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1. Introduction. The dynamic fluid pressures developed during an
earthquake are of importance in the design of structures such as dams,
tanks and caissons. The first solution of such a problem was that by
Westergaard (1933) who determined the pressures on a rectangular,
vertical dam when it was subjected to horizontal acceleration., Jacobsen
{1949) solved the corresponding problem for a cylindrical tank containing
fluid and for a cylindrical pier surrounded by fluid, Werner and Sundquist
(1949) extended Jacobhsen's work to include a rectangular fluid container,
a semicircular trough, a triangular trough and a hemisphere, Graham
and Rodriguez (1952) gave a very complete analysis of the impulsive and
convective pressures in a rectangular container, Hoskins and Jacobsen
(1934) measured impulsive fluid pressures and Jacobsen and Ayre (1951}
gave the results of similar measurements, Zangar (1953) presented the
pressures on dam faces as measured on an electrical analog.

The foregoing analyses were all carried out in the same fashion,
which requires finding a solution of Laplace's equation that satisfies the
boundary conditions, With these known solutions as checks on accuracy
it is possible to derive solutions by an approximate method which avoids
partial differential eq‘ua"cions and series and presents solutions for a
number of cases in simple closed form. The approximate method appeals
to physical intuition and makes it easy to see how the pressures arise, It
thus seems to be particularly suitable for engineering applications,

To introduce the mcthod the problem of the rectangular tank is
tfeated in some detail, Applications to other types of containers are
treated morc concisely, The essence of the method is the estimation of
a simple type of flow which is similar to the actual fluid movement and
this simple flow is used to determine the pregsures. The method is
analogous to the Rayleigh-Ritz‘ method used in the theory of elasticity,
and it always overestimates the forces, The method is capable of solving
a wide variety of problems but if it is required that the solutions be in
simple form, which they should to be practically uscful, the number of
problems that can be handled satisfactorily are limited, just as in the

case of the Rayleigh-Ritz mecthod, Acknowledgement ie due C. M, Cheng



for carrying out the calculations in this report,

2. Impulsive Pressures, Rectangular Tank, Consider a rectangular

container ais shown in Figure 1, and at the instant under consideration
let the surface of the fluid be horizontal and let the walls of the container
have a horizontal acceleration d—o in the x -~direction, Let it be re-
quired to find the pressures on the walls of the container due to the accel-
eration (/. Let the fluid have a depth 'h', a length '2.' and a unit
thickness. It is seen that the action of the fluid is similar to that which
would be obtained if the horizontal component of fluid velocity, 4{, were
independent of the y coordinate; that is, imagine the fluid to be con~
strained by thin, massless, vertical membranes free to move in the x -
direction, and let the membranes be originally spaced a distance dx
apart. When the walls of the container are given an acceleration the
membrancs will be accelerated with the fluid and the fluid will also be
squeezed vertically with respect to the membranes, As shown in Figure
2, since the fluid is restrained between two adjacent membranes, the
vertical velocity v is dependent on the horizontal velocity & according

to
~du
v = (h- Y) = (_1)
This is an equation specifying the constraint on the fluid flow, As the
fluid is considered incompressible it follows that the acceleration Vv is
proportional to the velocity v and the acceleration £Z is proportional to

the velocity 4( , and the pressure in the fluid between two membranes is

given by the standard hydrodynamical equation:
i - - eV (2)

where @ is the density of the fluid. The total horizontal force on one

membrane is

P=/;7dy (3)
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Thesge three equations may be written as follows:
= (h-y) 9«
( HH) =
= - cy) A Ly = o (L (L) A
peopf gy = ek

Pkl i)) Bty = ok

The problem is thus solved when the velocity { is known.

The velocity 4 will first be determined formally for purposes
of illustration and will then be deduced in a less formal but somewhat
simpler manner,

The kmetic energy of the fluid is

T= //2/0(6{7‘”'“} dxdy

and the potential energy of the fluid is zero., IHamilton's Principle states

that

.
5[(7—-\// df =0

which for this problem is
t: +f ﬁ

1(0///5(4/ #(%- y/ (“’”} oy ded?

or, integrating w1th respect to v,

Lp[ [ S(Uh » 4(2) dxt

Carrying out the variation, we obtain
o AP 2
Lz ol
J[(2adu ¢ 34 % gK)) dritt
e

T



Intcgrating the second term by parts and then equating the coefficient of
( 84 ) to zero gives the differential equation for £4( :

2
du

dx* —7%“ B (%)

If this equation does not give a sufficiently accurate solution an
improvement can be achieved by subdividing the fluid into three regions
as shown in Figure 3, Instead of equation (1) there will now be the follow-

ing equations:

(b wtotly—y)

M 1 ax

<
H

(hrty =) Th + 4 %4 (6)

<
]

b ~y) 44 A S
3 (j 7};;/-46/1 '/'é;/;

Applying Hamilton's Principle leads to three simultaneous equations in
Af s 4f s Ay . Thus introducing additional degrees of freedom leads
to more complicated mathematics but will improve the accuracy, for it

is clear that in the limit as the subdivisions approach 'dy' the accuracy

becomes perfect,

Let us now derive equation (5) in a more straightforward fashion,
The slice of fluid shown in Figure 2 will be accelerated in the x -direction

if the pressures on the two faces differ, The equation of motion is

_af =-—/7£/IZZ
‘/ﬂ;/;( F_

Using the value of P from equation (4) gives

7 S N
dre FCTC ()

The solution of this equation may be written



U = G cohvs¥® + C sink vsF (8)

The boundar.’y conditions are

U=t a x=*4

which gives

e (9)

From equation (4) we obtain

, y 2] Senht3F
p= —pdk s (F -1 = ;,f}";i’“ 1o

2 . "
P= —pu t stnh?Tf
%5 vy S (11)

The acceleration 4{ thus produces an increase of pressure on one wall

and a decrease of pressure on the other wall of
= ; ¥ . £77)°) 5 L
42 = (014,5(;- 2(7’-/)%3 Mﬁ/’z- (12)

and produces a pressure on the bottom of the tank

e
= —pqh?Z SR VTG
K= CNT (13)

%

The total force acting on one wall is

, ,
P = (az}o//;_ fm/}ﬂ.’?';,_‘f (14)

and it acts at a distancc above the bottom

h=3k (15)



It is seen that the overall effect of the fluid on the wall is the
gsame as if a fraction 2P -~ Z/e/lpdo . of the total mass of the fluid
were fastened rigidly to the walls of the container at a height 3/8h above

the bottom. Calling this equivalent mass M, we have

Mo —_ M Wﬁf‘

(16)

where M is the total mass of the fluid.

The total moment exerted on the bottom of the tank is

~ Z’a«;z/éV’l
- z 3._.—
r//ﬁaxdz = —pd, (1~ _73:/:74_)

Including this we find that to produce the correct total moment on the tank

the mass Mo must be at an elevation

2
_ ¥ [ V33~
@-g‘/{//»&j— %

~7) (15')
Lankid 5

As the tank becomes tall and narrow the following correction
should be made. Consider the tank shown in Figure 4 which has a rigid
horizontal membrane at a distance h below the water surface, The mo-
ment exerted on this membrane by the fluid above is given by the preced-
ing equation., The moment exerted on the membrane by the fluid below is
% (0020 AR Equating these for ’-5 small we obtain ’}% = 1.6. This
means that the preceding equations should be used only for tanks whose
proportions are —?— = 1.6, and if the tank is taller it should be treated as
shown in Figure 4 where the lower portion of the fluid moves as a rigid

body exerting a pressure on the walls of
# =4t
The accuracy of the preceding equation can be checked by com-

paring with the values computed by Graham and Rodriguez (1952). In
place of equation (16) they obtained
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(17)

M, = M[ | - 3 bland [(zne)E4)

haa T3z Wf/}"z—':"—e

Equations (16) and (17) are compared in Figure 5 with the }% =1,6 cor-

rection included. It is seen that the discrepancy between the two is very

small,
For ho Graham and Rodriguez obtained

% [ 8§ tank {["”f’a’gﬁt} W{(zmy}l/t
= h/L — ’éo /7'3(27#//’4’ (‘L L (2rd i })}
2 [/ - { 49%4«—4[(1”#/}”'5} (18)

This is compared with the value of ho given by equation (15') in Figure 6

where it is seen that the agreement is very close,

3. Rectangular Tank. Oscillating Fluid. The effect of the impulsive

pressures is to excite the fluid into oscillations, To examine the funda-
mental mode of vibration consider the fluid to be constrained between
rigid membranes that are free to rotate as shown in Figure 7, The

constraint is described by the following equations,

= L= |
u Z 5/7 (19)
v = Bx (20)

The pressure in the fluid is given by

P = —pi
7x i

='/"z(.e 3(.9)) (21)
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The equation of motion of a slice of the fluid is

/#ﬁf—”d xdx = —p 2225 4
7y 7 =07z 7

or

iy

g

a8 _ 52

P (22)
The solution of this equation, with the boundary conditions appropriate to
the problem, is for sinusoidal oscillations

& = IR rE £
< sint {2{.{

st wl (23)

This specifies the oscillation of the fluid, To determine the
natural frequency of vibration the maximum kinetic energy, T, is

equated to the maximum potential energy, V.

e
T = //Z’p/a‘/-zr’/ W sin'wt oy
5 =7
f/f
vV = /;fﬁ;lzf/h?/uf 2

-l
This gives

b{/z—;}/—z—f W//z—f;g- ‘ (24)

The third mode is found as shown in Figure 8 and similarly for the other

modes, The circular frequencies are then for the nth mode.
z T 4
4t = 4 nyF fant Wz 4 (25)

The exact expression as given by Graham and Rodriguez is

w* =2Z nZ fm%w{:j_

Since %: 1,57 and 7/_2{ = 1,58 there is good agreement,
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The pressure on the wall of the container is from (21)

.3 7 Y
_ YAV &M/z‘”:?— z .
o™ [{3—3-,%2—- W:—?) w g san wt (26)

The total force exerted on the wall is

4
P ;/7«3’ ,;/7 = f‘_—g’_sw".ﬁo giir e & (27)

An equal force is exerted on the opposite wall, The total force of 2P
may be considered to be produced by an equivalent mass, M;, which is
spring mounted as shown in Figure 9, The mass M; will oscillate and
prdduce a horizontal force as follows:

Xl = Al sin «wt

2

Fl sinw t

]

-—M1A1 (78}

Zwt

T %— M]_.AIZ Wz sin

s

Comparing these equations with those for the fluid, we find

8 4 -
Ay = = (28)
My = M FJEL SandyE g (29)

This value of M; exceeds by less than 2% that given by Graham and

Rodriguez,

The elevation of Ml above the bottom of the tank is determined
so that M, exerts the same moment as the fluid. If we consider only the
moment exerted by the fluid on the walla (ncglecting the fluid pressures

on the tank bottom) we obtain

/
N g — + )
('~ 277 78V FIE Zofs) oo
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If the pressures exerted on the bottom are also taken into account we

obtain:

(31)

The corresponding quantities for the higher modes are given by substi-
tuting (’-f) for ,f, noting that only the modes having n=1, 3, 5, ......
exert moments on the tank, _

When the tank is subjected to an earthquake the various modes of
vibration will be excited, The degree of excitation can be computed by
i'eplacing the fluid by the set of masses. M_, My, ..... as shown in
Figure 9 which thus reduces the prohlem to solving for the response of
a number of simple oscillators, An elevated water tank can be treated
in a similar fashion, the fluid merely introduces some additional degree

of freedom.

4, Circular Tank, Impulsive Pressures, Consider a cylindrical tank

as shown in Figure 10 and let the fluid be constrained between fixed mem-
branes parallel to the x-axis, then each slice of unit thickness may be
treated as if it were a narrow rectangular tank and the equations of the
preceding sections will apply. The pressure cxerted against the wall of

the tank is, from equation (12)
g = pi VT (2 -HE) banbi(V35 coro) (32)

The pressure on the bottom of the tank is

. %l Mﬁ’z
= —pa, HF ﬁ% (33)

where €= fF%*x* .

For tall narrow tanks, as shown in Figure 11, when % > 1,6 the fluid
below depth h should be considered to move with the tank as a rigid
body.
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The preceding expressions are not convenient for calculating the
total force exerted by the fluid. The following modification gives very
accurate values for R small and somewhat overestimates the pressure

h

for % large.

Jo = Pl )T Gk 1L —;,f/;/j (036 (32)

From this expression the total force exerted on the walls is

Zankh P
/’__

(33")

/717«2 w;a Rtocly = —pay TR

from which it is seen that the force exerted is the same as if an equivalent

mass Mo were moving with the tank, where

ZanAV3 Ky

M_ = M e f/{,/ (34)

This expression is compared in Figure 12 with that computed by Jacobscn
(1949) and it is seen that the agreement is very close,
To exert a moment equal to that of the fluid pressure on the wall

the equivalent mass M_ should be at a height above the bottom { % =1,6)
)
h=h% (35)

If the moment due to the pressures exerted on the bottom of the tank are

included the equivalent mass M_ must be at a height

h(m“ ’/3/4 ﬂ)} 136)

to produce the proper total moment on the tank., This agrees well with

that computed by Jacobsen as shown in Figure 13,

' 5, Circular Tank., Oscillating Fluid. To examine the first mode of

vibration of the fluid consider constraints to be provided by horizontal



=g

ol

Exdet | -

Pier

3

o2

L
"
FIGURE 13

a9

08}

e L T

a7

F.}lmd
Exact

]

a5

'\\

03

N\

a2

o)

YA 3
ha

FIGURE YL

16



17,

membranes free to rotate, as shown in Figure 14, Let «, v, w, be the
%, y, z components of velocity and describe the constraints on the flow

by the following equations

Aub) b2 v (37)

X 7Y

v = xg (38)
= __(Ju ,_37; {39)

These equations state that all the fluid at a given x, y moves with the same
velocity v, and the fluid at a given x moves with a uniform « . From

these equations we have

4~ 2
ox
The total kinetic energy is thus

7= i(z//—//fzézf‘éz(gejffx-é////t‘ zz.._)/z//xdyr/i
z_p/(/.[ 8 rK(4 )];/7

whezre

. +R 2 :
where I =/XLK//¢ A/= Z/Z,L(/;Xdﬁf)?//‘—g—/) dx
2 —R R
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The potential energy of the fluid is

By Hamilton's Principle

5/?r~y/p/f -0
5 Uy -
375’/”///46‘1*/5’5/@47
Z‘; o

19,

_/5;24}/5‘

5 4 , a
TS (56 28 )56 andt ¢ fo(ki( L) + 5T, 4) s d-o
J s 7 y Y/ ,

This gives the two equations
6

- = p
Iy* K

Y (%2) ra,4 =
From which we obtain for free vibrations

=4

(-]

f/é%/;/(—{{/z

w"—:j/k.f_i- W/g/z

. 7%
_LM 7\73 7 s a0

(40}

(41)

(43)

It will be observed that this analysis is quite general and applies to any

cylindrical container for which the x, y axes are axes of symmetry.

For the circular tank
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o
L= K= 27 R

- 2/Z tantly3£) (44)

The exact solution as given in Lamb's ""Hydrodynamics'" is

= ,/g. 0566 T W/aﬂ%/f/—g)

which agrees within 1% with the approximate solution.

The pressure in the fluid is given by

%4; =3 —-‘Ol;f %% = —-(0/4'(—
= —(o}_)_é;'. [/’Z@p/é (45)
x
Q= /éz 7
K

For the circular tank this ir

re-el L(% -é-,éf)?

(46)
28 = - 27’“"”’ )éa})’//owf
7Y A 5/414//—4
The pressurc on the wall is
= —p2 Ry m__f?)cgve

The regultant horizontal force exerted on the wall is

F': FW /? f/f/l’ltdz‘ '(48)
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This force may be considered to be produced by an equivalent mass M1
{see Figure 9) oscillating in a horizontal plane with motion

X, = A sin wt

he N5 £ adyG (49)

AV —
T /g__;gw‘/%glg (50)

In order that M1 exert the same moment as the fluid pressures on the

wall, it should be at an elevation above the bottom of

/ 13
4 ——A//"‘ t — (51}
£ 57 2 =5
ﬂ——;?_é Mf :?,‘;? V—g% Frah %_171

j}‘% 152)

The pressure exerted on the bottom of the tank is
- ﬁz'
24/3 L
= —pw VI =
% P ) ek | R
70 M/{;A’

This exerts a moment about the z-axis

_/'9_%2— f/"/?ffwz
Fa - ﬂ}%'/é??é

Including this, the correct total moment on the tank is produced when

ZW; -—-'g ‘—7—51 (53)
27 A oy A7 4 '
K;— s R 4

4= 47—

6. Elliptical Tank. For the elliptical tank, as shown in Figure 15, the

impulsive pressure on the wall is given by equation (12)

= pat(3-t() 13 tank 5 £ (54)



with a similar expression for acceleration in the direction of the y-axis,
For oscillations of the fluid, equations (37) through (43) apply

and we obtain for the first mode, about the y-axis

. _ PR e
wh= 3 flepy T b (52)

For g'- small this reduces to

w? = 4 = /5 y
we

and comparing with the exact solution (Jeffrey, 1924) the following values

are obtained

b A A
_a_ (Approx. ) (Exact)
1 1.84 1,84
0.6 - 1,88 1.87
0 1.90 1.89

7. Composite Tanks, Symmetrical tanks formed of composite shapes

such as that shown in Figure 16 will have impulsive pressures given by
equation (12) and oscillations as de scribed by equations (37) and (43). The

tank shown in Figure 16 has
3 z
_ 2RA %/ ¢ L ¥
I\;"'—"/z ’L”-’P/#*Eﬁ’“ar))
(56)

K, = R4 ﬂ233({’;)57:-0.627§/£—A377((-’f/3#0./9}w;ﬂ/3{?¢- +a.a/aa)l

8. Circular Cylinder Surrounded by Fluid., Consider the rigid cylinder

shown in Figure 17 with flow constrained by radial membranes and by
vertical membranes at r and 1 + dr from the center. The vertical

velocity is given by

V(b)) (5 +#) (57)
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P
The kinetic energy of fluid in a filament of width r_  d®

T= Jftesatrrdidy o b
= [0 { 0" (3 +2) 't i gty o

Applying Hamilton's Principle vields the equation

2

L (A rpu =o (58)

The solution is

Z': ~ 23

-5 LE 4o
U=y e "/—-——-—;",’} (59)

The pressure in the fluid is given by

) _ .
5% =Y ~v3 £
. _ € 60
p= -f%ﬁ(;— 3'/4//3—/‘7*1/3_ (60)
%5

If the cylinder is given an acceleration []a in the x ~direction then

.

é{,*—'ﬁ&ay,g

(-4

and the pressure on the cylinder is

p = —pll 3h(F-20L) cme (61)

‘The resultant force on the cylinder in the x -~ direction is

“//f mag{%fy (62)

As seen in Figure 17, this imposes a special constraint on the flow. If
this artifice is not used one obtains a Bessel function of the first order,
imaginary argument (K,), instead of Equation (59), which is a very good
approximation to Kj.
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The moment exerted on the cylinder at height vy, is

- Loy TE 3_ 1y
Mom, = Z/O‘Vaffﬁ Y% %) (63)

From (61) and (62) it is seen that the action of the fluid is the same as

if an equivalent mass Mn were rigidly fastened to the cylinder at ho,

where
4 4
%;; = _ % (64)
A é/é- 23
4 = 24 (65)

The preceding formulas should be used only for h/r, = 1.6, When
h/r0 exceeds this the fluid below the level y/r0 = 1,6 should be con-
sidered to have the regular two-dimensional flow past the cylinder for

which
ﬁ =ﬂﬁp L oo B (66)

and the force for unit length of cylinder is

P per ft, = "/0%//'4;2

For this range, (—ll > 1.6),

r
= —,ag' sk (/—0.832 £ )

‘ 67
4 / — 166 % f‘”3/%/z/2 (67)
2

4

/-0 832 %
%4

A comparison of the foregoing approximate values for Mo and ho with

Jacobsen {1949) are shown in Figures 12 and 13,
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9. Rectangular Dam. For the rectangular dam with sloping face, as

shown in Figure 18, the impulsive pressures are given by the following

equations:
v = (hY)ZL picord
ax
Y a7
U = Y, &
. _ . (68)
b, = PAA(E-2(}))5 ~ L cnp)
2 - ik 2]
The resultant horizontal force on the face of the dam is
_ . 2 1. Ay |
S =phH 555 /,/g = (69)

When the face of the dam is vertical FH = 0,577 PﬁoHZ which is
slightly larger than the 0, 543 (0 ll,Hz given by Westergaard (1933),
Equations (68) and (69) are suitable only when ¢ > 45° (see Figure 20},
For ¢ < 45° a different approximation must be used, as given below,

When @< 45° the fluid should be divided into two regions as
shown in Figure 19, where a rigid membrane lies along the x-axis and
has a horizontal acceleration ¢ such that the pressure force on each
side of the membrane is the same., In the region to the left of the x~axis
the following equations describe the flow,

Fdee

v=(4y) S5 *F Cu cwf

(70)

? - —
% - ev

Applying Hamilton's Principle to the total kinetic energy in this region

leads to the equation

2 i e 2y, - s



FIGURE 18




The appropriate solution is

W=t f1-c W‘)/f )

e s
= Vristans —/
The pressure in the fluid is
STy 252 e Y EN oy e
i :,—_ﬂ%/?}"g}/;//-f—;;;}/j) +CY (72)
The total pressure force on the membrane along the x~axis is
7 €
. _ Y x %
/9—" ;;_f! Adx = F”/‘é,,,% = (1-c¢ ,mn;))/“") *22‘2‘«%’ cm?}ﬁn)
a

In the region to the right of the x-axis

wrﬂf—g/%’ ;L/»-/w%.

Y s A R
F= F/—;—/% f-_;fzzrw//?

The equation of motion is

2
7/,.'-—” - —‘-;( & T
o xt %
ey (74)
U = 4 &

The normal force at x = 0 is
— . 2 ’_/‘ — Ce
o= /‘4/_//5 —z?/

Equating this to equation (73) and solving for C, gives

27,
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e
| Az
28 o # coog — €228 A

Sk A2
=L _ cord
p=(% ~ )

The pressure on the inclined face is thus
2 o .
= -{,vq /// "{/;}/7‘::,)4 //——cjm// +C 5 cwpf/ (75)

where éo is the horizontal acceleration of the inclined face, The

resultant horizontal force exerted against the inclined face is

F= il (e Sy)rferf e

Equations (75) and (76) are compared in Figures 20 and 21 with
the corresponding quantities calculated by the relaxation method, It is
seen that the agr'eement is good except that the pressures are overesti-

mated at the toe,

10, Trapezoidal Dam., For a trapezoidal shape as shown in Figure 22

the formulas of the preceding section (with variable h} may be used for
the pressures at various sections across the width of the dam, .This will
somewhat overestimate the force on the dam. For narrow wedge-shaped
forms the error increases and better results are obtained by the following
procedure, Consider the constraints on the flow fo be as shown in Figure

23 and as described by the following equations:

@ = 2035/ = YN/
e = ——34 a??ra ,é’/z — t ceod (77)
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w5
,le f_{é (77)
ax

Applying Hamilton's Principle to the kinetic energy gives:

A A -
g F « =0

= area of dam face

K = .Zo/j [/‘,f/‘z/;//f?‘i,z] e
_//Pffz

>

4 =4 e

The pressure on the face is
4 2 ,
=it VZ S [ L * 8 -
2. /a%/;é/é/ddz ;A_ZZZT(J/Ja/z fg(z /i/’m/} (78)

The resultant horizontal force exerted on the dam is
/:' __/0‘-4 wa/d /f/; %—/KE—-.QZAQ/{ m// (79)

For the tﬂamyﬂc this is,

'—/“'2 Vel +22 2 }ﬁ"—f“j)

57% ¢

Figure 24 shows the force on a vertical triangular face as determined by
(79) and by the application of (69), together with the value given by the
exact solution. From this one can estimate the error involved in apply~
ing the equations to trapezoidal sections, Equations (78) and (79) are

applicable only for ¢ > 45
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are three regions of the fluid and the flow is described by

U = (/- % in A

v = (h-y)24 4 4, 24 in B
X X

in C

]

(<3

‘hox) 34
These lead to the following equations of motion.

s L2
L AE g =0

/ (4

3 .p/,x'z .
3 2 b

LT AU A A4 — 4oy =0

3 /xt Zz /X"
J 2 2

by AU o A4 TG o 44 TG _ 4oy =

= 2 ﬁ/ﬂ'z T =AYt

3 2 ly

o/x

The pressures and forces on the faces of the dam are given by

# = 4y ~£3) ;ﬁi in A

4 .
= - é %/Zf;—

‘ = o/

Ny

32.

Stepped Dam. A stepped dam as shown in Figure 25 may be treated

by applying equations similar to equations (1) to (4). In this case there

(80)

(81)



=
A 2
hr ,ﬁ1 ‘t, ‘ 1{1 L"
| 7 =
+ - L
AR T
Ly
FIGURE 25
1
h

L]
G\
-

FIGURE 26
Stepped dam

33



In the particular case where hl = h2 = h we obtain

- &
ﬁz-

&g = 4 e - 28 X

-aF X

' ~2.8F ~z80
A =/7/d.f413 e 4 gz e ~2.42 45 &€

—~oFr2 X -2

-3 -z2.57 72
= Bl e F e hry 273

letopra zA5 Wﬂ//:‘f A2.854 = ,%/e Jj/—z,,:z/'

Z.5 éo;/ﬁf—' 23542 = .44/.2

in B

in C
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The following numerical values are obtained for the horizontal forces:

j. Pl P2 Pl + P2
. 2 . 2 ’ 2
h PM_h M h (M, (2h)
0 0. 805 1,449 0.564
0.2 0.752 1.312 0.512
0.4 0,707 1.186 0.478
0.6 0.681 1.16 0.460
0,8 0.657 1.12 0,445
@ 0.577 0.936

A graph of the pressures is shown in Figure 26,

12, Segmental Dam, If the dam face is stepped as shown in Figure 29,

and the angle ¢ is not less than 45° satisfactory results are obtained by

the following procedure,

72 =) Chn- 27”/"'%/7%”’7’/

N

These lead to the following equations of motion

7% ; 2
g - g = — R G
A % < PR
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24 >
e ‘ e
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A= B= 22
él//%3;f/”¢/} /*3;’:I/Jr¢
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These are satisfied by solutions of the form
w7 ser A

4 =Kk Z “ =A €

which give

= ZES, (1227 2D )
2/ 7-80) T

When these solutions are compared with those obtained experimentaily

by Zangar, there is a discrepancy not quite as large as that given by

equation (68).

i3, Flexible Wall, The foregoing analysis may also be used to estimate

the effect of wall flexibility on the water pressures, Suppose water is

retained by a vertical cantilever wall which is sufficiently stiff so that

wave propagation in the wall may be neglected, Using the same method

of analysis and the notation as shown in Figure 27 the following equations

apply for a sinusoidal vibration,

Horizontal displacement = /(/?7} e

- y
v =24 [ Sty sl
7



Applying Hamilton's Principle we obtain
Ny’
-————‘/i{ f—(—g & =0
ax
-2
“H = é/,_, é_ g
%4 z
7= [P Ay
o

4. 4 2,
= f’?y% /

The pressure on the wall is
2 4 ¢
— ; < ; N
72 =% W/;//ffﬂ/f'// 5w
4 3
and the resultant force on the wall is

S Y
FmrhiZ [[ ] 57 ps et

For a wall of uniform cross-section, if we approximate the

actual pressure by £ w7 Z/TI.;. we obtain for f( g, )

f(’j) = /é{,(/*‘ﬁ fﬁ;f/)»f{f;f

where
3
/~ )
A =
Ny
P = total force on wall,

The pressure and force are computed to be

37.
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_ . /=GB L8O " S ez’ o T
%"——ﬂA”’w /fz.;‘e;;dfzé,z/x‘/ﬂ /"/C; 24’//*{7}pﬂ”i{';

P = 44 wf/:m’ﬂ‘ (/—oz25)
27 / F 2453 ,‘—/443/6’“

This last equation may be written

73K = YIS (m oz )
pet

IA2, 458 4/ 630

o ¥
/{zg) zf{'z?_f
P ws

For a given wall and hase acceleration, that is, a given K,
this equation gives the appropriate value of ﬁ . Figure 28 gives a

graph of K wvs. e and also shows how the total force on the wall is

reduced by wall flexibility,
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