22

buffer, gend , 10

buffered mode, 18, 80, 05
buffering, 17, 22, 33, 312, 314
buffering , nanblocking, 63

caching, 204, 220

callback funetion, 230, 231

callback fonetion, eapy, 216, 223, 234

callback funetion, delete, 223, 234

cancelation, 75, 70

chaive, 12

cloek, 200

clack gyncehronization , 287, ZE&

collective, 0

vallective conmrmnication, 147

collective, and blocking semantics, 148

callective, and eonmmnicatar, 151

collective, and eorrectiness, 1410

callective, and deadlads, 185

collective, and intercomsnunicator, 151

cullective, and mezcage tag, 140

collective, and modes, 140

wvallective, and nondeterminian, 167

collective, and portability, 148, 105

vallective, and threadsz, 10&

collective, and type matehing, 150

vallective, compatibility with point-to-point,
118

cullective, process group, 151

wollec tive, restrictions, 119
collec tive, gemantics of, 105, 320
collective, vector variants, 147
commit, 123
communication damain, 15, 20, 25, 203, 204
communication domain , inter, 242
communication domain , intra, 204
communication hot gpot, 64
communication nmwdes, 32, 80
communication modes, conenents, D8
communication protosal, 32
communication, monblocking , 46
communicatar, 15, 20, 203
communicabor, acceszors, 21T
communicatar, and collective, 151
communicator, caching, 204, 226
communicatar, constructars, 218
commmnicator, degtruetar, 222
communicatar, hidden, 151
communicater, intra ve inter, 204
communicator, manipulation, 216
commutativity and reduction, 17T
commutativity, and user-deflned operation,
180
complete-reseive, 50
complete-gend , A0
completion funetions, 52
completion, mnltiple, 67
complexdty of MPI, 211
contert id, 21, 205
conversion, 26
conversion, representation, 30
conversion, type, 30
carrectiess, 1480
cyales, 41

data conversion, 16, 20

data digtribution 20

datatye, 10

datatype matching, 16

dead lack, 33, 44

derived datatye, 101, 102

derived datatype, address, 128, 133, 134
derived datatype, conunit, 123

derived datatype, constructar, 101, 105
derived datatype, destructor, 124
derived datatype, extent, 103, 105, 131
derived datatye, lower bound, 104, 131
derived datatype, map, 103

derived datatye, markers, 130

derived datatye, matching, 125

derived datatyse, cverlapping entries, 125
derived datatype, degnature, LOS

derived datatye, uprer bound, 104, 131

destination, 20, 21
determinigtic programe, 26

efflciency, 2
enabled conwnunication, 62
encapeulakion , 21
environ mental parametens, 28T
error clazees , 200
errar code, 23
error eodee, 208
errar handler, 205
error handler, predeflned, 205
error handling, 287, 265
errur, program, 23
errar, reealrce, 263
exception, 204

e oo ieation, 44
exit, 28T, 201
extengicng, 324
extent, 102, 105, 121

failure, 65

fairneas, 38

fairness, and server, 70, T4
fairnegs, nonblocking, 62
flretvome-flret-zerved , 57

gather, 154

gather and seatter, 172

gather ta all, 170

gather ta all, vectar variant, 172
gather, vectar variant, 157
global reduetion, 175

graup, 20, 201, 203, 207, 253
group, for eallective, 151

group, local and remate, 243

half-channel, &1

handle, null, 10

handles, §

heterageneous, 2, 20, 221
hidden cormsnunicater, 151, 198
hogt process, 28T, ZRE

hot epat, 61

I/0) inquiry, 287, 288

implementationg, 3%

N, T

inactive requect handle, &

inelude flle, 13, L4

imttialization, 28T, 201

mOoUT, 7

inter-group eommun ication domain, 204
inter-langnage commun ieation, 31

interaction, MPl with execution emviranment,

287, 201
intercanmunication, 243
intercammunication, and collective, 245
intercanmunication, sumenary, 244
intercammunicatar , 20, 204
intercanmun ieakar , acoeezaorns, 247
intercanmunicatbor, and collective, 151
intercanmun icatar , constructors, 248
interoperability, 2, 322

interoperability, langnage, 12
intra-group commun ication domain, 203
int racommuni eatar, 20, 203

Jawnhi, 28, A1

Jacabi, cafe verzion, 413

Jacabd, neing nonblocking, 54
Jaoobi, neng send-receive, 16
Jawabi, with null proceszes, 18
Jacabi, with persiztent requeectz, &1
Jaeobi, with MPIWAITALL, 71

key, 230, 232, 225

layering, 135, 202, 303
libraries, 25, 201, 302
libraries, eafety, 202, 223, 220
lacal, &

long protaeal, 65

lower bound, 104, 131

markers, 130

matching, 35
matching, narraw, 25
matching, type, 26
matrix product, 273
maximum and location, 180
meazage degtination, 21
meazage envelope, 20
meagage matching, 36
meazage arder, 35
meagage selection, E2
meszape source, 20, 23
meszage tag, 15, 21, 33
meazage, gelf, 24
meazage, gelf-typed, 25
minimmm and loeation, 180
made, &

mode, buffered, 860, 05
made, comenents, I8
made, ready, B0

made, standard , 32, 80
mwode, synchronous, 8O
modes, 17, 22, 86, 110

modularity, 302, 225, 320
MPIl-z, z24

MPIEYTE , 27, 29, 30
MPILCHARACTER , 28
MPLEOMM WARLD, 15
MPIPACKED , 27

MPI exxception, 294
tnpifh, 13, 14

MPFI Farum, 1

MPIl implermentations, 323
tnu It ple campletion, 67

harme shift, 303

harmow matching, 25
hon-blocking, @

han-local, 9, 32

hot Blecking, 17, 34

hot Blecking communication, 49
hah Blocking, buffeing, 63

non blocking, fairmess, 62

non blocking, order, 60

hot Blecking, progress, 61

hot Blecking, safery, 63
hahdeterminism and collective, 197
hull process, 47

null request handle, 86

opaque objects, 9
arder 35

arder | nonklocking, 60
arder with threads, 36
auT, 7

overflow, 22, 30
overlap, 54

pack, 101, 135

packing unit, 137

paral el prefec, 188
persistent request, 81
polling, F&

port, 81

portakility, 1, 149, 195
pottable pragramming, 314
post-receive, 49

post-send, 49

a3

post-send, failure of, 65

posting, 17

posting functions, &1

predefined artibutes, 287

probing, Fh

procedure specification, 7

proces allocation, 8

prooess group, 20, 201, 203, 207, 253
procest group, local and remate, 243
procest kank, 20, 203, 253
processes, 8

produ cer-consy rmer, 56, 70, 87
profile interface, 303

progress, 37

progress, for probe, 77

progress, hoh Blecking, 61

protocal, communication, 32
protocal, two-phate, 25

protocols, 17

rank, 15, 20, 203, 253

ready mode, 18, 89

receive, 22

receive buffer, 22

receive, wildeard , 25

reduce, 175

rmeduce and seatter, 186

reduce, [ist of operations, 178
reduce, user-defined, 189
reduction, 175

reduction and asseciativity, 177
reduction and cotnmutativity, 177
remote procedure call, 44
rendezvous, 17, 89
representation conversion, 16, 30
request abject, 50

request abject, allacation of, 52
request abject, deallscation of, 59
request, Tnactive v& active, B6
request, null handle, 86

request, persistent, 81

resource |imitations, 63

return codes, 12, 14

return status, 23

root, 147
round-robin, 57

wmfe pregram, 33

safety, 32, 64, 195, 202
scalability, 3

scan, 188

scan, inclusive vo exclusive, 189
sean, segmented, 194
scan, user-defined, 189
scatter, 165

scatter and gather, 173
scatter, vector variant, 167
mlection, 22

wlf message, 24

wlf-typed mescape, 25
mmantics, 17, 32
mmantics of collective, 195
senantics, nen blecki ng, 60
mnd, 18

mand buffer, 19

gatd -receive, 44

maquential storage, 134
merver, and fairness, 70, 74
shott protocel, 65

signal safery, 302

source, 20, 23

standard mode, 18, 32, 89
starvation, 38, 70, 74, 87
status, 23, 25

status, empty, 86
gytechranization, 147, 152
gynchronous mode, 18, 89

tag, 15, 20, 21, 23, 149
tag, upper bound, 287
test-fat-completisn, 17
thread safety, 26, 302
threads, 8, 35, 49

threads and oollective, 198
throttle effect, 33

time function, 290
topolagy, 253, 256

topology and intercommunicator, 253

topology, Cartetian, 257

topologry, general graph, 267
topolagy, overlapping, 255
topolagy, virtual vs physical, 263
two-phase pratocel, 25

type constructer, 101, 105

type conversion, 30

type map, 103

type matehing, 16, 26, 125, 150
type sighature, 103

typed data, 15

underflos, 30

unpack, 101, 135

upper bound, 104, 131
user-defired aperations, 189
user-defined reduction, 192

wildcard |, 22
wildcard receive, 25

Constants Index

MFL2DOUELE FPRECISION, 182

MFL2INT, 182

MFLzINTECER, 182

MFL2REAL, 182

MPLANY SOURCE, 22, 26, 38, T6, T8, 86,
R

MPLANY Tac, 11, 25, 25, 76, TS, 86

MFLEAND, 178

MFLEOR, L8

MPLEOTTOM, 11, 18, 133135

MFLESEND OVERHEAD, 07, 200

MFLEXOR, 178

MPLEYTE, 19, 28, 30

MFLOART, 272

MFLCHAR, 19, 20

MFLOHARACTER, 10, 28, 50

MPLOOMM NULL, 220, 222, 223, 258, 267

MFLCOMM SELF, 207, 251

MPLOOMM WORLD, 11,21, 207,217, 28T,
203, 205

MFLCOMPLEX, 19

MFLCONGRUENT, 218, 248

MFLDATATYFE NULL, 124

MFLDOUELE, 10

MFLDOUELE COMPLEX, 20

MFLDOUELEINT, 182

MFLDOUELE FRECISION, 19

MFLERR_ARC, 200

MFLERR _EUFFER, 200

MFLERR COMM, 200

MFLERR COUNT, 209

MFLERE DIMS, 200

MFLERR CROUF, 200

MFLERR IN_STATUS, 0, 73, 208, 200

MFLERR INTERN, 200

MFLERE LASTCODE, 200

MFLERR_OF, 200

MFLERE_OTHER, 200, 200

MFLERR FENDING, 208, 200

MFLERE RANE, 200

MFLERR REQUEST, 200

MFLERE ROOT, 200

MFLERR TAd, 200

MFLERR TOFOLOCY, 200

MFLERE TRUNCATE, =0

MFLERE TYFE, 200

MFLERE UNKNOWN, 200, 300

MFLERKEHANDLER NULL, 208

MFLERROR, 22

MFLERRORS _ARE _FATAL, 205

MFLERRORS RETURN, 205, 206

MFLFLOAT, 10

MFLFLOAT INT, 182

MFLGRAFH, 272

MFLGROUF EMPTY, 203, 212-211

MFLOROUF NULL, 22, 216

MFIHOST, 287, 288

MFILIDENT, 200, 218

MPLINT, 19, 32, 103

MFLINTECER, 190, 22

MFIINTEGERL, 20

MFIINTECGER2, 20

MFIINTEGERA, 20

MFLIO, 287, 288

MPIKEYVAL INVALID, 232, 225

MFILAND, 178

MFILE, 130

MFLLOCICAL, 10

MFPLLONG, 19

MFILONC DOUELE, 1o

MFPILONG DOUBLE_INT, 182

MFILONC INT, 182

MPILONG LONG, 20

MFILOR, L78

MFLLXOR, LT&

MFIMAYX, 177, 178

MFIMAX ERROR_STRING, 208

MFIMAX FROCESS0R_NAME, 280

MPILMAXLOC, 178, 180, 181, 185

MFIMIN, 178

MPIMINLOG, 178, 180, 181, L&

MFILOF_NULL, 103

MPILFACKED, 19, 20, 138110

MFI_FENDING, T0

MPIFROC_NULL, 1T, 262, 261, 28T, 288

MFIFROD, 178

MFIREAL, 10

MFIREALZ, 20

MFIREAL4, 20

MFIREALS, 20

MFIREGQUEST NULL, 52, 50, 68, T0, TL,
T3, 86

MFISHORT, L9

MFISHORT INT, 152

MPLSIMILAR, 209, 218, 218

MFISOURCE, 22

MFISTATUS SIZE, 22

MPLSUCCESS, 12, 70, T2, 233, 208300

MFISUM, 178

MFLTAC, 23

MFPLTAC 1TH, 21, 287, 258

MFIUE, 120

MFPI UNDEFINED, 241, 68, &7, 126, 272, 273

MPIUNEQUAL, 200, 218, 248

MFIUNSICNED, 1o

MFIUNSICNED ¢HAR, 10

MFIUNSICNED LONG, 10

MFIUNSICNED SHOKT, Lo

334 Cooslanly Tndex

MFLWTIME 15 SLOBAL, 287200

Funetion Indew

MFPLABORT, 202 MPLORAPHDIMS CET, 260
MPLADDRESS, 128 MPIOROUF COMPARE, 200
MFPLALLCATHER, 170 MFPICROUF DIFFERENCE, 211
MPLALLOATHERY, 172 MPICROUF EXCL, 213
MFPLALLREDUCE, 185 MFPICROUF FREE, 216
MPLALLTOALL, 173 MPLOROUP INCL, 212
MPLALLTOALLY, 174 MFPICROUF INTERSECTION, 211
MFPLATTR DELETE, 227 MPLOROUFP RANCE_EXCL, 215
MFLATTR_CET, 236 MPLCROUF RANCE_INCL, 214
MPLATTR_PUT, 225 MPLOROUP RANK, 208
MFLEARRIER, 152 MFPILCROUF SIZE, 208
MPLECAST, 152 MPICROUP TRANSLATE RANKS , 208
MFLESEND , 50 MPLCROUF UNION, 211
MPLESEND INIT, 02 MPIIBSEND, 02
MFLEUFFER_ATTACH, 05 MPLINTT, 201

MPLEUFFER DETACH, 06 MPILINITIALIZED, 202
MPLCANCEL, 70 MFPIINTERCOMM _CREATE, 249
MPLCART COORDS, 261 MPIINTERCOMM MERCE, 250
MFPLCART CREATE, 257 MFIIFROEE, T6
MPLCART_CET, 260 MPIIRECY |, 51

MFPLCART MAF, 266 MPIIRSEND, &2

MPLCART RANK, 260 MPIISEND, 51

MFPLCART SHIFT, 262 MPILISSEND, 02

MFPLCART SUH, 265 MPIKEYYAL _CREATE, 232
MFPLCOARTDIM_CET, 250 MFPIKEYYAL FREE, 235
MFPLOOMM COMFARE, 218 MFPLOF_CREATE, 180
MPLOOMM CREATE, 220 MFLOF_FREE, 162

MPLCOMM DUF, 210 MPIFACK, 136

MFPLCOMM FREE, 222 MFPIFPACK SIZE, 140
MFPLOOMM CROUF, 210 MPI_FCONTROL, 205
MPLOOMM RANK, 217 MFIFROEE, T6

MFPLCOMM REMOTE _CROUF, 248 MPIRECY , 22

MPLOOMM REMOTE SIZE, 248 MPIRECY _INIT, &2
MFPLCOOMM SIZE, 217 MPIREDUCE, 175

MFPLOOMM SPLIT, 221 MFPIREDUCE SCATTER, 186
MPLCOMM TEST_INTER, 247 MFPIREQUEST FREE, 50
MFPLDIMS ¢REATE, 268 MPIRSEND , 01
MFLERRHANDLER CREATE, 206 MPI_RSEND_INIT, 94
MFLERRHANDLER FREE, 207 MPISCAN, 188
MFLERRHANDLER CET, 207 MFISCATTER, 165
MFLERRHANDLER SET, 207 MPISCATTERY, 167
MFLERROR CLASS, 200 MFISEND, 1&

MFPLERROR STRING, o6& MPISEND.INTT, &1
MFLFINALIZE, 202 MFISENDRECY, 45
MPLOATHER |, 154 MPISENDRECY_REFLACE, 46
MFLCATHERY | 157 MFISSEND , 00

MPLEET COUNT, 24 MPI_SSEND_INTT, 04
MFLCET_ELEMENTS, 126 MFISTART, &2

MFPLEET FROCESSOR NAME, 250 MPISTARTALL, &2
MFLCRAFH CREATE, 267 MFLTEST, 52
MPLERAFH_CGET, 270 MPLTEST ¢ ANCELLED, &0
MFLCRAFH MAF, 272 MFLTESTALL, 71

MFLORAFH _NEIGHBORS, 271 MPLTESTANY, &

MFLCRAFH NEICHBRORS COUNT, 270 MFI_ TESTSOME, T2

MFLTOFO TEST, 273
MPLTYPE_COMMIT, 122
MFLTYFE_CONTIGUOUS, 106
MPLTYPE_EXTENT, 104
MFLTYFE_FREE, 12
MPLTYPE_HINDEXED, 116
MFLTYFE_HVECTOR, 108
MPLTYPE_INDEXED, 114
MFLTYFE_LE, 122
MPLTYPE_SIZE, 105
MFLTYFE_STRUCT, 118
MPLTYPE_UH, 132
MFLTYFE_VECTOR, 107
MPLUNFACK, 126
MPLWAIT, 52

MPLWAITALL, 7o
MPLWAITANY , 67
MPLWAITSOME, T2
MPLWTICK, 201
MPLWTIME, 200

Funclion Index

