
6-1. Introduction
The mechanics of hydraulic fracturing is a convenient
description of the processes and mechanisms that are
important to fracturing technology. Mechanics gener-
ally refers to an engineering discipline that is con-
cerned with the mechanical properties of the material
under consideration and the response of that material
to the physical forces of its environment. Hydraulic
fracturing is complicated because it involves four dif-
ferent types of mechanics: fluid, solid, fracture and
thermal. In fracturing, fluid mechanics describes the
flow of one, two or three phases within the fracture;
solid mechanics describes the deformation or opening
of the rock because of the fluid pressure; fracture
mechanics describes all aspects of the failure and
parting that occur near the tip of the hydraulic frac-
ture; and thermal mechanics describes the exchange
of heat between the fracturing fluid and the forma-
tion. Furthermore, the responses are coupled and
depend on each other. To develop tools for the design
and analysis of a process as complicated as hydraulic
fracturing, it is necessary to build models that
describe each of the responses sufficiently. This chap-
ter describes the history and technology associated
with these models.

A model of a process is a representation that cap-
tures the essential features of the process in a manner
that provides an understanding of the process (Star-
field et al., 1990). The construction of the model
depends on the type of question it is required to
answer. The three main types of models are physical,
empirical and mechanistic (or analytic). Each has
advantages and disadvantages, which are outlined 
in the following.

• Physical models are scale models of actual
processes. The primary advantage of such models
is that, by definition, they incorporate the correct
assumptions of material behavior. For example, if 
a fracturing fluid is pumped between a pair of par-

allel rock faces with roughness comparable to frac-
tured rock, no assumptions need to be made about
how the fluid behaves rheologically. Instead, how 
it behaves is simply observed. Unfortunately, phys-
ical models are usually expensive to build and use.

In addition, there are major issues of scale-up if
the model is significantly smaller than the actual
structure. For example, in a model of a bridge, the
weight is proportional to the scale factor cubed,
but the length of any element is proportional only
to the scale factor. Thus, even elements that do 
not fail in the model may fail in practice. Never-
theless, scale models are useful provided an appro-
priate dimensional analysis is performed and if the
scale factor is not too great (de Pater et al., 1993).

• Empirical models are developed by observation.
Typically, laboratory or field data are gathered and
combined to create design charts or empirical
equations, which can then be used to predict or
design future cases. For example, if 100 wells in 
an area have been fractured with different-size
treatments, 6 months of cumulative production
could be plotted against treatment size. Provided
the scatter is not too great, the production response
from a new treatment can be predicted from the
historical data.

The advantages of empirical models are that no
assumptions need to be made about any behavior
and there is no scale effect. The primary disadvan-
tage is low confidence in extrapolation outside the
range of the data. The 100-well data set may be
useful in the same field, even for treatments slightly
larger than any in the data set, but is most likely
irrelevant in another area. For an empirical model
to be useful, the data must be arranged in terms 
of suitable dimensionless variables, so that it is 
as general as possible. For example, the 100-well
data set may be useful in a different area provided
the results are normalized with respect to perme-
ability and pay thickness. To obtain the right
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dimensionless quantities, however, it is generally
necessary to have at least some understanding of
the mechanics of the physical process being modeled.

• Analytical models are mathematical representations
of a physical reality in which the governing mech-
anics are stated in the form of equations. The equa-
tions typically define both physical laws, such as
conservation of mass, and constitutive laws, such 
as elasticity. The former are inviolable laws of
nature, whereas the latter are hypotheses of physical
behavior that require laboratory work to confirm
that they are applicable and to determine the con-
stants in the model.

The major advantages of analytical models are
that they may be extrapolated outside the range in
which they were developed, provided the various
component laws still hold. Thus, if the elastic con-
stant of a spring has been measured, the force
required for a given displacement of the spring can
be predicted, even for displacements that have not
been tested. If the spring is cut in half, the behavior
of each half can be predicted. Perhaps the greatest
limitation of analytical models, however, is the
assumptions that are made in developing the model.
For example, it is typically assumed that rock is
homogeneous, yet there are many cases where it is
fractured or otherwise variable from point to point,
and this may not be accounted for in the model.

A simulator is a computational implementation of 
a model. Many analytical models are tractable only if
they are solved numerically, unless a large number of
approximations or simplifying assumptions are made.
With the widespread availability of computers, it is
now generally accepted that better answers may be
obtained by numerically solving a more general model
rather than by solving a simplified model exactly.
Nevertheless, it must be emphasized that useful rules
of thumb and relations between quantities can often
be developed much more easily using analytic solu-
tions, which provide insight into the relations between
parameters affecting the results for more complex
conditions. Some of the simplest rules would probably
not be “discovered” from a numerical solution without
a great deal of effort, if at all. An extensive presenta-
tion of analytic-based solutions and approximations
for the mechanics of hydraulic fracturing was provided
by Valkó and Economides (1996).

Four important reasons for developing and using
models of hydraulic fracture treatments are to

• perform economic optimization (i.e., determine
what size treatment provides the highest rate of
return on investment)

• design a pump schedule

• simulate the fracture geometry and proppant place-
ment achieved by a specified pump schedule

• evaluate a treatment (by comparing the predictions
of a model with actual behavior).

In each of these cases, the objective is a quantitative
estimate of either the volume of fluid and proppant
required to create a fracture with a desired conduc-
tivity and geometry or the geometry produced by a
specified pump schedule.

6-2. History of early hydraulic 
fracture modeling

6-2.1. Basic fracture modeling
Sneddon (1946) and Sneddon and Elliot (1946) devel-
oped the solutions for the stress field and pressure
associated with static pressurized cracks. They
showed that the width of a static penny-shaped (i.e.,
circular) crack of radius R under constant pressure is
given by the expression

(6-1)

which describes an ellipsoid, and the volume of the
crack V by

(6-2)

where the net pressure pnet is defined as the pressure in
the crack minus the stress against which it opens, ν is
Poisson’s ratio, and E is Young’s modulus. Sack
(1946) showed that the pressure required to extend a
crack of radius R under constant pressure is given by

(6-3)

where γF is the specific fracture surface energy.
Equations 6-1 and 6-2 are derived using the theory 
of linear elasticity, and Eq. 6-3 is derived using linear
elastic fracture mechanics. The basis of Eq. 6-3 is that
the energy required to create the surface area when a
crack is propagated must equal the work done by the
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pressure in the crack to open the additional width. A
more detailed discussion of fracture mechanics is in
Chapter 3. Combining Eqs. 6-2 and 6-3, Perkins and
Kern (1961) showed that the pressure for propagation
of a radial fracture is

(6-4)

Thus, if the fracture volume is known, pnet can be
calculated and Eq. 6-2 used to determine R. For exam-
ple, if the injection rate qi is constant, fluid friction in
the fracture is negligible, and there is no leakoff, Eq.
6-4 can be substituted into Eq. 6-2 with the volume 
V replaced by qit as

(6-5)

where t is the time. Rearranging and solving for R,

(6-6)

Sneddon and Elliot (1946) also showed that for
fractures of a fixed height hf and infinite extent (i.e.,
plane strain), the maximum width is

(6-7)

and the shape of the fracture is elliptical, so that the
average width w— = (π/4)w. The term E/(1 – ν2) ap-
pears so commonly in the equations of hydraulic frac-
turing that it is convenient to define the plane strain
modulus E´ as

(6-8)

which is used for this chapter. (A plane strain defor-
mation is one in which planes that were parallel
before the deformation remain parallel afterward. This
is generally a good assumption for fractures in which
one dimension [length or height] is much greater than
the other.)

6-2.2. Hydraulic fracture modeling
Several introductory and key papers published between
the late 1950s and early 1970s that developed the
foundation of hydraulic fracture modeling approach
the problem by making different assumptions concern-

ing the importance of different aspects. Carter (1957)
neglected both fluid viscosity effects and solid
mechanics and concentrated on leakoff. Khristianovich
and Zheltov (1955) made some simplifying assump-
tions concerning fluid flow and focused on fracture
mechanics. Perkins and Kern (1961) assumed that
fracture mechanics is relatively unimportant and
focused on fluid flow. These three basic models are
each described in some detail in following sections.

The first work on hydraulic fracture modeling was
performed by several Russian investigators (summa-
rized by Khristianovich et al., 1959). The first refer-
ence in English is Khristianovich and Zheltov’s (1955)
paper. The other major contribution was the work of
Perkins and Kern (1961). These models were devel-
oped to calculate the fracture geometry, particularly
the width, for a specified length and flow rate, but did
not attempt to satisfy the volume balance. Carter
(1957) introduced a model that satisfies volume bal-
ance but assumes a constant, uniform fracture width.
This model was used into the late 1970s for determin-
ing volume balance, with more realistic width profiles
from the aforementioned geometry models to ensure
that the fracture width was sufficient for proppant
entry. This approach was made obsolete by extensions
to the Khristianovich and Zheltov and Perkins and
Kern models developed by Geertsma and de Klerk
(1969) and Nordgren (1972), respectively. These two
basic models, generally known as the KGD and PKN
models after their respective developers, were the first
to include both volume balance and solid mechanics.

The PKN and KGD models, both of which are
applicable only to fully confined fractures, differ in
one major assumption: the way in which they convert
a three-dimensional (3D) solid and fracture mechanics
problem into a two-dimensional (2D) (i.e., plane strain)
problem. Khristianovich and Zheltov assumed plane
strain in the horizontal direction; i.e., all horizontal
cross sections act independently or equivalently, and
all sections are identical (Fig. 6-1), which is equiva-
lent to assuming that the fracture width changes much
more slowly vertically along the fracture face from
any point on the face than it does horizontally. In
practice, this is true if the fracture height is much
greater than the length or if complete slip occurs at the
boundaries of the pay zone. Perkins and Kern, on the
other hand, assumed that each vertical cross section
acts independently (Fig. 6-2), which is equivalent to
assuming that the pressure at any section is dominated
by the height of the section rather than the length of
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6-4 Mechanics of Hydraulic Fracturing

the fracture. This is true if the length is much greater
than the height. This difference in one basic assump-
tion of the models leads to two different ways of solv-
ing the problem and can also lead to different fracture
geometry predictions. In the case of the PKN model,
fracture mechanics and the effect of the fracture tip are
not considered; the concentration is on the effect of
fluid flow in the fracture and the corresponding pres-
sure gradients. In the KGD model, however, the tip
region plays a much more important role, and the fluid
pressure gradients in the fracture can be approximated.

• Derivation of Perkins and Kern model 
of a vertical fracture

Perkins and Kern (1961) assumed that a fixed-
height vertical fracture is propagated in a well-
confined pay zone; i.e., the stresses in the layers
above and below the pay zone are sufficiently large
to prevent fracture growth out of the pay zone.
They further assumed the conditions of Eq. 6-7, as
shown in Fig. 6-2, that the fracture cross section is
elliptical with the maximum width at a cross section
proportional to the net pressure at that point and
independent of the width at any other point (i.e.,
vertical plane strain). Although Perkins and Kern
developed their solution for non-Newtonian fluids
and included turbulent flow, it is assumed here that
the fluid flow rate is governed by the basic equation
for flow of a Newtonian fluid in an elliptical section
(Lamb, 1932):

(6-9)

where p is the pressure, x is the distance along the
fracture, and µ is the fluid viscosity.

Substituting Eq. 6-7 into Eq. 6-9, replacing the
flow q by one-half of the injection rate (qi/2) and
assuming that the flow rate is constant along the
fracture length (which implies that both leakoff and
storage in the fracture resulting from width increases
are neglected) obtains

(6-10)

Integrating this expression along the fracture
half-length L obtains, with pnet = 0 at the fracture
tip,

(6-11)

from which Eq. 6-7 implies that

(6-12)

In oilfield units (with qi in bbl/min and w in in.),
the width at the wellbore (x = 0) is

(6-13)

For this model, the average width in the fracture
is π/4 (about 80%) of the wellbore width. With a

Figure 6-1. KGD fracture.
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Newtonian fluid, the model width is independent of
the fracture height.

Perkins and Kern (1961) noted that the average
net pressure in the fracture would greatly exceed
the minimum pressure for propagation, calculated
by an equation similar to Eq. 6-4, unless the fluid
flow rate was extremely small or the fluid had an
unrealistically low viscosity. Thus, under typical
hydraulic fracturing conditions, the pressure result-
ing from fluid flow is far larger than the minimum
pressure required to extend a stationary fracture.
This justifies neglecting fracture mechanics effects
in this model. Furthermore, they pointed out that
the fracture would continue to extend after pump-
ing stopped, until either leakoff limited further
extension or the minimum pressure for fracture
propagation was reached.

Several important observations concern this
solution:

– assumption of plane strain behavior in the verti-
cal direction

– demonstration that fracture toughness could be
neglected, because the energy required to propa-
gate the fracture was significantly less than that
required to allow fluid flow along the fracture
length

– assumption that leakoff and storage or volume
change in the fracture could be neglected

– assumption of fixed height

– no direct provision of fracture length as part of
the solution.

• Inclusion of leakoff

Although Perkins and Kern (1961) suggested that
their paper could be used in practical applications,
they neglected both leakoff and storage of fluid in
the fracture. They assumed that some other method
would be used to calculate the fracture length, such
as that proposed by Carter (1957).

Carter introduced the basic equation for leakoff,
which is discussed in detail in Section 6-4. The
leakoff velocity uL at a point on the fracture wall is

(6-14)

where CL is the leakoff coefficient, t is the current
time, and texp is the time at which point uL was
exposed. Carter introduced a simple mass balance:

(6-15)

where qL is the leakoff rate over the whole fracture
and qf is the volume rate of storage in the fracture.
If the fracture width w– is assumed to be constant in
both space and time, Eq. 6-15 can be written as

(6-16)

where Af is the fracture face area. Carter showed
that Eq. 6-16 can be rewritten as

(6-17)

Substituting Eq. 6-14 into Eq. 6-17 and using
Laplace transformations, he showed that this could
be solved to obtain

(6-18)

where

(6-19)

The fracture wing length L as a function of time
is then obtained by dividing the area by twice the
fracture height. Harrington and Hannah (1975)
showed (see Sidebar 6A) that Eq. 6-18 could be
simplified with little loss of accuracy to

(6-20)

which is much easier to work with for simple cal-
culations.

Designs were performed by iterating between the
Carter technique to obtain the fracture length as a
function of time (Eq. 6-19) and the Perkins and
Kern model to determine the width (Eq. 6-13) until
a consistent solution was found, and then Eq. 6-11
was used to determine the pressure.

Nordgren (1972) added leakoff and storage with-
in the fracture (resulting from increasing width) to
the Perkins and Kern model, deriving what is now
known as the PKN model. To add storage and
leakoff, the equation of continuity (i.e., conserva-
tion of mass) is added to the set of equations (6-7
and 6-9) used by Perkins and Kern:

(6-21)
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where q is the volume flow rate through a cross
section, A is the cross-sectional area of the fracture
(πwhf /4 for the PKN model), and qL is the volume
rate of leakoff per unit length:

(6-22)

where uL is from Eq. 6-14. The cross-sectional area
A is not Af, the area of the fracture face. Substi-
tuting for pressure in terms of width, similar to the
method of Perkins and Kern, Eq. 6-21 can be writ-
ten as

(6-23)

Nordgren solved this equation numerically in a
dimensionless form to obtain the width and length
as a function of time. The dimensionless time tD

used in the solution is defined by

(6-24)

Dimensionless time tD is a stronger function of
the leakoff coefficient (CL

10/3) than time t1.
Because Nordgren’s solution was ultimately

obtained numerically, it is not possible to express 
it analytically. However, some useful approxima-
tions to the fracture geometry for the limiting cases
of high and low efficiency can be obtained (see
Sidebar 6B). These expressions provide useful
physical insight into the behavior of fractures. For
example, the equation for length when leakoff is
high (i.e., low efficiency) indicates that the length
is determined simply by a mass balance between
leakoff and flow into the fracture; i.e., the length
increases just fast enough for the leakoff rate to
balance the inflow. Analytical extensions to the
PKN model that include power law fluids and
explicit consideration of the efficiency between the
bounding values of 0 and 1 can be obtained.

It is important to reemphasize that even for con-
tained fractures, the PKN solution is valid only
when the fracture length is much greater than the
height. Typically, if the height is less than about
one-third of the total (tip to tip) fracture length, the
error resulting from the plane strain assumption is
negligible.
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6A. Approximation to the Carter equation for leakoff

Equation 6-20 was derived by assuming that the exposure
time texp in Eq. 6-14 is equal to t/2, for which integration gives
the volume lost per unit area of the fracture face as

(6A-1)

Harrington and Hannah (1975) introduced efficiency as:

(6A-2)

where Vf is the fracture volume, Vi is the volume of fluid
injected, and VL is the leaked-off volume, which in terms 
of Eq. 6-20 becomes

(6A-3)

or

(6A-4)

This approximation allows the efficiency η and S in Eq. 6-19
to be related by

(6A-5)

or

(6A-6)

which also shows that S tends to 0 as the efficiency tends 
to 1 (negligible fluid loss) and that S tends to infinity for zero
efficiency (i.e., negligible fracture volume relative to the fluid-
loss volume). An improved approximation for √2t is in
Chapter 9 (i.e., g0√t, where g0 is within 5% of 1.5 and varies
with efficiency).
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6B. Approximations to Nordgren’s equations

Nordgren (1972) derived two limiting approximations, for
storage-dominated, or high-efficiency (tD < 0.01), cases and
for leakoff-dominated, or low-efficiency (tD > 1.0), cases, with
tD defined by Eq. 6-24. They are useful for quick estimates of
fracture geometry and pressure within the limits of the
approximations. Both limiting solutions overestimate both the
fracture length and width (one neglects fluid loss and the
other neglects storage in the fracture), although within the
stated limits on tD, the error is less than 10%.

The storage-dominated (η → 1) approximation is

(6B-1)

(6B-2)

and the high-leakoff (η → 0) approximation is

(6B-3)

(6B-4)

Equation 6B-3 could also be obtained from the approxima-
tion in Sidebar 6A, with the fracture width set to zero and
2√2t replaced by π√t, which is more correct. Once the width
is determined from Eq. 6B-2 or 6B-4, the pressure can be
found from Eq. 6-7.
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• Derivation of the Khristianovich–Geertsma–
de Klerk model

Khristianovich and Zheltov (1955) derived a solu-
tion for the propagation of a hydraulic fracture by
assuming the width of the crack at any distance
from the well is independent of vertical position
(i.e., a rectangular cross section with slip at the
upper and lower boundaries), which is a reasonable
assumption for a fracture with a height much
greater than its length. Their solution includes the
fracture mechanics aspects of the fracture tip. They
recognized that to solve this problem analytically
it was necessary to simplify the solution. They did
this by assuming that the flow rate in the fracture 
is constant and that the pressure in the fracture
could be approximated by a constant pressure in
the majority of the fracture body, except for a small
region near the tip with no fluid penetration, and
hence no fluid pressure. This assumption can be
made because the pressure gradient caused by fluid
flow is highly sensitive to fracture width and there-
fore occurs primarily in the tip region. The concept
of fluid lag remains an important element of the
mechanics of the fracture tip and has been vali-
dated at the field scale (Warpinski, 1985). They
showed that provided this dry region is quite small
(a few percent of the total length), the pressure in
the main body of the fracture is nearly equal to the
pressure at the well over most of the length, with a
sharp decrease near the tip.

Using Khristianovich and Zheltov’s result that
the tip region is very small, Geertsma and de Klerk
(1969) gave a much simpler solution to the same
problem. Their derivation is outlined in the following.

For a rectangular cross section, the equivalent of
Eq. 6-9 is

(6-25)

which can be written in integral form as

(6-26)

It can be shown that applying Barenblatt’s tip
condition (which requires that the fracture tip must
close smoothly, as illustrated in Fig. 6-3) implies
that the stress intensity factor (see Chapter 3) is zero:

(6-27)

The width profile with a small unpressured tip
region is close to that obtained for a constant net
pressure over the entire fracture, which is equiva-
lent to Eq. 6-7 with hf replaced by 2L:

(6-28)

Solving Eqs. 6-26 through 6-28, they found
expressions of the form given by Perkins and Kern
(1961):

(6-29)

with the wellbore width given by

(6-30)

For no leakoff, the equations can be solved for
length and width, respectively:

(6-31)

(6-32)

The high-leakoff solution for the PKN model
(Eq. 6B-3) also applies to the KGD model, but
Geertsma and de Klerk did not provide an explicit
width relationship for the KGD model in the case
of high leakoff.
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Figure 6-3. Barenblatt’s tip condition.
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Geertsma and de Klerk also extended the model
to include fluid leakoff, following Carter’s (1957)
method. Fluid loss is incorporated by assuming that
it has no effect on fracture shape or pressure distri-
bution. The volume of a two-wing KGD fracture is

(6-33)

Performing a volume balance and solution proce-
dure similar to that of Carter, they obtained

(6-34)

where

(6-35)

To include the effects of spurt loss Sp, ww should
be replaced by ww + (8/π)Sp, which is equivalent to
the Carter relation with w replaced by w– + 2Sp and
w– = πw/4.

• Assumptions of the PKN and KGD models

Both the PKN and KGD models contain a number
of assumptions that are revisited in this section.
They assume that the fracture is planar (i.e., that it
propagates in a particular direction, perpendicular
to the minimum stress, as described in Chapter 3).
They also assume that fluid flow is one-dimen-
sional (1D) along the length of the fracture. In 
the case of the models described, they assume
Newtonian fluids (although Perkins and Kern also
provided solutions for power law fluids), and
leakoff behavior is governed by a simple expres-
sion derived from filtration theory (Eq. 6-14). The
rock in which the fracture propagates is assumed to
be a continuous, homogeneous, isotropic linear
elastic solid; the fracture is considered to be of
fixed height or completely confined in a given
layer; and one of two assumptions is made con-
cerning the length to height ratio of the fracture—
i.e., height is large (KGD) or small (PKN) relative
to length. Finally, the KGD model includes the
assumption that tip processes dominate fracture
propagation, whereas the PKN model neglects
fracture mechanics altogether.

Since these models were developed, numerous
extensions have been made that relax these
assumptions, the most important of which are the
solutions for power law fluids. These two models

are still used to design treatments and are usually
available as options in simulators.

Similar solutions can be derived for radial frac-
tures (see Sidebar 6C).

6-3. Three-dimensional and pseudo-
three-dimensional models

The simple models discussed in the previous sections
are limited because they require the engineer to spec-
ify the fracture height or to assume that a radial frac-
ture will develop. This is a significant limitation,
because it is not always obvious from logs and other
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6C. Radial fracture geometry models

Both Perkins and Kern (1961) and Geertsma and de Klerk
(1969) considered radial fractures, which grow unconfined
from a point source. This model is applicable when there are
no barriers constraining height growth or when a horizontal
fracture is created.

Geertsma and de Klerk formulated the radial model using
the same arguments outlined in “Derivation of the
Khristianovich–Geertsma–de Klerk model” (page 6-7). The
fracture width is

(6C-1)

and the radial length R is

(6C-2)

where

(6C-3)

An explicit relationship for pressure can be derived by con-
sidering the solution for flow from a point source, in which
case the pressure in the fracture is a function of the expres-
sion ln(rw/R), where rw is the radius of the wellbore.

The no-fluid-loss approximations for the radial model are

(6C-4)

(6C-5)

The large-fluid-loss approximation for radial length is

(6C-6)

An expression for width in the case of large fluid loss was
not provided but can be found from Eqs. 6C-1 and 6C-6.
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data where or whether the fracture will be contained.
Also, the fracture height usually varies from the well
(where the pressure is highest) to the tip of the frac-
ture. This limitation can be remedied by the use of
planar 3D and pseudo-3D (P3D) models.

The three major types of hydraulic fracture models
that include height growth are categorized according
to their major assumptions.

• General 3D models make no assumptions about the
orientation of the fracture. Factors such as the well-
bore orientation or perforation pattern may cause
the fracture to initiate in a particular direction
before turning into a final preferred orientation (per-
pendicular to the far-field minimum in-situ stress).
Simulators incorporating such models are computa-
tionally intensive and generally require a specialist
to obtain and interpret the results. They are most
applicable in research environments, for which they
are used for studying details of fracture initiation
and near-well complexities such as those discussed
in Section 6-8, rather than overall fracture growth.
One example of such a study was published by
Brady et al. (1993). These models are not discussed
further in this volume.

• Planar 3D models are based on the assumption that
the fracture is planar and oriented perpendicular to
the far-field minimum in-situ stress. No attempt is
made to account for complexities that result in devi-
ations from this planar behavior. Simulators based
on such models are also computationally demand-
ing, so they are generally not used for routine
designs. They should be used where a significant
portion of the fracture volume is outside the zone
where the fracture initiates or where there is more
vertical than horizontal fluid flow. Such cases typi-
cally arise when the stress in the layers around the
pay zone is similar to or lower than that within the
pay. This type of model is described in more detail
in Section 6-3.1.

• P3D models attempt to capture the significant
behavior of planar models without the computa-
tional complexity. The two main types are referred
to here as “lumped” and cell-based. In the lumped
(or elliptical) models, the vertical profile of the frac-
ture is assumed to consist of two half-ellipses joined
at the center, as shown in Fig. 6-4. The horizontal
length and wellbore vertical tip extensions are cal-
culated at each time step, and the assumed shape is
matched to these positions. These models make the

inherent assumptions that fluid flow is along
streamlines from the perforations to the edge of the
ellipse and that the streamlines have a particular
shape, derived from simple analytical solutions.
Cell-based models treat the fracture as a series of
connected cells. They do not prescribe a fracture
shape, but generally assume plane strain (i.e., each
cell acts independently) and do not fully couple the
calculation of fluid flow in the vertical direction to
the fracture geometry calculation.

In the fixed-height models described previously, no
consideration is given to the layers surrounding the
fractured zone. The planar and P3D models use data
about the properties of the surrounding zones to pre-
dict the rate of growth into these zones. For the pur-
pose of this chapter, planar 3D models are defined as
those in which calculation of the full 2D fluid-flow
field in the fracture is coupled to the 3D elastic
response of the rock, and P3D models are defined as
those that approximate either the coupling or the 3D
elasticity in some manner.

Regardless of which type of model is used to
calculate the fracture geometry, only limited data are
available on typical treatments to validate the model
used. For commercial treatments, the pressure history
during treatment is usually the only data available to
validate the model. Even in these cases, the quality of
the data is questionable if the bottomhole pressure
must be inferred from the surface pressure. The bot-
tomhole pressure is also not sufficient to uniquely
determine the fracture geometry in the absence of
other information, such as that derived from tiltmeters
and microseismic data (see Sidebar 6D). If a simulator
incorporates the correct model, it should match both

Reservoir Stimulation 6-9

Figure 6-4. Conceptual representation of the lumped model.
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6D. Field determination of fracture geometry

Fracture geometry can be determined by using the two tech-
niques of microseismic activity and tiltmeters. Microseisms
can be used to locate the fracture, thus providing estimates of
its length and height, whereas tiltmeters can provide informa-
tion about fracture width.

Microseisms

Although all models of hydraulic fracturing assume that the
rock is a continuous medium, it is well known that reservoirs
have natural fractures, bedding planes and other weakness
features that respond as a noncontinuum. Such features have
been used to image hydraulic fractures using seismic tech-
niques.

Hydraulic fractures induce two large changes in the reser-
voir as they are created. The stress in the surrounding rocks
is perturbed because of fracture opening, and the pore pres-
sure is increased as a result of leakoff of the high-pressure
fracturing fluid. Both of these features can result in the gener-
ation of large shear stresses on many of the weakness planes
near the hydraulic fracture, resulting in small shear slippages
called microseisms or microearthquakes.

Microseisms generate seismic waves that can be detected
by sensitive seismic receivers in nearby wells. As shown in
Fig. 6D-1, both compressional waves (P-waves) and shear
waves (S-waves) can be generated by the microseism, and
these two waves travel with different velocities. If a receiver
can detect both the P- and S-waves, the time separation can
be determined and the distance to the source inferred from

(6D-1)

where uP and uS are the compressional and shear velocities,
respectively, and tS and tP are the shear and compressional
arrival times.

The direction in space can be determined by using a tri-
axial receiver to examine the amplitude of the P-wave. The 
P-wave has the characteristic that its particle motion (how the
rock mass vibrates) is aligned with the direction of travel of
the wave. By obtaining the orientation of the resultant ampli-
tude vector at any time, the microseism can be traced back to
its source.

With multiple seismic receivers, triangulation techniques
can be employed and greater accuracy obtained. With either
approach, however, the objective is to locate the zone of
microseisms surrounding the hydraulic fracture and deduce
the size and shape of the fracture from this information.

Downhole tiltmeters

Width development in a hydraulic fracture results in elastic
deformation of the formation. This deformation can be used
for fracture diagnostics to provide significant information about
fracture height and width and also about formation character-
istics.

As a fracture is opened, the deformation of the rock
extends for large distances into the reservoir. Although the
deformation is small at distances of more than a few tens of
feet, highly sensitive tiltmeter devices can measure these
small changes in position. A tiltmeter does not actually mea-
sure the displacement of the earth, but rather the curvature of
the displacement, and it is capable of measuring up to nano-
radian resolution (a nanoradian is the angle induced by
stretching a line from New York to Los Angeles and raising
the New York side by the diameter of a pencil). Tiltmeters
have long been used for surface diagnostics of earth move-
ment, but the application of a string of downhole tiltmeters
provides highly sensitive fracture data.

Figure 6D-2 shows a schematic of the tilt response of the
formation measured in a well offset to the fracture treatment.
The characteristic S-shaped curve is typical of tilt, as opposed
to strain, and can be simply explained. Straight across from
the fracture, the rock is pushed away, but is not tilted on the
geometric axis of the fracture, and there is zero tilt. Above the
fracture, the earth experiences curvature that is defined as
negative for this example. The curvature reaches a maximum
at a well-defined point and then decreases to zero as the dis-
tance from the fracture increases. The bottom is identical to
the top, except that the curvature has the opposite direction
and opposite sign.

Two aspects of this distribution are important for diagnos-
tics. First, the locations of the maximum tilt values are a func-
tion of the height hf of the fracture relative to the distance d
away. Thus, fracture height can be quickly estimated. Second,
the amplitude of the tilt is a function of the width of the frac-
ture, so the width during fracturing, and possibly the final
propped width, can be estimated as well.

Branagan et al. (1996) provided an example of the applica-
tion of tiltmeters to the calculation of hydraulic fracture geometry.
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Figure 6D-1. Microseismic traces at the receiver resulting
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treating pressure and fracture geometry. These issues
are addressed in Section 6-12 and Chapter 9.

6-3.1. Planar three-dimensional models
A planar fracture is a narrow channel of variable
width through which fluid flows. The fracture geome-
try is defined by its width and the shape of its periph-
ery (i.e., height at any distance from the well and
length). Both the width at any point and the overall
shape vary with time. They depend on the pressure
distribution, which itself is determined by the pressure
gradients caused by the fluid flow within the fracture.
Because the relation between pressure gradient and
flow rate is highly sensitive to the fracture width 
(Eq. 6-9), the geometry and fluid flow are tightly cou-
pled. Although the mechanics of these processes are
described separately in this section, the complexity of
solving any fracture model lies in the close coupling
between the different processes. Three separate prob-
lems are considered:

• width profile in a fracture of known shape and pres-
sure distribution

• shape of the fracture

• flow of fluid in a fracture of known shape and width
(i.e., known geometry).

Hirth and Lothe (1968) and Bui (1977) showed
how the pressure and width in a fracture may be
related. Basically, the width at any point (x,y) is
determined by an integral of the net pressure over 
the entire fracture, expressed as

(6-36)

where σ is the stress.
The details of the elastic influence function f in 

Eq. 6-36 are beyond the scope of this volume. Use-
able forms of Eq. 6-36 can be derived generally only
for homogeneous linear elastic materials (see Side-
bar 6E). In fracturing applications, the rock is usually
also assumed to be isotropic.

The shape of the fracture evolves with time. In
essence, the boundary (i.e., the vertical and horizontal
tips) moves outward as the fluid provides sufficient
energy to fracture the rock at the boundary. More com-
plex tip behavior is discussed subsequently, but in this

section it is assumed that this process is described by
linear elastic fracture mechanics (LEFM). If the LEFM
failure criterion is exceeded at any point on the fracture
periphery, the fracture will extend until the criterion 
is again met. For simple shapes and pressure distribu-
tions, such as ellipses under constant pressure, the cri-
terion can be specified analytically, similar to Eq. 6-3.
For more complex shapes and pressure distributions,
analytical solutions are not available. In these cases,
it can be shown that a relatively simple criterion can be
written in terms of the width near the tip and the criti-
cal stress intensity factor or fracture toughness KIc,
which is introduced in Chapter 3:

(6-37)

where x is the distance measured from the tip. Rela-
tions between fracture mechanics parameters such as
the specific surface energy (used in Eq. 6-3) and the
fracture toughness are provided in Chapter 3.

The fluid flow is described by equations for conser-
vation of mass (a general form of Eq. 6-21, including
the density ρ and expressed in terms of velocity u):

(6-38)

which can be written as a vector equation:

(6-39)

and the conservation of momentum (a general form of
Eq. 6-9) is

(6-40)

where τ is the shear stress and g– is the acceleration of
gravity.

The first two terms in Eq. 6-38 relate to the spatial
change of the mass-flow vector, and the second two
terms represent the storage resulting from width
increases and leakoff, respectively. Equation 6-40 is 
a vector equation. The term on the left-hand side is the
rate of change of momentum, and the terms on the
right-hand side are the pressure, viscous and gravita-
tional forces, respectively. It simply states that a small
element of fluid accelerates because of the forces act-
ing on it. This equation can be expanded and then sim-
plified for the geometries of interest in hydraulic frac-
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turing (see Sidebar 6F). For a particular component,
such as the x component, Eq. 6-40 can be written as

(6-41)

A constitutive law relating the stresses τ to the flow
rate is required to complete the description of fluid
flow. In the case of steady flow in a narrow channel
such as a fracture, the full details of the constitutive
law are not required, because the narrow fracture
width results in the complete dominance of some
stress terms. The only terms of interest are the shear
stresses induced by velocity gradients across the frac-
ture. In addition, use is made of the lubrication
approximation, so flow perpendicular to the fracture
wall (the z direction) is neglected. With these assump-

tions, the equations for the stress in a Newtonian fluid
reduce to

(6-42)

and Eq. 6-41 can be written as

(6-43)

For the special case of a narrow channel (Poiseuille
flow), where velocity gradients parallel to the flow are
small and there is no flow perpendicular to the chan-
nel, the time-dependent term simplifies to a partial
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6E. Lateral coupling in pseudo-three-
dimensional models

Assume that a fracture has a fixed height and that it consists 
of a number of elements each of constant width over the height
(i.e., a KGD fracture). Let the grid points be represented by
points xi in the center of the elements with corners (xl,i,yb,i),
(xl,i,yt,i), (xr,i,yt,i) and (xr,i,yb,i), as shown in Fig. 6E-1. Crouch and
Starfield (1983) developed a boundary element solution tech-
nique called the displacement discontinuity method. They
showed that the pressure at any point is given by

(6E-1)

where Aik is an influence function of the form

(6E-2)

where the influence function I is defined as

(6E-3)

To accurately solve Eq. 6E-1 requires a large number of
elements. Also, it is difficult to extend directly to other shapes
such as ellipses or for nonconstant heights. To overcome
these problems, the equation is modified as follows. The
width at any point can be written as

(6E-4)

where ∆wki is defined as

(6E-5)

Equation 6E-1 can then be written as

p(xi) = p(wi) + pcorr , (6E-6)

where

(6E-7)

(6E-8)

The term w(xi)ΣAik thus represents the pressure induced
by a fracture of constant width w(xi). For a fracture of infinite
length, this pressure would be exact if calculated using the
plane strain solution. The term p(wi) can therefore be
obtained as the sum of the plane strain solution and the effect
of two semi-infinite fractures of w – wi attached at the tip of
each fracture wing.

From Eq. 6E-2, the influence functions decrease with
distance from an element. The advantages of the form of 
Eq. 6E-8 are that the corrections are smallest near the ele-
ment where the widths are almost the same and that the 
self-correction is exactly zero by definition. The number of
elements required to obtain an accurate solution is significantly
reduced, and variable heights and other shapes are easily
introduced. Lateral coupling is relatively easy to introduce to
the explicit solution method because the pressure correction 
is simply added before the fluid velocities are calculated.
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Figure 6E-1. Geometry for displacement continuity
solution.
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6F. Momentum conservation equation for 
hydraulic fracturing

Equation 6-40 is a vector equation, for which a component
can be written as

(6F-1)

where u is the velocity, g is the gravitational acceleration, and
i is x, y or z. The term on the left side of Eq. 6F-1 is termed
the substantial derivative, which is the rate of change seen by
an observer moving with the fluid motion. It can be related to
the usual partial derivative (i.e., the rate of change seen by a
stationary observer) as

(6F-2)

Thus, Eq. 6F-2 can be expanded to

(6F-3)

This completely general equation can be simplified for a
narrow channel in an impermeable medium. Leakoff does not
occur in this case, so components in the z direction can be
neglected. In addition, the flow is assumed to be steady state,
so time derivatives can be ignored. In this case, Eq. 6F-3 sim-
plifies to

(6F-4)

for i = 1 or 2. Even for a permeable medium, Eq. 6F-4 is
used. In this case, leakoff is treated as a sink term and 
included in the mass balance, but it is assumed not to affect
the equations relating pressure, stress and fluid velocity.

Newtonian fluids

To make Eq. 6F-4 useful, the stress components must be
determined, which is done by assuming a model of fluid
behavior. For example, a Newtonian fluid is a model with one
parameter, the viscosity µ. The stress components are

(6F-5)

The first three components of Eq. 6F-5 are the normal 
stresses, and the last three are the shear stresses. The last
term of the normal components is zero for incompressible
fluids. In the case of 1D flow between parallel plates, without
leakoff, two of the velocity components are identically zero. 
In addition, conservation of mass implies that the third com-
ponent cannot vary with position. Hence, all three normal
components are identically zero. The equations thus reduce
to those for shear flow. Although these assumptions are not
strictly true in general, they are used for the flow calculations
in hydraulic fracture modeling. It can also be shown that for 
a narrow channel, the velocity gradients perpendicular to the
walls (the z direction) are much greater than those in the par-
allel directions. Finally, therefore, the stress components for 
a Newtonian fluid in a hydraulic fracture can be written as

(6F-6)

Substituting Eq. 6F-6 into Eq. 6F-4 obtains

(6F-7)

For 1D flow along the fracture length, as typically assumed in
P3D models, Eq. 6F-7 can be simplified to

(6F-8)

Assuming zero slip (i.e., zero velocity at the fracture wall), the
solution to Eq. 6F-8 is

(6F-9)

Integrating to obtain the average velocity across the channel,

(6F-10)

The flow rate per unit height is obtained by multiplying the
average velocity by the width w.

In the case of 2D flow, the left-hand sides of Eq. 6F-7 are
zero if inertia may be neglected. In this case for the y direc-
tion, an equation can be formed similar to Eq. 6F-10, except
that it includes a gravitational term.
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derivative of velocity with respect to time. It is usually
assumed that the flow is steady state, which finally
obtains

(6-44)

and a similar equation for the y component.
Equations 6-36 through 6-44 summarize the planar

3D model for Newtonian fluids. Similar results can be
obtained for non-Newtonian fluids (see Sidebar 6G).
These equations are generally not amenable to ana-
lytic solutions, but require a numerical simulation. 
In addition, although it is relatively straightforward 
to write the conceptual equations, efficient and robust
numerical solutions are difficult to obtain. The pri-
mary reasons for this difficulty are the extremely 
close coupling of the different parts of the solution
(e.g., fluid flow and solid deformation), the nonlinear
relation between width and pressure, and the com-
plexity of a moving-boundary problem.

The first numerical implementation of a planar
model was reported by Clifton and Abou-Sayed
(1979). In essence, their approach was to define 

a small fracture, initiated at the perforations, divide it
into a number of equal elements (typically 16 squares)
and then begin solution of the equations. As the
boundary extends, the elements distort to fit the new
shape. One difficulty with such a solution is that the
elements can develop large aspect ratios and very
small angles, as shown in Fig. 6-5. The numerical
schemes typically used to solve the equations do not
usually perform well with such shapes.

A different formulation was described by Barree
(1983), and numerous field applications have been
reported (e.g., Barree, 1991). It neatly avoids the prob-
lem of grid distortion by dividing the layered reservoir
into a grid of equal-size rectangular elements, which
are defined over the entire region that the fracture may
cover. In this case, the grid does not move. Instead, as
the failure criterion is exceeded, the elements ahead of
the failed tip are opened to flow and become part of
the fracture, as shown in Fig. 6-6. Two limitations of
this approach are that

• the number of elements in the simulation increases
as the simulation proceeds, so that the initial num-
ber may be small, resulting in inaccuracy
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6G. Momentum balance and constitutive equation 
for non-Newtonian fluids

The definition of a Newtonian fluid is the one-parameter rela-
tion between stress and velocity (Eq. 6G-5). In tensor notation,
this can be written as

(6G-1)

where ∆ is the rate of deformation tensor, with components

(6G-2)

The viscosity may be a function of pressure and tempera-
ture or other variables, including the history of the fluid, but not
of ∆. For non-Newtonian fluids, an equation similar to Eq. 6G-1
may be written:

(6G-3)

where µa is a function of ∆. For flows of the type of interest 
in fracturing, it can be shown that µa may depend only on ∆
through a relation of the form

(6G-4)

where I2 is the second tensor invariant:

(6G-5)

For example, for a power law fluid, the function µa is

(6G-6)

and for a Bingham plastic

(6G-7)

The commonly used consistency index K´ is dependent on
the flow geometry and is related to a basic fluid property, the
generalized consistency index K (Eq. 6G-6). For parallel
plates (i.e., in a slot), which can represent a fracture, the rela-
tionship is

(6G-8)

For a pipe it is

(6G-9)

The maximum difference between the two expressions is less
than 4% for all values of n. For 1D flow of a power law fluid
between parallel plates, the average fluid velocity is given by

(6G-10)

For the special case of the power law exponent n = 1, this
reverts to the equation for a Newtonian fluid, with K´ replaced
by the viscosity. Table 6G-1 summarizes useful information for
the laminar flow of both Newtonian and power law fluids
under different geometries. However, the expressions for
pressure drop are not generally applicable for drag-reducing
fluids such as those used in hydraulic fracturing.
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• the general size of the fracture must be estimated in
advance of the simulation to ensure that a “reason-
able” number of elements is used.

In addition, this particular implementation has two
simplifying assumptions, that a simplified method is
used for representing modulus contrasts and a tensile

strength criterion is used for fracture extension, rather
than a fracture mechanics effect. The failure criterion
is used to compare the stress at the center of all
boundary elements with the material tensile strength.
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6G. Momentum balance and constitutive equation for non-Newtonian fluids (continued)

Table 6G-1. Summarized expressions for laminar flow of Newtonian and power law fluids.

Fluid Type Pipe Parallel Plates Ellipse (zero 
eccentricity)

Reynold’s number (NRe) Newtonian

Power law

Hydraulic diameter (DH) D 2w πw/2
Friction factor 16/NRe 24/NRe 2π2/NRe

Velocity distribution Newtonian

Power law

Pressure drop (∆p/L or dp/dx) Newtonian

Power law See Eq. 6-57 
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If the strength is exceeded, then the element is
assumed to open. However, the fracture-induced stress
in the material near the tip of a fracture varies with the
square root of the distance from the tip. Hence, the
failure criterion is grid-resolution dependent.

6-3.2. Cell-based pseudo-three-
dimensional models

In cell-based models, the fracture length is divided
into a number of discrete cells. This is directly analo-
gous to the planar models, except that only one direc-
tion is discrete instead of two. Fluid flow is assumed
to be essentially horizontal along the length of the
fracture, and the solid mechanics is typically simpli-
fied by assuming plane strain at any cross section. As
in the PKN model, these assumptions make these
models suitable primarily for reasonably contained
fractures, which are long relative to their height.

These two assumptions allow separating the solid
and fracture mechanics solution from the fluid flow 
as follows. Plane strain implies that each cross section
acts independently of any other. In addition, the
assumption of 1D fluid flow implies that the pressure
in the cross section is always

(6-45)

where pcp is the pressure along a horizontal line
through the center of the perforations and y is the ver-
tical distance from the center of the perforations.
Equation 6-45 is valid only if vertical fracture exten-
sion is sufficiently slow that the pressure gradient
resulting from vertical flow can be neglected. This
assumption that the vertical tips of the fracture are
approximately stationary at all times is called the
equilibrium-height assumption.

• Solid mechanics solution

With the equilibrium-height assumption, the solid
mechanics solution simplifies to the determination
of the fracture cross-sectional shape as a function
of the net pressure, or pcp. Simonson et al. (1978)
derived this solution for a symmetric three-layer
case. Fung et al. (1987) derived a more general
solution for nonsymmetric multilayer cases.
Following Fung et al. the stress intensity factors 
at the top and bottom tips KIu and KIl, respectively,
can be written in terms of the pressure at the center
of the perforations pcp and the closure stresses in
the layers σi as

(6-46)

(6-47)

where ρf is the fluid density, hcp is the height at the
center of the perforations, and hi is the height from
the bottom tip of the fracture to the top of the ith
layer, as shown in Fig. 6-7.

This set of nonlinear equations can be solved by
iteration. Assuming that the solution (two vertical
tip positions plus the pressure) at one value of pcp is
known, a height increment is assumed. The incre-
mental height growth in the two vertical directions
is then calculated such that Eqs. 6-46 and 6-47 are
both satisfied, and pcp to obtain these positions is
calculated. Finally, the width profile associated
with this solution can be obtained as

(6-48)

where y is the elevation measured from the bot-
tom tip of the fracture.
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Consider, for example, the symmetric three-layer
case shown in Fig. 6-8. If the gravitational compo-
nent is neglected, so that the problem is symmetric,
then the penetrations into the two barriers are
equal. In this case, Eq. 6-46 can be simplified sig-
nificantly and written as (Simonson et al., 1978)

(6-49)

where ∆σ is the difference in stress between the
central layer (pay zone) and the surrounding layers,
and hpay and σpay are the thickness and stress of the
pay zone, respectively. Figure 6-9 shows fracture
height as a function of net pressure, as calculated
by Eq. 6-49.

Although Eq. 6-49 is for a special case, it shows
two interesting practical results. First, penetration
into the barrier layers occurs at a critical net pressure:

(6-50)

For example, if KIc is 2000 psi/in.1/2 and hf is 20 ft
[240 in.], the critical net pressure for breakthrough
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is only about 100 psi. Second, the net pressure can-
not reach the stress contrast because this would
result in infinite fracture height.

In a typical cell-based simulator, a table of these
solutions is calculated prior to simulating the frac-
ture evolution rather than at each time step of the
calculation, and the relations among width, pres-
sure and height are used to greatly speed up the
solution of the fluid flow equations (conservation 
of mass and momentum).

• Fluid mechanics solution

One of the major differences between planar 3D
and P3D models is the fluid flow calculation. The
fluid flow model in most P3D models is the same
as that introduced by Nordgren (1972) (i.e., a 1D
version of the model described for the planar 3D
model). In this model, both vertical flow and the
variation of horizontal velocity as a function of
vertical position are neglected. This results in the
inability of typical P3D models to represent several
aspects of behavior, namely (Smith and Klein, 1995)

– effect of variations in width in the vertical direc-
tion on fluid velocity

– local dehydration, which is approximated as
simultaneous dehydration over the entire height
of the fracture

– fluid loss after tip screenouts (TSOs), when fluid
flow through the proppant pack is ignored

– proppant settling resulting from convection or
gravity currents.

The average velocity and width are used (width
is replaced by cross-sectional area divided by
height) to simplify the conservation of mass 
(Eq. 6-38 for an incompressible fluid) to

(6-51)

where u is the average cross-sectional velocity and
uL and hL are the leakoff rate (Eq. 6-14) and height
in each layer. Similarly, the conservation of
momentum simplifies to

(6-52)

For a power law fluid with properties n and K,

(6-53)

Solving Eq. 6-52 with Eq. 6-53 with the no-slip
boundary condition (i.e., zero velocity at the frac-
ture wall), the average velocity across the channel is

(6-54)

where sgn represents the sign of the quantity.
In the special case of a Newtonian fluid, n = 1

and µ = K, and Eq. 6-54 becomes

(6-55)

To obtain the total flow rate across the height of
the cross section, and hence an average velocity for
substitution in Eq. 6-51, Eq. 6-54 is integrated from
the bottom to the top tip of the cross section:

(6-56)

The average velocity is thus determined as

(6-57)

where the channel function Φ is

(6-58)

Relations for the PKN model with power law
fluids can be derived following this approach (see
Nolte, 1979, 1991).

– Laminar and turbulent flow

When fluid flows between parallel plates at a low
rate without leakoff, any fluid element remains 
a fixed distance from the wall of the channel,
except in a small entrance region. This is known
as laminar flow. By contrast, in turbulent flow,
eddies occur, and fluid is continually mixed. This
mixing results in added friction and different flow
behavior. The Reynold’s number NRe (defined in
Table 6G-1) enables determining whether laminar
or turbulent flow will occur. If NRe exceeds 2100,
flow will be turbulent. Inside the fracture, NRe is
typically well below this value, except for partic-
ularly thin fluids, such as acid.
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– Rheology of fracturing fluids

Fracturing fluids are generally treated as power
law fluids, and because they are shear thinning
(i.e., viscosity decreases with increasing shear
rate), n is usually less than 1. The effective para-
meters of the power law model K´ and n´ are
typically derived from laboratory measurements
(see Chapter 8) over a range of shear rates. For
shear-thinning fluids, the apparent viscosity
(derived from K´ and n´) decreases as shear rate
increases, and the viscosity would be infinite at
zero shear rate. In reality, limiting low- and high-
shear viscosities occur and must be considered.

Fracturing fluid properties change with time
and temperature. Typically, exposure to high
temperatures reduces fluid viscosity. However,
crosslinkers may cause initial viscosity increases
prior to the degradation. The effects of tempera-
ture and time are included in numerical hydraulic
fracture simulators, typically by means of tables
of K´ and n´ versus time at a series of tempera-
tures, which are similar to those in service com-
pany handbooks.

• Numerical solution of the model

The three basic solutions described for height-
growth mechanics (pressure-width-height relation),
conservation of mass and conservation of momen-
tum (velocity-pressure relation) are coupled and
solved simultaneously. There are several methods
by which the coupled equations may be solved, two
of which are introduced here. Either a fixed or
moving mesh may be used for the two methods, 
as described previously for planar 3D models. In
this section, the explicit finite-difference method 
is introduced with a grid that moves with the fluid
and an implicit method is described. In each case,
prior to starting the simulation of the fracture evo-
lution, a table of the pressure-height-width relation
(from the equilibrium-height solution) is calculated
as described for “Solid mechanics solution” in
Section 6.3-2.

For the explicit finite-difference method, the fluid
in the fracture at any time is divided into n ele-
ments, each with a cross-sectional area Ai and
bounded by two vertical surfaces at xi and xi + 1,
moving at velocities ui and ui + 1, respectively, as
shown in Fig. 6-10. (The grid is numbered such
that i = 1 represents the tip to facilitate the addition

of new elements at the well, as necessary.) Mass-
conservation Eq. 6-51 can be rewritten as

(6-59)

with the derivatives replaced by central finite-
difference approximations to obtain

(6-60)

where VL represents the volume leaked off over the
element of length ∆x in time step ∆t. The velocities
are calculated at the grid points, and the area is
assumed constant in each element. The cross-sec-
tional area can thus be updated from the values of
the velocities and areas at the previous time step.
Once this has been done, the pressure at each cross
section can be obtained from the solid mechanics
solution by looking up the pressure in the precalcu-
lated pressure-height-width relation table for the
corresponding area A. Pressure gradients can then
be calculated using the approximation

(6-61)

and new velocities obtained using Eq. 6-57. Once
all the velocities are known at a given time, the
positions of the grid points are updated using

(6-62)

This method is known as a Lagrangian method
because the grid coordinates move with the fluid.
Leakoff causes each element to shrink and possibly
even disappear as it penetrates farther into the frac-
ture, limiting the usefulness of this method for
modeling hydraulic fracturing treatments. In addi-
tion, new elements must continually be added at
the wellbore. This makes it difficult to control how
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many elements are present at any time or the sizes
of the elements. Another approach is to introduce a
fixed grid, as discussed for planar 3D models. This
has the advantage that the number of elements in
the simulation is relatively small near the beginning
of the simulation when less accuracy is required
and increases as the simulation progresses. Yet
another approach is to introduce a moving mesh 
in which the grid points move at some reasonable
velocity, for example, such that the fracture is
always divided into a fixed number of equal-size
elements (i.e., using a stretching coordinate system;
see Sidebar 6H).

One of the primary limitations of explicit finite-
difference methods, such as those introduced in the

preceding text, is that the time step used in the cal-
culation may not exceed a critical value to ensure
stability. Because only quantities from the previous
step are used in moving forward, numerical errors
can grow larger from step to step if the time step is
too large. In the development of a general hydraulic
fracturing simulator using such differencing
schemes, the time step must be chosen carefully to
avoid stability problems and yet minimize the com-
putation time. A simple stability analysis is in
Sidebar 6H.

It has been found that in cases of high leakoff 
or large widths (such as TSO designs), the critical
time step for stability may be too small for efficient
solution of the system, limiting the utility of the
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6H. Stretching coordinate system and 
stability analysis

Stretching coordinate system

One way to simplify grid point bookkeeping is to use a
stretching coordinate system. If

(6H-1)

then X will always remain bounded between 0 and 1 while x
varies between 0 and L(t). Placing a grid on X will fully cover
the fracture regardless of the growth characteristics. However,
although the gridding is simplified, the complexity of the differ-
ential equation is increased. The derivatives are found as

(6H-2)

(6H-3)

Equation 6-59 becomes

(6H-4)

and the other equations of the system are similarly trans-
formed.

Stability analysis

A full stability analysis for a nonlinear system is difficult, but
an approximate time-step limitation can be found as follows.

Assume that the pressure gradient can be written as

(6H-5)

In the case of the PKN model, where the fracture height hf is
fixed, Cp = βhf, where β is defined by

(6H-6)

Substituting Eq. 6H-5 into Eq. 6-59 and applying the chain rule,

(6H-7)

where absolute values must be assumed for all quantities,
because an error analysis is being performed, and D is
defined as

(6H-8)

The highest order term in Eq. 6H-7 is

(6H-9)

If the derivative is expanded using a central difference
approximation, the term in Ai becomes

(6H-10)

To investigate the effect of an error introduced into A, A is
replaced by A(1 + ε), which can be approximated (for small 
ε) as

(6H-11)

If a time step is taken (discretizing Eq. 6H-7 similar to Eq. 6-59),
then the error ε grows to

(6H-12)

For this error to reduce in magnitude, it must be smaller than
Aε, which can occur only if

(6H-13)

where the viscosity leakoff control coefficient Cv is

(6H-14)
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explicit scheme. An implicit finite-difference
scheme, with no time-step limitation, may elimi-
nate this limitation. In essence, implicit and explicit
methods can be distinguished by the fact that
explicit methods solve for quantities at one time
step on the basis of only values at the previous time
steps, whereas implicit methods include the use of
quantities at the current time. This implies that a set
of equations is set up and solved, because the quan-
tities at the current time step must all be found
simultaneously. For linear problems, a set of linear
equations results, and these are easily solved by
standard methods such as gaussian elimination. For
the 1D flow problem, the implicit finite-difference
formulation yields a tridiagonal system of equa-
tions (i.e., a sparse matrix with only three diagonals
filled with nonzeros). Highly efficient solution
techniques are available to solve such systems 
(e.g., Carnahan et al., 1969). For nonlinear prob-
lems, however, such methods can be complex and
are not always much more efficient than explicit
methods. Iteration is frequently required, because 
a nonlinear system is linearized. If the linearization
approximation is inaccurate, it must be corrected
and resolved.

Another method without the time-step limitation,
and which avoids forming a system of equations, 
is a method using integrated or analytical elements.
A similar method to that described in the following
was the basis of the commercial time-sharing
method made available by Amoco between 1981
and 1983 (Nolte, 1982, 1988a). Consider once
again the basic equations of the PKN model with
x = φat the tip:

(6-63)

(6-64)

Substituting Eq. 6-64 for p into Eq. 6-63 obtains

(6-65)

Detailed numerical simulations have shown that
the velocity varies much more slowly than the flow
rate q because the reduction in width toward the tip
partially compensates for fluid leakoff and storage
in the fracture. Instead of the Perkins and Kern 

(1961) assumption that q is constant (Eq. 6-10),
replacing q by πuhfw/4 allows writing Eq. 6-65 as

(6-66)

or

(6-67)

Integrating over a distance ∆x obtains

(6-68)

If the terms under the integral can be assumed to
be constant, this simplifies further to

(6-69)

If the height is not constant and the fluid is non-
Newtonian, a similar equation can be written for
the cross-sectional area of the fracture by using the
power law rheological parameters:

(6-70)

where

(6-71)

For an analytical solution, ∆x would be the entire
fracture length (Nolte, 1991), and this would be
combined with a tip criterion and a volume-balance
equation. The numerical solution proceeds simi-
larly, except that ∆x is chosen sufficiently small to
obtain an accurate solution. Fluid loss is integrated
over the time step, which allows obtaining accept-
able accuracy, even with large time steps. The solu-
tion method at each time step is as follows:

1. Estimate a tip velocity.

2. For each element, working in from the tip to the
well,

a. calculate an average fluid velocity based on
the velocity at the outer side of the element
and the estimated velocity at the inner side 
(At the first iteration, assume the inner fluid
velocity is equal to the outer fluid velocity.)
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b. determine the cross-sectional area at the inner
side of the element for the estimated velocity
by using Eq. 6-70

c. determine the velocity at the inner side such
that the leakoff and element volume change
during the time step result in a mass balance

d. repeat the iteration using the new velocity.

3. Compare the actual flow into the fracture with
the wellbore velocity calculated by the iterative
scheme in the preceding step.

4. Refine the estimate of the tip velocity using a
Newton-Raphson method until volume balance 
is achieved, which typically takes two to four
iterations.

This method of solving the equations is efficient
because the velocity does not vary significantly
along the fracture for typical cases. For typical
PKN cases with a single fluid, the fracture can 
be divided into about 10 elements. For non-PKN
cases, the grid must be chosen sufficiently fine
that the integrand in Eq. 6-68 (which includes
effects of fluid rheology and fracture height) is
approximately constant in each element (because
the solution scheme is derived with the assump-
tion that it is constant).

Regardless of whether a moving- or fixed-grid
method is used, usually only a small number of
elements (about 10) is necessary to obtain a
reasonably accurate solution to the equations
described so far. However, other information may
be required at a much finer resolution. To achieve
this, the schedule is typically divided into a large
number of substages (about 100). Quantities such
as proppant concentration, fluid temperature and
acid concentration can then be tracked on this
finer grid. In addition, particularly in acid frac-
turing, it is desirable to track leakoff and etching 
on a finer grid. To do this for methods using 
a moving grid, a second grid that does not move
is established. Quantities such as reservoir tem-
perature, proppant bank height and leakoff vol-
ume in the reservoir are tracked on this solid-
based grid.

• Nonequilibrium-height solution

It was noted in “Solid mechanics solution” in
Section 6.3-2 that the assumption of slow height
growth allows creating a pressure-height-width
table prior to solving the equations of fracture evo-
lution. This so-called equilibrium-height assump-

tion is quite accurate, provided that the fluid is
moving relatively slowly in the vertical direction so
that the pressure drop resulting from vertical fluid
flow is negligible. This assumption is violated if
high-permeability zones are exposed, because fluid
must then move rapidly because of the increased
leakoff in such layers. Also, if the stress in the sur-
rounding zones is insufficient to confine the frac-
ture and the vertical tips extend quickly, then the
fluid must move quickly to fill the resulting frac-
ture. In either of these cases, the pressure gradient
resulting from vertical fluid flow may become
large, and the equilibrium-height assumption
becomes invalid at these locations in the fracture.

To remove this assumption and obtain valid
results from a simulator, some restriction must 
be placed on height growth. For nonequilibrium-
height growth, the pressure gradient because of
fluid flow in the vertical direction must be approxi-
mated, based on the rate of height growth. It is
common to base this approximation on the KGD
model (e.g., Settari and Cleary, 1982). In Section 
6-7 on tip effects, an analytical near-tip solution
developed by Lenoach (1994) is discussed that pro-
vides an expression for the net pressure of the form

(6-72)

where utip is the tip velocity and β is 2/(2 + n). As
previously noted, for a fracture under constant pres-
sure, the stress intensity factor is related to the net
pressure by

(6-73)

The Lenoach tip solution can be used to obtain
an apparent fracture toughness caused by the non-
zero tip velocity by combining Eqs. 6-72 and 6-73.
This effect can be added to the actual rock tough-
ness, and the sum is used in Eqs. 6-46 and 6-47
instead of the actual rock toughness to determine
the fracture height growth. The basic algorithm
used to move from one pair of vertical tip positions
to another during a time step is as follows:
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1. Estimate the top and bottom tip velocities for
the cell.

2. Calculate the new fracture tip positions at the
end of the time step, using these velocities.

3. Calculate the stress intensity factors from Eqs.
6-46 and 6-47.

4. Determine the excess stress intensity factors
(i.e., the calculated value minus the rock 
toughness).

5. Calculate the velocities required to generate
these excess stress intensity factors, using Eqs.
6-72 and 6-73.

6. Compare the velocities with the guessed values
and iterate until the correct velocities are found.

One of the advantages of the equilibrium-height
models is the speed gained by precalculating a
table of the fracture height-pressure relation. Not
only is this not possible for the nonequilibrium
model, but the iterative process to determine the tip
positions can be time consuming. The nonequilib-
rium-height algorithm should therefore be used
only when necessary because of the apparent rapid
height growth indicated by the equilibrium-height
calculation.

• Lateral coupling

In the description of the solid mechanics solution
provided previously, the basic assumption is that
individual cross sections act independently (i.e.,
plane strain in the horizontal direction, or laterally
decoupled). This is implicit in the assumption that
the pressure and width at any point are uniquely
related. In reality, the pressure at any point is depen-
dent not only on the local width, but also on the
width distribution over the entire fracture, as dis-
cussed in Section 6-3.1 on planar 3D models. This
lateral coupling is generally not important, unless
the fracture wing length is less than the height. Even
then, the fracture geometry will not be significantly
different if lateral coupling is neglected, although
the pressure response may be underestimated. Lat-
eral coupling can be included in the solutions
described previously (see Sidebar 6E).

The effect of lateral coupling during pumping is
to increase the pressure at and near the well and to
decrease it near the tip. Figure 6-11 shows the evo-
lution of pressure during a treatment for a confined
fracture simulated using the KGD, PKN and later-

ally coupled PKN models. The pressure predicted
by the laterally coupled model is always higher
than either the KGD or PKN solution would pre-
dict. It can also be shown that the width at the well
is always smaller than that predicted by either of
the simple models. The point in Fig. 6-11 where
the pressure from the laterally coupled model is
lowest (and where the pressures from the KGD and
PKN models are equal) corresponds to a square,
where the fracture wing length is one-half of the
height. The pressure calculated by the laterally cou-
pled model exceeds that predicted by the KGD or
PKN model at this time by approximately 40%,
which is comparable to the pressure in a radial
fracture of similar dimensions.

6-3.3. Lumped pseudo-three-
dimensional models

Lumped models are an alternative to cell-based mod-
els and were first introduced by Cleary (1980b).
Although more details are presented in subsequent
paragraphs, it is worthwhile at this point to quote two
sentences from the conclusions of his paper: “the heart
of the formulae can be extracted very simply by a
nondimensionalization of the governing equations; the
remainder just involves a good physico-mathematical
choice of the undetermined coefficients” and “results
could be presented in the usual format of design
charts, based on dimensionless groups extracted, . . .
[a] more appealing procedure may be to program the
solutions for a suitable pocket calculator, with the sep-
arately determinable γ or Γ coefficients and job para-
meters as input.” Although numerous papers have
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Figure 6-11. Pressure record with and without lateral 
coupling.
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been presented on the use of this model (e.g., Cleary
et al., 1994), which is now on laptop computers rather
than pocket calculators, these sentences capture the
essence of lumped models in that they are extremely
simple models and the key to their successful use 
is the selection of appropriate coefficients for the
problem analyzed.

Like all the models presented previously, the start-
ing point of the lumped model is the set of basic equa-
tions defining the hydraulic fracturing process, which
are mass conservation (Eq. 6-39), the relation between
the distribution of crack opening over the length of 
the fracture 2L, net pressure distribution (similar to
Eq. 6-36) expressed as

(6-74)

and conservation of momentum (Eq. 6-40) expressed as

(6-75)

where γ4 is the channel factor (1⁄12 for a Newtonian
fluid), and various combinations of the power law fac-
tors m for turbulence and n enable consideration of
both non-Newtonian fluids and turbulent flow.

In the lumped models, these equations are simpli-
fied by assuming a fracture shape and adopting a spa-
tial averaging approach to reduce them to ordinary
differential equations in time. This approach implicitly
requires the assumption of a self-similar fracture
shape (i.e., one that is the same as time evolves,
except for a length scale). The shape is generally
assumed to consist of two half-ellipses of equal lateral
extent, but with different vertical extent.

It is instructive to consider some of the lumped
equations for the KGD model (Cleary, 1980b). The
mass balance is obtained by averaging over the frac-
ture length:

(6-76)

where

(6-77)

(6-78)

where

(6-79)

which is the 1D form of Eq. 6-75. Equation 6-76 is
similar to Eq. 6-15 (based on Carter, 1957) with the

addition of γ3, and Eq. 6-77 is identical to that of
Geertsma and de Klerk (1969) with γ3 replacing 
4(1 – ν2). Superficially, these equations are extremely
simple, but the values of the γ coefficients are not
always obvious and may not be constant. As noted 
by Crockett et al. (1989), these models are extremely
general, with the degree of accuracy limited ultimately
only by the effort invested in determination of the γ
coefficients by detailed simulations, laboratory experi-
ments or field studies.

For more general fracture shapes (i.e., with height
growth), it is typically assumed that height growth is
governed by a KGD-type solution and length growth
by a PKN-type solution (Cleary et al., 1983), although
this is not a theoretical limitation of lumped models.

One area in which lumped models have been
exploited extensively is in the development of com-
puter software systems to apply and use pressure data
during a treatment. Some of the key characteristics
and requirements for such a software system are that
(Crockett et al., 1989)

• the physics is realistic and general

• execution time is much faster than treatment time 
to allow repetitive execution for pressure history
matching

• the software can use improved estimates of parame-
ters obtained in real time (i.e., during the treatment).

Although these real-time software systems are gen-
erally referred to as real-time hydraulic fracture mod-
els (e.g., Crockett et al., 1989), the model itself is only
a small part of the software and should address the
first requirement listed (i.e., realistic and general
physics). The second and third requirements are com-
puter hardware and software design constraints.
Because lumped models were developed for pocket
calculators in 1980, they impose a minimal impact on
computer hardware and systems. As computing power
continues to improve, it will become possible to run
increasingly sophisticated models during treatment
execution either at the wellsite or remotely. There are
other software design issues, such as robust execution
with a wide variety of parameter values, easy import
and superposition of actual data on model output, and
graphical display, that are required for a useful soft-
ware system for real-time applications. Discussion of
these issues is beyond the scope of this volume.
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6-4. Leakoff
One of the key issues in designing a fracture treatment
is accurate knowledge of how rapidly fluid will leak
out of the fracture into the reservoir. Without this
information, it would be impossible to design a treat-
ment that provides a specified fracture geometry.
Mini-fracture treatments are performed to estimate the
leakoff coefficient (see Chapter 9). Equation 6-14
introduced in “Inclusion of leakoff” in Section 6-2.2 
is the basic equation of filtration and was first used for
fracturing by Carter (1957). He showed that it was
applicable for three separate leakoff processes:

• displacement and compressibility of reservoir fluid

• invasion of the formation by filtrate or fracturing fluid

• buildup of an external filter cake.

Williams (1970) divided the leakoff into three time
periods, rather than considering the three processes.
During the initial period, leakoff is quick, followed 
by a decreasing leakoff rate and finally a steady-state
leakoff rate. In the initial period, filter cake has not
formed, so the leakoff rate is controlled by the resis-
tance of the formation to flow of the fracturing fluid.
The external filter cake builds during the second
period. Finally, the cake stops building, because the
high-velocity fluid in the fracture prevents further
polymer deposition. This last stage is referred to as
dynamic leakoff. Williams lumped all leakoff prior 
to dynamic leakoff into a quantity he called spurt
volume, although spurt loss has since been generally
accepted to refer only to the initial high-leakoff period
before the cake starts building.

Settari (1985) presented an excellent review of the
classic leakoff model, as well as an even more general
model of leakoff that represents an excellent frame-
work for leakoff modeling. In the following sections,
each of the three processes (displacement and com-
pressibility of reservoir fluid, invasion of the forma-
tion by filtrate or fracturing fluid and buildup of filter
cakes, either externally on low-permeability rocks or
internally on high-permeability rocks) is considered 
as if it is the only one acting and then in combination.
Finally, Settari’s general model is summarized.

The fluid-loss derivations in Eqs. 6-82 through 6-91
are for the pressure drop for individual loss mecha-
nisms. For general application, they are in terms of the
total pressure drop between the fracture and initial
reservoir pressures in Eqs. 6-94 through 6-96 and in
oilfield units in Eqs. 8-26 and 8-27.

6-4.1. Filter cake
In laboratory filtration experiments performed at con-
stant pressure, the rate of filtration is proportional to
the square root of time (see Chapter 8). A model for
this process can be derived by assuming that

• the amount of cake deposited is proportional to the
volume of fluid VL passed through a unit surface
area

• cake permeability kcake is independent of its thickness

• flow through the cake obeys Darcy’s law

• pressure drop across the cake ∆pcake is constant

to write

(6-80)

where µfil is the viscosity of the filtrate and it is assumed
that the cake thickness Lcake is proportional to the fluid
volume lost; i.e., VL = αLcake. By integrating for VL, it
can be shown that

(6-81)

where the fluid-loss coefficient through the wall filter
cake is

(6-82)

Carter (1957) proposed that the volume leaked off
can then be determined as

(6-83)

where Sp is the volume that leaks off without forming
a filter cake and can be interpreted as an integration
constant. A more appropriate physical model is to
assume that the initial volume that leaks off, without
building a cake, is the spurt volume and that Eq. 6-80
applies after the cake is established. This interpreta-
tion results in

(6-84)

where tsp is the spurt time.
Another approach to account for leakoff by using

standard petroleum engineering concepts of reservoir
permeability and treating the filter cake as a pressure-
dependent resistance is outlined in Chapter 2 along
with high-permeability conditions (Valkó and Econ-
omides, 1997). The following approach to the leakoff
coefficient is as presented by Settari (1985).

Reservoir Stimulation 6-25

u
dV

dt

k p

VL
L cake

fil

cake

L

= =
µ

α∆
,

u C tL w= ,

C
k p

w
cake cake

fil

= α
µ
∆

2
.

V C t SL w p= +2 ,

V C t t SL w sp p= − +2 ,



6-4.2. Filtrate zone
The first zone inside the reservoir is called the filtrate
zone or invaded zone. It is assumed that

• pressure drop ∆pv across the zone is constant

• filtrate fully displaces the mobile phase(s) within
the formation, resulting in piston-like displacement
and 100% filtrate saturation

• the fluid and rock are incompressible

to write

(6-85)

where kfil is the permeability related to the filtrate and
Lv is the length of the invaded zone. Integrating this
equation, with the assumption that

(6-86)

where φ is the porosity, obtains

(6-87)

where the viscosity control leakoff coefficient Cv is

(6-88)

and the leakoff volume at any time is

(6-89)

The permeability to the filtrate kfil reflects the rela-
tive permeability of the formation to flow of the fil-
trate. This effect may be significant when a water
filtrate enters a hydrocarbon zone at nearly irreducible
water saturation.

6-4.3. Reservoir zone
Although the uninvaded reservoir does not contain
fracturing fluid, pressure is required to displace the
reservoir fluid away from the fracture face. Assuming 

• constant pressure drop ∆pc between the
filtrate/reservoir interface and the far-field reservoir

• compressible flow with constant total compres-
sibility ct

• relatively slow movement of the front of the 
invading fluid

• an infinite reservoir,

the front can be treated as the face of an infinite
porous medium, and an analytical solution (Collins,
1961) is used to obtain

(6-90)

where the compressibility control leakoff coefficient
Cc is

(6-91)

where kr is the permeability of the reservoir rock and
µr is the reservoir fluid viscosity.

6-4.4. Combined mechanisms
In practice, all three processes occur simultaneously.
The leakoff velocities in Eqs. 6-80, 6-85 and 6-90
must be equal, and the sum of the pressure drops must
equal the total pressure difference between the reser-
voir pressure and the fracturing pressure:

(6-92)

(6-93)

where Ct is the total leakoff coefficient and ∆ptotal is
the difference between the pressure in the fracture and
the far-field reservoir pressure pr. If the spurt volume
and time can be neglected, these equations can be
combined (Williams et al., 1979) to yield the total
leakoff coefficient:

(6-94)

with the coefficients Cw, Cc and Cv calculated using
the overall pressure difference.

Equation 6-94 is valid only if the cake permeability
is independent of pressure. If the cake is highly com-
pressible and the cake permeability is approximately
proportional to 1/∆p, Nolte (1988a) has shown that the
fluid loss is limited either by the cake or the reservoir.
In that case, the fluid-loss rate is the minimum of 
Eq. 6-81, with the pressure drop equal to the total
pressure drop, or

(6-95)

6-26 Mechanics of Hydraulic Fracturing

L V u dtv L L= = ∫φ
φ
1

,

u
C

tL
v= ,

C
k p

v
fil v

fil

=
φ
µ
∆

2

V C tL v= 2 .

u
C

tL
c= ,

C
k c

pc
r t

r

c= φ
πµ

∆ ,

C

t

k p

t t

k p

t

k c

t
pt cake cake

fil sp

fil v

fil

r t

r

c=
−

=α
µ

φ
µ

φ
πµ

∆ ∆
∆

2 2( )
 =

∆ ∆ ∆ ∆p p p pcake v c total+ + = ,

u
C

tL
cv= ,

C C
C C C

C C C C C C C
t wcv

c v w

v w w v c v w

= =
+ + +( )

2

42 2 2 2 2

u
dV

dt

k p

LL
L fil

fil

v

v

= =
µ

∆
,



where the combined leakoff coefficient is

(6-96)

with the coefficients Cc and Cv again calculated using
the total pressure difference.

6-4.5. General model of leakoff
A great deal of complexity can be added to the leakoff
model in an attempt to account for detailed behavior
such as the compressibility of the invading fluid and
the moving boundary of the reservoir fluid. Given 
the accuracy with which the other parameters in a
hydraulic fracture treatment are known, the inclusion 
of such effects is generally unnecessary. This section
describes modification of the models to incorporate
the two effects of the variable pressure difference and
changing fluid properties.

The model described in previous sections can be
generalized to account for multiple fluids. Settari
(1985) showed that the fluid loss in the invaded zone
can be described by replacing the term Cv with an
equivalent term:

(6-97)

where Cv is calculated using the average viscosity and
relative permeability of all the filtrate leaked off to 
the current time, and VL is the fluid volume that previ-
ously leaked off into the reservoir. Settari also showed
that replacing the wall-building coefficient for the
fluid under consideration with an equivalent value
would account for variations in leakoff behavior
between fluids in a treatment. The equivalent value 
in this case is

(6-98)

where the previously leaked-off fluid volume VL has
also contributed to wall building.

The critical fluid component affecting wall building
is the gel and/or fluid-loss additive concentration. An
extension to Settari’s model can be derived by consid-
ering Eq. 6-80, in which the thickness of the cake is
assumed to be proportional not to the volume flowed
through the wall but to the volume of gel deposited.
Thus, the thickness is proportional not to the time-
integrated velocity but to the integral over time of the

product of gel concentration and fluid velocity. In this
case, Eq. 6-98 is replaced by

(6-99)

where Cgel is the gel mass concentration in the fluid
and Mgel is its specific density. There is an implicit
assumption that the term CgelCw

2 is constant. This
assumption is consistent with laboratory work reported
by Mayerhofer et al. (1991). The viscosity of water
decreases with increasing temperature, and this effect
on the leakoff coefficient should be included in the
fracture model.

6-4.6. Other effects
• Pressure evolution during treatment

If an estimate of the leakoff coefficient has been
obtained from a mini-fracture decline analysis, then
the most likely way to use the simulator would be 
to enter the total leakoff coefficient derived from the
analysis. It is thus assumed that the leakoff behavior
during the minifracture is the best representation 
of what will occur during the main treatment. How-
ever, if the leakoff behavior is unknown and is to 
be determined from fluid and reservoir properties,
the best approach is to enter a laboratory-determined
wall-building coefficient for each fluid and use the
simulator to determine the total leakoff coefficient
at each position in the fracture as a function of time
and on the basis of the continually evolving pressure
difference between the fracture and the reservoir.
Except in overpressured reservoirs, the assumption
of a constant total pressure difference is generally
reasonable. The ratio of leakoff coefficients between
the lowest pressure difference during the treatment
(when the net pressure is zero and the pressure
difference between the closure stress and the reser-
voir pressure is just ∆p = σc – pr) and at the end of
pumping (when it is ∆p = pnet + σc – pr) is given for
reservoir-controlled leakoff by

(6-100)

and for the wall-building or viscosity-controlled
cases by

(6-101)
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If the ratio is close to 1, a constant leakoff model
can be used, in which the leakoff coefficients (Cc,
Cv and Cw) for each fluid in the treatment can be
precalculated on the basis of an assumed typical 
net pressure (e.g., 250 psi). If the effect of pressure
changes is large, a variable leakoff model can be
used, in which the pressure changes in the fracture
are accounted for as the simulation proceeds. In this
case, the reservoir component of leakoff Cc should
be determined using a convolution of the pressure
history during the treatment.

• Pressure-sensitive leakoff

One of the major assumptions of the analysis in the
previous sections is that the permeability remains
constant. In fact, many reservoirs may have fissures
or other features that may open under the influence
of the fracture treatment. The effect of this opening
is to increase the leakoff rate (Warpinski, 1991).
Pressure-sensitive leakoff is addressed more fully
in Chapter 9.

• Poroelasticity and backstress

Chapter 3 discusses the influence of pore pressure
on rock mass behavior. Poroelastic effects are
changes in stress that occur as a result of changes 
in pore pressure in the reservoir. As fluid leaks out
of the fracture into the reservoir, the affected part 
of the reservoir dilates, and a “backstress” develops,
which increases the effective closure pressure. This
effect is generally small, but it may be important 
in some cases, as discussed by Nolte et al. (1993).
Chapter 3 provides the solution for a fracture in an
infinite, homogeneous medium. Although the addi-
tional pressure results in an increased net pressure 
in the fracture, it generally has little effect on frac-
ture geometry.

6-5. Proppant placement
The objective of hydraulic fracturing is to place prop-
pant to provide a conductive path for production. The
presence of proppant introduces three important issues
in the behavior of fluids in hydraulic fractures:

• effect of proppant on fluid rheology

• convection or gravity currents

• proppant transport.

6-5.1. Effect of proppant on fracturing 
fluid rheology

Generally the viscosity of a proppant-laden slurry µslurry

is higher than that of the carrying fluid µbase alone.
Experimental relations are well established for New-
tonian fluids, but much less so for power law fluids.
Nolte (1988b) showed that relations for power law
fluids could be obtained by using the relations for New-
tonian fluids and raising them to the power of n. For
example, the viscosity ratio µr could be obtained as

(6-102)

where fv is the proppant volume fraction, and fvM is the
maximum fraction for a mobile slurry.

6-5.2. Convection
Density differences between fluids may result in the
denser fluid flowing under the lighter fluid or the
lighter fluid overriding the denser fluid. This phenom-
enon, known as convection or gravitational flow, is
important in many fields, such as saltwater intrusion
under fresh water (Badon Ghyben, 1888; Herzberg,
1901). In fracturing, it may be relevant if a high-
density slurry stage flows under a previously pumped
stage or pad, as well as for other 2D aspects of fluid
flow, such as those considered by Clifton and Wang
(1988).

The fluid flow equations for a Newtonian fluid can
be written as

(6-103)

and (Eq. 6-38 for incompressible fluids)

(6-104)

Substituting Eq. 6-103 into Eq. 6-104 obtains

(6-105)
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The last (gravitational) term on the right-hand side
of Eq. 6-105 is the convective term. This can be treated
as a source term, just as the other two terms are storage
or sink terms, resulting from width change and leakoff.
Baree and Conway (1994), Unwin and Hammond
(1995) and Smith and Klein (1995) showed that this 
is generally not significant for most properly designed
fracturing treatments. Smith and Klein showed that if
excess pad was pumped, the fluid flow after pumping
stops (i.e., afterflow) could lead to convection until the
pad leaked off. Also, Eq. 6-105 shows the extreme
sensitivity of convection to fracture width. If the width
is large (e.g., in a low-modulus rock), convection may
be more critical. Fortunately, such low moduli are usu-
ally associated with high permeabilities, in which case
TSO designs and rapid leakoff after shut-in effectively
prevent convection. Cleary and Fonseca (1992) pre-
sented a dimensionless number that reflects the ratio 
of buoyant and viscous forces. This ratio can be used
to estimate the effect of different conditions on the
severity of convection.

Finally, Clark and Courington’s (1994) and Clark and
Zhu’s (1994) experiments on convection largely verify
the theoretical and numerical results described here.

6-5.3. Proppant transport
Hydraulic fracturing produces a conductive channel
by placing proppant in a crack created in a pay zone.
Hence, an essential consideration in fracturing fluid
design is to accomplish proppant transport. The effect
of convection on proppant transport was previously
discussed. There are two other factors that may impact
proppant placement. The first, and most commonly
understood, is settling. If a bottle containing a mixture
of sand and water is shaken up and then left on a
table, the sand will settle out of the water. It can be
shown theoretically that the terminal velocity of a sin-
gle particle far from any walls in a stagnant Newton-
ian fluid is given by Stokes law:

(6-106)

where ρsol is the solid particle density, ρf is the fluid
density, and dsol is the solid particle diameter.

The assumptions of this equation are of limited
applicability in hydraulic fracturing because the fluids
are non-Newtonian and the particles are highly con-

centrated and may be close to the channel walls, which
causes two effects: hindered settling, which implies
that particles get in the way of each other, and clus-
tered settling, in which particles join together, effec-
tively increasing the diameter in Eq. 6-106. Novotny
(1977) presented a correlation for the particle velocity
usol in hindered settling in terms of the volume fraction
of solids fv:

(6-107)

where

(6-108)

and the exponent β ranges from 5.5 at low values of
NRe to 2 at high values of NRe. For power law fluids, 
a generalized form of Stokes law (Eq. 6-106) is used:

(6-109)

Equation 6-108 can still be used to account for hin-
dered settling. Other correlations have been developed,
but a definitive correlation has not appeared in the lit-
erature. Many fracturing fluids are designed for almost
perfect transport, so the settling rate is usually not
important unless the fracture remains open for a long
time after pumping stops.

Another effect on proppant placement is fluid 
migration (Nolte, 1988b) or encapsulation (Cleary 
and Fonseca, 1992). Fracturing fluids are generally
viscoelastic. Although it is beyond the scope of this
section to discuss this phenomenon in detail, one of 
its important effects is to drive proppant to the center
of the flow channel. This migration could result in a
dense sheet near the center of the channel, surrounded
by clear fluid. This has the effect of accelerating parti-
cle settling, especially for low proppant concentrations.
Unwin and Hammond (1995) presented simulations
showing the effect of this migration on proppant 
placement.

6-6. Heat transfer models
The properties of many fracturing fluids show some
dependence on temperature. In addition, the rates 
of the reactions that occur in acid fracturing are
dependent on temperature. In a typical fracturing
treatment, the fluid is pumped at a temperature signifi-
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cantly below the reservoir temperature. As the fluid
penetrates farther into the fracture, heat transfer occurs
between the fracturing fluid and the rock, resulting 
in an increase in fluid temperature.

The temperature gradient in the direction perpendic-
ular to the fracture wall is significantly larger than
those in other directions, so the temperature gradients
in the other directions can be neglected. In addition,
heat conduction in the fluid can be ignored because 
it is small relative to both conduction in the rock and
transport of heat with the moving fluid. These assump-
tions reduce the heat transfer problem to a 1D problem
perpendicular to the fracture wall, with conduction
through the rock to the fracture face and convection
from the rock face into the fluid.

6-6.1. Historical heat transfer models
The first significant thermal model for hydraulic frac-
turing was published by Whitsitt and Dysart (1970). 
To obtain an analytical solution, they assumed a leakoff
rate that varies linearly from zero at the well to a maxi-
mum at the fracture tip and accounted for the inhibit-
ing effect of the leakoff, which occurs in the opposite
direction to the heat transfer. Unfortunately, the solu-
tion they obtained contains an integral that must be
evaluated numerically. Two of their more significant
contributions are demonstration of the effect of tem-
perature on acid reaction rates for acid fractures and
that the temperature in much of the fracture is well
below the reservoir temperature, so that fluids could 
be designed for lower temperatures than previously
believed.

Sinclair (1971) obtained a solution to a similar
problem, except that he assumed a uniform leakoff
rate along the fracture. An example of the results is
shown in Fig. 6-12. The significance of this figure is
the relatively small fluid heat-up that occurs when the
fluid efficiency is low. For an efficiency of 10%, the
temperature in the fracture is approximately the inlet
temperature over about 80% of the fracture length. 
At higher efficiencies, a more rapid heat-up occurs, 
so that about 50% or more of the fracture length is 
at or close to the reservoir temperature.

6-6.2. Improved heat transfer models
Meyer (1987) developed a solution that accounts for 
a finite-film, or convective, coefficient for heat transfer
between the rock and the fluid and also introduced the
power law Nusselt number to determine the value of
the convective heat transfer coefficient. This showed
that the effect of the finite-film coefficient is to reduce
the rate of fluid heat-up.

Kamphuis et al. (1993) developed a numerical sim-
ulator that accounted for similar effects. One of the
advantages of the numerical model is that it allows
including more effects, such as variable pump rate
during the treatment, and, of more practical impor-
tance, calculating temperature changes after shut-in.
This model requires the introduction of a calculation
grid in the rock.

Another algorithm has been developed to solve the
heat transfer problem (see Sidebar 6I). It has many 
of the advantages of the numerical solution mentioned
previously but is extremely computationally efficient.
The equation for the fluid temperature is uncondition-
ally stable; i.e., there is no upper limit on the time
step. The results of simulation with this method com-
pare favorably with the full numerical solution of
Kamphuis et al. (see Sidebar 6J).

6-7. Fracture tip effects
All fracture models include the effects of rock defor-
mation (width), mass transport and fluid loss in similar
ways. However, the failure and opening of the fracture
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Figure 6-12. Temperature profile in a fracture for different
fluid efficiencies. TD = dimensionless temperature, 
T = absolute temperature, Ti = fluid temperature at the
fracture mouth, Tr = reservoir temperature.
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at its tip boundary are addressed in numerous ways.
Nevertheless, certain general principles can be
described that apply to this region, and different imple-
mentations can be considered as modifications of the
general principles. If the fracture tip is envisioned as
the zone between the fracturing fluid and the undis-
turbed rock ahead of the fracture, then there are four
possible features of this region that must be addressed:

• failure or opening process (normal LEFM)

• disturbed zone in the rock ahead of the fracture tip
(damage not incorporated in the LEFM model)

• unwetted zone (fluid lag region)

• disturbed zone along the fracture face (e.g., dila-
tancy or compaction).
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6I. Efficient heat transfer algorithm

Mack and Elbel (1994) presented an efficient algorithm for the
calculation of temperature changes in hydraulic fractures.

Consider a semi-infinite rock mass with constant surface
flux F0 starting at time zero. The temperature change of the
rock surface ∆Tsurf as a function of time t is (Carslaw and
Jaeger, 1959)

(6I-1)

where

(6I-2)

where kh is the thermal conductivity of a solid and κ is the
thermal diffusivity of a solid.

For a piecewise constant-flux history, Eq. 6I-1 can be gen-
eralized to

(6I-3)

where ti and Fi represent the time and the surface flux,
respectively, at the end of the ith time step. Thus,

(6I-4)

where Tr
0 is the initial reservoir temperature, ∆tn = tn – tn – 1,

and En represents the effect of all previous time steps, which
can be written as

(6I-5)

Now consider an element of fluid of height ∂y, length ∂x
and width w/2 that experiences a change in temperature from
Tfl

n – 1 at the beginning of a time step to Tfl
n at the end of the

step. The quantity of heat required to cause this temperature
change is ρfCpflw∂x∂y (Tfl

n – Tfl
n – 1)/2. Assuming a constant

flux over time step ∆tn, this implies that the flux and tempera-
tures over the area ∂x∂y are related by

(6I-6)

where

(6I-7)

Finally, consider the effect of heat transfer by convection
from a rock surface at temperature Tsurf

n to fluid at a tempera-
ture Tfl

n. If the heat transfer coefficient is h, the flux is

(6I-8)

Equations 6I-3, 6I-6 and 6I-8 can be solved for Tfl
n, Fn and

Tsurf
n to yield

(6I-9)

(6I-10)

(6I-11)

(6I-12)

Defining D0 as 1/C0,

(6I-13)

It has been shown (Kamphuis et al., 1993) that the effect of
leakoff on the heat flux is equivalent to reducing the conduc-
tivity by the factor

(6I-14)

where P = CL/√kh.
Meyer (1987) showed that the Nusselt number

(6I-15)

where kfl is the thermal conductivity of the fluid, for non-
Newtonian fluids ranges from 6 for n´ = 0 to 4.11 for n´ = 1. 
A Nusselt number of 4.3 is most representative of typical frac-
turing fluids.

If a fracture treatment is simulated with an explicit finite dif-
ference scheme, it is not practical to retain the flux history of
each solid grid point because many thousands of time steps
may be required to simulate the entire treatment. It has been
found that using 5 to 10 steps to represent the flux history is
sufficient, provided the time steps are merged in such a way
that the overall heat loss from the formation is conserved.
This results in an accurate representation of the most recent
temperature changes in the simulation, yet retains computa-
tional and storage efficiency.
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These four mechanisms are typically neglected 
or handled in an ad hoc manner because of a lack of
understanding and data, particularly on a field scale,
about this complex zone.

6-7.1. Linear elastic fracture mechanics
Although early studies of fracture in rock used Griffith’s
(1921) crack theory and surface energy (Barenblatt,
1962; Perkins and Krech, 1968; Friedman et al., 1972),
most analyses of rock fracture are now formulated in
terms of LEFM. The advantage of LEFM over earlier
theories is that it incorporates, within a simple frame-
work, some degree of dissipative energy processes,
such as plastic flow and microcracking, when the zone
of dissipation is small compared with the fracture
length (see plateau region for KIc on Fig. 6-13). How-
ever, when this zone is not relatively small, energy-
release methods should be used, as discussed in
Chapter 3.

• Stresses around a crack tip

Irwin (1957) identified three different types of sin-
gular stress fields (i.e., stress approaches infinity)
around a crack tip and characterized these as 
Mode I (opening), Mode II (in plane sliding) and
Mode III (antiplane sliding). For hydraulic fracture
modeling, Mode I is of primary interest, although
the other modes come into play in more compli-
cated situations such as fracture turning from devi-
ated wells. For a 2D crack opened by a constant
internal pressure, Irwin showed that the stress
intensity factor KI is simply

(6-110)

where L is the crack length and pnet is the net inter-
nal pressure opening the crack. Similarly, for a
radial crack

(6-111)

where R is the crack radius (see Sidebar 6K).
LEFM, as postulated by Irwin, holds that the

crack will advance when the value of KI exceeds
some critical value KIc of the material, called the
critical stress intensity factor. More commonly
known as fracture toughness, KIc can be related 
to the surface energy of previous studies through

(6-112)
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6J. Verification of efficient thermal calculations

The paper by Kamphuis et al. (1993) includes results for a
KGD fracture in sandstone. The parameters are all held con-
stant except for the leakoff coefficient CL, which has values
of 4E–5, 1E–4, 2E–4 and 3E–4 m/s1/2. Figure 6J-1 compares
the results obtained using the method described in Sidebar
6I and those obtained by Kamphuis et al. The dimensionless
temperatures along the fracture are shown as a function of
the leakoff coefficient, with the lowest curve representing the
largest leakoff coefficient. The agreement is good, consider-
ing the relatively small number of elements (eight) used in
this simulation and the relatively coarse nature of the heat
transfer algorithm compared to Kamphuis et al.’s detailed
finite-difference calculations.

Figure 6J-1. Comparison of temperature calculations
(solid lines) with the results of Kamphuis et al. (1993)
(dashed lines).
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where the specific fracture surface energy γF

includes localized dissipative effects and can 
be determined in the laboratory, as discussed in
Chapter 3. The attractiveness of this theory is its
ability to include all the complicated failure pro-
cesses in one parameter, which, hypothetically, is 
a material constant similar to modulus or strength.
However, for the general case of dissipative effects,
the linear elastic stresses given by Eqs. 6K-1
through 6K-3 may no longer apply near the crack tip.

• Application of fracture toughness to hydraulic
fracturing in rocks

Although LEFM is attractive in its simplicity, two
questions remain concerning its application to
hydraulic fracturing:

– Is KIc a material property of rocks and what are
its characteristics?

– Does KIc require modification for hydraulic frac-
turing applications?

The first question is difficult to answer because
of scaling problems. In the initial application of KIc

to rocks, Schmidt (1976) showed a clear size effect
at small scales, but KIc appears to approach a “con-

stant” value as the crack size reaches some thresh-
old value. Figure 6-13 shows example results for
Indiana limestone that led Schmidt to conclude that
KIc is a material constant. However, the small size
of the laboratory samples is several orders of mag-
nitude different than that of field-size hydraulic
fractures, and size effects, which would invalidate
the application of LEFM to this process, cannot be
definitely ruled out.

Even without size difficulties, most rock material
“constants” (such as Young’s modulus) are not con-
stant and vary with confining stress, temperature,
strain rate and the size of the rock mass tested.
Similarly, in Schmidt and Huddle’s (1977) work
with Indiana limestone, a significant increase of the
critical stress intensity factor with confining stress
was measured. Thiercelin (1987) confirmed this
behavior but also showed that the amount of the
increase is strongly dependent on the rock fabric
and other factors.

Assuming that KIc is a material constant and scal-
ing is not a problem, fracture toughness can be
incorporated in a 2D or P3D crack model by inte-
grating Eq. 6K-4 with the model-derived pressure
distribution (or using Eq. 6-110 with a weighted-
average pressure) to obtain the stress intensity fac-
tor KI. Even an unwetted region can be included by
modifying the pressure distribution used in 
Eq. 6K-4, as discussed later. For the calculated
value of KI:

– If KI exceeds the input value of KIc, the crack is
allowed to advance.

– If the value of KI is less than or equal to KIc, the
crack remains in its same position.

– If KI becomes negative, the crack must retreat
(i.e., the width reduces to zero) until KI becomes
≥0, as negative values indicate that the internal
pressure is insufficient to support the entire crack
size.

For field-size hydraulic fractures, L or R and pnet

are so large that the stress intensity at a hydraulic
fracture crack tip is much larger than typical labo-
ratory KIc values of 500–2000 psi/in.1/2. Hence, it is
usually assumed that KIc for this normal crack
growth process, as understood from the laboratory,
is negligible except for small fractures and initial
growth. The following sections discuss modifica-
tions to this theory.
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6K. Crack tip stresses and the Rice equation

Irwin (1957) found that the opening mode of a 2D crack has
a singular stress distribution in the near-crack-tip region:

(6K-1)

(6K-2)

(6K-3)

where θ is the angle measured from the crack axis, r is the
distance from the crack tip, and KI is the stress intensity factor.

By comparing the stress field given by Eqs. 6K-2 and 6K-3
with the solution of the stress field around the tip of a 2D
crack extending from –L to L, Rice (1968) showed that KI can
be calculated as

(6K-4)

where p(x) is the pressure distribution in the crack. For con-
stant pressure in the crack, Eq. 6K-4 reduces to Eq. 6-110.

For a radial crack, the equivalent equation is

(6K-5)

which, for constant pressure, reduces to Eq. 6-111.
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6-7.2. Extensions to LEFM
In the practical application of hydraulic fracturing, the
measured net pressures are usually larger than those
predicted by models (Shlyapobersky, 1985, 1988a,
1988b; Cleary et al., 1991). Although these high net
pressures could be due to better than expected con-
tainment, poor measurement of the closure stress,
near-wellbore effects, complex fracturing, poor under-
standing of rheology and many other factors, the gen-
eral tendency has been to focus on the tip region as
the source of these anomalous results. Considerable
work on fracture tip effects began after Shlyapobersky
(1985) suggested that hydraulic fracture data could 
be interpreted to show a scale effect on KIc for field-
size fractures. Since then, three additional major
mechanisms have been proposed to account for the
high net pressures at the crack tip: fluid lag effects
(Jeffrey, 1989; Gardner, 1992; Advani et al., 1993),
dilatancy (Cleary et al., 1991) and damage (Yew and
Liu, 1993; Valkó and Economides, 1993a).

• Fluid lag region

As applied to hydraulic fracturing, the unwetted
zone near the crack tip has pressure less than the
closure pressure and hence acts to clamp the frac-
ture tip closed and reduce the stress intensity in the
rock. This zone was first introduced by Khristian-
ovich and Zheltov (1955) and successfully used 
by Geertsma and de Klerk (1969) in modeling 2D
fractures. From their initial formulations, it is clear
that this unwetted region could have an impact on
fracture parameters if it were sufficiently large. In 
a simple 2D geometry, the application is straight-
forward, but the size of the unwetted zone and the
exact pressure in the zone must be assumed. The
pressure within the unwetted region is most likely
the reservoir pressure for permeable rocks and
could be as low as the vapor pressure of the fluid
for impermeable rocks, so limits can be placed on
its value. The size of the unwetted region is a more
difficult problem and has been the subject of con-
siderable investigation.

Fluid lag can be incorporated into the standard
KIc form by defining an effective fracture toughness
(Jeffrey, 1989):

(6-113)

where

(6-114)

for a 2D (KGD) crack, where ptip is the net pressure
(pressure near the tip minus the closure pressure) in
the nonwetted region and d is the fluid lag distance.
Typically, ptip values are between –σc + pr and –σc +
pvapor, where σc is the closure stress, pr is the reser-
voir pressure, and pvapor is the vapor pressure of 
the fluid. The fracture propagation criterion now
becomes

(6-115)

Similar equations can be written for radial cracks
(Jeffrey, 1989). 

Detailed study of the crack tip has led to the dis-
covery of concepts unique to hydraulic fracturing.
Modeling of the crack tip region by the SCR Geo-
mechanics Group (1993; Lenoach, 1995) shows
that even when effects of fracture toughness KIc

are ignored, the consequences of coupled fluid flow
and leakoff still result in a singularity at the crack
tip. For an impermeable rock, the power of the
hydraulic fracture singularity is not 1⁄2 as for the
rock behavior in LEFM, but rather n/(2 + n), where
n is the power law index of the fluid. For perme-
able rocks, the power of the singularity is 3n/(4 + 4n),
which is stronger than the impermeable singularity.
Thus, an important singularity in stress may exist 
at the tip even under conditions in which the frac-
ture toughness plays no role. They also made
numerical simulations that show that the size of 
the fluid lag region adjusts to meet the fracture
propagation criterion.

Models that determine the size of the unwetted
region (Jeffrey, 1989; Gardner, 1992; Yew and Liu,
1993; SCR Geomechanics Group, 1993) generally
produce small unwetted lengths, except at small
confining stresses. However, only a small region is
required near the tip to overshadow the effect from
the fracture body. One shallow field experiment
(relatively low confining stress) had sizable fluid
lag zones (Warpinski, 1985), but no careful field
study of fluid lag distances at higher confining
stresses has been made. Fracture models where the
lag distance is calculated generally show only a
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small influence on global fracture parameters; a
good example is calculation of the 3D aspects of
the lag effect by Advani et al. (1993). Earlier in
this chapter, it was shown that the dimension that
controls fracture width is the smaller one. Hence,
the KGD model is most applicable for short frac-
tures and the PKN model for long fractures.
Advani et al.’s study shows that a similar effect
occurs for the fracture mechanics; i.e., the length 
L in Eq. 6-114 must be replaced by the fracture
height if the fracture length exceeds the height.

• Dilatancy

Although the LEFM concept can include small-
scale damage and plasticity within its framework,
the possibility exists that the damage zone around 
a field-size hydraulic fracture could be sufficiently
large that the near-tip stress distribution becomes
invalid, or other effects could alter the stress distri-
bution. For example, Cleary et al. (1991) suggested
that the mechanism responsible for elevating crack
tip pressures is dilatancy just behind the fracture
tip. They postulated that if this dilatancy occurs
during the rock failure process, then the fracture
width just behind the tip may be pinched slightly
by the expanded fracture. Dilatation of material,
which is essentially a volumetric expansion caused
by failure, cannot be accommodated by the sur-
rounding elastic material, so the rock stress in the
near-tip region must increase. Yew and Liu (1993)
developed a modified fracture toughness to include
dilatation of the material ahead of the crack tip for the
case where a plastic zone is created around the tip.
An approximate equation for this behavior, in terms
of an effective fracture toughness, was given as

(6-116)

where α is found by solving

(6-117)

where ϕ is the friction angle and Et is the Young’s
modulus of the plastic material.

Throughout the body of a fracture such dilatancy
is negligible, but it could play an important role in
the near-tip region, where the width is small. How-
ever, numerical simulations of crack growth, assum-

ing the rock experiences dilatant-plastic yielding,
(Papanastasiou and Thiercelin, 1993) show no over-
all increase in the width at the fracture tip because
plastic deformation dominates the dilation effect. 
De Pater et al. (1993) tried to identify dilatancy in
laboratory tests and through detailed modeling of
the fracture tip, but no clear evidence of such
behavior was obtained.

• Other behavior: damage- and fluid-induced effects

Another approach to modeling near-tip rock behav-
ior is to use a cumulative damage approach, in
which the microcrack damage ahead of the crack
forces the undamaged material to accept more of
the load. Valkó and Economides (1993a) formulated
a fracture model using this approach. Their model
scales the damage with the fracture length, which 
is consistent with the KGD model and applies only
to relatively short fractures. This analysis would 
be applicable for longer fractures if applied to a tip
element or with a scaling criterion.

Because most of the modeling efforts associated
with hydraulic fracturing deal with either fluid
mechanics or rock mechanics, the strong chemical
interactions that can affect rock behavior are often
forgotten. An extreme example of this effect is the
large reduction in strength that can occur as a result
of stress corrosion cracking. Similarly, there has
been some evidence that the chemistry, rheology 
or molecular structure may influence tip behavior.
Holder et al. (1993) conducted laboratory tests in
which the inferred fracture toughness values using
crosslinked gels were substantially greater than
those with linear gels or Newtonian fluids. Dunning
(1980) found that surfactants can have a major
effect on the crack propagation stress (or, alterna-
tively, the fracture toughness). The effects of pH,
total ions, and breakers and other fluid additives
can cause additional chemical effects. However,
these effects can influence tip failure only in the
absence of a fluid lag region or where the fluid pen-
etrates a damaged area ahead of the fracture tip.

6-7.3. Field calibration
Obtaining a definitive description of the fracture tip
behavior is complex and difficult. From a practical
standpoint, because the tip pressure must be consistent
with field observations, its magnitude and impact can
be estimated using observed pressure data, as dis-
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cussed in Chapters 5 and 9. To maintain a credible
description of fracture geometry, this should not be an
ad hoc procedure. Shlyapobersky et al. (1988a, 1988b)
proposed a method to calibrate a field-scale effective
fracture toughness that assumes that the fracture stops
growing soon after shut-in and fluid flow within the
fracture stops. By determining an initial shut-in pres-
sure (ISIP) at the time when fracture growth stops (if
possible) and the closure stress in the formation, the
method measures a value of pnet associated with an
open fracture at the end of pumping. Given pnet, the
effective fracture toughness is calculated from

(6-118)

where Reff is one-half of the fracture height for a long
2D crack or the crack radius for a penny-shaped
crack, and αg is a geometry coefficient, which depends
on the geometry for a rectangular crack or is 0.64 for
a penny-shaped crack.

This and other procedures to define tip effects by
field calibration require an accurate measurement of
pnet as well as reliable information on the fracture
geometry (hf, L and R), fluid flow within the fracture
after shut-in and the expected nature of the rock’s fail-
ure behavior.

6-8. Tortuosity and other near-well 
effects

High near-wellbore friction losses have been observed
in fracture treatments, particularly in deviated wells or
when the perforations are inadequate or poorly
designed. Some attempts have been made to under-
stand the effect of near-wellbore geometry on the
placement of hydraulic fractures (Aud et al., 1994) and
to develop methods to prevent unplanned screenouts
(Cleary et al., 1993; Stadulis, 1995). Near-wellbore
friction losses have been attributed to phenomena such
as wellbore communication (perforations), tortuosity
(fracture turning and twisting), perforation phasing
misalignment and induced rock pinching, and multiple
fractures (e.g., Stadulis, 1995). These effects have been
identified as detrimental to the success of a fracturing
treatment because of the increase in net pressure and
the increased likelihood of unplanned screenouts
caused by the limited fracture width near the wellbore.

6-8.1. Fracture geometry around a wellbore
Several researchers have investigated mechanisms
related to fracture initiation in vertical and deviated
wells. Behrmann and Elbel (1991) and Daneshy
(1973) found that the perforation must be oriented
within about 10° to 20° of the plane normal to the min-
imum far-field stress for a fracture to initiate at the
perforation and extend. Other experiments show that
when the perforations are not oriented in the direction
of far-field fracture propagation and the well is devi-
ated, the fractures can be nonplanar or S shaped
(Weijers, 1995; El Rabaa, 1989). However, predicting
the near-wellbore pressure drop in deviated wells is
difficult because of the uncertainty of the near-well
fracture geometry.

A symmetric bi-wing planar fracture is generally
assumed to develop when a hydraulic fracture treat-
ment is performed. Hydraulic fracture models such 
as the planar and P3D models described previously 
do not account for fracture initiation and near-wellbore
effects. Apart from multiple fractures, the near-
wellbore effects described here have no effect on 
the overall fracture geometry, except if a near-wellbore
screenout is caused by near-wellbore effects. This 
is in contrast to fracture tip effects (see Section 6-7),
which may affect fracture geometry significantly.

The purpose of modeling near-wellbore effects is
twofold: to understand the source of near-wellbore
screenouts, so that they may be predicted and pre-
vented, and to correctly remove the near-wellbore
contribution from the measured “net pressure” so that
the remaining net pressure may be interpreted correctly
as a characteristic of the overall fracture geometry.

6-8.2. Perforation and deviation effects
The three assumed components of near-wellbore pres-
sure loss are friction through the perforation, fracture
turning (i.e., tortuosity) and perforation misalignment
friction, which are also assumed to be additive:

(6-119)

It is not possible to predict near-wellbore effects, other
than friction through perforations. Rather, models for
these mechanisms of pressure increase are provided,
and each mechanism has one or more parameters,
which can be evaluated from field data.
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6-8.3. Perforation friction
A discussion of perforating requirements for hydraulic
fracturing is in Chapter 11. Insufficient or poor perfo-
rations can have a significant effect on the execution
and evaluation of a fracturing treatment because they
affect the breakdown and treating pressure. Improper
perforating can result in near-wellbore screenouts if
the perforations do not provide an adequate pathway
to the main body of the fracture. The equation com-
monly used to calculate perforation friction implicitly
assumes that the perforation is a short cylindrical tun-
nel (McClain, 1963):

(6-120)

where q is the total flow rate, ρ is the fluid density, 
n is the number of perforations, Dp is the perforation
diameter, and C is the discharge coefficient. The dis-
charge coefficient represents the effect of the perfora-
tion entrance shape on the friction pressure.

The effect of perforation friction on fracture treating
pressure is usually negligible if the perforations are
correctly sized and phased. If this is not the case, per-
foration friction is assumed to be constant during the
entire treatment. When sand slurries are pumped at
high differential pressure across the perforations, the
pressure drop changes, owing to erosion. There are
two effects of erosion on the pressure drop through 
a perforation: smoothing of the entrance of the perfo-
ration, with a resulting increase in the discharge coef-
ficient C, and an increase in diameter Dp. Figure 6-14
shows the related evolution of the coefficient of dis-
charge with the perforation geometry (Crump and
Conway, 1988). These effects, and their implementa-
tion in a fracture simulator, are described in more
detail in Romero et al. (1995).

Figure 6-15 illustrates the difference between the
resulting pressure responses when perforation friction
and erosion are included in the calculation and when
they are neglected for a PKN geometry model. The
pressure increases as expected for a confined fracture,
until proppant reaches the perforations. Then the pres-
sure decreases, mainly because of the increase in the
discharge coefficient. After about 2000 lbm of sand 
is injected, the slope becomes positive again, almost
paralleling the slope prior to the sand, which indicates
a constant discharge coefficient and a slow increase 
of the perforation diameter.

6-8.4. Tortuosity
Tortuosity is defined here as a convoluted pathway
connecting the wellbore to the main body of the frac-
ture. Several studies (Aud et al., 1994; Cleary et al.,
1993) have identified tortuosity as an important phe-
nomenon that could affect the execution of a fracture
treatment when the wellbore and stress fields are mis-
aligned. The simplified schematic of fracture geome-
try in Fig. 6-16 shows how a fracture may turn and
twist to align itself with the preferred fracture plane.

The fracture width is proportional to the difference
between the pressure in the fracture and the stress
against which the fracture opens. When the fracture 
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is opening against a stress higher than the minimum
in-situ stress, the fracture width is reduced relative to
that without turning. If the ratio between the stress
against which the fracture is opening and the minimum
in-situ stress is higher than about 1.5, the fracture
mouth acts as a nozzle, allowing fluid to enter, but with
a large pressure drop associated with the pinching of
the fracture width at the well. This process of fracture
width reduction along the reorientation path restricts
flow and could cause near-wellbore screenouts.

The radius of curvature R of the reorientation path
can be determined for a Newtonian fluid as (Romero
et al., 1995)

(6-121)

where λ is an experimental coefficient, q is the flow
rate, σh,min is the minimum horizontal stress, and κ is
the ratio between the stress against which the fracture
is opening and the minimum stress. The coefficient λ
is obtained from experimental data (e.g., Abass et al.,
1994) or field data and can be considered a fitting
parameter.

Fracture simulators such as the planar or P3D simu-
lators discussed previously represent the behavior of
the main body of the fracture, but an additional com-
ponent is required to represent the tortuosity. A model

of the curved path is attached to the main body of the
fracture. Equation 6-121 is used to define the shape of
the path, and the outer boundary conditions (i.e., width
and pressure at the end of the tortuous region) are the
conditions at the wellbore, obtained from the simulator
without tortuosity. Although the calculated pressure at
the well may be higher than that predicted when tortu-
osity is neglected, the width may be lower because the
stress against which the fracture is opening is higher.
This may result in screenouts caused by near-wellbore
bridging, which can be accounted for in the model by
preventing proppant from entering if the width is too
small.

The effect of tortuosity is largest near the beginning
of the treatment and decreases as the treatment pro-
ceeds. This occurs because an increment in the closure
stress, relative to that on a planar fracture, has a fixed
absolute effect (∆w) on the width w. However, the
pressure drop is, roughly speaking, inversely propor-
tional to the width cubed, so that a change in width
from w to w – ∆w has a much greater effect when w
is small (i.e., when the fracture is first created). The
model also shows that the pressure drop caused by
tortuosity can be reduced by increasing the fluid vis-
cosity, which has been reported in practice (Aud et al.,
1994) as an effective means of preventing near-well
screenouts. Both added pump time prior to the intro-
duction of proppant (i.e., increased pad) and increased
viscosity may reduce near-wellbore screenouts
because they cause the width to be greater in the tortu-
ous region than it would have been. However, these
treatment changes can be detrimental to height con-
finement and proppant placement and permeability in
the resulting fracture, so other approaches to mitigate
the cause of tortuosity should be considered.

6-8.5. Phasing misalignment
Perforating practices (i.e., hole size, spacing and ori-
entation) vary widely. In general, not all the perfora-
tions in a well are aligned with the preferred fracture
plane. Indeed, it would be quite coincidental for this
to be the case, unless special efforts are made to
obtain reliable information on the stress directions at 
a particular well. If 0° phasing is used, the orientation
of the perforation to the plane of the hydraulic fracture
may be as large as 90°. On the other hand, nearly per-
fect alignment or 0° phasing causes preferential prop-
agation of one wing of the fracture with limited
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Figure 6-16. The fracture twists and turns to align itself
with the preferred direction of propagation.
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penetration of the companion wing because of the
pressure drop resulting from flow around the annulus
to the nonconnected wing.

Nolte (1988a) pointed out that if the fracture does
not initiate at the perforations, the fluid must commu-
nicate with the fracture through a narrow channel
around the side of the casing. This channel can cause
higher treating pressures because of the width restric-
tions (Fig. 6-17). As with the tortuosity effect dis-
cussed previously, this can cause both increased
pressure and screenouts because of proppant bridging.
Also, proppant may erode the restrictions. The circle
in Fig. 6-17 represents a relatively stiff wellbore (cas-
ing and cement). If the fluid exits the well through the
perforation, it must traverse the microannulus and
pass the restriction area before entering the main body
of the fracture. A geometry effect occurs as the rock 
is displaced by a distance w away from the cement,
resulting in a channel around the annulus with a width
of w2/8D at the fracture entrance (point A in the fig-
ure), where w is the fracture width and D is the well-
bore diameter. In addition, an elastic response (Pois-
son’s effect) occurs in which the fracture opening
results in movement of the rock toward the wellbore,
reducing the fracture width.

Figure 6-18 shows the displacement (in the direction
of the fracture) obtained around the wellbore for a typ-
ical case in which the microannulus and fracture are
subject to a constant fluid pressure. The negative dis-
placement of the rock at the intersection between the
wellbore and the fracture represents the wellbore
pinching from the net pressure in the fracture (Poisson’s
effect). To maintain flow into the fracture through the
pinch point, the microannulus must be pressurized to 
a higher level than the fracture. Figure 6-19 shows the
pinching displacement when the net pressure varies from 0 to 1000 psi for a typical case. The effect

increases as fracturing pressure increases, in contrast 
to the tortuosity effect, which decreases as pressure
and width increase.

If the pinch point is present when proppant attempts
to enter the fracture, bridging may occur, resulting in
premature screenout. The fluid travels through the
pinch point at a high velocity, and either fluid or slurry
may erode the pinch point, provided this occurs
before bridging. The degree of erosion is affected by
the viscosity of the fluid, proppant concentration and
rock strength. The reported effectiveness of proppant
slugs (Cleary et al., 1993; Stadulis, 1995) may be due
to this erosion. Because the slugs are small, they do
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Figure 6-17. Nonalignment of perforations and the fracture
plane causes pinch points.
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not bridge everywhere, so fluid entry at higher veloc-
ity continues and erodes some channels. Even prior 
to the use of slugs, it was common to inject proppant
at low concentration to erode restrictions when high
pressures occurred during the fracture initiation stage.
In contrast to tortuosity, pinching is increased by large
pads and higher net pressures. This may explain why,
in some cases, prepad slugs can be injected at low net
pressures when the pinching is smaller, but in the
main treatment a near-well screenout occurs.

6-9. Acid fracturing
Hydraulic fracturing with acid (usually hydrochloric
acid [HCl]) is an alternative to propped fractures in
acid-soluble formations such as dolomites and lime-
stones. The major difference between acid and propped
fractures is that conductivity is obtained by etching the
fracture faces instead of by using a proppant to prevent
the fracture from closing. Acid fracturing may be pre-
ferred operationally because the potential for unin-
tended proppant bridging and proppant flowback is
avoided. However, designing and controlling the depth
of penetration of the live acid into the formation and
the etched conductivity are more difficult than control-
ling proppant placement. Acid penetration is governed
by the chemical reaction between the rock and the
fracturing fluid (as opposed to a simple mass balance
in propped fractures), and conductivity is determined
by the etching patterns formed by the reacting acid (as
opposed to being a property of the proppant under a
given stress). In both cases, acid fracturing introduces 
a dependence on rock properties that is not present in
propped fracturing. In addition, the properties that acid
fracturing design and control depend on are usually more
difficult to determine than other formation properties.

The geometry of acid fractures can be determined
by the same models used for propped fractures, with
the exception of the impact of etched width on the
width-pressure relation. However, several additional
aspects of acid fracturing must be considered:

• acid transport to and reaction at the rock surface

• heat transfer, because the reaction releases heat, and
the reaction rate is temperature sensitive

• leakoff, because acid leakoff behavior is signifi-
cantly different from that of nonreactive fluids.

6-9.1. Historical acid fracturing models
Williams et al. (1979) provided a detailed discussion
of acid fracturing models prior to 1980, and Li et al.
(1993) reviewed some of the more recent work. One
of the main drawbacks of most of the early models
was that the fracture geometry calculation was sepa-
rated from the acid reaction calculation to develop
analytically tractable solutions. Since then, computer-
based models have overcome these limitations, and
the preceding models are no longer used. For exam-
ple, Settari (1993) presented a detailed description of 
a comprehensive model with the fracture geometry
and acid reaction calculations coupled, including a
comprehensive leakoff model, coupled heat transfer
and the capability to include multiple fluids with vary-
ing rheology.

Much of what follows is based on the work
described by Settari. Roodhart et al. (1993) presented
a model in which they developed the heat transfer
calculations extensively, using the work of Kamphuis
et al. (1993). The other factor they included was the
effect of the boundary layer thickness for acid reaction
developing as the fluid enters the fracture, resulting 
in a thinner layer near the well and causing a higher
etching rate. The aforementioned publications contain
extensive lists of references.

6-9.2. Reaction stoichiometry
The main chemical reactions of interest in acid frac-
turing are those between HCl and calcium carbonate
(limestone) or calcium-magnesium carbonate (dolo-
mite). The chemical reaction for limestone is written as

2HCl + CaCO3 H2O + CO2 + CaCl2

and for dolomite as

4HCl + CaMg(CO3)2 2H2O + 2CO2 + CaCl2

+ MgCl2

The first reaction equation indicates that two mole-
cules of HCl react with one molecule of calcium car-
bonate to form one molecule each of water, carbon
dioxide and calcium chloride. The second equation
shows that four molecules of HCl react with one mole-
cule of calcium-magnesium carbonate to form two
molecules each of water and carbon dioxide and one
each of calcium chloride and magnesium chloride.
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These so-called stoichiometric equations allow com-
puting the volume of rock dissolved by a given volume
of acid. These equations can be used to determine the
dissolving power XC of the acid, which is the volume
of rock dissolved per unit volume of acid reacted. The
mass dissolving power (i.e., the mass of rock dissolved
per unit mass of acid reacted) is first defined as

(6-122)

For the limestone reaction,

(6-123)

so that each gram of 100% pure HCl dissolves 
1.372 g of rock. To obtain the dissolving power, 
the masses must be converted to volumes:

(6-124)

where ρC and ρCaCO3 are the densities of the acid solu-
tion and calcium carbonate, respectively, and C is the
weight-fraction concentration (e.g., 0.28 for 28%
acid). For example, the specific gravity of 28% acid 
is 1.14, whereas that for 15% acid is 1.07. A complete
table of densities is in Williams et al. (1979). Applying
this calculation for the limestone-HCl reaction, X15 is
0.082, and X28 is 0.161. Similarly, for dolomite the
values are 0.071 and 0.141, respectively.

The stoichiometric equations for acid reactions pro-
vide a relation for the coupling between fracture
geometry and acid spending. Because there are many
unknowns in acid fracturing, the modeling can be
simplified by neglecting the variation in density of the
acid and using that of 10% acid, which is a suitable
average for most acid fracture treatments. In this case,
X100 can be approximated as 10X10 and XC as CX100.
Now, consider the volume of a fracture element of
cross-sectional area (width times height) A and length
δx in which the acid concentration changes by an
amount ∆C. The volume of acid spent is A ⋅ δx ⋅ ∆C,
and the volume ∆A ⋅ δx of rock dissolved is

(6-125)

where Aetch is the etched area and C
–

is the average acid
concentration in the cross section.

6-9.3. Acid fracture conductivity
Acid fracture conductivity is much more poorly
understood than propped fracture conductivity. The
flow rate through an open channel of width w is pro-
portional to w3. If the etched channel were under no
stress, this proportional relation would be used to
determine the conductivity of an acid fracture. How-
ever, the stress in the reservoir acts to close the channel.
If the etching were completely uniform, this closing
could be calculated in a manner similar to that used 
to calculate the width of an elliptical fracture, except
that the net pressure is negative. As an approximation,
for a uniform etched width, the shape of the resulting
closed fracture would be

(6-126)

where wetch is the etched width, and the width is set 
to zero wherever Eq. 6-126 predicts a negative width. 
It is apparent from this equation that the width in most
of the channel would be much lower than that of an
open channel, as most of the channel would have
closed completely. This would clearly reduce fracture
conductivity significantly.

Fortunately, acid etches the rock surface in a non-
uniform manner, because of rock heterogeneity and
fingering of the acid through the wider previously
etched channels. This results in numerous horizontal
“pillars” supporting the channels between them, for
which Eq. 6-126 could be used with the fixed fracture
height hf replaced by the distance between the pillars.
It is not practical to model this in detail, because the
pattern is not generally known. Because conductivity
is higher in formations where numerous small chan-
nels occur supported by numerous pillars, uniform
etching is not desirable. If, however, the pillars lack
the strength to support the additional load required to
keep the channels open, some of the pillars will col-
lapse, reducing the conductivity. Fracture conductivity
is thus dependent not only on the etching pattern, but
also on the rock strength and closure stress. Nierode
and Kruk (1973) developed an empirical equation for
conductivity:

(6-127)

where

(6-128)
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(6-129)

(6-130)

where σ is the effective stress in psi, SRE is the rock
embedment strength in psi, and wkfi is the conductivity
in md-in. A typographical error in the original paper is
corrected in Eq. 6-129.

6-9.4. Energy balance during acid fracturing
The total heat generated (per unit volume) by a
change in acid concentration ∆C

–
is ∆C

–∆H, where ∆H
is the heat of reaction. Coupling of the acid and heat
transfer models is provided by assuming that all the
heat initially increases the fluid temperature, resulting
in a fluid temperature change of

(6-131)

where ρf is the fluid density and Cpfl is the fluid heat
capacity. Section 6-6 describes how heat is transferred
between the fluid and the formation. The magnitude
of the temperature change resulting from acid reaction
may be sufficient to cause the temperature of some
fluids to exceed the reservoir temperature. It is thus
particularly important to use a numerical temperature
calculation when simulating acid fracturing.

6-9.5. Reaction kinetics
Surface reactions such as the acid-rock reactions dis-
cussed here are complex, even under laboratory condi-
tions. In general, the liquid-phase reaction between
species A and B to form products C and D is gov-
erned by an expression of the form

(6-132)

where ξ f is the forward rate constant, ξ r is the reverse
rate constant, and aX represents the chemical activity
of species X. In the reactions of interest in acid frac-
turing, reverse reactions are usually much slower than
forward reactions and can be neglected. In very dilute
systems, the chemical activity is equal to the concen-
tration. It is also usually observed that the reaction

rate constants are functions of temperature, following
the Arrhenius equation:

(6-133)

The acid reaction rate at a surface is thus a complex
function of the activities of all species involved in the
reaction. Detailed modeling of the reaction in terms of
these activities is not required for a hydraulic fracture
simulator, because of the large amount of uncertainty
in the other parameters. Instead, the reaction rate can
be assumed to be governed by the simple equation for
the rate of acid consumption r (Settari, 1993):

(6-134)

where the temperature-dependent reaction rate
constant is

(6-135)

where Macid is the moles of acid per unit rock face
area, t is the time, Cwall is the surface acid concentra-
tion, Ceqm is the equilibrium concentration, m is the
order of reaction, k0 is the reaction rate constant at the
reference temperature Tref (298K [25°C]), ∆E is the
activation energy, R is the universal gas constant, and
T is the absolute temperature.

Ceqm is generally zero for the reactions of interest.

6-9.6. Mass transfer
Before the reaction can occur at the fracture wall, the
acid molecules must be transported to the wall. In a
stagnant fluid, diffusion in an ideal case can be
described by Fick’s law:

(6-136)

where vA,x is the velocity of species A, DA is the mole-
cular diffusion coefficient, CA is the acid concentra-
tion, and the derivative represents the concentration
gradient. Williams et al. (1979) proposed accounting
for leakoff by adding a term to the right-hand side of
Eq. 6-136, resulting in

(6-137)
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In flowing fluids, this equation is no longer valid,
because acid transport is by convection rather than
diffusion. For acid fracture modeling, Eq. 6-136 is
simply replaced by

(6-138)

where the mass-transfer coefficient is

(6-139)

where Deff is the effective acid diffusion coefficient.
The Sherwood number NSh is determined from the
correlation (Lee and Roberts, 1980)

(6-140)

where the Reynold’s and Schmidt numbers are
defined respectively by

(6-141)

(6-142)

6-9.7. Acid reaction model
If reaction occurs, the acid concentration varies across
the fracture width, and the surface concentration is less
than the bulk acid concentration. The surface concen-
tration is such that the amount consumed at the surface
is balanced by transport to the surface by diffusion.

The wall concentration for a given bulk concentra-
tion is obtained by equating the right-hand sides of
Eqs. 6-134 and 6-138 to obtain

(6-143)

This equation, which is a general model of acid
reaction, can easily be solved if m = 1 but is solved
iteratively otherwise. If Kr is very large compared
with Kg + uL, then Eq. 6-143 is satisfied when Cwall

is approximately equal to Ceqm. In this case, Ceqm can
replace Cwall on the right-hand side of Eq. 6-143, and
Eq. 6-138 can be written as

(6-144)

In this case, the reaction rate is termed mass-trans-
fer limited, because the rate at which it occurs is con-
trolled by the rate at which live acid can be brought to
the rock surface. Similarly, if Kg + uL is very large
compared with Kr, then Eq. 6-143 is satisfied when
Cwall is approximately equal to C

–
. In this case, C

–
can

replace Cwall on the left-hand side of Eq. 6-143, and
Eq. 6-134 can be written as

(6-145)

Equation 6-145 represents the reaction-rate- or
kinetics-limited case in which the rate of acid con-
sumption is limited by the rate at the wall.

6-9.8. Acid fracturing: fracture geometry 
model

The movement of acid perpendicular to the fracture
wall is considered in this section. The preceding sec-
tions discuss the fluid flow equations typically solved
in fracture models. Acid movement within the fracture
can be modeled similarly to the movement of prop-
pant. For a fracture simulator to simulate acid fractur-
ing treatments accurately, several specific require-
ments must be met relating to

• fluid tracking in the fracture and reservoir

• recession of the active fracture length

• effect of etching on the relation between pressure
and width.

Although typical fluid flow calculation schemes use
a coarse grid (about 10 elements), accurate fluid front
tracking can be obtained only by following up to 50
fluid stages. Typical treatments include only about 10
different stages, but stages can be subdivided for bet-
ter tracking of the large gradients that may occur in
acid concentration within a single stage. Also, a finer
grid is required to track leakoff volumes into the for-
mation and formation exposure to fluid stages for
accurate modeling of the extreme differences in leak-
off characteristics and viscosity between acid and
nonacid stages.

Acid fracturing treatments are typically designed
with sudden changes in flow rate because the different
fluids in the treatment have significantly different fric-
tional properties. These sudden changes, as well as the
high leakoff that may occur during pumping of the
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acid stages, may cause recession of the active fracture
length. The simulator must model this recession,
which seldom occurs in proppant treatments.

For a confined fracture in a homogeneous isotropic
elastic material, the relation between the net pressure
and cross-sectional area A can be written as

(6-146)

A modification to this relation is required to account
for dissolution of the rock by acid. Only the elastic
area Aelas contributes to the net pressure in the fluid,
although the total area A (where A = Aelas + Aetch) is
available as a flow channel and to store the fluid mass.

Mack and Elbel (1994) presented example prob-
lems illustrating the effects of some of the features 
of acid fracturing models.

6-10. Multilayer fracturing
Many fracture treatments are performed in settings that
result in the formation and extension of nearly isolated
fractures in different zones. Frequently it is desirable to
fracture multiple zones simultaneously, because treat-
ment of each zone separately would not be practical or
would be significantly more expensive. However, the
design of treatments for multiple zones requires some
special considerations. For example, the amount of
each fluid stage entering each zone cannot be con-
trolled by the engineer. Fluid partitioning is important,
because it dictates the size of the individual fractures
formed. In addition, if the partitioning is unfavorable,
premature screenouts may occur in some zones.

Some early work on the propagation of multiple
fractures (Lagrone and Rasmussen, 1963; Ahmed et
al., 1985; Cramer, 1987; Ben Naceur and Roegiers,
1990) considered fluid partitioning in a limited way
(e.g., using a limited representation of the formation or
at only a single point in time). In the method described
in this section, fluid partitioning is calculated through-
out the treatment.

To simulate the simultaneous propagation of multi-
ple fractures, a single-fracture model (either analytical
or numerical) is integrated with a set of constraints
coupling the individual fractures. For the present, it 
is assumed that the individual fractures are well sepa-
rated, with no mechanical interaction or any fluid flow
between fractures except via the well. In this case, the
fractures can be represented as in Fig. 6-20. Fractures

may open and propagate in n layers. At any time, the
sum of the flow rates into all layers must equal the
total injection rate. In addition, the sum of the closure
stress in a zone plus the pressure drops through the
path from the tip of the fracture in that zone to a refer-
ence point in the well must be the same for each frac-
ture. This set of conditions can be expressed as

(6-147)

(6-148)

which is applied for each fracture. The terms on the
right-hand side of Eq. 6-148 represent the closure
stress, pressure drop in the fracture, pressure drop in
the near-wellbore region including the perforations,
hydrostatic pressure and casing friction, respectively.
There are thus n + 1 unknowns (n flow rates qi,j and
reference pressure pref) and n + 1 equations describing
the system. Equation 6-148 is highly nonlinear, but
the system can nevertheless be solved by standard
techniques, as shown by Elbel et al. (1992).

Figure 6-21 shows an example of a multilayer frac-
ture treatment modeled as a set of PKN fractures. The
fluid partitioning was measured using a spinner flow-
meter, and the downhole pressure was recorded. The
model accurately captures the behavior of the system.

Figure 6-22 shows a more complex case. The effect
of a screenout in a layer reduces the flow into that
layer while increasing it into others. Another interest-
ing effect that the model shows is the effect of cross-
flow, in which fluid may flow between fractures after
pumping ends. If this rate is excessive, proppant may
be drawn out of one or more fractures and that flush
fluid may be injected into other fractures, impairing
near-wellbore fracture conductivity. The crossflow
also violates the assumptions of pressure decline
analysis, possibly resulting in an incorrect estimate 
of fluid loss.

Extension of the model to cases with height growth
was reported by Mack et al. (1992). They showed that
significant differences in both fracture geometry and
flow partitioning can occur if the P3D representation
is used for the individual fractures, because fracture
height growth changes the relation between net pres-
sure in the fracture and the flow rate into the fracture.
Figure 6-23 shows an example comparing the pres-
sure response and the resulting fracture geometry. In
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Figure 6-20. Relationships for multiple fractures propagating simultaneously.
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general, the multiple fractures would not connect into
a continuous fracture unless the wellbore were per-
fectly aligned (e.g., <2°) with the minimum stress
directions. Except for this rare case, height growth
would be inhibited after the tips overlapped.

6-11. Pump schedule generation
It is time consuming to design the schedule required
to achieve a fracture of desired length and proppant
concentration. One way to simplify the task is to use

an analytical solution such as that described in Side-
bar 6L. However, the analytical solutions are generally
applicable only for simple (i.e., radial, PKN or KGD)
models. Another alternative is to develop a pump
schedule generator that uses a numerical simulator.
This tool uses the simulator in a so-called inverse
mode to determine the schedule. It requires all the for-
mation and fluid data necessary for a forward simula-
tion. Instead of the schedule, however, the desired
propped length, minimum and maximum proppant
concentrations, and step in concentration between
stages are specified. A typical concentration range
could be 2 ppg minimum to 12 ppg maximum, with
steps of 2 ppg.

To obtain the desired schedule, the simulator is
started with a schedule derived from an analytic
approximation or a schedule with a small pad stage
and an arbitrarily sized slurry stage with the maxi-
mum proppant concentration. As the simulation pro-
ceeds, the simulation software monitors the leakoff 
of individual fluid elements in the fracture. As the
fluid leaks off, the proppant concentration increases. 
If the user-specified maximum is exceeded, the simu-
lator adjusts the proppant concentration down to the
maximum value and keeps track of how much prop-
pant has to be “converted” conceptually to fluid to
maintain this. In addition, the fracture length is
tracked and the schedule continually extended until
the user-specified length is reached. When the desired
length is reached, it is relatively simple to determine
how much proppant (if any) is left in each fluid ele-
ment. This represents the amount of proppant that
should be in that element when pumped, providing a
design proppant schedule. If proppant does not reach
the fracture tip (i.e., some of the pad should have been
slurry), this can be accounted for.

There are two issues that make this process more
complex than as described. First, as previously noted,
proppant affects fluid rheology, so modification of the
amount of proppant during the simulation affects the
fracture length. This is minimized by repeating the
calculation with the schedule generated by the previ-
ous iteration as input. Three iterations are usually suf-
ficient to converge on a suitable schedule. A more
critical issue is that this method cannot easily account
for bridging. Except during the initial small pad stage,
there is always proppant everywhere in the simulated
fracture, although some of it may later be converted to
fluid. Bridging is therefore ignored and accounted for
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Figure 6-22. Fluid rate into three fractures, showing effects
of screenout and crossflow.
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6L. Approximate proppant schedules

K. G. Nolte
Schlumberger Dowell

The facility to approximate proppant schedules for routine and
tip screenout (TSO) designs based on fluid efficiency (Nolte,
1986b) is an important design tool. For a specified amount of
fluid or proppant, the technique requires an efficiency esti-
mate for the proppant treatment that can be determined from
a fracture calibration treatment after an appropriate adjust-
ment for differences in the injection times of the treatments.
Efficiency is the ratio of the fracture volume to the injected
volume before pumping is stopped. As illustrated on Fig. 6L-1,
it defines the area under the ramp addition curve. This sched-
uling technique is reviewed here and generalized to include
the effect of fluid-loss spurt.

Conceptually, spurt loss occurs only during the addition of
new fracture area and before proppant reaches the fracture
tip and halts fracture extension. Therefore, for normal design
practices (see Section 5-1.1), spurt loss Sp occurs only for the
pad fluid and must be isolated from the efficiency η to esti-
mate the pad volume. The modified efficiency ηC excluding
spurt, which reflects only the CL component of fluid loss, can
be found from Nolte (1989) as

(6L-1)

(6L-2)

where κ is the spurt factor for the case of total fluid loss with
spurt relative to the case with no spurt and κ = 1, g0 ≅ 1.5
(see Chapter 9), CL is the leakoff coefficient, tS is the time of
tip screenout or injection without a screenout, and fLS is the
volume fraction lost to spurt during pumping. Various means
for obtaining the value of κ are discussed in Chapter 9.

The pad fraction is defined as the ratio of the pad volume
to the total fluid and proppant volume injected during time tS.
In the absence of spurt loss (κ = 1), the pad fraction can be
expressed in various forms:

(6L-3)

where ffL is the ratio of fracture to loss volume during injection
and is equal to η/(1 – η), and G* is the decline analysis vari-
able discussed in Chapter 9. The pad relation (1 – η)2 in 
Eq. 6L-3 gives a smaller value than the relation (1 – η)/(1 + η),
which can be alternatively expressed as shown. Numerically
simulated pad data fall between the two relations. When the
spurt loss becomes significant (κ > 1), the pad fraction is
composed of two components: the first is equivalent to the
no-spurt case given by Eq. 6L-3 and uses a value of ηC that
excludes spurt loss, and the second is the contribution of
spurt using Eq. 6L-2:

(6L-4)

In addition to the pad, the schedule requires the volume
fraction of proppant fv to be added following the pad 
(Nolte, 1986b)

(6L-5)

to approximate a spatially uniform concentration of fo at the
end of pumping. The dimensionless slurry time τ is 0 when
proppant addition begins and unity when pumping stops. This
definition provides that fp + τ reflects the total time. Equation
6L-5 is illustrated as the curve in Fig. 6L-1, which also shows
the division of volume between the pad fraction and the slurry
fraction fs. The definition of ε leads to the shaded area under
the fv curve, which is equal to the efficiency. The remaining
area is 1 – η, which reflects the ratio of the loss volume to the
injected volume.

For scheduling a TSO treatment to achieve the final frac-
ture volume Vf relative to that at screenout Vfso, Nolte’s (1990)
result can be extended to include spurt:

(6L-6)

(6L-7)

(6L-8)

where ∆tD is the dimensionless time after screenout, ηso and
ηp are the respective efficiencies at screenout and end of
pumping, tp is the total pumping time, and tso is the time at
screenout. The term g(∆tD) is the low-efficiency dimensionless
fluid-loss function defined in the Appendix to Chapter 9, which
also provides additional TSO relations. Low efficiency is typi-
cal for TSO treatments. The ratio of fracture volumes defined
by Eq. 6L-6 can be replaced by the ratio of corresponding
average widths, as graphically represented in Fig. 10-15 for
various efficiency values. For proppant scheduling, the pad
volume to achieve the TSO is found by using Eq. 6L-4 with ηso

and fLS corrected for spurt by Eqs. 6L-1 and 6L-2. The prop-
pant addition is obtained from Eq. 6L-5 in terms of the final
efficiency ηp. From a practical standpoint and to avoid prop-
pant screen\out midway in the fracture, the pad can be
extended by a low-proppant-concentration stage, as
discussed in Section 10-4.2.
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only when the final design is simulated. Depending on
the required conductivity, proppant of smaller diame-
ter may be used for the treatment.

The method described here can be extended to TSO
designs by specifying both the fluid concentrations
and the desired areal concentration (e.g., 1 lbm of
proppant per square foot of fracture face area). The
simulator is run as previously described, except that
once the design length is reached, length extension is
artificially prevented and pumping continued until the
fracture width is sufficient to obtain the desired areal
concentration. The design of TSO treatments is dis-
cussed in Chapter 10.

6-12. Pressure history matching
One of the most difficult and expensive aspects of a
well-engineered fracture design is obtaining the input
required for the design simulators. Formation data,
such as stresses, permeability and elastic properties,

are rarely well known. Obtaining such data is fre-
quently difficult, expensive or both. This section
describes a method to obtain data from the postjob
analysis of pressure recorded during a treatment.

The only direct output from the formation during 
a fracture treatment is the pressure history measured
during and after pumping the treatment. Chapter 9 
discusses the interpretation of these pressure records 
in detail. However, these analyses can be only quanti-
tatively accurate for relatively simple fracture geome-
tries. This section considers the application of a formal
theory of inversion (see Sidebar 6M) to complement
qualitative interpretation and to increase the quantita-
tive information available from the pressure record.

Inverse analysis is a method of characterizing a sys-
tem from its response to an imposed input. In the case
of hydraulic fracturing, the system is the reservoir,
surrounding layers, the well and all associated para-
meters. The input is the pumping of a fluid, and the
response is the pressure recorded during the treatment.
The pressure record is analyzed to extract the proper-
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6M. Theory and method of pressure inversion

The first step in the application of pressure history inversion is
parameterization of the problem. This involves defining which
properties are to be determined as well as setting bounds on
their values and relations between values of different parame-
ters. For example, it may be assumed that the stress in a
layer is between 5000 and 6000 psi and that the stress in a
neighboring layer is between 500 and 1000 psi higher. If the
parameters are represented by the vector x— and the pressure
record by p—:

(6M-1)

where F represents the mechanics of fracture development
and relates the observed pressure to the input parameters.
The pressure vector is the sequence of discrete pressures
measured during the treatment. The vector x— may be a list 
of selected parameters, such as

(6M-2)

indicating that the parameters to be found are the fracture
height, Young’s modulus and stress, and it is assumed that all
other parameters are specified. Symbolically, the inversion
process can be written as

(6M-3)

which is analogous to inverting a matrix to solve a set of lin-
ear equations with a known right-hand side. In this case, how-
ever, the known vector p— is the sequence of pressure read-
ings, the relation is highly nonlinear and cannot be solved
directly, and there are many more pressure readings than
there are unknown parameters.

Two cases can be distinguished: the measured data defined
by

(6M-4)

and the simulated data defined by

(6M-5)

Equations 6M-4 and 6M-5 imply that if a model is used to
calculate the pressure data for a given set of parameters, it
will generate a pressure record. Similarly, in the field, a pres-
sure record is generated by the system with a set of parame-
ters. The function F also has subscripts sim and meas to
emphasize that the model is not an exact representation of
reality, so even if the correct x– is found, the calculated and
measured pressures may not agree. For example, if the PKN
model is selected to match the data but if significant height
growth has occurred, the pressure record generated by the
correct x– will not match the measured pressure.

The objective of pressure history inversion is to minimize
the difference between the measured and calculated pressure
records, defined using an error function:

(6M-6)

where the weighting factors Wi are typically set to 0 for points
to be ignored and to 1 for all other points. The points can also
be weighted according to the range of interest. For example,
if only the decline period is to be matched, Wi is set to 0 for all
points during pumping. The minimization of ε can be per-
formed numerically by a routine in a standard numerical
library. Essentially, the algorithm consists of selecting a
sequence of sets of parameter values until a satisfactory
match is obtained, similar to the 1D Newton-Raphson method
(Press et al., 1986) for solving a single nonlinear equation.
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ties of the formation so that the fracture geometry can
be determined.

This approach is common in well testing, and some
of the same pitfalls and limitations should be noted.
For example, the pressure record should not be
assumed to be the only information available. Other
information, such as logs, should be used to narrow
the expected ranges of parameters or to specify rela-
tions between them. In addition, the selection of the
model types to be used should be made logically on
the basis of other data. This is analogous to well test
interpretation (Gringarten et al., 1974), in which diag-
nostic plots and the knowledge of boundary condi-
tions are used to specify model type (e.g., infinite
reservoir versus rectangular bounded reservoir) before
using an analysis package to determine the best esti-
mates of permeability, height, etc. If this preanalysis 
is not done, there is a high risk of obtaining a good
match to the pressure history with the incorrect para-
meters because of the nonuniqueness of the response;
i.e., two different sets of inputs may provide the same
output pressure. Gulrajani et al. (1996) discussed
nonuniqueness in detail. Other limitations of pressure
history inversion analysis are the ability of the algo-
rithm to represent the mechanics and the time require-
ments for computer processing if a sophisticated
fracture model is used.

Piggott et al. (1992) described a method for per-
forming fracturing pressure history inversion to obtain
formation properties. These properties can be used in
future designs for wells in the same field and also to
confirm or refute the assumptions of the design of the
pumped treatment. For example, if the postjob appli-
cation of pressure history inversion analysis indicates
that the stresses in the barriers were smaller than
expected, resulting in the occurrence of significant
height growth, the effect on geometry would be quan-
tified (i.e., significant height growth at the expense of
reduced length in the pay zone, possibly reducing pro-
duction significantly). This information could then be
used to adjust predictions for production from that
well and to modify input parameters for future well
designs. Pressure history inversion applied on a cali-
bration treatment could be used to redesign the main
treatment.

A well-characterized data set is desirable for evalu-
ating any pressure history inversion algorithm. Piggott
et al. used field experiments conducted by the Gas

Research Institute (Robinson et al., 1991) to evaluate
a pressure history inversion algorithm. These experi-
ments are ideal for this purpose, because more data
were gathered in these wells than in typical commer-
cial wells. Figure 6-24 shows the pressure match
obtained by inverting the perforation diameter and 
the stresses in the layers bounding the pay zone in 
one well. For comparison, the inverted values of the
diameter and stresses are listed in Table 6-1 (Robinson
et al., 1991). Gulrajani et al. (1996) also presented
several field applications of pressure history inversion.
These examples show the wide range of applicability
of the technique, as well as the quality of the results
that can be obtained by its application.
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Figure 6-24. Pressure match obtained using pressure his-
tory inversion (Piggott et al., 1992).
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Table 6-1. Parameters assumed and from data
inversion (P3D model single-layer simulation)

(Robinson et al., 1991).

Assumed parameters

Young’s modulus 8 × 106 psi

Poisson’s ratio 0.3

Fluid-loss height 42 ft

Closure pressure 6300 psi

Number of perforations 35

Leakoff coefficient 0.0037 ft/min1/2

Initial fracture height 120 ft

Parameters from inversion

Stress contrast below pay zone 337 psi

Stress contrast above pay zone 186 psi

Perforation diameter 0.18 in.
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