

ANALISIS ESTRUCTURAL I

UNIDAD 4

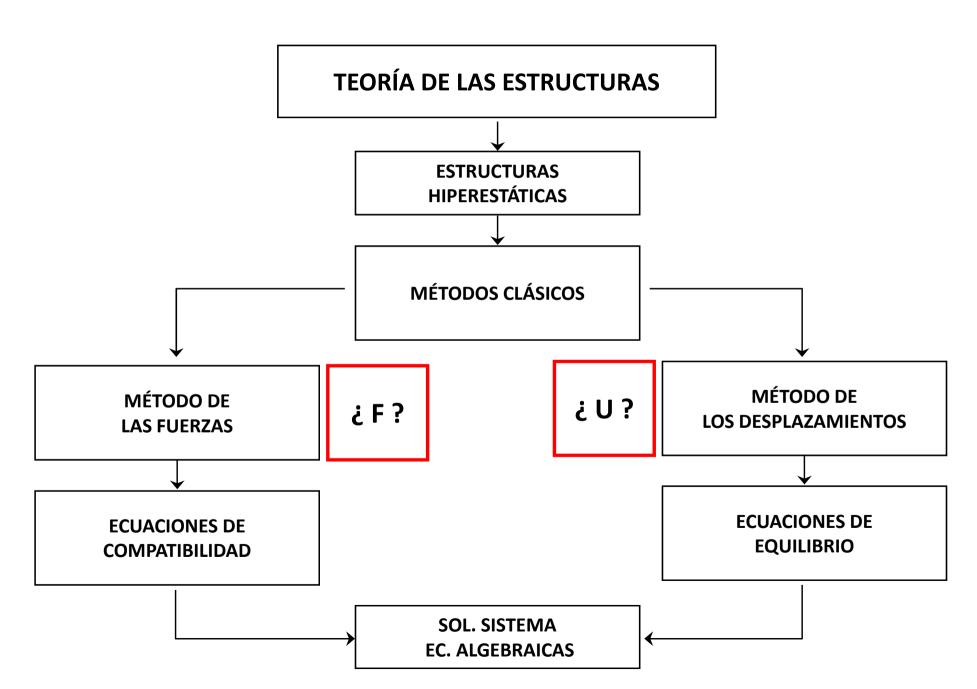
MÉTODO DE LOS DESPLAZAMIENTOS

Curso 2.024

Mg. Ing. DANIEL E. LÓPEZ

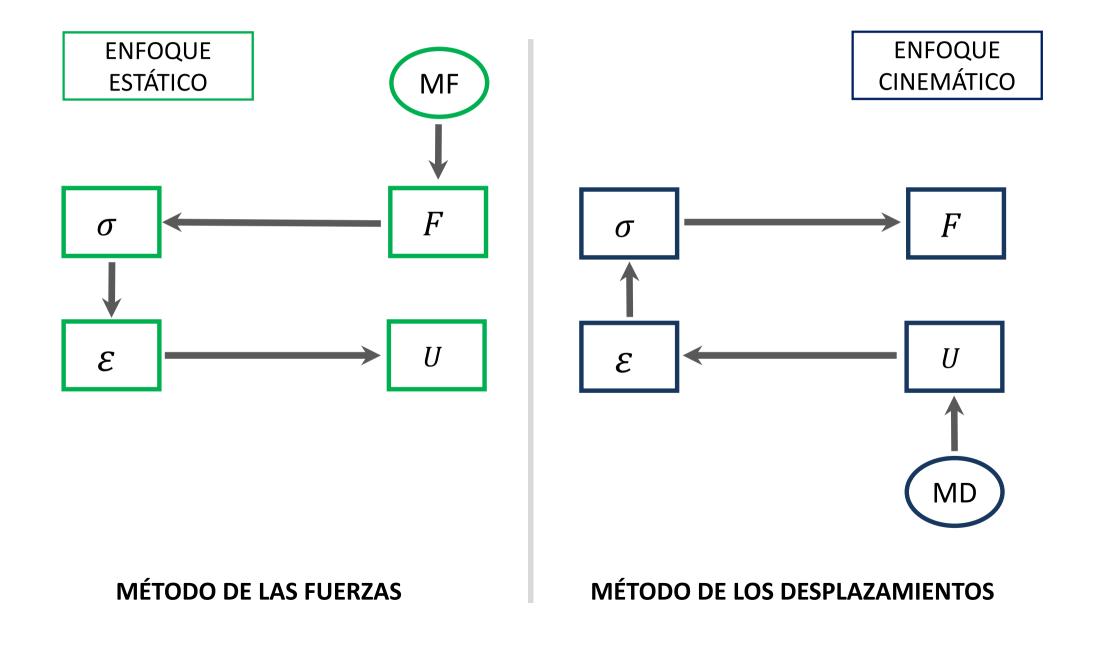
INTRODUCCIÓN

Introducción



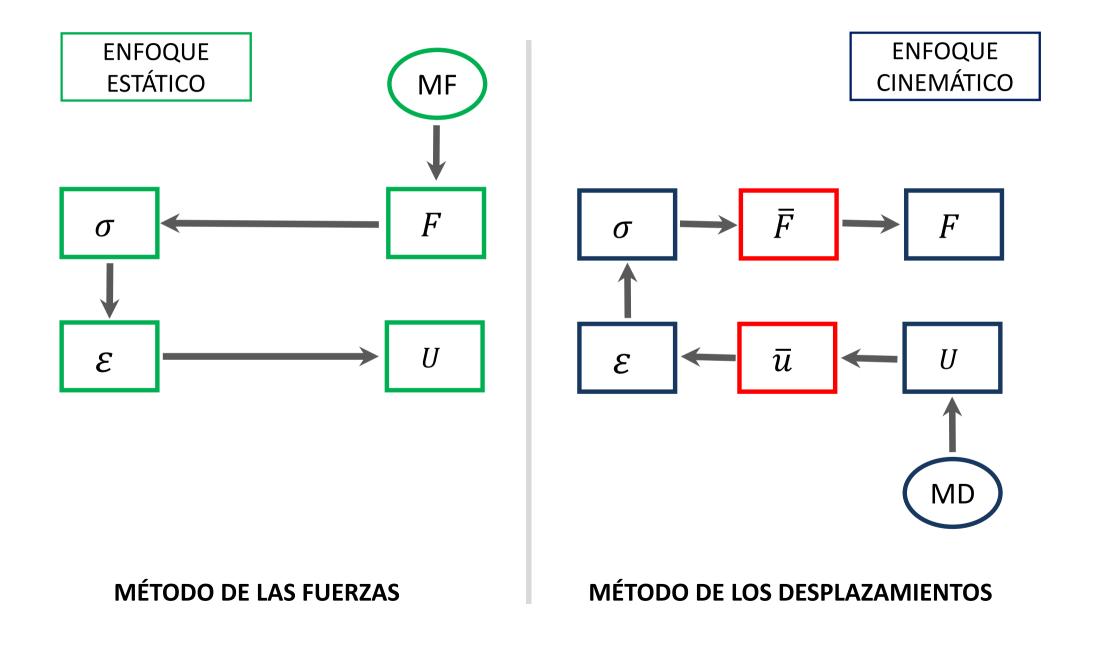
TEORÍA DE LAS ESTRUCTURAS. MÉTODOS CLÁSICOS

Introducción. Diagrama de TONTI



TEORÍA DE LAS ESTRUCTURAS. MÉTODOS CLÁSICOS

Introducción. Diagrama de TONTI

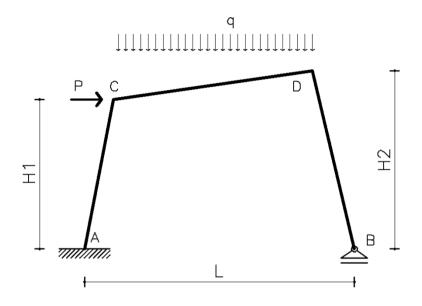


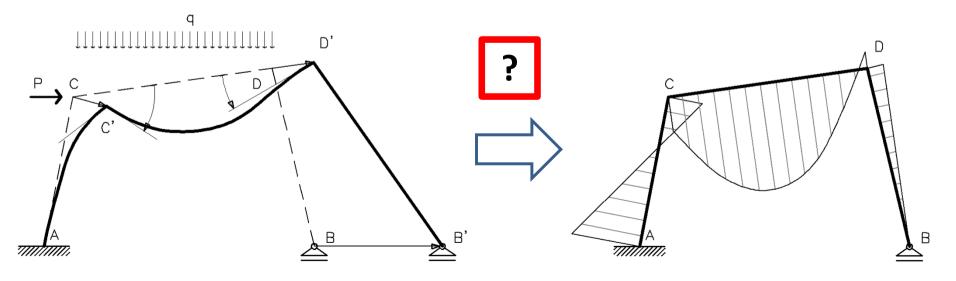
Cinemática

Hipótesis

- Todas las barras que concurren a un nodo se conectan rígidamente a él (dos barras como mínimo).
 - Los desplazamientos de los extremos de las barras son iguales a los del nudo al que están conectados.
 - Los giros de los extremos de las barras son iguales a los del nudo al que están conectados.
- Existe un conjunto de desplazamientos (lineales o angulares) que son independientes entre sí y que son suficientes para expresar los desplazamientos en el resto de la estructura. Son las variables cinemáticas y representan los grados de libertad de la estructura.
- Se considera que las barras que componen la estructura son infinitamente rígidas en la dirección axial. Es decir, no cambian de longitud cuando la estructura se deforma.

Cinemática

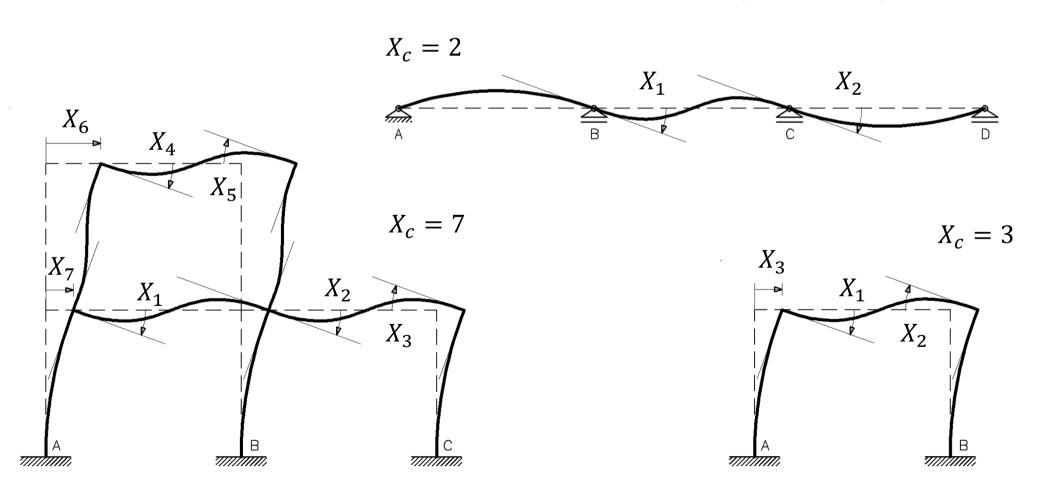




MÉTODO DE LOS DESPLAZAMIENTOS. INCÓGNITAS

Incógnitas Cinemáticas

- Son las variables cinemáticas independientes o grados de libertad de la estructura.
- Su cantidad es tal que permite definir en forma completa la configuración deformada de la estructura, de acuerdo con las hipótesis adoptadas.



MÉTODO DE LOS DESPLAZAMIENTOS. INCÓGNITAS

Incógnitas Cinemáticas

- Son las variables cinemáticas independientes o grados de libertad de la estructura.
- Su cantidad es tal que permite definir en forma completa la configuración deformada de la estructura, de acuerdo con las hipótesis adoptadas.

La cantidad de incógnitas cinemáticas es igual al número de nodos rígidos más los desplazamientos independientes de piso.

La cantidad de desplazamientos de piso se puede determinar de dos formas:

- Plantear una cadena cinemática abierta y calcular el Gh (hipóstaticidad).
- Considerar un giro y dos desplazamientos por nudo y luego aplicar las hipótesis planteadas, restando los giros.

$$Gh = E - I$$

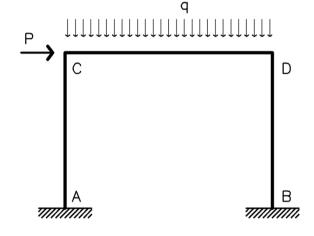
$$I = Vs + B + 2A^{1} + 3R + 4A^{2} + 6A^{3}$$
$$E = 3N + 2V$$

Planteo del Método

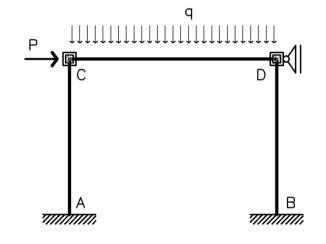
- Identificar las incógnitas cinemáticas.
- Platear el sistema fundamental, que se obtiene bloqueando los desplazamientos (corrimientos o giros) desconocidos.
- Cuando la incógnita cinemática es un corrimiento, su desplazamiento se impide con apoyo simple.
- Cuando la incógnita cinemática es un giro, su movimiento se impide con un empotramiento móvil.
- De este modo, el sistema fundamental es único.
- Para obtener el sistema fundamental, a la estructura original se le agregan apoyos ficticios.
- El sistema fundamental es una estructura más hiperestática que la original.
- El sistema fundamental es compatible pero está desequilibrado.
- En cada apoyo ficticio existen reacciones, que no existen en la estructura original y que permiten plantear las ecuaciones del método.

Planteo del Método

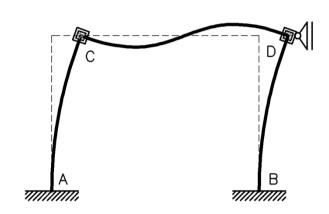
Estructura Original



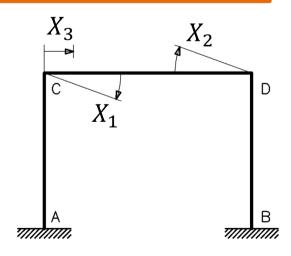
Sistema Fundamental



SF. ELASTICA (X_i)



Incógnitas



$$R_i = R_i(P_0, X_j)$$

Ecuaciones de Equilibrio

$$R_i\big(P_0, X_j\big) = 0$$

Planteo del Método

$$R_i\big(P_0, X_j\big) = 0$$

PIASE

$$R_i = R_i(P_0) + R_i(X_1) + R_i(X_2) + R_i(X_3) = 0$$

$$X_1 = 1$$
, $X_2 = 1$, $X_3 = 1$

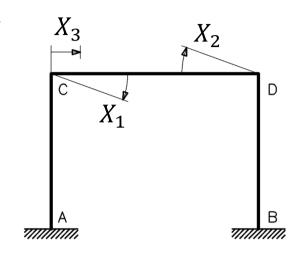
$$R_i = R_{i0} + r_{i1} X_1 + r_{i2} X_2 + r_{i3} X_3 = 0$$

$$\begin{cases} R_{10} + r_{11} X_1 + r_{12} X_2 + r_{13} X_3 = 0 \\ R_{20} + r_{21} X_1 + r_{22} X_2 + r_{23} X_3 = 0 \end{cases}$$

$$\begin{cases} R_{30} + r_{31} X_1 + r_{32} X_2 + r_{33} X_3 = 0 \end{cases}$$

$$R_{20} + r_{21} X_1 + r_{22} X_2 + r_{23} X_3 = 0$$

$$R_{30} + r_{31} X_1 + r_{32} X_2 + r_{33} X_3 = 0$$



 R_{i0} : Reacción en la dirección de la incógnita i debida el sistema de cargas actuando en el fundamental.

 r_{ij} : Reacción en la dirección de la incógnita i debida a un movimiento unitario en la dirección de j en el sistema fundamental.

Generalización n Incógnitas

$$R_{i0} + r_{i1} X_1 + r_{i2} X_2 + \dots + r_{in} X_n = 0$$

$$\begin{cases} R_{10} + r_{11} X_1 + r_{12} X_2 + \dots + r_{1n} X_n = 0 \\ R_{20} + r_{21} X_1 + r_{22} X_2 + \dots + r_{2n} X_n = 0 \\ \vdots & \vdots & \vdots & \vdots \\ R_{n0} + r_{n1} X_1 + r_{n2} X_2 + \dots + r_{nn} X_n = 0 \end{cases}$$

 R_{i0} : Reacción en la dirección de la incógnita i debida el sistema de cargas actuando en el fundamental.

 r_{ij} : Reacción en la dirección de la incógnita i debida a un movimiento unitario en la dirección de j en el sistema fundamental.

Generalización n Incógnitas

$$[R_{i0}] + [r_{ij}][X_j] = 0$$

 $[R_{i0}]$: Vector de términos independientes.

Reacciones en la dirección de las incógnitas, provocados por el sistema de cargas, actuando sobre el sistema fundamental.

 $[r_{ij}]$: Matriz de Rigidez.

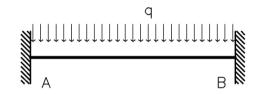
Reacciones en la dirección de las incógnitas, provocados por los valores unitarios de estas, actuando sucesivamente sobre el sistema fundamental.

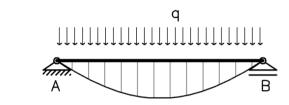
- Independiente de las cargas sobre la estructura.
- Depende del material, la geometría y de las condiciones de vínculo del sistema fundamental.
- Es una matriz cuadrada.
- Es una matriz simétrica. $r_{ij}=r_{ji}$ (Teorema de Maxwell)
- Es diagonal dominante. $r_{ii} > |r_{ij}|$
- Es positiva definida. Es inversible.

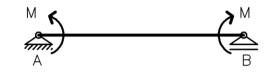
 $[X_j]$: Vector de Incógnitas.

Desplazamientos Lineales o Angulares.

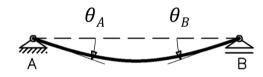
Cálculo de los Términos Independientes. R_{i0}

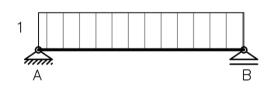


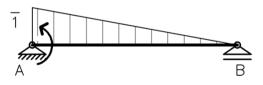


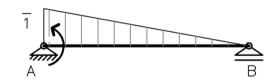


$$M = \frac{q L^2}{12}$$









$$\theta_A = -\frac{1}{3} \frac{q L^2}{8} \frac{L}{EJ}$$

$$\delta_{11} = \frac{L}{2 \, EI}$$

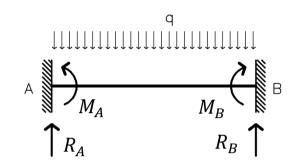
$$\theta_A = -\frac{q L^3}{24EI}$$

$$\Delta_{10} = -\frac{q L^3}{24EI}$$

$$\theta_B = -\theta_A$$

$$M = \frac{q L^3}{24EJ} \frac{2 EJ}{L}$$

Cálculo de los Términos Independientes. R_{i0}



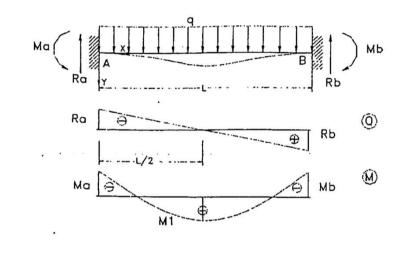
$$M_A = \frac{q L^2}{12}$$

$$R_A = \frac{q L}{2}$$

$$M_B = \frac{q L^2}{12}$$

$$R_B = \frac{q L}{2}$$

BARRA EMP-EMP CARGADA CON UNA CARGA UNIFORME:



$$Ra = q * L$$

$$Rb = q * L$$

$$Ma = q * L^{2}$$

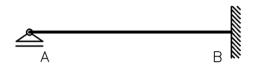
$$12$$

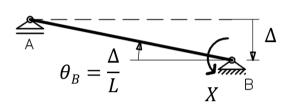
$$Mb = q * L^{2}$$

$$12$$

Si X1 =
$$\frac{L}{2}$$
 -- M1 = $\frac{q}{24}$ * $\frac{L^2}{4}$

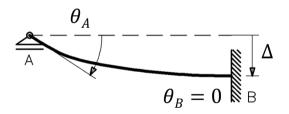
Cálculo de los coeficientes de la Matriz de Rigidez. r_{ij}

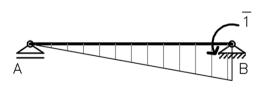




$$\Delta_{10} = -\frac{\Delta}{L}$$

$$\delta_{11} = \frac{L}{3 EJ}$$

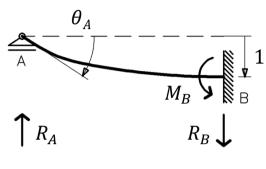




$$X = -\frac{-\Delta/L}{L/3EJ}$$

$$M = \frac{3 EJ}{L^2} \Delta$$

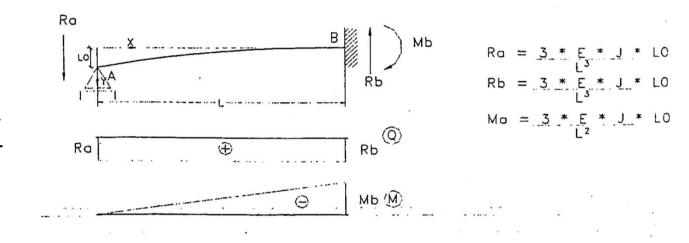
Cálculo de los coeficientes de la Matriz de Rigidez. $r_{i\,i}$



$$M_B = \frac{3 EJ}{L^2}$$

$$R_A = \frac{3 EJ}{L^3} \qquad \qquad R_B = \frac{3 EJ}{L^3}$$

BARRA ARTIC-EMP CARGADA CON UN DESPLAZAMIENTO "LO" EN A:



Pasos

- 1. Identificar las Incógnitas (desplazamientos lineales / angulares)
- 2. Definir el sistema fundamental, SF (bloquear desplazamientos)
- 3. Calcular Reacciones de las cargas sobre los apoyos. R_{i0}
- 4. Calcular Reacciones debidas a desplazamientos unitarios. r_{ij}
- 5. Plantear las ecuaciones de equilibrio. $R_i = 0$
- 6. Resolver el SEL. $[R_{i0}] + [r_{ij}][X_j] = 0$
- 7. Calcular los diagramas de esfuerzos internos, aplicando PIASE.

Cálculo de Esfuerzos Internos

PIASE

$$M = M_{(0)} + M_{(1)} + M_{(2)} + \dots + M_{(n)}$$

$$M = M_{(0)} + m_{(1)}X_1 + m_{(2)}X_2 + \dots + m_{(n)}X_n$$

 $M_{(0)}$: Momentos debidos al sistema PO actuando sobre el SF.

 $m_{(i)}$: Momentos debidos a los valores unitarios de la incógnitas, actuando sobre el sistema fundamental.

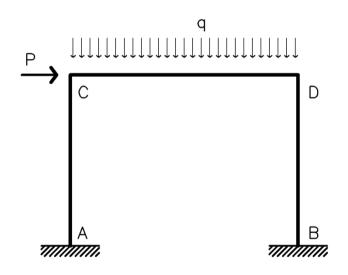
 X_i : Valor de la incógnita.

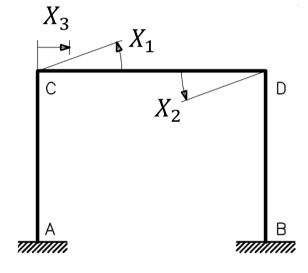
Se aplica a todos los esfuerzos internos y a las reacciones de vinculo.

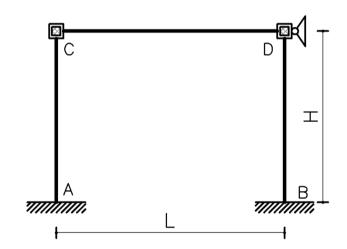
Ejemplo

Estructura Original

Incógnitas Cinemáticas Sistema Fundamental



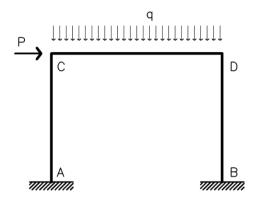


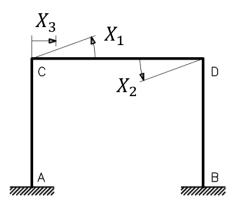


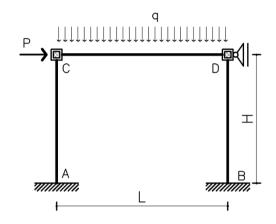
Ec. Equilibrio

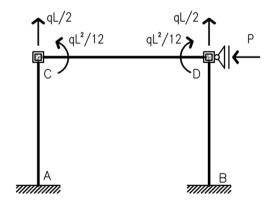
$$R_{i0} + r_{ij} \quad X_j = 0$$

Cálculo R_{i0}











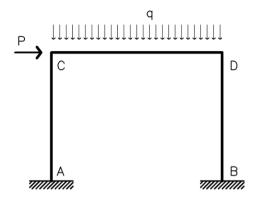
M0

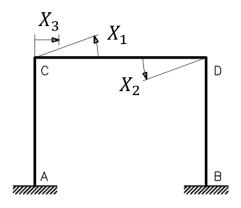
$$R_{10} = \frac{qL^2}{12}$$

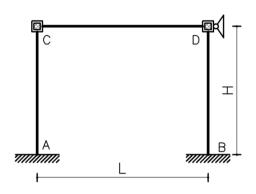
$$R_{20} = -\frac{qL^2}{12}$$

$$R_{30} = -P$$

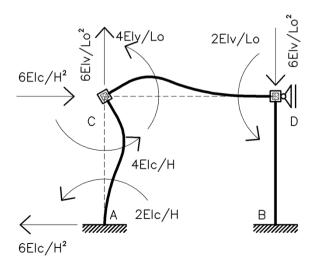
Cálculo r_{ij}

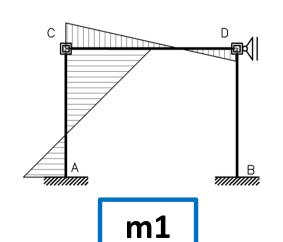






$$X_1 = 1$$



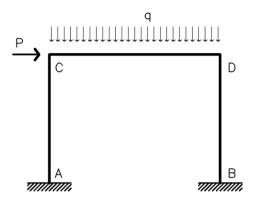


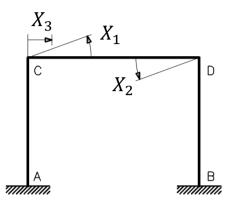
$$r_{11} = \frac{4EIv}{Lo} + \frac{4EIc}{H}$$

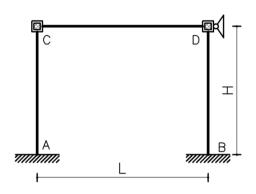
$$r_{21} = \frac{2EIv}{Lo}$$

$$r_{31} = \frac{6EIc}{H^2}$$

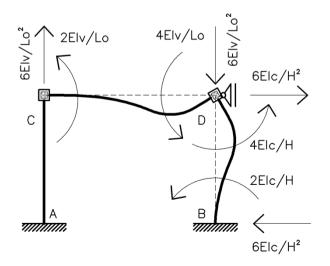
Cálculo r_{ij}

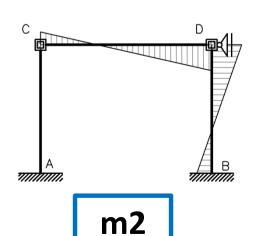






$$X_2 = 1$$



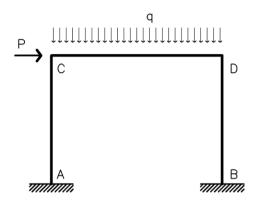


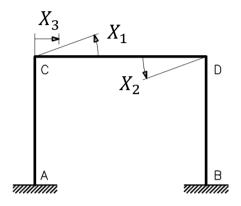
$$r_{12} = \frac{2EIv}{Lo}$$

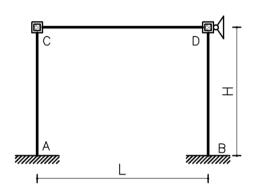
$$r_{22} = \frac{4EIv}{Lo} + \frac{4EIc}{H}$$

$$r_{32} = \frac{6EIc}{H^2}$$

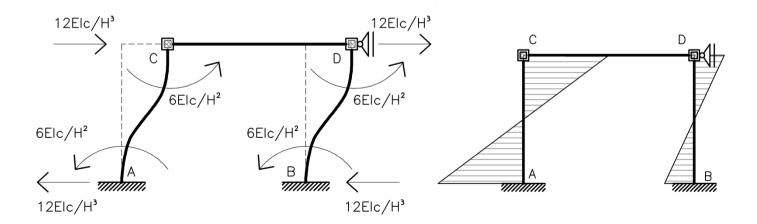
Cálculo r_{ij}







$$X_3 = 1$$



$$r_{13} = \frac{6EIc}{H^2}$$

$$r_{23} = \frac{6EIc}{H^2}$$

$$r_{32} = \frac{12EIc}{H^3} + \frac{12EIc}{H^3}$$

Resolver SEL

$$[R_{i0}] + [r_{ij}][X_j] = 0$$

Diagramas de Esfuerzos

$$M = M_{(0)} + m_{(1)}X_1 + m_{(2)}X_2 + \dots + m_{(n)}X_n$$

$$Q = Q_{(0)} + q_{(1)}X_1 + q_{(2)}X_2 + \dots + q_{(n)}X_n$$

$$N = N_{(0)} + n_{(1)}X_1 + n_{(2)}X_2 + \dots + n_{(n)}X_n$$

Reacciones

$$R = R_{(0)} + r_{(1)}X_1 + r_{(2)}X_2 + \dots + r_{(n)}X_n$$

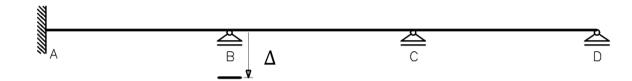
M. DE LOS DESPLAZAMIENTOS vs M. DE LAS FUERZAS.

Comparación entre M de los Desplazamientos y M de las Fuerzas

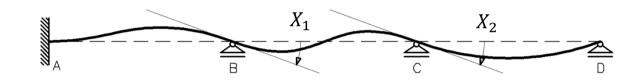
Variable	Método de las Fuerzas	Método de los Desplazamientos
Enfoque	Estático	Cinemático
Incógnitas	Fuerzas (Internas o Reacciones)	Desplazamientos (lineales o angulares)
Ecuaciones	Compatibilidad	Equilibrio
Sistema Fundamental	Isostático	Hiperestático
	No único	Único
	Equilibrado	No Equilibrado
	No compatible	Compatible
	Se elige para facilitar el cálculo	No se elige. Se pueden agregar incógnitas
Diagramas	Se aplica PIASE	Se aplica PIASE
Desplazamientos	Se calculan sobre el fundamental	Se obtienen directamente

Descenso de Apoyos

E. Original



Incógnitas

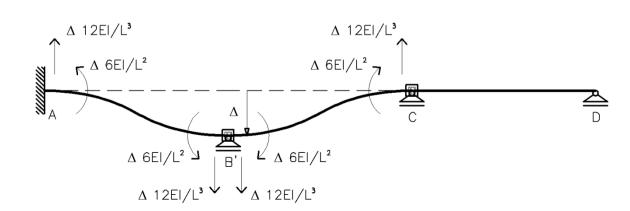


SF



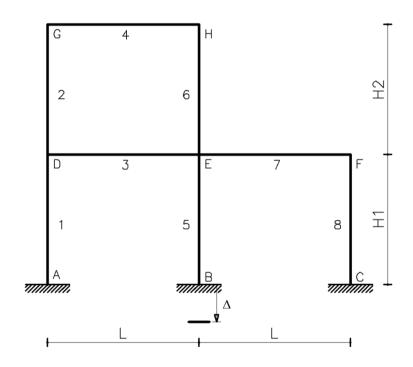
$$[R_{i0}] + [r_{ij}][X_j] = 0$$

$$R_{i0}$$

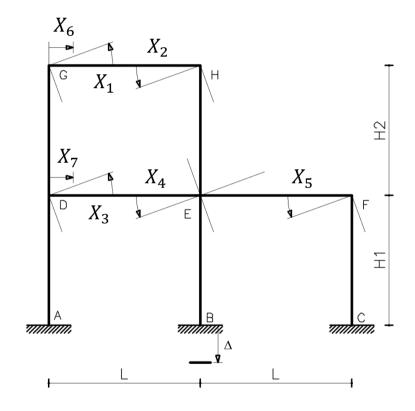


Descenso de Apoyos

E. Original

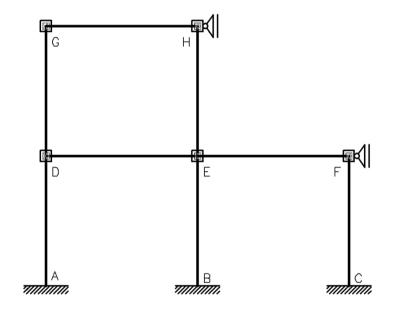


Incógnitas

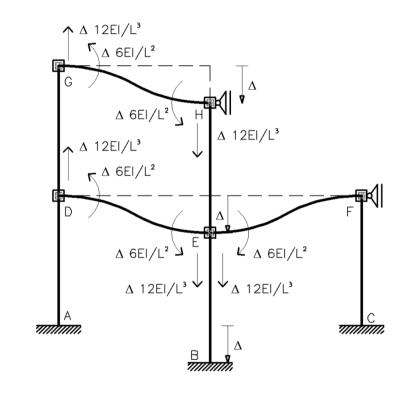


Descenso de Apoyos

SF



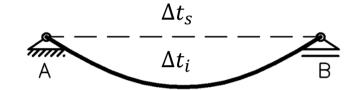
 R_{i0}



Acciones Térmicas

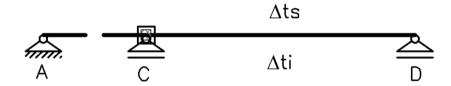
E. Isostática

$$\Delta t_i > \Delta t_s$$

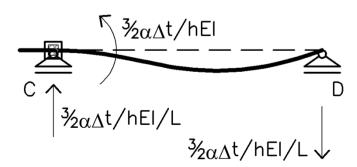


V. Continua

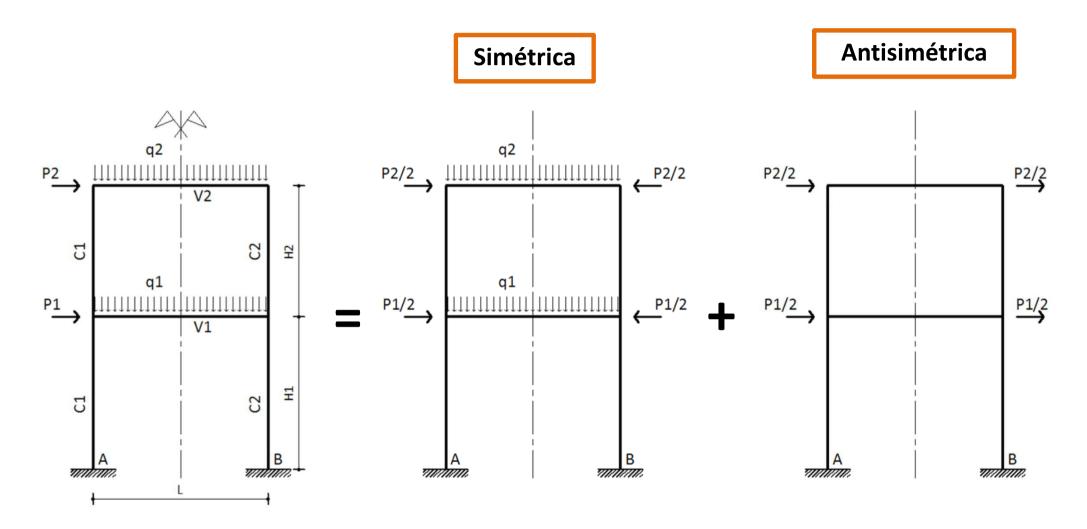
$$\Delta t_i > \Delta t_s$$



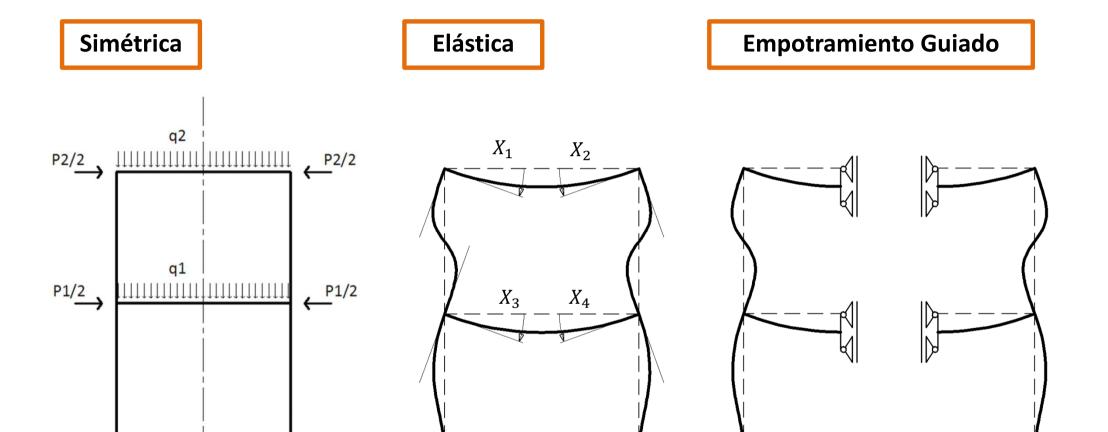
 R_{i0}



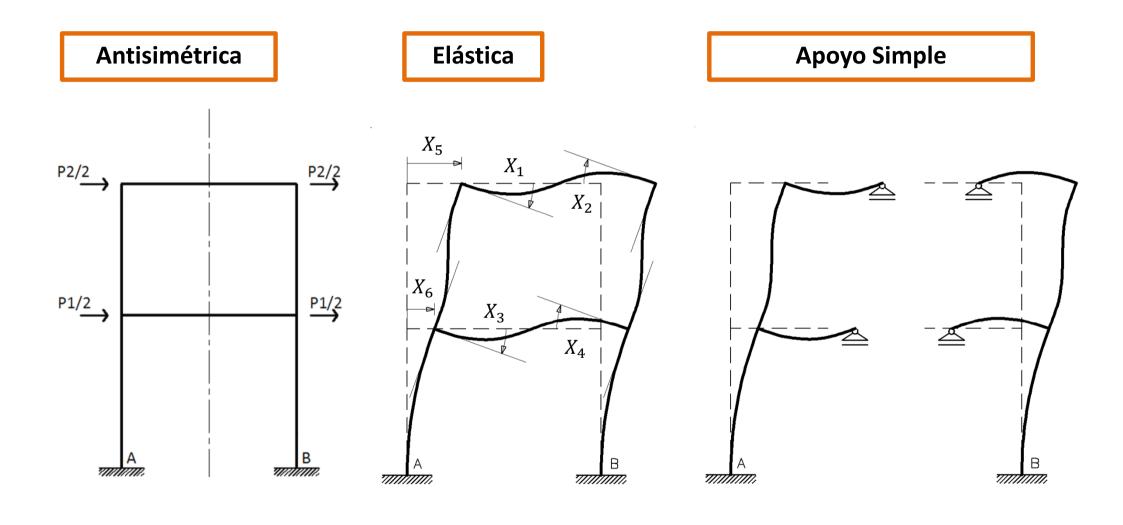
Simetría y Antisimetría



Simetría y Antisimetría



Simetría y Antisimetría

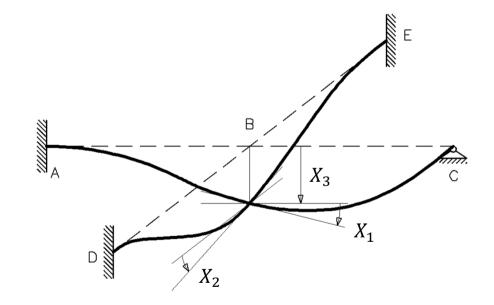


Emparrillados Planos

E. Original

Elástica. Incógnitas

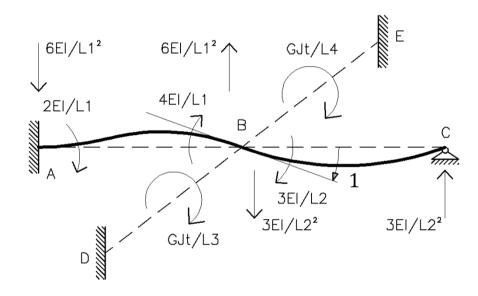




Emparrillados Planos. R_{i0}

Tablas. Vale PIASE SF R_{i0} q1 q2 В

Emparrillados Planos. r_{ij}

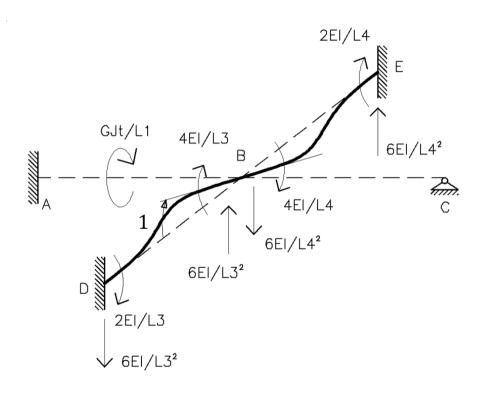


$$r_{11} = \frac{4EI}{L1} + \frac{3EI}{L2} + \frac{GJt}{L3} + \frac{GJt}{L4}$$

$$r_{21} = 0$$

$$r_{31} = -\frac{6EI}{L1^2} + \frac{3EI}{L2^2}$$

X2= 1



$$r_{12} = 0$$

$$r_{22} = \frac{4EI}{L3} + \frac{4EI}{L4} + \frac{GJt}{L1}$$

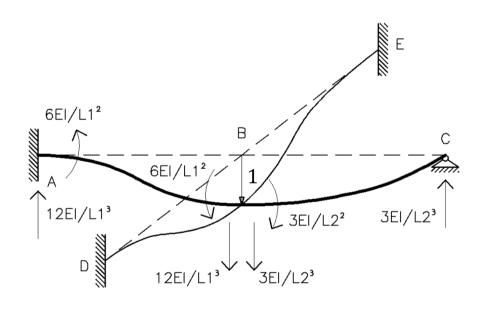
$$r_{32} = -\frac{6EI}{L3^2} + \frac{6EI}{L4^2}$$

Emparrillados Planos. r_{ij}

X3 = 1

Plano vertical, pasa por AC

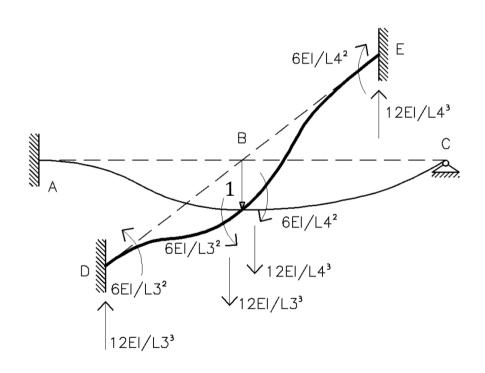
Plano vertical, pasa por DE



$$r_{13} = -\frac{6EI}{L1^2} + \frac{3EI}{L2^2}$$

$$r_{23} = -\frac{6EI}{L3^2} + \frac{6EI}{L4^2}$$

$$r_{33} = \frac{12EI}{L1^3} + \frac{3EI}{L2^3} + \frac{12EI}{L3^3} + \frac{12EI}{L4^3}$$



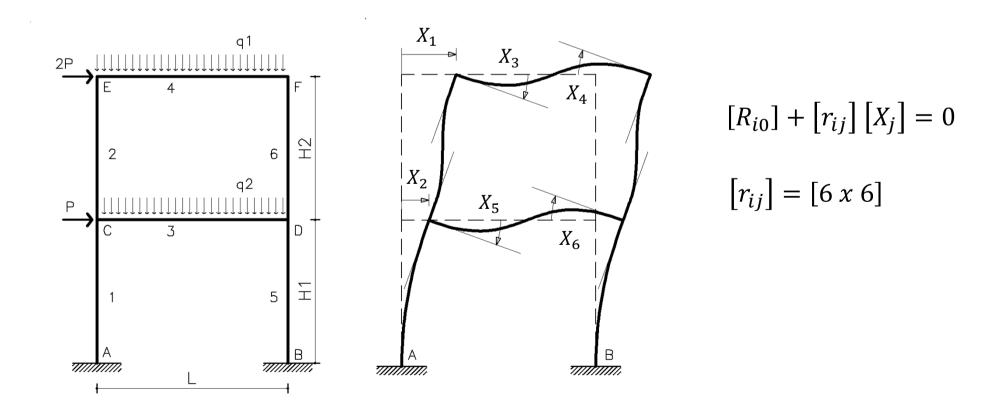
$$[R_{i0}] + [r_{ij}][X_j] = 0$$

Condensación Estática de la Matriz de Rigidez

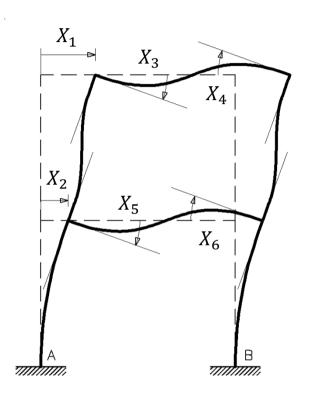
En algunos casos se requiere no considerar algunos grados de libertad de la estructura.

Es el caso de la matriz de rigidez a desplazamientos horizontales.

Para "eliminar" los grados de libertad no deseados se aplica la condensación estática de la matriz de rigidez.



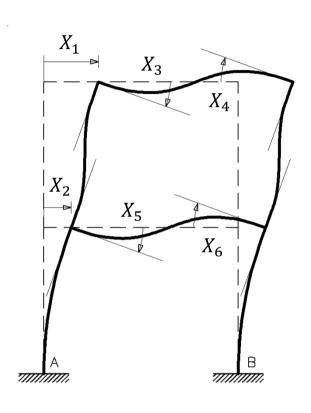
Condensación Estática de la Matriz de Rigidez



$$[r_{ij}] = [6 \times 6]$$

$$\begin{bmatrix} r_{ij} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16} \\ r_{21} & r_{22} & r_{23} & r_{24} & r_{25} & r_{26} \\ r_{31} & r_{32} & r_{33} & r_{34} & r_{35} & r_{36} \\ r_{41} & r_{42} & r_{43} & r_{44} & r_{45} & r_{46} \\ r_{51} & r_{52} & r_{53} & r_{54} & r_{55} & r_{56} \\ r_{61} & r_{62} & r_{63} & r_{64} & r_{65} & r_{66} \end{bmatrix}$$

Condensación Estática de la Matriz de Rigidez



$$\begin{bmatrix} R_{10} \\ R_{20} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16} \\ r_{21} & r_{22} & r_{23} & r_{24} & r_{25} & r_{26} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} r_{31} & r_{32} & r_{33} & r_{34} & r_{35} & r_{36} \\ r_{41} & r_{42} & r_{43} & r_{44} & r_{45} & r_{46} \\ r_{51} & r_{52} & r_{53} & r_{54} & r_{55} & r_{56} \\ r_{61} & r_{62} & r_{63} & r_{64} & r_{65} & r_{66} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\begin{bmatrix} F \\ 0 \end{bmatrix} = \begin{bmatrix} r_{\delta\delta} & r_{\delta\theta} \\ r_{\theta\delta} & r_{\theta\theta} \end{bmatrix} \begin{bmatrix} X_{\delta} \\ X_{\theta} \end{bmatrix}$$

$$[0] = [r_{\theta\delta}][X_{\delta}] + [r_{\theta\theta}][X_{\theta}]$$

$$[X_{\theta}] = -[r_{\theta\theta}]^{-1}[r_{\theta\delta}][X_{\delta}]$$

$$[F] = [r_{\delta\delta}][X_{\delta}] + [r_{\delta\theta}][X_{\theta}]$$

$$[F] = [r_{\delta\delta}][X_{\delta}] - [r_{\delta\theta}][r_{\theta\theta}]^{-1}[r_{\theta\delta}][X_{\delta}]$$

$$[F] = [[r_{\delta\delta}] - [r_{\delta\theta}][r_{\theta\theta}]^{-1}[r_{\theta\delta}]][X_{\delta}]$$

$$[F] = [K_c][X_{\delta}]$$

$$[K_c] = [r_{\delta\delta}] - [r_{\delta\theta}][r_{\theta\theta}]^{-1}[r_{\theta\delta}]$$

BILIOGRAFÍA

- Cervera, Miguel y Blanco, Elena. "Mecánica de estructuras libro 2. Métodos de análisis". UPC 2002. ISBN 84-8301-635-4.
 ISBN Obra completa 84-8301-623-0.
- Belluzzi, Odone. "Ciencia de la Construcción" T I, Ed. Aguilar, 1977. ISBN 84-03-20174-5
- Cudmani, R. "Teoría y Práctica de las Estructuras de Barra"
 EDUNT. 2007. ISBN 978-987-1366-03-3