


DEVELOPMENTS IN PETROLEUM SCIENCE 53

PETROLEUM RELATED

ROCK MECHANICS

2nd EDITION



DEVELOPMENTS IN PETROLEUM SCIENCE 53

Volumes 1–7, 9–35, 37–41, 44–45, 48–51 are out of print.

8 Fundamentals of Reservoir Engineering

36 The Practice of Reservoir Engineering (Revised Edition)

42 Casing Design—Theory and Practice

43 Tracers in the Oil Field

46 Hydrocarbon Exploration and Production

47 PVT and Phase Behaviour of Petroleum Reservoir Fluids

52 Geology and Geochemistry of Oil and Gas

53 Petroleum Related Rock Mechanics (2nd Edition)



DEVELOPMENTS IN PETROLEUM SCIENCE 53

PETROLEUM RELATED

ROCK MECHANICS

2nd EDITION

E. FJÆR, R.M. HOLT, P. HORSRUD,

A.M. RAAEN & R. RISNES†

Amsterdam – Boston – Heidelberg – London – New York – Oxford
Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo



Elsevier
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 1992
Second edition 2008

Copyright © 2008 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means electronic, mechanical, photocopying, recording or otherwise without the prior
written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permis-
sions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web
site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier
material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as
a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein. Because of rapid advances in the
medical sciences, in particular, independent verification of diagnoses and drug dosages should be
made

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-444-50260-5
ISSN: 0376-7361

For information on all Elsevier publications
visit our website at books.elsevier.com

Printed and bound in Hungary

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1



v

Rasmus Risnes in Memoriam

It is with great regret that we announce the passing of Professor Rasmus Risnes who died
on the 3rd of December 2004 after a prolonged struggle against ill health. He was active in
the field of rock mechanics right up to the end and made a significant contribution to this
second edition which, regretfully, he will never see. Rasmus was a very pleasant individual
whose vast knowledge and pedagogical expertise was a continual source of inspiration to
us all.

He was recognized as one of the pioneers in petroleum-related rock mechanics, both
nationally and internationally, and his early work on sand failure is still regarded as a
classic. In later years he turned his attention to the Chalk and established a highly reputable
research and teaching laboratory at the University of Stavanger (Norway).

Rasmus will be sorely missed by his many colleagues and friends in the rock mechanics
community.

Erling
Rune
Per
Arne Marius
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Preface to the second edition

During the years that have passed since the first edition of this book, petroleum related rock
mechanics has been well established as a significant supplier of premises and boundary
conditions for the petroleum industry. More than ever, it is now recognised that engineers
and geologists in the petroleum industry should possess a certain level of knowledge within
rock mechanics. The need for a textbook like this is therefore even larger now than it was
15 years ago.

Although there are still a lot of uncovered areas within petroleum related rock mechan-
ics, the topic has in many ways developed significantly over the later years. This is a natural
consequence of the increased focus this area has gained. We are also proud to admit that
the general knowledge of petroleum related rock mechanics among the authors of this book
has increased since the first edition was prepared. Consequently, when the need for a new
printing of the book appeared, we felt the need to revise the manuscript in order to account
for this development.

The revision has been quite extensive for some parts of the manuscript. The basic struc-
ture of the book is however kept as it was, and parts of the text have only been subject to
minor revisions. The major guideline for the work has been to update and add information
where we felt it was relevant, while maintaining the concept of the book as an introduction
to petroleum related rock mechanics as an engineering science. A consequence of this dual
objective has been the introduction of a couple of new appendices, where more advanced
mathematics and heavy formulas are presented in a compact form. This way, we hope that
the main text shall remain easily accessible even for newcomers in the field, while at the
same time the more complete formulas shall be available to the readers who need them.

The revision has been made by the same team of authors that wrote the first edition. In
addition, several friends and colleagues have generously provided suggestions, advice and
encouragement for the work. This support is greatly appreciated.

Trondheim, October 2004

Erling Fjær
Rune M. Holt
Per Horsrud
Arne M. Raaen
Rasmus Risnes
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Foreword to the 1992 edition

About 10 years ago, petroleum related rock mechanics was mostly confined to a few spe-
cific topics like hydraulic fracturing or drilling bit performance. Although a few precursors
had already established the basics of what is now spreading out.

In fact, since that time, the whole petroleum industry has progressively realised that
the state of underground stresses and its modification due to petroleum related operations,
could have a significant impact on performances, in many different aspects of exploration
and production. Therefore all those concepts need now to be presented in a simple but
comprehensive way.

An engineering science, “Petroleum related rock mechanics” is also dependent on the
variable and uncertain character of natural geological materials at depth. The limited avail-
ability of relevant data is also part of the problem. For that reason, it is essential that any
potential user is aware of the high potential of the technique, together with the actual limi-
tations.

This book should totally fulfill these needs. The reader will be provided with fundamen-
tals and basics, but also with the techniques used in data acquisition, and eventually with a
series of typical applications like wellbore stability, sand production or subsidence.

The book is mostly for students, geologists or engineers who want to know more about
rock mechanics, and specifically rock mechanics applied to petroleum industry. It is well
suited for instance, for drilling or mud engineers wanting to know more on the mechanical
aspect of wellbore stability problems, for reservoir engineers who have to deal with stress
related problems in their field, like compaction, stress dependent permeability or fracture
injectivity. Operation geologists dealing with drilling in abnormal pressure zones will also
benefit from this book.

Elf Aquitaine Norge, together with other Norwegian oil companies, has been supporting
IKU for several years in their effort to build a strong group in rock mechanics. IKU has
now a well-established team, whose competence is recognised on the international level.
They have mostly been contributing in the field of acoustic wave propagation in rocks and
sand production appraisal. They are also very active in research and consulting activities
in the different fields of petroleum related rock mechanics.

Stavanger, April 1991

Alain Guenot
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Preface to the 1992 edition

Systematic application of rock mechanics is quite new to the petroleum industry. Accord-
ingly, the need for an introductory textbook for petroleum engineers and scientists has
recently emerged. This need was felt by the authors when we started our research in this
area, and it inspired us to develop the first version of this book as a manuscript for a two
weeks continuing education course for petroleum engineers.

The first 6 chapters deal with the fundamentals of rock mechanics. This includes theories
of elasticity and failure mechanics, borehole stresses, and acoustic wave propagation. In
addition, sedimentary rocks are viewed from the geological side as well as from the side
of idealised mathematical modelling based on microstructure. For readers who wants to
further extend their knowledge on rock mechanics, we suggest the book “Fundamentals of
rock mechanics” by Jaeger and Cook as a continuation. Deeper insight into acoustic wave
propagation in rocks can be achieved from e.g. the book “Acoustics of porous media” by
Bourbie, Coussy and Zinszner or “Underground Sound” by White.

Chapters 7 and 8 are dedicated to the extremely important task of obtaining parame-
ters that are relevant for rock mechanics field application, be it from laboratory tests or
from analysis of field data like borehole logs. The last 4 chapters discuss applications of
rock mechanics in borehole stability, sand production, hydraulic fracturing and reservoir
compaction/surface subsidence analyses.

It has also been our intention to make each chapter more or less selfcontained, especially
the chapters dealing with applications. Hopefully, this will make the book useful also to
those who are interested only in one particular topic. The other chapters can then be used
as support depending on the reader’s previous knowledge. Notice, however, that the book
is intended to be an introduction to petroleum related rock mechanics as an engineering
science, rather than a “tool-box” for petroleum engineers.

We wish to thank Elf Aquitaine Norge and Fina Exploration Norway for the financial
contributions which made it possible for us to write this book. In particular, we appreciate
the positive feedback and encouragement provided by Alain Guenot of Elf. The skilful
and patient support from Siri Lyng at IKU in preparing the manuscript for camera-ready
quality is greatly appreciated. We also thank Eamonn F. Doyle for advice on our use of the
English language.

Trondheim, May 1991

Erling Fjær
Rune M. Holt
Per Horsrud
Arne M. Raaen
Rasmus Risnes
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1

Chapter 1

Elasticity

Most materials have an ability to resist and recover from deformations produced by forces.
This ability is called elasticity. It is the foundation for all aspects of rock mechanics. The
simplest type of response is one where there is a linear relation between the external forces
and the corresponding deformations. When changes in the forces are sufficiently small, the
response is (nearly) always linear. Thus the theory of linear elasticity is fundamental for
all discussions on elasticity.

The theory of elasticity rests on the two concepts stress and strain. These are defined
in Sections 1.1 and 1.2. The linear equations relating stresses and strains are discussed
in Section 1.3 for isotropic materials, and in Section 1.7 for anisotropic materials. Linear
thermoelasticity is discussed in Section 1.5.

The region of validity for linear elasticity is often exceeded in practical situations. Some
general features of nonlinear behaviour of rocks are described in Section 1.8.

In petroleum related rock mechanics, much of the interest is furthermore focused on
rocks with a significant porosity as well as permeability. The elastic theory for solid ma-
terials is not able to fully describe the behaviour of such materials, and the concept of
poroelasticity has therefore to be taken into account. The elastic response of a rock mater-
ial may also be time dependent, so that the deformation of the material changes with time,
even when the external conditions are constant. The elastic properties of porous materials
and time-dependent effects are described in Sections 1.6 and 1.9, respectively.

1.1. Stress

Consider the situation shown in Fig. 1.1. A weight is resting on the top of a pillar. Due to
the weight, a force is acting on the pillar, while the pillar reacts with an equal, but reversely
directed force. The pillar itself is supported by the ground. Hence the force acting at the
top of the pillar must be acting through any cross-section of the pillar.

The area of the cross-section at a) is A. If the force acting through the cross-section is
denoted F , then the stress σ at the cross-section is defined as:

σ = F

A
(1.1)

The SI unit for stress is Pa (= Pascal = N/m2). In the petroleum industry, “oilfield”
units like psi (pounds per square inch) are still extensively used, such that one needs to be
familiar with them. See Appendix B for an overview of some conversion factors.

The sign of the stress σ is not uniquely defined by the physics of the situation, and has
therefore to be defined by convention. In rock mechanics the sign convention states that
compressive stresses are positive. The historical reason for this is that the stresses dealt with
in rock mechanics are mostly compressive. The sign convention causes no problems when
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Fig. 1.1. Illustration of forces and stress.

consistently used, but it is important to remember that the opposite sign convention is the
preferred choice in some other sciences involving elasticity, and that it is also occasionally
used in rock mechanics.

As Eq. (1.1) shows, the stress is defined by a force and a cross-section (or more generally,
a surface), through which the force is acting. Consider the cross-section at b). The force
acting through this cross-section is equal to the force acting through the cross-section at a)
(neglecting the weight of the pillar). The area A′ of the cross-section at b) is, however,
smaller than A. Hence the stress σ = F/A′ at b) is larger than the stress at a), i.e. the stress
depends on the position within the stressed sample. Going even further, we may divide the
cross-section at a) into an infinite number of subsections �A, through which an infinitely
small part �F of the total force F is acting (Fig. 1.2). The force �F may vary from one
subsection to another. Consider a subsection i which contains a point P. The stress at the
point P is defined as the limit value of �Fi/�Ai when �Ai goes to zero, i.e.:

σ = lim
�Ai→0

�Fi

�Ai
(1.2)

Eq. (1.2) defines the local stress at the point P within the cross-section at a), while Eq. (1.1)
describes the average stress at the cross-section. When talking about the stress state at a
point, we implicitly mean local stresses.

The orientation of the cross-section relative to the direction of the force is also important.
Consider the cross-section at c) in Fig. 1.1, with areaA′′. Here the force is no longer normal
to the cross-section. We may then decompose the force into one component Fn that is
normal to the cross-section, and one component Fp that is parallel to the section (Fig. 1.3).
The quantity

σ = Fn

A′′ (1.3)
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Fig. 1.2. Local stress.

Fig. 1.3. Decomposition of forces.

is called the normal stress, while the quantity

τ = Fp

A′′ (1.4)

is called the shear stress. Thus, there are two types of stresses which may act through a
surface, and the magnitude of each depends on the orientation of the surface.

1.1.1. The stress tensor

To give a complete description of the stress state at a point P within a sample, it is necessary
to identify the stresses related to surfaces oriented in three orthogonal directions.

The stresses related to a surface normal to the x-axis may be denoted σx , τxy and τxz,
representing the normal stress, the shear stress related to a force in y-direction, and the
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shear stress related to a force in the z-direction, respectively. Physically, there will be only
one shear stress associated with this surface. However, the orientation of the shear stress has
to be identified, and this is most conveniently done by identifying its y- and z-components:
τxy and τxz. Similarly, the stresses related to a surface normal to the y-axis are denoted σy ,
τyx and τyz, while the stresses related to a surface normal to the z-axis are denoted σz, τzx
and τzy . Thus there are all together nine stress components related to the point P:

(
σx τxy τxz
τyx σy τyz
τzx τzy σz

)
(1.5)

Expression (1.5) is called the stress tensor. It gives a complete description of the stress
state at the point P.

Associating the first index with the face normal and the second with the force direction,
is a matter of choice, similar to the sign convention. As a result, one will see the opposite
convention used in a number of works, e.g. Landau and Lifshitz (1986). Further, due to the
symmetry of the stress tensor (see below), the convention is of no practical importance.

It is sometimes convenient to denote the stress tensor by a single symbol, for instance↼⇀σ .
Thus↼⇀σ implicitly means the collection of stress components given by (1.5). The stress
tensor also has a definite physical meaning: if r̂ is a unit vector, the expression |↼⇀σ · r̂|,
represents the total stress (normal and shear) in the direction of r̂ .

Not all the nine components of the stress tensor are independent, however. Consider a
small square of the xy-plane, as shown in Fig. 1.4. The stresses acting on the square are
shown on the figure. The square is at rest, hence no net translational or rotational force can

Fig. 1.4. Stress components in two dimensions.
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act on it. While no translational force is already ensured, no rotational force requires that

τxy = τyx (1.6)

Similarly, it may be shown that

τxz = τzx (1.7)

and

τyz = τzy (1.8)

The relations (1.6) to (1.8) are general, and they reduce the number of independent com-
ponents of the stress tensor (1.5) to six.

Although being practical for many purposes, the notation used in (1.5) is not very con-
venient for theoretical calculations. For such purposes the following notation is frequently
used: both types of stresses (normal and shear) are denoted σij . The subscripts i and j may
be any of the numbers 1, 2, 3, which represent the x-, y- and z-axis, respectively. The first
subscript (i) identifies the axis normal to the actual surface, while the second subscript (j)
identifies the direction of the force. Thus, from Fig. 1.4, we see that σ11 = σx , σ13 = τxz,
etc. In this notation the stress tensor (1.5) becomes

↼⇀
σ =

(
σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

)
(1.9)

where we have explicitly used the symmetry of the stress tensor. See Appendices C.4–C.7
for a discussion of how the tensor components change as a result of a change of coordinates.

1.1.2. Equations of equilibrium

Apart from forces acting on a surface of a body, there may also be forces acting on every
part of the body itself. Such forces are called body forces. An example of a body force is
gravity. We shall denote by fx , fy , and fz the components of the body forces per unit mass
acting at the point x, y, z of a body. According to the sign convention, fx is positive if it acts
in the negative x-direction, and similarly for fy and fz. As an example, consider a small
part of volume�V of a material with density ρ. If z is the vertical axis, the body force due
to gravity acting on this small volume is ρfz�V = ρg�V , where g is the acceleration of
gravity.

Body forces generally give rise to stress gradients. For instance, an element in a forma-
tion is not only subject to the gravity force, it also has to carry the weight of the formation
above. Thus the total stress increases with increasing depth.

For a stressed body to remain at rest, it is required that all forces acting on the body
cancel. This requirement produced a set of symmetry requirements for the stress tensor
(Eqs. (1.6) to (1.8)). In addition, it produces a set of equations for the stress gradients.
These equations are called the equations of equilibrium.

Consider the parallelepiped shown in Fig. 1.5. The forces acting on this body in the
x-direction are
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Fig. 1.5.

Normal forces:

−σx�y�z+
(
σx + ∂σx

∂x
�x

)
�y�z (1.10)

Shear forces:

−τyx�x�z+
(
τyx + ∂τyx

∂y
�y

)
�x�z (1.11)

−τzx�y�x +
(
τzx + ∂τzx

∂z
�z

)
�y�x (1.12)

Body forces:

ρfx�x�y�z (1.13)

Adding up Eqs. (1.10) to (1.13) and dividing by �x�y�z, we find that the requirement
for the forces in x-direction to cancel is equivalent to

∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρfx = 0 (1.14)

Similarly, for the forces in the y- and z-directions we find

∂σy

∂y
+ ∂τxy

∂x
+ ∂τzy

∂z
+ ρfy = 0 (1.15)

∂σz

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ρfz = 0 (1.16)

Eqs. (1.14) to (1.16) are the equations of equilibrium in terms of stresses. Note that in the
alternative notation (shown in Eq. (1.9) for the stresses, and with x1 = x, x2 = y, x3 = z),
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these equations take a particularly simple form:∑
j

∂σji

∂xj
+ ρfi = 0 (1.17)

1.1.3. Principal stresses in two dimensions

For special orientations of the coordinate system, the stress tensor has a particularly simple
form. To reveal this form, we shall initially study stresses in two dimensions. This is more
than just an academic exercise; many problems of practical interest are effectively two-
dimensional.

Consider the normal (σ ) and shear (τ ) stresses at a surface oriented normal to a general
direction θ in the xy-plane, as shown in Fig. 1.6. The triangle on the figure is at rest, such
that no net forces act on it. Cancellation of forces implies that:

σ = σx cos2 θ + σy sin2 θ + 2τxy sin θ cos θ (1.18)

= 1

2
(σx + σy)+ 1

2
(σx − σy) cos 2θ + τxy sin 2θ (1.19)

τ = σy sin θ cos θ − σx cos θ sin θ + τxy cos θ cos θ − τyx sin θ sin θ (1.20)

= 1

2
(σy − σx) sin 2θ + τxy cos 2θ (1.21)

By proper choice of θ , it is possible to obtain τ = 0. From Eq. (1.21) we see that this
happens when:

tan 2θ = 2τxy
σx − σy (1.22)

Fig. 1.6. Force equilibrium on a triangle. The arrows shows the direction of the forces on the triangle, assuming
that all the stress components are positive.
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Eq. (1.22) has two solutions, θ1 and θ2. The two solutions correspond to two directions
for which the shear stress τ vanishes. These two directions are called the principal axes of
stress.

The corresponding normal stresses, σ1 and σ2, are called the principal stresses, and are
found by introducing Eq. (1.22) into Eq. (1.19):

σ1 = 1

2
(σx + σy)+

√
τ 2
xy + 1

4
(σx − σy)2 (1.23)

σ2 = 1

2
(σx + σy)−

√
τ 2
xy + 1

4
(σx − σy)2 (1.24)

It is convenient to choose the notation such that σ1 � σ2. Thus, in the direction θ1,
which identifies a principal axis, the normal stress is σ1 and the shear stress is zero. In the
direction θ2, which identifies the other principal axis, the normal stress is σ2 and the shear
stress is zero. The principal axes are orthogonal.

1.1.4. Mohr’s stress circle

It is often convenient to reorient the coordinate system such that the x-axis is parallel to
the first principal axis and the y-axis parallel to the other. Then the stresses σ and τ in a
general direction θ relative to the x-axis become, from Eqs. (1.19) and (1.21):

σ = 1

2
(σ1 + σ2)+ 1

2
(σ1 − σ2) cos 2θ (1.25)

τ = −1

2
(σ1 − σ2) sin 2θ (1.26)

Plotting corresponding values of σ and τ in a diagram (Fig. 1.7a), we obtain a circle called
the Mohr’s circle. The radius of the circle is (σ1 − σ2)/2 and the centre is at the point
(σ1 + σ2)/2 on the σ -axis.

The stresses σ and τ in any direction θ (Fig. 1.7b) correspond to a point on the Mohr’s
circle. It is seen from Fig. 1.7a that the largest absolute value for the shear stress is (σ1 −
σ2)/2 and occurs for θ = π/4 (= 45°) and θ = 3π/4 (= 135°). The Mohr’s circle is a
very useful tool in the analysis of conditions for rock failure, as will be seen in Chapter 2.

1.1.5. Principal stresses in three dimensions

Now moving to three dimensions, we first have to decide how to identify a direction in
space. This can be done by the direction cosines (see also Appendix C.6):

lx = cosαx (1.27)

ly = cosαy (1.28)

lz = cosαz (1.29)
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Fig. 1.7. Mohr’s circle.

Fig. 1.8. Direction cosines.

The angles αx , αy , and αz are the angles between our chosen direction and the x-, y- and
z-axes, respectively (Fig. 1.8). The vector r̂ = (lx, ly, lz) is a unit vector in the chosen
direction. Note that we always have

l2x + l2y + l2z = 1 (1.30)

The principal stresses can be found by solving for σ the determinant equation (see
Appendix C, in particular Appendix C.2.12 on page 449):∣∣∣∣∣

σx − σ τxy τxz
τxy σy − σ τyz
τxz τyz σz − σ

∣∣∣∣∣ = 0 (1.31)
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The three solutions of this equation are the principal stresses σ1, σ2 and σ3. The solutions
are conventionally organized such that σ1 � σ2 � σ3. The direction cosines l1x , l1y and l1z
identifying the principal axis corresponding to σ1 are found by solving the equations:

l1x(σx − σ1)+ l1yτxy + l1zτxz = 0 (1.32)

l1xτxy + l1y(σy − σ1)+ l1zτyz = 0 (1.33)

l1xτxz + l1yτyz + l1z(σz − σ1) = 0 (1.34)

The principal axes corresponding to σ2 and σ3 are found similarly by substituting sub-
script 1 by 2 and 3, respectively, in Eqs. (1.32)–(1.34).

If the coordinate system is oriented such that the x-axis is parallel to the first, the y-axis
parallel to the second, and the z-axis parallel to the third principal axis, the stress tensor
has the particularly simple form: (

σ1 0 0
0 σ2 0
0 0 σ3

)
(1.35)

The stresses σ and τ in a general direction l1, l2, l3 relative to this set of coordinate axes
are determined by the equations:

l21σ1 + l22σ2 + l23σ3 = σ (1.36)

l21σ
2
1 + l22σ 2

2 + l23σ 2
3 = σ 2 + τ 2 (1.37)

1.1.6. Mohr’s stress circles in three dimensions

Mohr’s construction is, naturally, more complicated in three dimensions than in two di-
mensions, and will not be treated in detail here. The basic features of the construction are
shown in Fig. 1.9. If lx = 0 (direction in the yz-plane), the stresses σ and τ are located

Fig. 1.9. Mohr’s construction in three dimensions.
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on the small circle spanning from σ3 to σ2. If lz = 0 (direction in the xy-plane), σ and
τ are located on the circle spanning from σ2 to σ1 and, finally, if ly = 0 (direction in the
xz-plane), σ and τ are located on the large circle spanning from σ3 to σ1. For all other
directions, σ and τ are located within the shaded areas.

1.1.7. Stress invariants

The stress tensor is a second order tensor. When changing to a rotated set of coordinate
axes, the components of the stress tensor change. However, as discussed in Appendix C,
some properties of the stress tensor remain unchanged. The simplest of these is the mean
normal stress

σ̄ = (σx + σy + σz)/3 (1.38)

which equals 1/3 of the trace of the matrix (see page 447). The mean normal stress is thus
an invariant of stress.

There also exist other stress combinations that are independent of the coordinate axes.
Any combination of stress invariants will of course be a stress invariant as well. The com-
monly used stress invariants are:

I1 = σx + σy + σz (1.39)

I2 = −(σxσy + σyσz + σzσx)+ τ 2
xy + τ 2

yz + τ 2
xz (1.40)

I3 = σxσyσz + 2τxyτyzτxz − σxτ 2
yz − σyτ 2

xz − σzτ 2
xy (1.41)

(See page 455 for some information about invariants.)

1.1.8. Deviatoric stresses

The mean normal stress σ̄ , defined in Eq. (1.38), essentially causes uniform compression
or extension. Distortions, on the other hand, are essentially caused by the so-called devi-
atoric stresses. The deviatoric stress (also called stress deviator or stress deviation—the
terminology is not consistent in the literature) is obtained by subtracting the mean normal
stress from the normal stress components:(

sx sxy sxz
sxy sy syz
sxz syz sz

)
=
(
σx − σ̄ τxy τxz
τxy σy − σ̄ τyz
τxz τyz σz − σ̄

)
(1.42)

Invariants of stress deviation similar to the invariants of stress defined in Eqs. (1.39)–
(1.41), are given by:

J1 = sx + sy + sz = 0 (1.43)

J2 = −(sxsy + sysz + szsx)+ s2
xy + s2

yz + s2
xz (1.44)

J3 = sxsysz + 2sxysyzsxz − sxs2
yz − sys2

xz − szs2
xy (1.45)
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The invariants J1, J2, J3, and combinations of them, are independent of the choice of
coordinate axes. Invariants of stress deviation appear e.g. in failure criteria, since these
must be independent of the choice of coordinate axes (for isotropic materials).

There are many different ways of writing the invariants of stress deviation. See page 463
for some useful expressions.

One will often encounter various variants of the stress invariants, in particular the para-
meters q and r , which are related to the basic invariants as

q = √
3J2 =

√
3

2

[
(σ1 − σ̄ )2 + (σ2 − σ̄ )2 + (σ3 − σ̄ )2] (1.46)

r = 3

√
27

2
J3 = 3

√
27

2
(σ1 − σ̄ )(σ2 − σ̄ )(σ3 − σ̄ ) (1.47)

For a stress state in which two of the principal stresses are equal (σ2 = σ3) the expres-
sions simplify to

q = |σ1 − σ3| (1.48)

and

r = σ1 − σ3 (1.49)

q will be used extensively in Chapter 2.

Geometric interpretation of the deviatoric stress invariants

The deviatoric stress invariants have a straightforward geometrical interpretation in prin-
cipal stress space, as illustrated in Fig. 1.10. Eq. (1.46) is the equation of a circle centred
on σ̄ , with the normal pointing along the hydrostatic axis σ1 = σ2 = σ3. Thus the distance
from a point (σ1, σ2, σ3) in principal stress space to the hydrostatic axis is√

2

3
q = √

2J2 (1.50)

Fig. 1.10. Geometrical interpretation of the deviatoric stress invariants in principal stress space. The dashed lines
are the projections of the principal stress axes onto a deviatoric plane (i.e. a plane normal to the hydrostatic axis
σ1 = σ2 = σ3, also called the π -plane) passing through the point (σ1, σ2, σ3). The angle ϑ is called the Lode
angle.
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It can further be shown that the angle ϑ , called the Lode angle, indicated in Fig. 1.10, is
given by the invariants as

cos(3ϑ) =
(
r

q

)3

= 3
√

3J3

2J 3/2
2

(1.51)

(Note that since arccos is a multi-valued function, the Lode angle computed from Eq. (1.51)
is not unique. If one chooses the principal branch of arccos, the result will be in the range
0° to 60° even if the actual stress state corresponds to another value.)

1.1.9. The octahedral stresses

A plane normal to the (1, 1, 1) direction in principal stress space is called an octahedral
plane, a π-plane or a deviatoric plane.

The normal stress on and shear stress in this plane are sometimes called the octahedral
normal stress and the octahedral shear stress, and are given by

σoct = 1

3
(σ1 + σ2 + σ3) = σ̄ = 1

3
I1 (1.52)

τoct = 1

3

√
(σ2 − σ3)2 + (σ3 − σ1)2 + (σ1 − σ2)2 =

√
2

3
J2 =

√
2

3
q (1.53)

Note that the normal stress in the direction equally inclined to the principal stress axes is
thus equal to the mean stress.

1.2. Strain

Consider a sample as shown in Fig. 1.11. The position of a specific particle within the
sample is initially x, y, z. After the action of an external force, the position of this particle
is shifted. We shall denote the shift in x-direction by u, the shift in y-direction by v, and

Fig. 1.11. Sample deformation.
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the shift in z-direction by w. The quantities u, v and w are called the displacements of the
particle. In order to make the signs of the displacements compatible with the signs of the
stresses, as defined in Section 1.1, the displacements are taken to be positive when they
are directed in the negative direction of the axes. Hence, the new position of the particle
initially at x, y, z becomes

x ′ = x − u (1.54)

y′ = y − v (1.55)

z′ = z− w (1.56)

If the displacements u, v and w are constants, i.e. they are the same for every particle
within the sample, then the displacement is simply a translation of a rigid body. Another
simple form of displacements is the rotation of a rigid body. For a small rotation specified
by �ω, where the magnitude | �ω| gives the angle of rotation while the direction of �ω gives
the axis of rotation, the new position of the particle becomes:

�r ′ = �r + �ω × (�r − �r0) (1.57)

where �r = (x, y, z), �r ′ = (x′, y′, z′), and × denotes the vector product. The vector �r0 is
the centre of rotation, through which the axis of rotation goes.

If the relative position of the particles within the sample are changed, so that the new
positions cannot be obtained simply by a rigid translation and/or rotation of the sample,
the sample is said to be strained. Fig. 1.12 shows an example of a strained sample. The
displacements related to the positions O and P are not equal. The quantity defined as

ε = L− L′

L
= −�L

L
(1.58)

is called the elongation corresponding to the pointO and the directionOP . To comply with
the sign convention for stresses, we require that the elongation is positive for a contraction.

Fig. 1.12. Deformation
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Fig. 1.13. Shear deformation.

The elongation is a specific type of quantities known as strains. The other type of strain that
may occur can be expressed by the change Ψ of the angle between two initially orthogonal
directions (Fig. 1.13). The quantity

Γ = 1

2
tanΨ (1.59)

is called the shear strain corresponding to the point O and the direction OP .
For many applications one will only be dealing with infinitesimal strains, which implies

that the strains ε and Γ are so small that their products and squares can be ignored, and we
will make this approximation in the following. See Section 1.8 for a discussion of nonlinear
effects.

Now consider for a while the strains in two dimensions as shown in Fig. 1.14. The
elongation at x, in the x-direction, is given as

εx = (x +�x)− x − [(x +�x − u(x +�x))− (x − u(x))]
(x +�x)− x

= u(x +�x)− u(x)
�x

(1.60)

In the limit when �x → 0, we have

εx = ∂u

∂x
(1.61)

Since the strains are small, we find for the shear strain corresponding to the x-direction

Γxy = 1

2
tanΨ ≈ 1

2
sinΨ

= −1

2
cos

(
π

2
+ Ψ

)

= −1

2

�P ′
1 · �P ′

2

| �P1| · | �P2|
(1.62)
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Fig. 1.14. Parameterization of shear deformation.

The vectors �P1, �P ′
1, �P2, �P ′

2, are found in Fig. 1.14. When �x → 0, �y → 0, and squares
and products of the strains are neglected, we find that

Γxy = 1

2

(
∂u

∂y
+ ∂y

∂x

)
(1.63)

It is clear from Eq. (1.63), that the shear strain corresponding to the y-direction, Γyx , is
equal to Γxy .

To give a full description of the strain state at a point within a three-dimensional body,
the elongations and shear strains corresponding to all three axes must be specified. In ac-
cordance with Eqs. (1.61) and (1.63), these strains are defined as:

εx = ∂u

∂x
(1.64)

εy = ∂v

∂y
(1.65)

εz = ∂w

∂z
(1.66)

Γxy = Γyx = 1

2

(
∂u

∂y
+ ∂v

∂x

)
(1.67)

Γxz = Γzx = 1

2

(
∂u

∂z
+ ∂w

∂x

)
(1.68)

Γyz = Γzy = 1

2

(
∂v

∂z
+ ∂w

∂y

)
(1.69)
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1.2.1. The strain tensor and the strain invariants

Similar to Eq. (1.5), we may organize the strains (1.64)–(1.69) in a strain tensor:

↼⇀
ε =

(
εx Γxy Γxz
Γxy εy Γyz
Γxz Γyz εz

)
(1.70)

The trace of the strain tensor

εvol = εx + εy + εz (1.71)

is identical to the volumetric strain, i.e. the relative decrease in volume. The volumetric
strain is independent on the choice of coordinate axes, and is thus an invariant of strain.

Similar to the stress invariants of Eqs. (1.40)–(1.41), it can be shown that the quantities

J2 = −(εxεy + εyεz + εzεx)+ Γ 2
xy + Γ 2

yz + Γ 2
xz (1.72)

and

J3 = εxεyεz + 2ΓxyΓyzΓxz − εxΓ 2
yz − εyΓ 2

xz − εzΓ 2
xy (1.73)

are also invariants of strain.
There also exists a mathematical notation for strains, similar to Eq. (1.9). In this notation

all strains are defined by

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(1.74)

The subscripts i and j may be any of the numbers 1, 2, 3, representing the x-, y-, and
z-axis, respectively. Thus, u1 = u, u2 = v, and u3 = w, while x1 = x, x2 = y, and
x3 = z. We then have ε11 = εx , ε13 = Γxz etc.

In this notation the strain tensor (1.70) becomes(
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

)
(1.75)

1.2.2. Compatibility conditions

We note from the general definition of strain (Eq. (1.74)) that all strains are derivatives
(in various combinations) of the components of the displacement vector �u = (u1, u2, u3).
Some useful expressions may be derived from this fact. For instance, we observe from
Eqs. (1.71) and (1.74) that the volumetric strain εvol equals the divergence of �u, i.e.

εvol = ∇ · �u = −dV

V
(1.76)

The minus sign is due to our sign convention for strains. Other relations can be obtained
by comparing some of the second derivatives of the strains. We find e.g.:
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∂2∂εx

∂y2
+ ∂2εy

∂x2
= 2

∂2Γxy

∂x∂y

(
= ∂3u

∂x∂y2
+ ∂3v

∂y∂x2

)
(1.77)

∂2εx

∂z2
+ ∂2εz

∂x2
= 2

∂2Γxz

∂x∂z

(
= ∂3u

∂x∂z2
+ ∂3w

∂z∂x2

)
(1.78)

∂2εz

∂y2
+ ∂2εy

∂z2
= 2

∂2Γzy

∂z∂y

(
= ∂3w

∂z∂y2
+ ∂3v

∂y∂z2

)
(1.79)

These three differential relations, together with three others that express ∂2εx/(∂y∂z),
∂2εy/(∂x∂z) and ∂2εz/(∂x∂y) in terms of second derivatives of the shear strains, are
known as the compatibility conditions for strain.

1.2.3. Principal strains

In Section 1.1 we saw that for some specific directions the shear stress vanishes, so that for
a specific orientation of the coordinate system (with axis parallel to the principal axes of
stress) the stress tensor becomes particularly simple. The situation is similar for strains.

In two dimensions, it can be shown that the shear strain vanishes in the directions θ
relative to the x-axis, which fulfil the equation:

tan 2θ = 2Γxy
εx − εy (1.80)

Thus, in two dimensions, there are two orthogonal directions for which the shear strain
vanishes. These directions are called the principal axes of strain. The elongations in the
directions of the principal axes of strain, are called the principal strains.

In three dimensions there are three principal axes of strain. The principal strains are
found by solution of the determinant equation

∣∣∣∣∣
εx − ε Γxy Γxz
Γxy εy − ε Γyz
Γxz Γyz εz − ε

∣∣∣∣∣ = 0 (1.81)

The solutions are denoted ε1, ε2, ε3. The direction cosines l1x , l1y , l1z identifying the
principal axis corresponding to ε1 are found by solution of the equations

l1x(εx − ε1)+ l1yΓxy + l1zΓxz = 0 (1.82)

l1xΓxy + l1y(εy − ε1)+ l1zΓyz = 0 (1.83)

l1xΓxz + l1yΓyz + l1z(εz − ε1) = 0 (1.84)

The principal axes corresponding to ε2 and ε3 are found similarly by substituting sub-
script 1 by 2 and 3, respectively. Eqs. (1.81) and (1.82)–(1.84) are seen to be equivalents
of Eqs. (1.31) and (1.32)–(1.34) identifying the principal stresses and the principal axes of
stress.
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1.2.4. Plane strain and plane stress

In several practical applications it is a good approximation to assume that all cross-sections
along a given axis are in the same condition, and that there is no displacement along the
axis. This state of strain is called plane strain.

In the following we shall assume the unique axis to be the z-axis. The strain tensor for
plane strain is then (

εx(x, y) Γxy(x, y) 0
Γxy(x, y) εy(x, y) 0

0 0 0

)
(1.85)

where all strain components are independent of z. The term plane of course refers to the
fact that the strain is confined to a plane.

If we only have displacement along z, and this displacement is independent of z, the
strain state is referred to as antiplane strain. The strain tensor is then( 0 0 Γxz(x, y)

0 0 Γyz(x, y)

Γxz(x, y) Γyz(x, y) 0

)
(1.86)

where again all components are independent of z.
A general situation in which the displacement along the z-axis is independent of z can be

decomposed into a sum of plane strain and antiplane strain. This state of strain is referred
to as generalized plane strain. The strain tensor is(

εx(x, y) Γxy(x, y) Γxz(x, y)

Γxy(x, y) εy(x, y) Γyz(x, y)

Γxz(x, y) Γyz(x, y) 0

)
(1.87)

Note, however, that the concept of generalized plane strain is not uniquely defined in
the literature. Sometimes the term is used when εz rather than the displacement along z is
independent if z. This leads to the strain tensor(

εx(x, y) Γxy(x, y) Γxz(x, y)

Γxy(x, y) εy(x, y) Γyz(x, y)

Γxz(x, y) Γyz(x, y) εz(x, y)

)
(1.88)

See Cheng (1998) for a thorough discussion.
Analogously, if all stress components are independent of z, and σz = τxz = τyz = 0

(still taking z to be the unique axis), we call the situation plane stress. The stress tensor is
then (

σx(x, y) τxy(x, y) 0
τxy(x, y) σy(x, y) 0

0 0 0

)
(1.89)

Generalized plane stress is used when all stress components are independent z, leading
to the stress tensor (

σx(x, y) τxy(x, y) τxz(x, y)

τxy(x, y) σy(x, y) τyz(x, y)

τxz(x, y) τyz(x, y) σz(x, y)

)
(1.90)
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1.3. Elastic moduli

The theory of linear elasticity deals with situations where there are linear relationships be-
tween applied stresses and resulting strains. While most rocks do behave nonlinearly when
subject to large stresses, their behaviour may normally be described by linear relations
for sufficiently small changes in stress. Consider a sample of length L and cross-sectional
area A = D2 (Fig. 1.15). When the force F is applied on its end surfaces, the length of
the sample is reduced to L′. The applied stress is then σx = F/A and the corresponding
elongation is εx = (L − L′)/L, according to Eqs. (1.1) and (1.58). If the sample behaves
linearly, there is a linear relation between σx and εz, which we may write

εx = 1

E
σx (1.91)

Eq. (1.91) is known as Hooke’s law, while the coefficientE is called Young’s modulus or
simply the E-modulus. Young’s modulus belongs to a group of coefficients called elastic
moduli. It is a measure of the stiffness of the sample, i.e. the sample’s resistance against
being compressed by a uniaxial stress.

Another consequence of the applied stress σx (Fig. 1.15) is an increase in the width D
of the sample. The lateral elongation is εy = εz = (D −D′)/D. In general D′ > D, thus
εy and εz become negative. The ratio defined as

ν = −εy
εx

(1.92)

is another elastic parameter, known as Poisson’s ratio. It is a measure of lateral expansion
relative to longitudinal contraction.

Eqs. (1.91) and (1.92), which relates one component of stress or strain to another, are
defined by a specific state of stress, namely σx �= 0, σy = σz = 0. In general, each
component of strain is a linear function of all components of stress.

Isotropic materials are materials whose response is independent of the orientation of the
applied stress. For such materials the principal axes of stress and the principal axes of strain

Fig. 1.15. Deformation induced by uniaxial stress.
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always coincide. For isotropic materials the general relations between stresses and strains
may be written

σx = (λ+ 2G)εx + λεy + λεz (1.93)

σy = λεx + (λ+ 2G)εy + λεz (1.94)

σz = λεx + λεy + (λ+ 2G)εz (1.95)

τyz = 2GΓyz (1.96)

τxz = 2GΓxz (1.97)

τxy = 2GΓxy (1.98)

The coefficients λ andG are elastic moduli, known as Lamé’s parameters.G is also known
as the modulus of rigidity, or the shear modulus. G is a measure of the sample’s resistance
against shear deformation.

Another important elastic modulus is the bulk modulus K . It is defined as the ratio of
hydrostatic stress σp relative to the volumetric strain εvol (Eq. (1.71)). For a hydrostatic
stress state we have σp = σx = σy = σz while τxy = τyz = τxz = 0. From Eqs. (1.93)–
(1.95) we then find

K = σp

εvol
= λ+ 2

3
G (1.99)

K is a measure of the sample’s resistance against hydrostatic compression. The inverse
of K , i.e. 1/K , is known as the compressibility.

In the experiment (Fig. 1.15) defining Young’s modulus and Poisson’s ratio, the stress is
uniaxial, i.e. σy = σz = τxy = τxz = τyz = 0. From Eqs. (1.93)–(1.95) we then find

E = σx

εx
= G3λ+ 2G

λ+G (1.100)

ν = −εy
εx

= λ

2(λ+G) (1.101)

From the relations (1.99) to (1.101), it may be seen that when any two of the moduli E,
ν, λ, G and K are defined, the remaining ones are fixed by these relations. Depending on
which two of the moduli that are known, special combinations of Eqs. (1.99)–(1.101) may
be needed. Some of the most useful combinations are listed in Table 1.1.

Table 1.1 also includes some relations involving H = λ+ 2G, the uniaxial compaction
modulus or oedometer modulus, which is repeatedly used in later Chapters. In the context
of acoustics, H is referred to as the plane wave modulus or the P-wave modulus.

For rocks, Poisson’s ratio is typically 0.15–0.25. For weak, porous rocks ν may ap-
proach zero or even become negative. For fluids, the rigidity G vanishes, which according
to Eq. (1.101) implies that ν approaches 1/2. Also for unconsolidated sand, ν is close
to 1/2. Some physical limits for the elastic moduli are discussed towards the end of Sec-
tion 1.4.

The elastic moduli E, λ, G, H and K are measured in the same units as stress, e.g. Pa,
psi or bar. This follows from Eqs. (1.91), (1.93) and (1.99), and from Eq. (1.58) which
shows that strain is dimensionless.
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TABLE 1.1 Some relations between elastic moduli

E = 3K(1 − 2ν) K = λ1 + ν
3ν

λ

λ+G = 2ν

E = 2G(1 + ν) K = 2

3
G

1 + ν
1 − 2ν

G

λ+G = 1 − 2ν

E = 9KG

3K +G K = λ+ 2

3
G

λ+ 2G

λ+G = 2(1 − ν)

E = G3λ+ 2G

λ+G K = GE

9G− 3E

3λ+ 2G

λ+G = 2(1 + ν)

E = λ

ν
(1 + ν)(1 − 2ν)

λ

G
= 2ν

1 − 2ν

3λ+ 4G

λ+G = 2(2 − ν)

H = λ+ 2G H = K + 4

3
G ν = 3K − 2G

2(3K +G)
H = E 1 − ν

(1 + ν)(1 − 2ν)
H = 2G

1 − ν
1 − 2ν

H = 3K
1 − ν
1 + ν

Typical values for the elastic moduli of some rocks are given in Appendix A. Note
that the given values may change with the stress state. This will be further discussed in
Section 1.8.

The stress–strain relations (1.93)–(1.98) are the fundamental equations for description
of isotropic, linear elastic materials. In many cases, however, it is convenient to have these
equations on an alternative form, expressing the strains as functions of the stresses. Intro-
ducing the expressions (1.100) and (1.101) for E and ν, this alternative form becomes:

Eεx = σx − ν(σy + σz) (1.102)

Eεy = σy − ν(σx + σz) (1.103)

Eεz = σz − ν(σx + σy) (1.104)

GΓyz = 1

2
τyz (1.105)

GΓxz = 1

2
τxz (1.106)

GΓxy = 1

2
τxy (1.107)

The stress strain relations (1.93)–(1.98) may be written on a more compact form using
the notation introduced in Eqs. (1.9) and (1.74) as

σij = λεvolδij + 2Gεij (1.108)

where δij is the Kronecker symbol (see page 460). See Appendix D.1.4 on page 464 for
some other useful ways of writing the formulas.

The concept of plane strain was introduced in Section 1.2.4. Consider again the situation
in Fig. 1.15, but let us now assume that the body is constrained such that there is no strain
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in the z-direction, i.e. it is in a state of plane strain. Introducing εz = 0 and σy = 0 in
Eqs. (1.102)–(1.104) we find an equation corresponding to Eq. (1.91):

E′ = σx

εx
= E

1 − ν2
= 2G

1 − ν (1.109)

E′ is called the plane strain modulus since it often shows up in plane strain problems. As
an example, see Section 11.4. Note that we have E � E′ � H , which means that the
stiffness of the sample increases as it is increasingly confined in the lateral directions.

1.4. Strain energy

A strained body possesses a potential energy which may be released during unloading.
Consider a small cube of a material, with sides a, loaded uniaxially with the stress σ . The
resulting elongation is ε = σ/E. The work done by increasing the stress from 0 to σ1 is:

work = force · distance

=
∫ σ1

0
(a2σ)(a dε) = a3

∫ σ1

0
σ

1

E
dσ

= 1

2
a3 σ

2
1

E
= 1

2
a3Eε2

1 = 1

2
a3σ1ε1 (1.110)

where ε1 = σ1/E. As the stress state in this case is uniaxial, σ1 is a principal stress while
ε1 is a principal strain. When the other two principal stresses are non-zero, corresponding
terms will add to the expression for the work. The work per unit volume (= the potential
energy per unit volume) then becomes:

W = 1

2
(σ1ε1 + σ2ε2 + σ3ε3) (1.111)

W is called the strain energy.
A variety of expressions for the strain energy can be obtained by suitable substitutions

for the principal stresses and/or the principal strains. Using Eqs. (1.93)–(1.95) to express
the stresses in terms of the strains, we find that the strain energy (1.111) is equal to:

W = 2
[
(λ+ 2G)

(
ε2

1 + ε2
2 + ε2

3

)+ 2λ(ε1ε2 + ε1ε3 + ε2ε3)
]

(1.112)

Comparing with Eqs. (1.71), (1.72) and (1.73) for the strain invariants, we find that the
strain energy may also be expressed as:

W = 1

2

[
(λ+ 2G)ε2

vol + 4GJ2
]

= 1

2

[
(λ+ 2G)

(
ε2
x + ε2

y + ε2
z

)+ 2λ(εxεy + εyεz + εzεx)
+ 4G

(
Γ 2
xy + Γ 2

yz + Γ 2
xz

)]
(1.113)

Useful relations can be established by analysis of the strain energy. Taking the derivative
of Eq. (1.113) with respect to εx , and using Eq. (1.93), we find that:

∂W

∂εx
= 1

2

[
2(λ+ 2G)εx + 2λ(εy + εz)

] = σx (1.114)
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Similar expressions connecting σy to εy , etc. can also be established in the same way. We
now observe, by taking the derivative of Eq. (1.114) with respect to εy , that it is possible
to establish a set of expressions of the type:

∂σx

∂εy
= ∂2W

∂εy∂εx
= ∂σy

∂εx
(1.115)

This equation gives rise to a general symmetry restriction on the elastic moduli, which will
be discussed later. (See page 39.)

Going back to Eq. (1.110), we observe that the Young’s modulusE must be nonnegative,
otherwise the system will be unstable (E < 0 implies that ε1 → ∞ will be energetically
favourable). By considering other stress geometries, we may similarly show that also the
shear modulus G and the bulk modulus K must be nonnegative. It follows from Table 1.1
that the Poisson’s ratio ν is then restricted to be in the region −1 < ν < 1/2. (Note that
these restrictions are derived assuming that the material is isotropic and linearly elastic.)

1.5. Thermoelasticity

1.5.1. Thermal strain

It is well known that (most) materials expand or contract under a temperature change. Let
us consider an elastic rod, which is free to expand. The initial temperature is T0, and the
temperature is changed to some other value T . The axial thermal strain resulting from the
temperature change is then given by

εa = −αT (T − T0) (1.116)

where αT is the coefficient of linear thermal expansion. The minus sign ensures that αT is
positive (for the normal cases where a temperature increase gives expansion). Some exam-
ples of the numerical values for thermal properties of rocks may be found in Appendix A.

When comparing the thermal expansion for rocks with that of fluids, it is important to
be aware that for fluids one often specifies the coefficient of volumetric thermal expansion,
αT,V = 3αT .

1.5.2. Thermal stress

If the rod is constrained at the ends, such that it can not change it’s length, a thermal stress
will build up when the temperature increases. The magnitude of the thermal stress may
be inferred by requiring that the thermal stress should give a strain of opposite sign and
equal magnitude to the thermal strain computed from Eq. (1.116). From Eq. (1.91) we see
that the thermal stress resulting from a temperature change T − T0 for a rod which is fully
constrained in one direction is

σa = −Eεa = EαT (T − T0) (1.117)
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1.5.3. Stress strain relation for linear thermoelasticity

In order to take thermal effects into consideration, the stress strain relations must be mod-
ified to take the thermal stress and strain into account.

Using the compact notation employed in Eq. (1.108) we may write

σij = λεvolδij + 2Gεij + 3αT K(T − T0)δij (1.118)

In terms of K and ν, this becomes

σij = 3Kν

1 + ν εvolδij + 3K
1 − 2ν

1 + ν εij + 3αT K(T − T0)δij (1.119)

while in terms of E and ν we have

σij = Eν

(1 + ν)(1 − 2ν)
εvolδij + E

1 + ν εij + E

1 − 2ν
αT (T − T0)δij (1.120)

Eqs. (1.118)–(1.120) may be derived from each other using the relations in Table 1.1. It is
further straightforward to show that Eq. (1.120) is consistent with Eqs. (1.116) and (1.117)
by specifying the appropriate strain and stress conditions. To get Eq. (1.116) one should
assume all stresses to be zero, while for Eq. (1.117) one assumes zero strain and non-zero
stress in one direction, and zero stress and non-zero strains in the other two directions.

1.5.4. Isothermal and adiabatic moduli

It is well known that to compute the sound velocity in a gas it is important to use the
adiabatic rather than the isothermal compressibility of the gas. The difference in velocity
is typically several tens of percent.

In principle there is a similar difference between the adiabatic and the isothermal elastic
moduli in solids, but the magnitude of the difference is so small that it may always be
safely neglected. We shall therefore not discuss this further here, but refer the interested
reader to e.g. Landau and Lifshitz (1986).

1.5.5. Example: Thermal stresses in a constrained square plate

We consider a square plate, rigidly constrained in the x and y directions, but free to expand
in the z direction. We write the stress–strain relation, Eq. (1.118) on differential form, using
the constraints �εx = �εy = �σz = 0. The result is

�σx = �σy = λ�εz + 3αT K�T (1.121)

0 = (λ+ 2G)�εz + 3αT K�T (1.122)

which may be solved to give

�εz = −3αT K�T

λ+ 2G
(1.123)
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and

�σx = 2G
3λ+ 2G

λ+ 2G
αT�T (1.124)

where we have used K = λ+ 2G/3. In terms of E and ν we have

�σx = �σy = αT E

1 − ν�T (1.125)

For αT = 15 · 10−6 K−1, ν = 0.25 and E = 5 GPa (fairly typical values for weakly
consolidated rock) this becomes

�σx

�T
= 0.1 MPa K−1 (1.126)

This shows that thermal stresses may be quite significant, and we shall see in later chapters
that there are several aspects of petroleum rock mechanics where temperature effects play
an important role.

1.6. Poroelasticity

So far, we have treated rocks as if they were homogeneous, solid materials. However, rocks
are generally composite materials, and hence inhomogeneous on a microscopic scale. The
way rocks behave, their elastic response, their failure stresses etc., depend, to a large ex-
tent, on the non-solid part of the materials. In this section we will take into account the void
space, which not only is essential for oil to be produced from a reservoir, but also plays
an important role in rock mechanical behaviour. We will first consider a macroscopic de-
scription of porous and permeable media, which allows us to study both static and dynamic
mechanical properties. This approach is based on the theory of Maurice A. Biot.

In this section we will give a brief and practical introduction the theory. We will limit
ourselves to a description of an idealized porous material which is microscopically homo-
geneous and isotropic. This approximation is sometimes referred to as the Gassmann limit
of the Biot theory.

For those desiring a more thorough exposition, we refer to the book by Wang (2000), the
papers by Detournay and Cheng (1993), Rice and Cleary (1976) and the book by Coussy
(2004). Zimmerman’s (1991) book is also a very useful introduction to the mechanical
properties of porous media.

1.6.1. Suspension of solid particles in a fluid

Let us first take a look at a very simple porous medium; namely one in which the solid
and fluid parts are deformed independently of each other. In practice, we may think of
this medium as a suspension of solid particles in a fluid, or for instance, a water-saturated,
completely unconsolidated sand. If we place this mixture in a container, the volumetric
strain due to an external pressure σp is:

εvol = σp

Keff
(1.127)
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whereKeff is the bulk modulus of the mixture. The total deformation must, however, equal
the sum of the deformations of each component, weighted by the volume portion of each
component.

εvol = Vs

Vtot
εvol,s + Vf

Vtot
εvol,f (1.128)

where subscripts s and f denote solid and fluid, respectively, and Vtot is the total volume.
Now, we define porosity φ as the volume occupied by the fluid relative to the total volume,
i.e.:

φ = Vf

Vtot
(1.129)

Vs

Vtot
= 1 − φ (1.130)

The strains εvol,s and εvol,f are given by the bulk moduli of the solid (Ks) and the fluid
(Kf), respectively, according to Eq. (1.99). Then Eq. (1.128) may be written as:

εvol = (1 − φ)σp
Ks

+ φ σp
Kf

(1.131)

By combining Eqs. (1.127) and (1.131) we now find that the effective modulus of the
suspension is given by

1

Keff
= 1 − φ

Ks
+ φ

Kf
(1.132)

This is an example of a particularly simple porous material. We shall now generalize by
taking into account the fact that rocks consist of a solid framework and a pore fluid which
can not be treated independently.

1.6.2. Biot’s poroelastic theory for static properties

We will now consider an isotropic, porous and permeable medium, consisting of two com-
ponents: a solid and a fluid part. The displacement of the solid is denoted �us while that of
the fluid is denoted �uf. For a volume element attached to the solid, the strains are given as
the derivatives of the components of �us. Using Eq. (1.76) we have for the volumetric strain:

εvol = ∇ · �us (1.133)

For the fluid part, we will define a strain parameter ζ , which describes the volumetric
deformation of the fluid relative to that of the solid:

ζ = φ∇ · (�us − �uf) (1.134)

The stress tensor↼⇀σ represents the total external stress on a volume element attached
to the solid framework. The volume element balances this stress partly by stresses in the
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solid framework, and partly by a hydrostatic pressure1 in the fluid, the pore pressure pf.
In accordance with the sign convention, all stresses—including the pore pressure—are
positive in compression.

The change in the mass of fluid in a volume element attached to the solid can be divided
into two parts: the change of the pore volume (due to change in the external stresses and/or
the pore pressure), and the compression/decompression of the fluid as the pore pressure
changes. This means that we may write

ζ = −φ
(
�Vp

Vp
+ pf

Kf

)
(1.135)

where Vp is the pore volume, i.e. the volume occupied by the fluid, and Kf is the bulk
modulus of the pore fluid. We see that ζ is positive when the amount of fluid in the volume
element is decreasing.

The presence of the pore fluid adds extra terms to the strain energy of the material. Hence
the stress–strain relations (Eqs. (1.93)–(1.98)) will also be modified. Biot (1962) showed
how the linear stress–strain relations for this two-phase system can be expressed in terms
of the strain parameters εvol and ζ , the stress tensor elements and the pore pressure pf:

σx = λεvol + 2Gεx − Cζ (1.136)

σy = λεvol + 2Gεy − Cζ (1.137)

σz = λεvol + 2Gεz − Cζ (1.138)

τyz = 2GΓyz (1.139)

τxz = 2GΓxz (1.140)

τxy = 2GΓxy (1.141)

pf = Cεvol −Mζ (1.142)

Written on the abbreviated form as Eq. (1.108), Eqs. (1.136)–(1.141) become

σij = λεvolδij + 2Gεij − Cζδij (1.143)

λ and G are the Lamé parameters of the porous material, while C and M are additional
elastic moduli required to describe a two-phase medium. Note that C appears both in the
stress and the pore pressure equations. Biot (1941) showed that this is a consequence of
thermodynamic principles.

By letting ζ = 0 in Eq. (1.143) we get Eq. (1.108). ζ = 0 means that there is no fluid
movement in the material, i.e. the material is undrained. Thus the λ in Eq. (1.143) is not
the λ of the dry porous medium, but the λ of the fluid-filled medium when the fluid is not
allowed to move. This is discussed further below.

1 The term “hydrostatic pressure” is sometimes used in a restricted sense, meaning the fluid pressure resulting
from an overlying column of water. In this book we use the term in a broader (and probably more widely used)
sense, meaning the pressure in a static fluid irrespective of the source of the pressure. Further, we also use hydro-
static for the stress state in a solid when all the principal stresses are equal, i.e. no shear stresses are present (see
page 21).
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To get some understanding of the physical meaning of M , we may let εvol = 0 in
Eq. (1.142). Inserting Eq. (1.134) we then find

pf = Mφ∇ · �uf (1.144)

which shows thatMφ is a measure of how much the pore pressure increases as the amount
of fluid in a volume element is increased. If the solid was completely rigid, we would thus
haveMφ = Kf.

Explicit expressions for C andM in terms of the solid and fluid moduli are given later.
Summation of Eqs. (1.136)–(1.138) gives:

σ̄ = Kεvol − Cζ (1.145)

where σ̄ is defined by Eq. (1.38). K = λ + 2G/3 is the bulk modulus of the porous rock
in undrained condition, i.e. in a condition where the pore fluid is not allowed to escape.
We shall now investigate how the elastic moduli K , C and M relate to the moduli of the
constituents of the rock. First, imagine that we perform a “jacketed” test (see Fig. 1.16a):
a porous medium is confined within an impermeable jacket, and subjected to an external
hydrostatic pressure σp.

The pore fluid is allowed to escape during loading, so that the pore pressure is kept
constant, and hence the stress is entirely carried by the solid framework. From Eqs. (1.142)
and (1.145), we then obtain

σp

εvol
= K − C2

M

def= Kfr (1.146)

Since this test characterizes the stiffness of the solid part of the rock, Kfr is called the bulk
modulus of the framework or the frame modulus. Since there are no shear forces associated
with the fluid, we can directly identify the shear modulus of the porous system as the shear

Fig. 1.16. “Jacketed” a) and “unjacketed” b) test situations.
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modulus of the framework, i.e.

G = Gfr (1.147)

Next, we proceed to an “unjacketed” test, as illustrated in Fig. 1.16b. The rock sample
under investigation is here embedded in a fluid in such a way that the hydrostatic pres-
sure on the sample is balanced by the pressure in the pores, i.e. pf = σp. Combining
Eqs. (1.142) and (1.145) we now find:

σp

εvol
= pf

εvol
= Kfr

1 − C
M

(1.148)

The loading pf = σp means that there is a uniform stress within the sample, which
means that the rock framework deforms uniformly. Thus, the volumetric strain of the total
sample, the pore volume and the solid (grain) volume must be equal:

�Vtot

Vtot
= �Vp

Vp
= �Vs

Vs
(1.149)

From pf = σp = −Ks(�Vs/Vs) where Ks is the bulk modulus of the solid grains (1/Ks
is often referred to as the grain compressibility) we hence find

�Vs

Vs
= �Vp

Vp
= �Vtot

Vtot
= −εvol = − pf

Ks
(1.150)

The stress–strain response is therefore entirely given by the intrinsic elastic properties of
the solid material. Comparing Eq. (1.150) to Eq. (1.148) we infer that

Ks = Kfr

1 − C
M

(1.151)

From Eqs. (1.135) and (1.150) it follows that

ζ = φ
(

1

Ks
− 1

Kf

)
pf (1.152)

On the other hand, the combination of Eqs. (1.142) and (1.145) with pf = σp gives

ζ = C −K
MK − C2

pf (1.153)

By combining Eqs. (1.152) and (1.153) we obtain the relation

φ

(
1

Ks
− 1

Kf

)
= C −K
MK − C2

(1.154)

Although this equation was derived for a specific loading (“unjacketed test”), it is generally
valid.

Eqs. (1.151) and (1.154), combined with the definition of Kfr (Eq. (1.146)), allow us to
express the elastic constants K , C andM in terms of the elastic moduli of the constituents
of the rock (Ks and Kf), plus the porosity φ and the framework modulus Kfr. The results
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are:

K = Kfr + Kf

φ

(1 − Kfr
Ks
)2

1 + Kf
φKs
(1 − φ − Kfr

Ks
)

(1.155)

M = Kf

φ

1

1 + Kf
φKs
(1 − φ − Kfr

Ks
)

(1.156)

C =
(

1 − Kfr

Ks

)
M = Kf

φ

1 − Kfr
Ks

1 + Kf
φKs
(1 − φ − Kfr

Ks
)

(1.157)

Eq. (1.155), which is called the Gassmann equation or the Biot–Gassmann equation, may
alternatively be written as

K

Ks −K = Kfr

Ks −Kfr
+ 1

φ

Kf

Ks −Kf
(1.158)

The relations (1.155)–(1.157) do not give a clear physical meaning to each parameter.
Better insight may be achieved by looking at a couple of limit cases, where the relations
become simpler.

One case is a “hard” rock, where the frame is incompressible compared to the fluid. As
Ks 
 Kf in general, we have for this “stiff frame” case:

Kfr,Gfr,Ks 
 Kf (1.159)

For porosities that are not too small (specifically φ 
 (Kf/K
2
s )(Ks−Kfr)), Eqs. (1.155)–

(1.157) then reduce to:

“Stiff
frame”

⎧⎨
⎩
K ≈ Kfr
C ≈ Kf

φ
(1 − Kfr

Ks
)

M ≈ Kf
φ

(1.160)

We see that the bulk modulus K is here identified as the bulk modulus of the rock frame-
work, while the constantM is entirely given by the properties of the pore fluid and the pore
system.

The opposite limit is that of a “weak frame”. For this case we assume

Kfr,Gfr,Kf � Ks (1.161)

For porosities φ 
 Kf/Ks, Eqs. (1.155)–(1.157) reduce to:

“Weak
frame”

{
K ≈ Kfr + Kf

φ

C ≈ M ≈ Kf
φ

(1.162)

In this case, the bulk modulusK is influenced not only by the rock stiffness, but also by the
fluid bulk modulus Kf. In the limiting case when Kfr → 0 (suspension), K = C = M ≈
Kf/φ are all given mainly by fluid properties. Disregarding the condition Ks 
 Kf would
in this case reproduce Eq. (1.132), which was obtained by simple physical arguments.

Note that the “stiff frame” and the “weak frame” limits are rather extreme cases that
are mainly suited for illustrative purposes. For practical calculations the complete expres-
sions (1.155)–(1.157) should be used.
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The theory outlined above contains two “unknown” parameters, which are not identified
in terms of the properties of the rock’s constituents. These are the two elastic moduli of the
framework, Kfr, and Gfr. We shall in Chapter 6 see how microscopic theories can be used
to estimate these moduli when further information about the rock structure is available.
Empirically, the frame bulk modulus Kfr is found to be significantly smaller than Ks, and
to decrease sharply with the porosity.

1.6.3. The effective stress concept

In Section 1.6.2, we discussed an experiment where a rock sample was “jacketed” with
the pore fluid free to escape, so that the pore pressure was kept constant during loading
(Fig. 1.16a). Such a test is also called a drained test. The stress–strain response of this test
was given by Eq. (1.146), i.e.

σp = Kfrεvol (1.163)

Imagine now a similar test, but with the pore fluid shut in, so that no fluid flow occurs in or
out of the rock sample. This situation is called undrained. Compression of the sample—
including the pore space—due to an external hydrostatic load, will in this case cause an
increase in the pore pressure. The sample compression and the pore pressure can be calcu-
lated by requiring ζ = 0 in Eqs. (1.142) and (1.145), i.e. no relative displacement between
pore fluid and solid during the test. The pore pressure is given by Eq. (1.142):

pf = Cεvol (1.164)

while the stress–strain characteristics is given by Eq. (1.145):

σp = Kεvol (1.165)

Using Eqs. (1.146) and (1.164), we can write

K = Kfr + C2

M
= Kfr + C

M

pf

εvol
(1.166)

By introducing this expression for K into Eq. (1.165) and reorganizing the equation, we
obtain:

σp − C

M
pf = Kfrεvol (1.167)

Eq. (1.167) tells us that the deformation is proportional to the effective stress σ ′
p, defined

as

σ ′
p = σp − αpf (1.168)

rather than the total stress σp, and the corresponding modulus is Kfr, i.e. the same as for
the drained test (Eq. (1.163)). Physically, this means that the solid framework carries the
part σ ′

p of the total external stress σp, while the remaining part, αpf, is carried by the fluid.
The remaining pore pressure, (1 − α)pf, is counteracted by internal stresses in the solid.
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The parameter α is called the Biot coefficient:

α = C

M
= 1 − Kfr

Ks
(1.169)

with the latter identity from Eq. (1.151). As mentioned above, Kfr is always smaller than
Ks. Theoretically, the upper limit for Kfr is (1 − φ)Ks. (See Section 6.2 for more infor-
mation on bounds on elastic moduli of composite materials.) The lower limit for Kfr is, of
course, zero. Thus, α is restricted to the region φ < α � 1. In unconsolidated or weak
rocks, α is close to 1.

In general, the effective stress is defined by

σ ′
ij = σij − δijαpf (1.170)

where δij is the Kronecker symbol, see Appendix C.11.2. Observe that only the normal
effective stresses depend on the pore pressure.

One may note that for pf = 0, Eqs. (1.142) and (1.169) give α = ζ/εvol. Then from
Eq. (1.135) (with pf = 0), and the definition of εvol we obtain

α = φ �Vp/Vp

�Vtot/Vtot
= �Vp

�Vtot
(1.171)

which shows that α is a measure of the change in pore volume relative to the change in
bulk volume at constant pore pressure.

In addition to the bulk compressibility with respect to confining pressure at constant
pore pressure, 1/Kfr, we may define the bulk compressibility with respect to pore pressure
at constant confining pressure, 1/Kbp. By letting σp = 0 in Eq. (1.167) we may write

Kbp = − pf

εvol
= Kfr

M

C
= Kfr

α
(1.172)

and thus we have

α = Kfr

Kbp
(1.173)

which shows that Biot coefficient α is the ratio of the bulk modulus at constant pore pres-
sure to the bulk modulus at constant confining pressure.

It is worth noting that using α, Eqs. (1.155)–(1.157) may be summarized as

1

M
= α

C
= α2

K −Kfr
= φ

Kf
+ α − φ

Ks
(1.174)

which may be the simplest form to express the equations.
The effective stress concept was originally introduced in soil mechanics by Terzaghi in

1923 on an empirical basis. Terzaghi argued that

1. increasing the external hydrostatic pressure produces the same volume change of the
material as reducing the pore pressure with the same amount,

2. the shear strength depends only on the difference between the normal stress σ and
the pore pressure pf.
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These arguments lead to an effective stress law similar to Eq. (1.168), with α = 1. For
soils, this is a reasonable assumption. For rocks, however, the deviation of α from 1 should
be taken into account.

Terzaghi’s statement ii) above implies that the effective stress, rather than the total stress,
is determining whether the rock fails or not due to the external load. This is further dis-
cussed in Section 2.6.1.

1.6.4. Pore volume compressibility and related topics

The change of the pore volume as a result of the change in the pore pressure or the confining
stress is of obvious interest in petroleum related rock mechanics.

By eliminating εvol from Eqs. (1.142) and (1.145), inserting the resulting expression for
ζ in Eq. (1.135), and inserting for C, M and K from Eqs. (1.155)–(1.157), we find, after
some algebra

�Vp/Vp = − 1

φ

(
1

Kfr
− 1

Ks

)
σp + 1

φ

(
1

Kfr
− 1 + φ

Ks

)
pf (1.175)

= − 1

φ

(
1

Kfr
− 1

Ks

)(
σp −

(
1 − φ Kfr

Ks −Kfr

)
pf

)
(1.176)

This allows us to define the pore compressibility with respect to confining stress as

1

Kp
= − 1

Vp

∂Vp

∂σp
= 1

φ

(
1

Kfr
− 1

Ks

)
(1.177)

and the pore compressibility with respect to pore pressure as

1

Kpp
= 1

Vp

∂Vp

∂pf
= 1

φ

(
1

Kfr
− 1 + φ

Ks

)
= 1

Kp
− 1

Ks
(1.178)

Note the different sign in the definitions, which ensure that the compressibilities are posi-
tive.

Zimmerman (1991) points out that an expression sometimes given for the pore com-
pressibility, based on the weighted average 1/Kfr = φ/Kp + (1 − φ)/Ks, is incorrect.

We may find a related expression for the porosity by differentiating the definition Vp =
φVtot, which gives

�φ

φ
= �Vp

Vp
− �Vtot

Vtot
(1.179)

Using the effective stress law Kfrεvol = σp − αpf (Eq. (1.167)) and Eq. (1.175), we find

�φ = −
(

1 − φ
Kfr

− 1

Ks

)
(σp − pf) (1.180)

Finally, we may use the relation (compare to Eqs. (1.128)–(1.130))

�Vtot

Vtot
= φ�Vp

Vp
+ (1 − φ)�Vs

Vs
(1.181)



POROELASTICITY 35

to derive the following expression for the deformation of the grain material (use e.g.
Eqs. (1.175) and (1.167)).

�Vs

Vs
= − 1

(1 − φ)Ks
(σp − φpf) (1.182)

Note that the grains expand if we increase the pore pressure while the confining stress
is constant. Increasing the pore pressure means that the fluid carries more of the exter-
nal loading, which means that the grains carry correspondingly less, and hence the grains
expand.

Eq. (1.182) shows that the mean stress in the grains is

σ̄s = σp − φpf

1 − φ (1.183)

See Zimmerman (1991) for a simple sketch giving a geometrical justification of this result.
It is worth emphasizing that Eqs. (1.176), (1.180) and (1.182) all give an effective stress

coefficient different from Biot’s α defined in Eq. (1.169). This underlines that the effective
stress law will differ depending upon which physical quantity we are studying. There is
thus no a priori reason to expect that for example the effective stress law for rock mechani-
cal failure or permeability should be the same as that derived for basic elastic deformation,
Eq. (1.168).

1.6.5. The Skempton coefficients

An important characteristic of a porous medium is how the pore pressure responds to a
change in the mean stress under undrained conditions.

For the elastic case the response can be computed from the poroelastic equations. We
add Eqs. (1.136)–(1.138), set ζ = 0, and eliminate εvol using Eq. (1.142). The result is

�pf = C

K
�σ̄ (1.184)

The Skempton B-coefficient is defined as

B = �pf

�σ̄
= C

K
=

Kf
φ
(1 − Kfr

Ks
)

Kf
φ
(1 − Kfr

Ks
)+Kfr(1 − Kf

Ks
)

(1.185)

where the right hand expression is found by introducing K and C from Eqs. (1.155) and
(1.157). It is clear from the formula that B � 1.

Originally, Skempton (1954) defined the parameters A and B according to

�pf = B[�σ3 + A(�σ1 −�σ3)
]

(1.186)

The form of this equation was chosen to be appropriate for triaxial tests (see Chapter 2).
For a triaxial compression test, the change in mean stress may be written

�σ̄ = 1

3
(�σ1 + 2�σ3) = �σ3 + 1

3
(�σ1 −�σ3) (1.187)

which shows that B in Eq. (1.186) is the same as in Eq. (1.185).
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Fig. 1.17. Examples of the variation of B withKfr, for two porosities. The full lines correspond toKf = 2.5 GPa
(“water”) and the dashed lines to Kf = 1 GPa (“oil”). In all cases Ks = 37.5 GPa.

Neglecting Kf relative to Ks in Eq. (1.185), and introducing Biot’s α, we have

B = Kf

Kf + φ
α
Kfr

(1.188)

In the weak frame limit, where Kfr can be neglected relative to Ks, we have

B = Kf

Kf + φKfr
(1.189)

Some examples of the variation of B (as computed from Eq. (1.185)) are shown in
Fig. 1.17. Note how B decreases with increasing porosity and decreasing fluid bulk modu-
lus. Gas as the pore fluid will clearly give a low B except for very unconsolidated rocks.

1.6.6. The correspondence to thermoelasticity

The equations governing poroelasticity are to some extent similar to the equations govern-
ing thermoelasticity. This implies that specific solutions to problems in one field may be
used to solve corresponding problems in the other.

By eliminating ζ between Eqs. (1.142) and (1.143) we get

σij =
(
λ− C2

M

)
εvolδij + 2Gεij + C

M
pfδij (1.190)

Introducing α from Eq. (1.169) and defining (compare to Eq. (1.146))

λfr = λ− C2

M
(1.191)

we obtain

σij = λfrεvolδij + 2Gεij + αpfδij (1.192)
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Eq. (1.192) should be compared to the corresponding equation from thermoelasticity,
Eq. (1.118)

σij = λδij εvol + 2Gεij + 3αT K(T − T0)δij

This means that by making the obvious identifications

pf ↔ T − T0 (1.193)

α ↔ 3KαT = E

1 − 2ν
αT (1.194)

solutions of problems in thermoelasticity (where a wide range of problems have been
solved) may be directly applied to poroelasticity. The method is used e.g. by Haimson
and Fairhurst (1967) in a classic paper on hydraulic fracturing.

There is one important point to note. Since stress or strain do not induce significant tem-
perature changes, the temperature field is governed by the (decoupled) diffusion equation.
Pore pressure, on the other hand is of course directly coupled to stress (Eq. (1.142)), leading
to coupled equations. There are however, some important cases where decoupling occurs.
These include all steady state problems, the consolidation problem leading to Eq. (1.241),
and the borehole problem for axisymmetric loading (see e.g. Detournay and Cheng (1988,
1993), Wang (2000)).

1.6.7. Other notation conventions

We have seen that isotropic poroelasticity requires 4 independent moduli. In the initial
Eqs. (1.136)–(1.142) we used λ,G = Gfr,M and C. We also showed how these are related
to the more physically understandable set consisting of the undrained bulk modulusK , the
drained or frame bulk modulusKfr, the solid grain bulk modulusKs and the shear modulus
G = Gfr.

There are clearly many other possibilities—we refer to Detournay and Cheng (1993) for
a thorough discussion.

We mention in particular the alternative used by Rice and Cleary (1976), Detournay
and Cheng (1993) and others. They use the shear modulus, the drained and undrained
Poisson’s ratio, which in the notation used in this book will be denoted νfr and ν. The
fourth parameter is Skempton’s B parameter, or alternatively the Biot parameter α.

Finally, we point out that sometimes the undrained parameters are given the subscript u,
while there is no subscript on the drained parameters (where we have used fr).

1.7. Anisotropy

If the elastic response of a material is not independent of the material’s orientation for a
given stress configuration, the material is said to be anisotropic. Thus the elastic moduli of
an anisotropic material are different for different directions in the material.

Most rocks are anisotropic to some extent. The origin of the anisotropy is always het-
erogeneities on a smaller scale than the volume under investigation, ranging from layered
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Fig. 1.18. Illustration of intrinsic (lithological) and stress induced anisotropy.

sequences of different rock types down to molecular configurations. Sedimentary rocks
are created during a deposition process where the grains normally are not deposited ran-
domly. For instance, in a river environment, there is a preferred direction (the direction
of the streaming water) along which elongated or plane grains will have a tendency to be
oriented. Seasonal variations in the fluid flow rates may result in alternating microlayers
of fine and coarser grain size distributions. The elastic moduli of rocks created under such
conditions will be dependent on the orientation of the material, i.e. they are anisotropic.
Due to its origin, anisotropy of this type is said to be lithological or intrinsic.

Another important type is anisotropy induced by external stresses. The anisotropy is
then normally caused by microcracks, generated by a deviatoric stress and predominantly
oriented normal to the lowest principal stress. The microstructure causing the two types of
anisotropy is illustrated in Fig. 1.18.

In calculations on rock elasticity, anisotropy is often ignored. This simplification may
be necessary rather than just comfortable, because—as we shall see—an anisotropic de-
scription requires much more information about the material—information that may not
be available. However, by ignoring anisotropy, one may in some cases introduce large er-
rors that invalidate the calculations.

For a general anisotropic material, each stress component is linearly related to every
strain component by independent coefficients. In the mathematical notation used in
Eqs. (1.9) and (1.75) this may be expressed as

σij =
∑
k,l

Cijklεkl (1.195)

where Cijkl are elastic constants. Since the indices i, j , k and l may each take the values 1,
2 or 3, there are all together 81 of the constants Cijkl . Some of these vanish and others are
equal by symmetry, however, so that the number of independent constants is considerably
less. From Eqs. (1.6)–(1.8), (1.74) and (1.195) it may be deduced that

Cijkl = Cjikl = Cijlk = Cjilk (1.196)

i.e. interchanging the first index with the second one, or the third with the fourth, does
not change the value of the constant. Furthermore, fulfilment of the equations of the type
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Eq. (1.115), which were derived from energy considerations, requires that:

Cijkl = Cklij (1.197)

The relations (1.196) and (1.197) reduce the number of independent constants to 21.

1.7.1. Orthorhombic symmetry

Rocks can normally be described reasonably well by assuming that the material has three
mutually perpendicular planes of symmetry. This is one of the orthorhombic symmetries.

Let us assume that the planes of symmetry are perpendicular to the coordinate axes x,
y, z. From Eqs. (1.195) and (1.196) we have for the normal stress in x-direction:

σ11 = C1111ε11 + C1122ε22 + C1133ε33 + 2C1112ε12

+ 2C1113ε13 + 2C1123ε23 (1.198)

Due to the orthorhombic symmetry, Eq. (1.198) should look exactly the same when
described in a coordinate system defined by x′ = x, y′ = y, z′ = −z. However, in this new
coordinate system two of the strain components have changed sign (see page 455), namely
ε′13 = −ε13 and ε′23 = −ε23. This implies that

C1113 = C1123 = 0 (1.199)

By applying the same arguments on the remaining stress components, and on other ori-
entations of the primed coordinate system, the number of independent constants Cijkl is
reduced to 9. These are C1111, C2222, C3333, C1122, C1133, C2233, C2323, C1313, C1212.

In the compact notation, where σx is used instead of σ11 etc., the constants Cijkl have
only two indices, I and J . In this so-called Voigt notation the indices ij are related to I as
follows: 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5 and 12 → 6. The Voigt notation is
discussed in more detail in Appendix C, on page 457.

The constants may then be written as

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠ (1.200)

The zeros represent the constants that vanish by the symmetry arguments of type (1.199).
They are included in order to emphasize the matrix nature of the constants, and also as a
reminder that they do exist: for a material with orthorhombic symmetry they only vanish
when the planes of symmetry are perpendicular to the coordinate axes.
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Denoting the 6×6 matrix (1.200) by C, and defining the 6×1 matrices σ and ε according
to

σ =

⎛
⎜⎜⎜⎜⎜⎝

σx
σy
σz
τyz
τxz
τxy

⎞
⎟⎟⎟⎟⎟⎠ , ε =

⎛
⎜⎜⎜⎜⎜⎝

εx
εy
εz

2Γyz
2Γxz
2Γxy

⎞
⎟⎟⎟⎟⎟⎠ (1.201)

the equations of type (1.195) can be written as the matrix product

σ = C · ε (1.202)

Eq. (1.202) is in reality six equations. Written in an explicit form in the Voigt notation,
these equations look as:

σx = C11εx + C12εy + C13εz (1.203)

σy = C12εx + C22εy + C23εz (1.204)

σz = C13εx + C23εy + C33εz (1.205)

τyz = 2C44Γyz (1.206)

τxz = 2C55Γxz (1.207)

τxy = 2C66Γxy (1.208)

These stress–strain relations generally describe most types of rocks.
The matrix C is called the stiffness matrix and its components CIJ are called elastic

constants. The inverse of the stiffness matrix, S = C−1, is called the compliance matrix.
It follows from Eq. (1.202) that the compliance matrix relate strains to stresses in the

following way:

ε = S · σ (1.209)

The constants (1.200) describe the elastic properties of any linear elastic material with or-
thorhombic or higher symmetry. Thus they may also describe an isotropic rock. Comparing
Eqs. (1.93)–(1.98) to (1.203)–(1.208) we find that for an isotropic material:

C11 = C22 = C33 = λ+ 2G (1.210)

C12 = C13 = C23 = λ (1.211)

C44 = C55 = C66 = G (1.212)

For an isotropic material, the linear elastic properties are completely described when any
two of the elastic moduli λ, G, ν, E or K are identified. To give a complete description of
an anisotropic rock, all the nine constants of (1.200) must be identified. This is not easily
achieved in practical situations.

The elastic moduli do no longer have unique values for anisotropic materials. Since the
elastic properties are different in different directions, the values for E (Eq. (1.100)) and
ν (Eq. (1.101)) may obviously vary according to the direction of the applied stress. The
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bulk modulus K is an exception, however: as both the hydrostatic pressure σp and the
volumetric strain εvol are invariant to the orientation of the material, the bulk modulus is
also invariant.

As an example, consider the uniaxial stress state defining Young’s modulus and Pois-
son’s ratio (Fig. 1.15). In this example, σy = σz = 0 and τxy = τxz = τyz = 0. The
stress–strain relations (1.203)–(1.208) then become:

σx = C11εx + C12εy + C13εz (1.213)

0 = C12εx + C22εy + C23εz (1.214)

0 = C13εx + C23εy + C33εz (1.215)

0 = 2C44Γyz (1.216)

0 = 2C55Γxz (1.217)

0 = 2C66Γxy (1.218)

Solving Eqs. (1.214) and (1.215) for ν = −εy/εx , we find

ν = −εy
εx

= C12C33 − C13C23

C22C33 − C2
23

(1.219)

while for ν = −εz/εx we find (by interchanging indices 2 and 3):

ν = − εz
εx

= C13C22 − C12C23

C22C33 − C2
23

(1.220)

Thus the value of Poisson’s ratio depends not only on the direction of the applied stress,
but also on the direction in which lateral expansion is measured.

1.7.2. Transverse isotropy

A special type of symmetry, which is relevant for many types of rocks, is full rotational
symmetry around one axis. Rocks possessing such symmetry are said to be transversely
isotropic. It implies that the elastic properties are equal for all directions within a plane,
but different in the other directions. This extra element of symmetry reduces the number
of independent elastic constants to 5.

Assuming that the x- and y-directions are equivalent while the z-direction is the different
one, we may rotate the coordinate system any angle around the z-axis without altering
the elastic constants. For this to be possible it is required that C11 = C22, C13 = C23,
C12 = C11 − 2C66, and C44 = C55. The stiffness matrix for a transversely isotropic
material having the z-axis as the unique axis is then⎛

⎜⎜⎜⎜⎜⎝

C11 C11 − 2C66 C13 0 0 0
C11 − 2C66 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠ (1.221)
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Transverse isotropy is normally considered to be a representative symmetry for horizon-
tally layered sedimentary rocks. Stress induced anisotropy may often be described by
transverse isotropy as well. Thus, for geophysicists, transverse isotropy is probably the
most important type of symmetry next to isotropy.

1.8. Nonlinear elasticity

1.8.1. Stress–strain relations

For a linear elastic material, there is always a constant relationship between the applied
stress and the resulting strain, regardless the magnitude of the stress and the strain. The
stress–strain relation (Eq. (1.91)) for such a material is therefore a straight line, as shown
in Fig. 1.19a. The elastic modulus corresponding to this stress–strain pair is the slope of
the curve.

Any material not obeying a linear stress–strain relation is said to behave nonlinearly. For
a nonlinear elastic material, the stress–strain relation may be written as

σ = E1ε + E2ε
2 + E3ε

3 + · · · (1.222)

Remembering that σ and ε generally are tensors, it is clear that nonlinear elasticity may be
very complicated mathematically.

Further, we can not ignore the higher order terms in the strain tensor, which were ne-
glected in the derivation on page 15. The full expression for the strain tensor, replacing

Fig. 1.19. Stress–strain relations for: a) linear elastic material. b) perfectly elastic material. c) elastic material,
with hysteresis. d) material suffering permanent deformation.
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Eq. (1.74), is (see e.g. Landau and Lifshitz, 1986):

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi
+

3∑
l=1

∂ul

∂xi

∂ul

∂xj

)
(1.223)

Nonlinear behaviour may have various causes, and appear in many different ways.
Fig. 1.19b shows one example. This material has a nonlinear stress–strain relation, since
the ratio of stress to strain is not the same for all stresses. The relation is, however, identical
for the loading and unloading process. Such materials are said to be perfectly elastic.

For nonlinear stress–strain relations the elastic modulus is no longer uniquely defined,
not even for a specific stress level. As shown in Fig. 1.19b, the modulus related to the
point P on the curve may either be identified as the slope of the line OP (secant modulus),
or it may be identified as the slope of the tangent PT (tangent modulus).

If the correct definition for the moduli is used, the linear form of the stress strain relations
may be used far beyond the initial linear region. For example, Hooke’s law (Eq. (1.91)) may
be written in its original form:

σ = Esec(ε)ε (1.224)

where Esec(ε) is the secant value of the Young’s modulus. Alternatively, the relation may
be written in a differential form:

�σ = Etan(ε)�ε (1.225)

where �σ and �ε represent differential increments in stress and strain, respectively.
Etan(ε) is the tangent value of the Young’s modulus. Note, however, that both Etan(ε) and
Esec(ε) depend on the strain ε. This complicates the use of the equations. By comparing
Eqs. (1.224) and (1.225), we observe that the relation between the secant modulus and the
tangent modulus is:

Esec(ε) = 1

ε

∫ ε

0
Etan(ε

′) dε′ (1.226)

The stress–strain relation shown in Fig. 1.19c is commonly observed in rocks. The unload-
ing path is different from the loading path. This effect is called hysteresis. For materials
behaving like this, the work done during loading is not entirely released during unload-
ing, i.e. a part of the strain energy dissipates in the material. Elastic moduli related to the
unloading path are called unloading moduli.

If, as in Fig. 1.19c, the strain vanishes when the stress returns to zero, the material is
said to be elastic. If not, as in Fig. 1.19d, the material has suffered a permanent deformation
during the loading/unloading cycle. For sufficiently large stresses, many rocks enter a phase
where permanent deformation occurs, yet the material is still able to resist loading (i.e. the
slope of the stress–strain curve is still positive). The material is then said to be ductile. The
point where the transition from elastic to ductile behaviour occurs is called the yield point.

In Eqs. (1.224)–(1.226) the elastic modulus has been expressed as a function of strain.
Since there is a relation between the applied stress and the resulting strain, we might have
expressed the modulus as a function of stress rather than strain. In general, the elastic
moduli depend on all components of stress (or all components of strain). For example,
Young’s modulus may depend on the confining pressure, as shown in Fig. 2.3.
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1.8.2. The impact of cracks

Cracks occur in all types of rocks, and they generally have a large impact on the elastic
properties of the material. For some materials, like poorly consolidated sedimentary rocks,
it may be difficult to imagine the presence of cracks. However, weak or failing grain con-
tacts have much of the same impact on elastic parameters as cracks have, and may for
modelling purposes often be considered as such.

The occurrence of cracks in rocks produce various types of nonlinear behaviour. We
shall here look at a couple of examples. Consider first the situation shown in Fig. 1.20a.
The stressed sample contains a crack oriented with its face normal to the stress σx . Since
no stress can be transferred across the crack itself, the effective Young’s modulus Eeff of
the sample will be reduced:

σx

εx
= Eeff = E(1 − ξQ) (1.227)

Here E is the Young’s modulus of the material without cracks, ξ is called the crack density
and is a function of the size and number of cracks, and Q is a coefficient depending on
the shape and orientation of the crack. (Micromechanical models for calculation of Q and
equivalent parameters are described in Section 6.4.) As the stress is increased, the strain
εx also increases. A part of the strain increase is due to closure of the crack. At a certain
stress level σcx the crack is closed. At stresses above this point ξ will vanish, and Eeff → E

according to Eq. (1.227). The stress strain relation for this sample is then as shown in
Fig. 1.20b.

For a material containing many cracks of different sizes and closure stresses, the stress–
strain relation may look as Fig. 1.19b. Such closure of cracks as stress increases may
explain the typical feature that elastic constants of rocks normally increase with increasing
hydrostatic pressure.

Fig. 1.20. Nonlinear stress–strain relation due to crack closure.
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Fig. 1.21. Material with sliding crack.

Fig. 1.22. Material with a sliding crack. a) Normal stress versus shear stress across the crack surface.
b) Stress–strain relation for the material.

Now consider a material containing a closed crack with its face oriented at an angle
relative to the stress σx (Fig. 1.21a). Due to friction, the closed crack will be able to transfer
shear stress τ up to a certain level τc, given by

τc = S0 + μσ (1.228)

Here σ is the stress normal to the crack face, S0 is the inherentshear strength of the closed
crack and μ is thecoefficient of friction. When the shear stress τ across the crack exceeds
τc the crack surfaces slip and slide relative to each other. Then τ is reduced, and may either
vanish (local damage), or the crack surfaces may again stick to each other and τ increases
from a lower level (point A on Fig. 1.22a). The sliding of the crack surfaces will result in
an additional strain �ε (point A on Fig. 1.22b).
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Upon unloading, τ is reduced and may eventually become equal to −τc. A reverse slid-
ing will then take place (point B on Figs. 1.22a and 1.22b). The stress–strain relation for
the entire sample (Fig. 1.22b) is seen to have a hysteresis. Also, the sample is seen to have
suffered a permanent deformation, since the strain does not go to zero when the stress
vanishes.

Real rocks normally contain cracks or crack-like defects of many sizes and different
orientations. The resulting stress–strain relation is typically as shown in Fig. 1.19d.

In Fig. 1.21b the sliding of the crack surfaces is accompanied with the opening of two
other cracks oriented with their faces normal to the direction of the compression stress σ .
Opening of cracks with this orientation relative to applied uniaxial stress is a typical fea-
ture occurring at high shear stresses. A consequence of such crack opening is an inelastic
increase in the volume of the stressed material. This phenomenon is known as dilatancy.
Another consequence is a stress induced mechanical anisotropy, as described in the pre-
vious section. The anisotropy may for instance be observed by acoustical techniques (see
Section 5.5).

1.9. Time-dependent effects

So far, we have assumed that any change in applied stress is followed instantaneously by
the corresponding deformation. Quite often, however, it is observed that the deformation
of rocks continues for a long time after a change in the applied stress. The time-dependent
effects can be divided into two groups: consolidation and creep. Consolidation is due to
pore pressure gradients induced by a change in the stress state, and the fact that it takes
time to re-establish pore pressure equilibrium. Creep is related to visco-elastic behaviour
of the solid framework. In the following, consolidation and creep are discussed separately.
In practice, however, it is sometimes difficult to distinguish between genuine creep and
consolidation effects.

1.9.1. Consolidation

Consolidation theory describes the transient process, where pore pressure equilibrium is re-
established after a change in the stress state. This process involves a flow of the pore fluid
through the porous rock. Viscous flow in porous rocks is described by Darcy’s law, which
states that the fluid flow rate �Q (fluid volume per unit time flowing through a surface), is
proportional to the pore pressure gradient ∇pf:

�Q = −A k
ηf

∇pf (1.229)

Here A is the surface through which the fluid flows, and ηf is the dynamic viscosity of the
fluid. k is the permeability of the rock. Normally, k is measured in the unit Darcy, defined
as the permeability which gives a flowrate of one centimetre per second of a fluid with
viscosity one centipoise for a pressure gradient of one atmosphere per cm. This means that
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we have 1 D = 0.9869·10−12 m2 since 1 atmosphere is equal to 101325 Pa.2 Permeabilities
of reservoir rocks may vary from the low milliDarcy region up to several Darcies.

Eq. (1.229) basically describes stationary flow of fluid, in a homogeneous pore pressure
gradient field. However, the equation may be further evaluated to make it applicable for
description of transient processes. The flow rate �Q expresses the difference between the
solid and fluid displacement rates, i.e.

�Q = Aφ
(
∂ �us

∂t
− ∂ �uf

∂t

)
(1.230)

By comparing Eq. (1.230) with the definition (Eq. (1.134)) of the strain parameter ζ , we
find that the divergence of �Q is proportional to the time derivative of ζ , i.e.

∇ · �Q = A∂ζ
∂t

(1.231)

Or, by introducing Eq. (1.229),

∂ζ

∂t
= − k

ηf
∇2pf (1.232)

Eq. (1.232) describes transient fluid flow in a porous rock, and also flow in non-
homogeneous pore pressure gradient fields.

We may eliminate ζ from Eq. (1.232) by using Eq. (1.142), to find an equation involving
pf and εvol

k

ηf
∇2pf = 1

M

∂pf

∂t
− α ∂εvol

∂t
(1.233)

Alternatively, we may find an equation involving pf and σ̄ by combining Eqs. (1.232),
(1.142) and (1.145)

k

ηf
∇2pf = α

KfrB

∂pf

∂t
− α

Kfr

∂σ̄

∂t
(1.234)

where B was defined in Eq. (1.185).
It is clear that the equations in general involve a coupling between the pore pressure and

the strain or stress of the solid material. Only in special cases will the pore pressure obey
an uncoupled equation. For a thorough discussion, see e.g. Wang (2000) or Detournay and
Cheng (1993).

We shall now consider an example of decoupled consolidation by considering a simple
experiment: a porous material is confined with no lateral movement (ux = uy = 0) in a
vertical column with an impermeable bottom (at z = 0) and a highly permeable piston on
the top (at z = h). The bottom of the sample is fixed, i.e. uz (z = 0) = 0. Initially, at t = 0,

2 In some sciences, including soil mechanics and ground water research, an alternative definition for permeabil-
ity with unit m/s is used. The relation to our definition is

k(hydrosciences) = k(petroleum sciences)γw/ηw

where γw and ηw are the specific weight and viscosity of water, respectively.
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a vertical stress σz = σ0 is applied by the piston. The pore pressure is now a function of
both time t and height z, i.e. pf = pf(t, z). The boundary conditions are

pf = 0 at z = h (1.235)
∂pf

∂z
= 0 at z = 0 (1.236)

The first condition is a result of the piston permeability causing the same pore pressure
on the inside as on the outside. The second condition is due to the requirement of no flow
through the bottom (∂ �us/∂t = ∂ �uf/∂t , see Eq. (1.230)).

Remembering that ux = uy = 0, and writing λ + 2G = H , we find that Eq. (1.138)
now becomes:

σ0 = Hεz − Cζ (1.237)

while Eq. (1.142) becomes:

pf = Cεz −Mζ (1.238)

Using Eqs. (1.237) and (1.238) to eliminate ζ , we obtain an expression for the vertical
strain εz:

εz = Mσ0 − Cpf

HM − C2
= σ0 − C

M
pf

H − C2

M

= σ0 − αpf

Hfr
(1.239)

where Hfr = H − C2/M is defined in analogy with Eq. (1.146).
Eq. (1.239) shows that the vertical strain depends on the pore pressure, hence it will

change during the time it takes for the pore pressure to reach equilibrium. It is straight-
forward to find the initial and final deformation of the column. At the instant the load is
applied, before the pore fluid has time to move, we observe the undrained stiffness of the
material. Letting ζ = 0 in Eq. (1.237), we see that the immediate strain is εz = σ0/H .

At late times, when the pore pressure has dissipated to zero, we observe the drained stiff-
ness, which from Eq. (1.239) gives εz = σ0/Hfr. The difference, and hence the magnitude
of the consolidation or time dependent strain is

εz = σ0

(
1

Hfr
− 1

H

)
(1.240)

The time dependence of the pore pressure is governed by Eqs. (1.232)–(1.234). Dif-
ferentiating Eq. (1.239) and inserting into Eq. (1.233) we find the following differential
equation for pf:

∂pf

∂t
= k

ηf

HM − C2

H

∂2pf

∂z2
= CD

∂2pf

∂z2
(1.241)

This equation is a diffusion equation. The diffusion constant CD is

CD = k

ηf

HM − C2

H
= k

ηf
M
Hfr

H
= k

ηf

(
φ

Kf
+ α − φ

Ks
+ α2

Kfr + 4
3Gfr

)−1

(1.242)

CD is also called the consolidation coefficient.
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Fig. 1.23. Settlement caused by consolidation as a function of time. The solid curve represents the settlement of
a column of finite height, while the dashed curve represents the settlement for an infinitely high column. (After
Biot, 1941, with permission from AIP.)

Eq. (1.241) and the boundary conditions (1.235) and (1.236) fully determine the pore
pressure pf(t, z). Biot (1941) discussed the solution of the problem, and found that the
settlement uz can be written in terms of an infinite series. He also provided an approximate
solution, which applies to the settlement of an infinitely high column (h → ∞), or to the
initial settlement (t → 0) of a column of finite height:

uz(t) ≈ 2√
π
σ0

(
1

Hfr
− 1

H

)√
CDt (1.243)

This result is illustrated in Fig. 1.23.
By assuming Kfr,Gfr � Ks, we find that the diffusion constant CD is approximately

given by:

CD ≈ kKf

ηfφ

[
1 + Kf

φ(Kfr + 4
3Gfr)

]−1

(1.244)

In the “stiff frame” limit Kfr,Gfr 
 Kf/φ, and we find that the fluid flow is governed by
the permeability and the elastic properties of the fluid:

CD → k

ηf

Kf

φ
(1.245)

On the other hand, if Kfr,Gfr � Kf/φ, the flow is governed more by the elastic properties
of the framework:

CD → k

ηf

(
Kfr + 4

3
Gfr

)
(1.246)

Physically, CD is a measure of how far (lD) a pore pressure disturbance can propagate
during a given time (τD). The length lD is called the diffusion length and relates to τD and
CD as

l2D = CDτD (1.247)
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It is an important result that the characteristics of the fluid flow—here represented by the
diffusion constant CD and the diffusion length lD—generally depend not only on the fluid
parameters, but also on the elastic properties of the rock itself. This is particularly signifi-
cant for weak rocks, as Eq. (1.246) shows.

The consolidation discussed above is based on an elastic theory, which means that the
behaviour is reversible. This is often not the case in a practical situation, in particular not
in sedimentary rocks at high pressure. In such cases, inelasticity of the rock framework
should be taken into account.

1.9.2. Creep

Creep is a time-dependent deformation that may occur in materials under constant stress.
Creep originates from visco-elastic effects in the solid framework, thus creep may—unlike
consolidation—occur in both dry and saturated rocks.

There are three stages of creep following a change in the stress state. First, there is a
region where the rate of the time-dependent deformation decreases with time (Fig. 1.24).
This is called transient (or primary) creep. The process may be associated with a minor
spreading—at a decaying rate—of “stable” microfractures. If the applied stress is reduced
to zero during the primary creep stage, the deformation will eventually decrease to zero
too.

In the next stage, the deformation rate is constant. This is called steady state (or sec-
ondary) creep. If the applied stress is reduced to zero during this stage, the deformation
will not vanish completely. Steady state creep thus implies a permanent deformation of the
material.

Finally, the deformation rate may increase with time. This is called accelerating (or
tertiary) creep. This stage leads rapidly to failure. The process may be associated with a
rapid spreading of “unstable” fractures.

Fig. 1.24. Strain versus time for a creeping material.
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Fig. 1.25. The development of creep for different values of the applied stress.

Fig. 1.26. Building elements in visco-elastic models. a) Spring element. b) Dashpot element.

The actual creep behaviour of a rock depends on the magnitude of the applied stress.
For low or moderate stresses, the material may virtually stabilize after a period of transient
creep. For high stresses, the material may rapidly run through all three stages of creep and
finally fail.

The intermediate stress regime, where the material fully develops each stage of creep,
may be small and hard to find in practice (Fig. 1.25). The time scale of a creep stage may
vary over a wide range—in some cases it lasts for minutes, in other cases for years. Creep
is a molecular process, and the time scale depends on temperature; the process generally
speeds up with increasing temperature.

The fact that even steady state creep eventually leads to failure, means that a rock which
is loaded to a level somewhat below its ultimate strength, may fail after some time, if the
load is maintained. This effectively reduces the long-term uniaxial strength to typically
50–70% of the ultimate strength (Farmer, 1983).

There are various mathematical models, with varying degree of sophistication, that are
being used to describe creep. One type of models uses combinations of linear elements
obeying Hooke’s law (Eq. (1.91))

σ = κε spring element, Fig. 1.26a (1.248)
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Fig. 1.27. The Burgers substance. The Burgers substance can be seen as consisting of two simpler substances,
the Maxwell substance (a spring and a dashpot in series) and the Kelvin substance (a spring and a dashpot in
parallel).

Fig. 1.28. The response of the Burgers substance. a) Applied stress versus time. b) Strain versus time.

and viscous elements obeying the stress–strain relation

σ = χ ∂ε
∂t

dashpot element, Fig. 1.26b (1.249)

Here κ is the spring constant, while χ is called the coefficient of viscosity.
One of these models (the “Burgers substance”) is shown in Fig. 1.27. This model takes

into account both instantaneous strain, transient creep, and steady state creep. Consider
for instance a stress path as shown in Fig. 1.28a. For t < 0 the system is unstrained. At
t = 0 the stress is increased toΣ , while at t = tc the stress is released. The resulting strain
(shown in Fig. 1.28b) is found to be

ε =

⎧⎪⎨
⎪⎩

0 for t < 0
Σ
κ2

+ Σ
κ1

(
1 − e−t/t1)+ Σ

χ2
t for 0 < t < tc

Σ
κ1

(
etc/t1 − 1

)
e−t/t1 + Σ

χ2
tc for t > tc

(1.250)
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Here t1 = χ1/κ1 is the time constant of the transient creep.
The instantaneous strain is seen to be: Σ/κ2, the steady state creep velocity: Σ/χ2 and

the permanent strain resulting from the stress path: Σtc/χ2. Thus the permanent strain is
seen to arise from the steady state creep. Due to this term, the system has a “memory” of
its stress history.

It is generally assumed that creep is proportional to the deviatoric stresses in a material,
while hydrostatic stresses alone will not produce creep effects. Thus creep effectively re-
duces the shear modulus and the Young’s modulus of a material, while the bulk modulus is
not affected by it. It follows from Table 1.1 that Poisson’s ratio increases due to creep. Note
however, that there may be local shear stresses in a sample subject to external hydrostatic
loading, due to inhomogeneities in the material. In that case the material may creep under
hydrostatic external loads. Such creep has been observed in sandstones.
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Chapter 2

Failure mechanics

2.1. Basic concepts

When a piece of rock is subject to sufficiently large stresses, a failure of some kind will
occur. This implies that the rock changes its shape permanently, and possibly also falls
apart. The condition is accompanied with a reduced ability to carry loads. Rock failure is
an important phenomenon also for petroleum related rock mechanics, as it is the origin of
severe problems such as borehole instability and solids production. It is therefore useful to
be able to predict under which conditions a rock is likely to fail.

This chapter discusses the most elementary and well known models for rock failure. One
should keep in mind however, that these are only simplified descriptions of real rock be-
haviour. Rock failure is a complex process which is still not fully understood. Much of the
framework used to handle rock failure is therefore based on convenient mathematical de-
scriptions of observed behaviour, rather than derivations from basic laws of physics. Some
of the concepts used here, including the concept of failure, may thus be poorly defined and
sometimes not very relevant, as will be seen below.

For most of the chapter we shall assume that rocks are homogeneous and isotropic.
Anisotropy is discussed in Section 2.9, while some consequences of inhomogeneities are
briefly discussed in Sections 2.5 and 2.8.

2.1.1. Strength and related concepts

The stress level at which a rock typically fails is commonly called the strength of the rock.
Obviously, as “stress level” is not a uniquely defined parameter, neither is strength. Rock
strength is therefore a meaningful parameter only when the stress geometry—that is: the
type of test, in a laboratory setting—is also specified. We shall soon describe the impact
of stress geometry on rock strength. First, we shall however take a look at a couple of the
most important tests used to measure rock strength, the uniaxial and triaxial tests, in order
to illustrate the complexity of rock failure, and to introduce some basic concepts. Rock
mechanical testing procedures for strength measurements will be described in more detail
in Chapter 7.

Fig. 2.1 illustrates a typical test specimen, a cylinder with length to diameter ratio 2:1.
A pair of pistons applies (axial) stress to the end faces of the cylinder, while a confining oil
bath provides a stress of possibly different magnitude to the circumference. It is normally
assumed that the stress state within the specimen is homogeneous. If the confining stress
is zero, we have a uniaxial stress test (also called unconfined compression test). When the
test is performed with a non-zero confining pressure, a so-called triaxial test is performed.
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Fig. 2.1. Typical test specimen for a uniaxial or triaxial test. A typical sample diameter for petroleum applications
is 38 mm (1 1/2′′).

Fig. 2.2. Principle sketch of stress versus deformation in a uniaxial compression test. In practise, the ductile
region may be very small.

Fig. 2.2 shows a typical result from a uniaxial test. The applied axial stress (denoted σz)
is plotted as a function of the axial strain (εz) of the sample. Several important concepts
are defined in the figure:

Elastic region: The rock deforms elastically. If the stress is released, the specimen will
return to its original state.

Yield point: The point beyond which permanent changes will occur. The sample will no
longer return to is original state upon stress relief.

Uniaxial compressive strength: The peak stress.
Ductile region: A region in which the sample undergoes permanent deformation without

loosing the ability to support load.
Brittle region: A region in which the specimen’s ability to withstand stress decreases

rapidly as deformation is increased.
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Fig. 2.3. Triaxial testing: typical influence of the confining pressure on the shape of the differential stress (axial
stress minus confining pressure) versus axial strain curves.

A triaxial test is usually performed by increasing the axial and confining loads simulta-
neously, until a prescribed hydrostatic stress level is reached. Then, the confining pressure
is kept constant while the axial load is increased until failure occurs. The axial loading is
normally applied such that it gives a constant axial deformation rate.

For a triaxial test, it is customary to plot the difference between the axial stress and
the confining pressure (σr ) versus the axial deformation. One then obtains a curve that
looks similar to Fig. 2.2. However, the behaviour may be quite different at the higher stress
levels. Fig. 2.3 illustrates results from triaxial tests with various confining pressures. It is
seen that for the higher confining pressures the specimen’s ability to support load is not
lost, although its stiffness is clearly reduced. This is further discussed in Section 2.8.

So far, we have not given a precise definition of failure, mainly because it is rather
difficult to give a general definition. For the uniaxial test shown in Fig. 2.2, a seemingly
unambiguous definition of failure may be given, corresponding to the peak stress point
on the curve. For the higher confining pressures in Fig. 2.3, one may on the other hand
define failure at some point where the slope of the stress–strain curve changes. This may
not seem totally appropriate, however, since the specimen still supports increasing load
after it has failed. Disregarding these problems, we shall in the following sections discuss
failure criteria assuming that a consistent definition of failure exists. Later, in Section 2.8,
on post-failure behaviour described by the theory of plasticity, we shall be a little more
precise, at least for problems that can be described within the framework of that theory.

The most common mode of failure observed in uniaxial and triaxial tests is shear fail-
ure. This failure mode is caused by excessive shear stress. Another failure mode is tensile
failure, which is caused by excessive tensile stress. Finally, pore collapse is a failure mode
that is normally observed in highly porous materials, where the grain skeleton forms a rel-
atively open structure. Pore collapse is usually caused by excessive hydrostatic stress. The
various failure modes are discussed in Sections 2.2–2.4.

The concept of rock failure is associated with the state of the solid framework. Thus, the
stresses that causes failure are the effective stresses felt by the framework. The effective
stress concept was introduced in Section 1.6.3 where we also introduced the notation σ ′
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to distinguish the effective stress from the total stress σ . Note however that the relation
specifying the effective stress in a failure criterion is in general different from the relation
(1.168) which specifies the effective stress for deformation of a linearly elastic material.
This will be further discussed in Section 2.6.1.

2.1.2. The failure surface

From the considerations above, we see that a rock fails when the stress exceeds a certain
limit, while it remains intact (more or less, as we shall see later) as long as the stress is
lower than this limit. We also see that this limit depends on the total stress state, not only
the stress in one direction. A graphical representation of this in an abstract “stress space”
turns out to be quite useful.

Consider a test specimen of an isotropic material, subject to a certain stress state de-
scribed by the three principal stresses σ ′

1, σ
′
2, σ

′
3. We may represent the stress state graph-

ically as a point in the principal stress space, that is, the space spanned by the σ ′
1, σ

′
2, σ

′
3

axes. Imagine that the specimen is taken to failure by increasing the principal stresses in
some manner, and that the point of failure is plotted in the principal stress space. If this
procedure could be repeated an infinite number of times, following different stress paths,
we would get an infinite number of failure points in the stress space. We assume that these
points will form a continuous surface, which we call the failure surface. A schematic illus-
tration of such a surface is shown in Fig. 2.4.

The failure surface may be described by the equation:

f (σ ′
1, σ

′
2, σ

′
3) = 0 (2.1)

In this simplified picture, the assumption is that the rock is intact at stress states inside
the failure surface, while it fails for any stress state outside. This does not imply that any

Fig. 2.4. Schematic picture of a failure surface in principal stress space. The dash–dot line represents the hy-
drostatic axis. Note that the conventional relation σ ′

1 � σ ′
2 � σ ′

3 has been abandoned in this figure, in order to
illustrate that the failure surface is closed: The rock is supposed to fail at some stress level, for any ratios between
the principal stresses.
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stress state outside the failure surface is inaccessible, since the rock may under suitable
conditions be able to support increasing load after failure, as mentioned above.

It is difficult to draw a surface in three dimensions. Therefore, the failure surface is
often presented by cross-sections instead. The most common of such representations are
cross-sections in a π-plane. These planes are normal to the hydrostatic axis (also called
hydrostat), that is the axis where σ ′

1 = σ ′
2 = σ ′

3. Figs. 2.16 and 2.18 are examples of
π-plane cross-sections of failure surfaces.

The existence of the failure surface is by no means obvious. For instance, its existence
implies that failure is independent of stress gradients and of stress history for stress states
on the inner side of the surface. This approximation is not always fulfilled, as we shall
see later in this chapter. Also, we have already seen that failure does not necessarily occur
abruptly at the failure point, but may be a gradual process that changes rate at the failure
surface.

In the following, we shall first consider the failure surface in two dimensional stress
space, focusing on the impact of the largest and smallest principal stresses. These config-
urations are relatively simple to handle both intuitively and mathematically, and are also
most commonly used for practical applications. Corresponding failure criteria in three di-
mensional stress space is discussed in Section 2.5.

2.2. Tensile failure

Tensile failure occurs when the effective tensile stress across some plane in the sample
exceeds a critical limit. This limit is called the tensile strength, it is given the symbol T0,
and has the same unit as stress. The tensile strength is a characteristic property of the rock.
Most sedimentary rocks have a rather low tensile strength, typically only a few MPa or
less. In fact, it is a standard approximation for several applications that the tensile strength
is zero.

A sample that suffers tensile failure typically splits along one—or very few—fracture
planes, as illustrated in Fig. 2.5. Thus tensile failure is a highly localized and inhomoge-
neous process. The fracture planes often originate from preexisting cracks, oriented more
or less normal to the direction of the tensile stress. The highest probability for further dam-
age of the rock is at the perimeter of the largest of these cracks, hence the largest crack(s)
will grow increasingly faster than the other, and rapidly split the sample. We shall see later
(in Section 6.4.4) that the tensile strength is very sensitive to the presence of cracks in the
material.

The failure criterion, which specifies the stress condition for which tensile failure will
occur, and identifies the location of the failure surface in principal stress space, is given as:

σ ′ = −T0 (2.2)

For isotropic rocks, the conditions for tensile failure will always be fulfilled first for the
lowest principal stress, so that the tensile failure criterion becomes

σ ′
3 = −T0 (2.3)
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Fig. 2.5. Tensile failure. Fig. 2.6. Shear failure.

2.3. Shear failure

Shear failure occurs when the shear stress along some plane in the sample is sufficiently
high. Eventually, a fault zone will develop along the failure plane, and the two sides of the
plane will move relative to each other in a frictional process, as shown in Fig. 2.6.

It is well known that the frictional force that acts against the relative movement of two
bodies in contact depends on the force that presses the bodies together. It is therefore
reasonable to assume that the critical shear stress (τmax) for which shear failure occurs,
depends on the normal stress (σ ′) acting over the failure plane. That is:

|τmax| = f (σ ′) (2.4)

This assumption is called Mohr’s hypothesis.
In the τ–σ ′ plane, Eq. (2.4) describes a line that separates a “safe region” from a “failure”

region, and we may consider Eq. (2.4) as a representation of the failure surface in the τ–σ ′
plane. The line is sometimes referred to as the failure line or the failure envelope. An
example is shown in Fig. 2.7, where we have also indicated the three principal stresses and
the Mohr’s circles connecting them. It was explained in Section 1.1.6 that for a given set
of principal stresses all possible combinations of τ and σ ′ lie within the area in between
the three circles (i.e. the shaded area of Fig. 2.7).

The stress state of Fig. 2.7 represents a safe situation, as no plane within the rock has a
combination of τ and σ ′ that lies above the failure line. Assume now that σ ′

1 is increased.
The circle connecting σ ′

1 and σ ′
3 will expand, and eventually touch the failure line. The

failure criterion is then fulfilled for some plane(s) in the sample, and the sample fails. Note
that the value of the intermediate principal stress (σ ′

2) has no influence on this situation.
Since σ ′

2 by definition lies within the range (σ ′
3, σ

′
1), it does not affect the outermost of

Mohr’s circles, and hence it does not affect the failure. Thus, pure shear failure, as defined
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Fig. 2.7. Failure line, as specified by Eq. (2.4), in the shear stress–normal stress diagram. Also shown are the
Mohr circles connecting the principal stresses σ ′

1, σ
′
2, σ

′
3.

by Mohr’s hypothesis, depends only on the minimum and maximum principal stresses and
not on the intermediate stress.

By choosing specific forms of the function f (σ ′) of Eq. (2.4), various criteria for shear
failure are obtained. The simplest possible choice is a constant. The resulting criterion is
called the Tresca criterion. The criterion simply states that the material will yield when a
critical level of shear stress is reached:

τmax = 1

2
(σ ′

1 − σ ′
3) = S0 (2.5)

S0 is the inherent shear strength (also called cohesion) of the material. In a Mohr τ–σ ′ plot
the Tresca criterion appears simply as a straight horizontal line.

2.3.1. The Mohr–Coulomb criterion

A more general and frequently used criterion is the Mohr–Coulomb criterion, which is
based on the assumption that f (σ ′) is a linear function of σ ′:

|τ | = S0 + μσ ′ (2.6)

Here μ is the coefficient of internal friction. The latter term is clearly chosen by anal-
ogy with sliding of a body on a surface, which to the first approximation is described by
Amontons’ law:

τ = μσ ′ (2.7)

In Fig. 2.8 we have drawn the Mohr–Coulomb criterion, and a Mohr’s circle that touches
the failure line. The angle ϕ defined in the Figure is called the angle of internal friction (or
friction angle) and is related to the coefficient of internal friction by

tanϕ = μ (2.8)
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Fig. 2.8. Mohr–Coulomb criterion in τ–σ ′ space. Also shown is the Mohr’s circle corresponding to a critical
stress state.

Note that the Tresca criterion can be considered as a special case of the Mohr–Coulomb
criterion, with ϕ = 0.

The intersection point between the Mohr–Coulomb failure line and the normal stress
axis is of no practical interest in itself, as the point is inaccessible due to tensile failure.
However, for some purposes it is convenient to make use of the parameter A defined as the
distance from the intersection point to the origin (see Fig. 2.8). The parameter is called the
attraction. The attraction is related to the other Mohr–Coulomb parameters by

A = S0 cotϕ (2.9)

Fig. 2.8 also shows the angle 2β, which gives the position of the point where the Mohr’s
circle touches the failure line. It can be seen from the figure that the shear stress at this
point of contact is

|τ | = 1

2
(σ ′

1 − σ ′
3) sin 2β (2.10)

while the normal stress is

σ ′ = 1

2
(σ ′

1 + σ ′
3)+

1

2
(σ ′

1 − σ ′
3) cos 2β (2.11)

Also, we see that β and ϕ are related by

ϕ + π

2
= 2β (2.12)

Since β is the angle for which the failure criterion is fulfilled, β gives the orientation of the
failure plane (see Fig. 1.7). From Eq. (2.12) we have that

β = π

4
+ ϕ

2
(2.13)

The allowable range for ϕ is from 0° to 90° (in practice the range will be smaller, and
centred around approximately 30°), hence it is clear that β may vary between 45° and 90°.
We may conclude that the failure plane is always inclined at an angle smaller that 45° to
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Fig. 2.9. Orientation of the failure plane relative to the largest principal stress. The thick solid line shows the
failure plane for a friction angle of 30°. The dashed line shows the maximum inclination of the failure plane
relative to σ ′

1, according to the Mohr–Coulomb criterion.

the direction of σ ′
1. Fig. 2.9 shows schematically how the failure planes may be oriented in

a rock described by the Mohr–Coulomb criterion.
One important point to note is that β is given solely by ϕ, which is a constant in the

Mohr–Coulomb criterion. Thus the orientation of the failure plane is independent of the
confining stress. This is a special feature for the Mohr–Coulomb criterion. Experiments
often show that the failure angle decreases with increasing confining pressure, in particular
at low confining pressures.

Introducing the expressions (2.10) and (2.11) for σ ′ and τ into the failure criterion
Eq. (2.6), we find

1

2
(σ ′

1 − σ ′
3) sin 2β = S0 + μ

[
1

2
(σ ′

1 + σ ′
3)+

1

2
(σ ′

1 − σ ′
3) cos 2β

]
(2.14)

Replacing β and μ by ϕ, according to Eqs. (2.8) and (2.13), we obtain

1

2
(σ ′

1 − σ ′
3) cosϕ = S0 + 1

2
(σ ′

1 + σ ′
3) tanϕ − 1

2
(σ ′

1 − σ ′
3) tanϕ sinϕ (2.15)

Multiplying with 2 cosϕ and rearranging, we find

(σ ′
1 − σ ′

3)(cos2 ϕ + sin2 ϕ) = 2S0 cosϕ + (σ ′
1 + σ ′

3) sinϕ (2.16)

σ ′
1(1 − sinϕ) = 2S0 cosϕ + σ ′

3(1 + sinϕ) (2.17)

σ ′
1 = 2S0

cosϕ

1 − sinϕ
+ σ ′

3
1 + sinϕ

1 − sinϕ
(2.18)
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Fig. 2.10. Mohr–Coulomb criterion in the (σ ′
1, σ

′
3) plane.

Fig. 2.10 is a plot of this relation in the (σ ′
1, σ

′
3) plane. Again we have a linear relation-

ship, with a positive intercept on the σ ′
1-axis, quite similar to the plot in Fig. 2.8. The angle

γ in the (σ ′
1, σ

′
3) plane is related to ϕ by

tan γ = 1 + sinϕ

1 − sinϕ
(2.19)

or

sinϕ = tan γ − 1

tan γ + 1
(2.20)

An expression for the uniaxial compressive strength C0 is obtained by putting σ ′
3 = 0 in

Eq. (2.18), giving

C0 = 2S0
cosϕ

1 − sinϕ
= 2S0 tanβ (2.21)

The last equality here is derived from Eq. (2.12). It must be emphasized that the above
expression is only valid if the failure mechanism under uniaxial stress is shear failure. This
may not be the case even when shear failure occurs at rather low confining stresses.

Making use of Eqs. (2.21) and (2.12), we note that Eq. (2.18) may be written in the
following simple way:

σ ′
1 = C0 + σ ′

3 tan2 β (2.22)

This formulation of the Mohr–Coulomb criterion will be extensively used later in this book.
One might perhaps consider computing the tensile strength T0 by putting σ ′

1 = 0 in
Eq. (2.22). However, this is not a valid approach, since the Mohr–Coulomb criterion de-
scribes shear failure while tensile failure is a different failure mode.
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2.3.2. The Griffith criterion

Griffith (1921) developed a failure criterion based on a study of elliptical microcracks in
a two dimensional model. When the tensile stress at the tip of the crack exceeds a certain
value characteristic of the material, the crack will grow and the failure process is initiated.
The theory is scaled in terms of the uniaxial tensile strength T0, and the resulting failure
criterion can be written

(σ ′
1 − σ ′

3)
2 = 8T0(σ

′
1 + σ ′

3) if σ ′
1 + 3σ ′

3 > 0 (2.23)

σ ′
3 = −T0 if σ ′

1 + 3σ ′
3 < 0 (2.24)

In a principal stress plot the criterion is represented by a parabola ending in a straight line.
This is illustrated in Fig. 2.11a.

The uniaxial compressive strength C0 is given by Eq. (2.23) as

C0 = 8T0 (2.25)

It is seen that the ratio between the uniaxial compressive strength and the tensile strength
is here given as a fixed number. This ratio of 8 appears to be reasonable compared to
experimental values, which often are in the range of 10–15. However, it is clear that fitting
the criterion to experimental data may sometimes be difficult, since the criterion only has
one free parameter.

In τ–σ ′-coordinates, the Griffith criterion is given by only one equation:

τ 2 = 4T0(σ
′ + T0) (2.26)

Fig. 2.11. The Griffith criterion. a. Principal stress plot. b. τ–σ ′-plot.
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(See for instance Jaeger and Cook (1979) for the transition from Eqs. (2.23) and (2.24) to
Eq. (2.26).)

Eq. (2.26) shows that the criterion is a parabola also in a τ–σ ′-plot, as illustrated in
Fig. 2.11b. Unlike the Mohr–Coulomb criterion, the Griffith criterion is seen to have a
steeper slope at low confining pressures. This feature is typical for experimental observa-
tions.

It is often observed that the Griffith criterion may give a reasonably good description
of failure at low confining stresses, while a straight line Mohr–Coulomb criterion gives a
better description at higher confining stresses. This has led to the development of a modi-
fied Griffith criterion (Brace, 1960; McClintock and Walsh, 1962). This criterion is based
on the idea that the microcracks will close at sufficiently high pressure levels, resulting in
a transition towards frictional behaviour corresponding to the Mohr–Coulomb criterion. If
we assume that the stress required to close the cracks is so small that it can be neglected,
the modified Griffith criterion is simply a Griffith criterion for tensile conditions (σ ′ < 0)
coupled to a Mohr–Coulomb criterion for compressive conditions (σ ′ > 0). The critical
shear stress τ = 2T0 predicted by the Griffith criterion at σ ′ = 0 (see Eq. (2.26)) is used
for the cohesion S0 in the Mohr–Coulomb part of the criterion. A result from this modified
theory is that the ratio between uniaxial compressive strength and the tensile strength is
given by

C0

T0
= 4√

μ2 + 1 − μ (2.27)

where μ is the coefficient of internal friction related to the Mohr–Coulomb part of the
criterion.

2.4. Compaction failure

Pore collapse is a failure mode that is normally observed only in high porosity materials,
where the grain skeleton forms a relatively open structure. When the material is com-
pressed, grains may loosen or break and then be pushed or twisted into the open pore
space, resulting in a closer packing of the material. The process is called compaction. This
deformation mode is schematically illustrated in Fig. 2.12.

In sandstones where the size of the pores is of the same order of magnitude as the size
of the grains, pore collapse typically consists in reorientation of the grains to better fill
the void spaces, as indicated in Fig. 2.12. For high porosity chalks, where the size of the
individual grains may be an order of magnitude smaller than the dimensions of the pore
space, the pore collapse mechanism becomes very important.

Pore collapse may occur under pure hydrostatic loading. Microscopically, however, fail-
ure will be due to local excessive shear forces acting through grains and grain contacts.
From this point of view, pore collapse may be regarded as distributed shear failure within
the material.

Another failure mechanism that may occur under hydrostatic loading is grain crushing.
If the stresses are sufficiently high, the grains may be partly crushed at the grain con-
tacts, and splitting of the grains may result. Either way, these local failure mechanisms
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Fig. 2.12. Grain reorientation resulting in a closer packing.

Fig. 2.13. Location of the various failure modes in principal stress space, as defined by Eq. (2.3) for tensile
failure, by Eq. (2.22) for shear failure, and by Eq. (2.29) (assuming σ ′

2 = σ ′
3) for compactive yield. For real

rocks, the transition between the various failure modes is smoother than shown here.

represent permanent damage of the rock framework and causes yielding, with associated
reduction in the stiffness of the rock. This type of failure also occurs to some extent under
non-hydrostatic stress conditions, and may be observed in triaxial tests at high confining
pressure (see Fig. 2.3; high confining pressure). The process is then referred to as shear-
enhanced compaction.

In principal stress space, this type of failure is represented by an “end cap” that closes
the failure surface at high stresses, as seen on Fig. 2.13. An elliptical form is often used for
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such an end cap (DiMaggio and Sandler, 1971; Wong et al., 1997):

1

(1 − γ )2
(
σ̄ ′

p∗ − γ
)2

+ 1

δ2

(
q

p∗

)2

= 1 (2.28)

where σ̄ ′ is the mean effective stress (see Eq. (1.38)) and q is a deviatoric stress invariant
(see Eq. (1.46)), while p∗, γ (≈0.5) and δ (≈0.5–0.7) are constants. p∗ is called the critical
effective pressure (or crushing pressure) of the rock. Eq. (2.28) represents a failure criterion
for compaction. Note that the equation predicts failure at σ̄ ′ = p∗ if the stress is hydrostatic
(q = 0).

Compaction leads to a denser structure, and the rock will still be able to carry load. As
the structure becomes increasingly dense, the load carrying capacity may even increase.
Hence Eq. (2.28) represents essentially a compactive yield surface. This differs from tensile
failure and unconfined shear failure, where the load carrying capacity is completely lost
after failure. Compaction is also a more homogeneous failure mode, however localization
may occur even for compaction. This is further discussed in Section 2.8.

Boutéca et al. (2000) argued that the following simple form of Eq. (2.28) (obtained by
choosing γ = 0 and δ = 1) may be an acceptable approximation for many rocks:

σ̄ ′ 2 + q2 = p∗ 2 (2.29)

It is to be expected that the critical effective pressure p∗ decreases with increasing poros-
ity. From theoretical considerations, Zhang et al. (1990) derived the relation

p∗ ∝ φ− 3
2 (2.30)

Given that the uniaxial compressive strength C0 of a rock also depends on the porosity to
some extent, we may furthermore expect a certain degree of correlation between p∗ and
C0. Boutéca et al. (2000) estimated p∗ to be 6–7 times larger thanC0 for a set of sandstones
with porosity in the range 15–25%.

Note that a transition from the principal stress space to the τ–σ ′-plane is not trivial for
the end cap. Any point on the failure line in Fig. 2.13 that lies above the end point σ ′

1 =
σ ′

3 = p∗ on the σ ′
1 = σ ′

3 line, represents a circle in the τ–σ ′-plane that extends beyond the
(infinitesimally small) circle corresponding to the collapse point (τ = 0, σ ′ = p∗). Thus,
there is no line in the τ–σ ′-plane representing a boundary for Mohr circles for collapse
failure in the same way as for shear failure.

2.5. Failure criteria in three dimensions

The stresses in the underground formations and around wells will generally be 3-dimen-
sional in the sense that the principal stresses will have different values. It is therefore
necessary to extend the 2-dimensional failure criteria to deal with the more general case.

This also brings up the question of the role of the intermediate principal stress. With the
development of equipment for true triaxial testing, it has been possible to approach this
question experimentally. The general result from such tests is that under shear conditions
the intermediate stress plays a role, although minor compared to the effect of the other
stresses.
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2.5.1. Criteria independent of the intermediate principal stress

Most of the failure criteria used in rock mechanics were developed before the role of the
intermediate principal stress was clear. As the real influence of the intermediate principal
stress is relatively small (compared to the significance of the other two) such criteria are
still valuable approximations, and will still be used.

From Fig. 2.10 we are able to infer how the Mohr–Coulomb failure surface looks like in
the three dimensional principal stress space (σ ′

1, σ
′
2, σ

′
3). We shall here temporarily abandon

the conventional relation that σ ′
1 � σ ′

2 � σ ′
3, in order to illustrate the entire surface.

First, we consider the situation when σ ′
2 is the intermediate principal stress. The two cases

σ ′
1 > σ

′
3 and σ ′

1 < σ
′
3 can be represented by two lines that are symmetric around the line

σ ′
1 = σ ′

3, as shown in Fig. 2.14. The figure shows the projection onto the (σ ′
1, σ

′
3) plane of

the part of the surface for which σ ′
2 is intermediate. Similar projections can be made onto

the (σ ′
1, σ

′
2) plane for the case where σ ′

3 is intermediate, and onto the (σ ′
2, σ

′
3) plane for the

case where σ ′
1 is intermediate. The complete failure surface is indicated in Fig. 2.15. The

figure shows that opposite pairs of surface sections project onto the (σ ′
1, σ

′
3), (σ ′

2, σ
′
3) and

(σ ′
1, σ

′
2) planes, respectively, along lines as indicated on Fig. 2.14.

The irregular hexagonal pyramid shape of the surface reflects that according to the
Mohr–Coulomb criterion, failure is independent of the intermediate principal stress. The
surface is not differentiable at the corners, a fact that may cause problems in numerical cal-
culations involving the criterion. The cross-section of the Mohr–Coulomb failure surface
in a π-plane (see Section 2.1.2) is shown in Fig. 2.16. It is seen to be an irregular hexagon
with sharp corners and threefold symmetry.

The Tresca criterion also has a six sided cross-section in the π-plane, but for this crite-
rion the section will be a regular hexagon. As the friction angle is zero, the failure surface
will be parallel to the hydrostatic axis.

Fig. 2.14. Projections onto the (σ ′
1, σ

′
3) plane, of the

parts of the of the failure surface for which σ ′
2 is the in-

termediate principal stress. Note the symmetry about the
projection of the hydrostatic axis (dashed line).

Fig. 2.15. The Mohr–Coulomb failure surface in
principal stress space.
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Fig. 2.16. Cross-section of the Mohr–Coulomb criterion in a π -plane. The arrows represent projections of the
principal stress axes onto the plane. The friction angle ϕ = 30°.

A 3-dimensional failure surface can be obtained for the Griffith criterion in a similar
way as for the Mohr–Coulomb criterion. The three pairs of planes ending in a sharp corner
for the Mohr–Coulomb criterion (Fig. 2.15) is for the Griffith criterion replaced by three
pairs of singly curved parabolic surfaces ending in a plane section.

The failure surface constructions presented here demonstrate one basic feature of the
failure surface in 3 dimensions, namely the three-fold symmetry of the π-plane cross-
section. However, they suffer from the fact that they ignore the influence of the intermediate
principal stress. Other extensions to 3 dimensions have therefore been proposed, as dis-
cussed below.

2.5.2. Criteria depending on the intermediate principal stress

Mounting experimental evidence has shown that the intermediate principal stress (σ ′
2) has

a significant—although moderate—impact on the strength of several rock types (see for
instance Colmenares and Zoback (2002), for an overview). Typically, it is found that rocks
are stronger when σ ′

1 > σ
′
2 > σ

′
3 than for the situations where σ ′

2 = σ ′
1 or σ ′

2 = σ ′
3.

As mentioned in the previous paragraph, the failure surfaces constructed simply on the
basis of two-dimensional criteria also possess sharp corners that causes problems when the
criteria are used for numerical modelling. Various other failure criteria which include the
intermediate principal stress have therefore been proposed.

One simple solution is to implement rotational symmetry for the π-plane cross-section.
This approach has no physical foundation, however it is mathematically attractive, and is
the basis for some of the most commonly used criteria shown below. (Alternative formula-
tions of these criteria, in terms of invariants, are given in Section 2.7.)

One of these criteria is the von Mises criterion, which can be written

(σ ′
1 − σ ′

2)
2 + (σ ′

1 − σ ′
3)

2 + (σ ′
2 − σ ′

3)
2 = C2 (2.31)

C is a material parameter related to cohesion. In principal stress space this criterion is
represented by a cylinder centred around the hydrostatic axis, as illustrated in Fig. 2.17.
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Fig. 2.17. The von Mises criterion and the Drucker–Prager criterion in principal stress space.

The criterion is seen to be identical to the Tresca criterion for σ ′
2 = σ ′

1 or σ ′
2 = σ ′

3. Like
the Tresca criterion, the von Mises criterion describes a shear failure mechanism where the
failure condition is independent of the stress level in the material. The von Mises criterion
is commonly used to describe yield in metals. It has however very limited applications for
rocks.

The corresponding generalization of the Mohr–Coulomb criterion is the Drucker–Prager
criterion. It can be formulated as

(σ ′
1 − σ ′

2)
2 + (σ ′

1 − σ ′
3)

2 + (σ ′
2 − σ ′

3)
2 = C1(σ

′
1 + σ ′

2 + σ ′
3 + C2)

2 (2.32)

where C1 and C2 are material parameters, related to internal friction and cohesion. In
principal stress space this corresponds to a regular cone, as illustrated in Fig. 2.17.

Murrel (1963) introduced the extended Griffith criterion, which degenerates to the orig-
inal Griffith criterion (Eqs. (2.23)–(2.24)) in two dimensions. In principal stress space it is
represented by a paraboloid terminated by a pyramid, expressed as

(σ ′
1 − σ ′

2)
2 + (σ ′

1 − σ ′
3)

2 + (σ ′
2 − σ ′

3)
2 = 24T0(σ

′
1 + σ ′

2 + σ ′
3) (2.33)

ending on the planes

σ ′
1 = −T0, σ ′

2 = −T0, σ ′
3 = −T0 (2.34)

The extended Griffith criterion predicts that the relation between uniaxial compressive
strength and tensile strength is given by

C0 = 12T0 (2.35)

This value of C0/T0 is typical for many rocks. Also for this criterion the cross-section in
the π-plane is given by a circle, except for the conical part at negative stresses.

An empirical failure criterion based on actual observations of the behaviour of soils
was formulated by Lade (1977). A modified version of this criterion was presented by
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Ewy (1999):

I ′ 3

I ′
3

− 33 = ηL (2.36)

where I ′
1 and I ′

3 are modified representations of the first and third stress invariant, defined
as

I ′
1 = (σ ′

1 + SL)+ (σ ′
2 + SL)+ (σ ′

3 + SL) (2.37)

I ′
3 = (σ ′

1 + SL)(σ
′
2 + SL)(σ

′
3 + SL) (2.38)

SL is a material parameter related to the cohesion and the friction angle of the rock:

SL = S0

tanϕ
(2.39)

while ηL is related only to the internal friction:

ηL = 4 tan2 ϕ
9 − 7 sinϕ

1 − sinϕ
(2.40)

In principal stress space the criterion has the form of a convex, triangularly shaped cone.
The parameter ηL determines the shape of the cross-section in the π-plane. As the value of
ηL increases, the cross-sectional shape changes from circular to triangular with smoothly
rounded edges. Fig. 2.18 shows a comparison of the modified Lade criterion to other crite-
ria in the π-plane.

The modified Lade criterion is a simple criterion which appears to account for the influ-
ence of the intermediate principal stress on shear strength in a realistic way. As such, this is

Fig. 2.18. Characteristic shape of a π -plane cross-section for some failure criteria. The friction angle ϕ = 22.5°.
The arrows represent projections of the principal stress axes onto the plane. Note that the criteria have been scaled
so that they coincide at the intercepts with the projections of the principal stress axes.
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a useful criterion for practical calculations. The formulation based on I ′
1 and I ′

3 (Eq. (2.36))
may however be somewhat impractical, as it requires solution of a cubic equation. An al-
ternative formulation is given in Eqs. (2.41)–(2.44)).

π -plane representation

The Drucker–Prager, von Mises and Murrel criteria are circular in the π-plane, while the
modified Lade and Mohr–Coulomb criteria have a 3-fold symmetry. It is clear that for an
isotropic material, the yield surface must at least have a 3-fold symmetry in the π-plane.
This means that in general, the failure surface in principal stress space may be given by
specifying the mean stress, and the radius in the π-plane as a periodic function of the angle
3ϑ (where ϑ is the Lode angle defined in Eq. (1.51) and Fig. 1.10).

The radial distance to a point on the failure surface is given by Eq. (1.50). Defining two
general functions f1 and f2 we may thus write a general failure criterion as√

J2 = f1(cos 3ϑ)f2(σ̄
′) (2.41)

where the cosine function ensures the required symmetry in the π-plane, and the factor 2
of Eq. (1.50) has been absorbed in f1 and f2. The separation of ϑ and σ̄ ′ means that the
shape of the π-plane cross-section is independent of σ̄ ′.

The choice of the cosine in Eq. (2.41) is convenient, since cos 3ϑ can be expressed
in terms of invariants (Eq. (1.51)), and does not represent a limitation since any periodic
function may be expressed by a series in cos 3ϑ .

The function f1 can not be chosen completely arbitrarily, since both empirical evidence
(see e.g. Lade, 1993) and theoretical considerations (see e.g. Chen and Han, 1988) indicate
that the failure surface should be convex. If we choose f1 to be a constant, Eq. (2.41)
represents the von Mises criterion if f2 is also a constant, the Drucker–Prager criterion if
f2 is linear in σ̄ ′, and the extended Griffith criterion if f2 is proportional to the square root
of σ̄ ′.

A representation of the modified Lade criterion can be obtained by expressing I ′
1 and I ′

3
in terms of σ̄ ′, q and ϑ (see Section 1.1.8), and defining a new variable x = q/(SL + σ̄ ′)
(note that

√
J2 = x(SL + σ̄ ′)/

√
3 ). Introducing these expressions into Eq. (2.36) gives a

cubic equation in x, which can be solved explicitly to give expression (2.42), or iteratively
to give expression (2.43):

f1 = 3

2 cos 3ϑ

(
1 − 2 cos

[
1

3
arccos

(
1 − 2ηL cos2 3ϑ

33 + ηL

)
± π

3

])
(2.42)

=
√

3ηL

33 + ηL

[
1 + cos 3ϑ

9

√
3ηL

33 + ηL
+ cos2 3ϑ

27

3ηL

33 + ηL
+ · · ·

]
(2.43)

f2 = 1√
3
(SL + σ̄ ′) (2.44)

The series expression (2.43) for f1 converges rapidly for low and moderate values of ϕ and
may be the most practical form to use for some purposes, since the two solutions (+ and
−) given by Eq. (2.42) have to be patched together to make the solution continuous in ϑ .
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A general, simple form for f1 may be convenient for practical purposes. We may for
instance choose

f1 = k + (1 − k) cos 3ϑ (2.45)

where k is a number. Choosing k = 1 gives a circular cross-section. Choosing k to make
the uniaxial and biaxial (σ ′

2 = σ ′
1) strengths equal, would require

k = 1

2

(
1 + 3 − sinϕ

3 + sinϕ

)
(2.46)

This relation gives k = 6/7 ≈ 0.857 for ϕ = 30° (note that the convexity criterion requires
k � 10/11 ≈ 0.909). Eqs. (2.45) and (2.46), in combination with

f2 = C0
1 − sinϕ

3 − sinϕ
+ 2

sinϕ

3 − sinϕ
σ̄ ′ (2.47)

may be used as a rough approximation for the Mohr–Coulomb criterion.
By choosing f1 appropriately, it is possible to formulate the Mohr–Coulomb criterion

exactly in terms of the invariants. The expression

f1 = √
3

(
cosϑ + √

3 sinϑ
1 + sinϕ

3 − sinϕ

)−1

(2.48)

in combination with Eq. (2.47) is valid for 0 � ϑ � π/3. By this formulation, we loose the
explicit 3-fold symmetry of Eq. (2.41) (for which we pay by the limited range of validity
in ϑ). This is not a major concern, however, since using arccos in Eq. (1.51) maps all stress
states to a ϑ in the correct range.

For papers using the formulation presented here, see e.g. van Eekelen (1980) or Nordal
et al. (1989). This representation is convenient for generation of π-plots like Fig. 2.18.

Physical explanations

Wiebols and Cook (1968) proposed a model which offers a physical explanation to the
impact of the intermediate principal stress on rock strength. They considered the shear
strain energy associated with microcracks in the material. Activation of such a crack, in
terms of sliding between the crack surfaces, will occur when a frictional criterion like
the Mohr–Coulomb criterion (Eq. (2.6)) is fulfilled locally for this crack. The shear and
normal stresses controlling this process are given by the relative orientation of the crack and
the principal stresses (see Eq. (1.36)). The situation is illustrated graphically in Fig. 2.19,
showing three different stress states: σ ′

1 > σ
′
2 = σ ′

3, σ ′
1 > σ

′
2 > σ

′
3, and σ ′

1 = σ ′
2 > σ

′
3.

We assume that there exists a large number of such cracks with random orientation in the
material. For simplicity, we also assume that they all have the same activation threshold, so
that the failure line shown in the figure is the same for all cracks. Thus, for every possible
stress state represented by a point on (or within) the Mohr circle(s) in the τ–σ ′-plot there
exist some corresponding cracks that are activated if the point is above the failure line.

The fundamental postulate of Wiebols and Cook is that the material fails when the to-
tal strain energy associated with the activated cracks reaches a limit value, which in our
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Fig. 2.19. τ–σ ′-plots with Mohr circles and failure line, for three different stress states.

simplified picture implies that the material fails when a sufficient number of cracks have
been activated. When σ ′

1 is increased, the cracks with an orientation corresponding to point
P in each diagram will obviously be activated first. For the two cases σ ′

1 > σ
′
2 = σ ′

3 and
σ ′

1 = σ ′
2 > σ

′
3 there is a large number of cracks corresponding to point P and its vicinity,

due to the rotational symmetry of the stress state in both cases. Hence the total strain energy
associated with these cracks will soon reach the limit value when the σ ′

1–σ ′
3-circle crosses

the failure line. For the case σ ′
1 > σ

′
2 > σ

′
3, the stress states are distributed in the shaded

area, and most of these cracks are therefore further away from the failure line. Hence the
σ ′

1–σ ′
3-circle has to expand further before a sufficient number of cracks is activated so that

the rock fails. As a consequence, the rock is stronger for the case σ ′
1 > σ

′
2 > σ

′
3 than for

the cases σ ′
1 > σ

′
2 = σ ′

3 and σ ′
1 = σ ′

2 > σ
′
3.

An alternative explanation was proposed by Fjær and Ruistuen (2002). They based their
analysis on the classical assumption (see Section 2.3) that the rock will fail when the shear
stress across a potential failure plane fulfils a failure criterion, like for instance the Mohr–
Coulomb criterion. Any imaginary plane through a rock sample is a potential failure plane,
hence any point representing a possible stress state in the τ–σ ′-plot (Fig. 2.19) also repre-
sents at least one possible failure plane.

Fjær and Ruistuen assumed that there is a variation in the strength of each potential
failure plane, due to the natural heterogeneity of rocks. This implies that there is a finite
probability for a plane to fail even if its corresponding point in the Mohr circle diagram lies
below the failure line, and there is correspondingly a finite probability for the plane not to
fail even if its corresponding point lies above the failure line. For the high symmetry cases
σ ′

1 > σ
′
2 = σ ′

3 and σ ′
1 = σ ′

2 > σ
′
3 of Fig. 2.19, there is a large number of planes correspond-

ing to point P which reaches the failure line first, hence there is a high probability that at
least one of these planes will fail early. For the low symmetry case σ ′

1 > σ
′
2 > σ

′
3 nearly

all of the points representing these planes have moved away from the failure line, and the
probability for early failure is correspondingly reduced. The net effect of this is that the
rock appears as stronger—statistically—for the low stress symmetry case (σ ′

1 > σ
′
2 > σ

′
3)

than for the cases of higher stress symmetry (σ ′
1 > σ

′
2 = σ ′

3 and σ ′
1 = σ ′

2 > σ
′
3).

2.6. Fluid effects

2.6.1. Pore pressure

In our discussion of failure criteria the pore pressure has so far appeared only indirectly
through the effective stresses. The effective stresses are thought to represent the forces
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Fig. 2.20. Mohr circle and failure lines: the effect of increasing pore pressure.

transmitted through the rock skeleton, which in turn causes the deformation of the material,
while the remaining parts of the total stresses are carried by the pore fluid. As the pore
pressure is equal in all directions, it will affect only the normal stresses. The shear stresses,
that are due to differences in the principal stresses, will be unaffected. In a τ–σ ′-plot the
effect of increasing the pore pressure while the total stresses are kept constant, is to move
the Mohr circles to the left and closer to the shear and tensile failure lines, as illustrated in
Fig. 2.20. Thus, increasing pore pressure may destabilize a rock with respect to shear and
tensile failure.

The effective stress concept as given by Eq. (1.168) in terms of the Biot constant α, was
derived under the assumption that the rock is linearly elastic, and is not directly applicable
for a rock at failure. It is, however, generally accepted that Terzaghi’s definition of effective
stress (see Section 1.6.3)

σ ′ = σ − pf (2.49)

appears to be the most relevant definition to be used in failure criteria (Detournay and
Cheng, 1988; Boutéca and Guéguen, 1999).

We may find an argument for this observation by observing that in the vicinity of failure,
the rock is softening (that is, the slope of the stress–strain curve is strongly reduced; see
Fig. 2.2). It is not obvious however, that Eq. (2.49) is the best definition for the effective
yield stress, as the rock is supposed to behave elastically until it yields.

2.6.2. Partial saturation

Even unconsolidated sand may have some degree of consolidation. Any child that has
visited a sandy beach on a sunny day, has experienced the magic of moist sand, which
can be shaped and reshaped to make all kinds of fantastic figures. When the tide comes
and floods the beach, the magic is broken and the figures disintegrate into loose sand. The
“magic” is caused by the fact that moist sand is partially water saturated. This means that
there is a meniscus of water at every grain contact, as shown schematically in Fig. 2.21.
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Fig. 2.21. Schematic illustration of the distribution of fluids at a grain contact.

It is energetically favourable for the grain–water–air system to maintain this constellation,
hence a certain force is needed to rip the grains apart. This acts as a cohesion, giving
the moist sand a finite shear and tensile strength. The strength is fully recovered after
a reorganization of the grains, hence the moist sand can be reshaped indefinitely. When
the sand becomes completely dry or fully water saturated, the meniscus constellation is
destroyed, and the cohesion and strength are gone.

The effects of partial saturation occur whenever the pore space is filled with at least two
immiscible fluids, like for instance oil and water. Normally, it is energetically favourable
that one of the fluids (the wetting fluid) stays in contact with the solid material, while the
other (non-wetting) fluid is shielded from the solid to some degree, giving a constellation as
illustrated in Fig. 2.21. This so-called capillary effect produces a difference in the pressure
for the two fluids, given as

pcp = pnw − pwe (2.50)

where pwe is the pressure in the wetting fluid, pnw is the pressure in the non-wetting fluid,
and pcp is called the capillary suction.

The magnitude of the capillary suction depends on the type of fluids, the condition of the
solid surface (which determines the degree of wettability for the various fluids) and the size
of the pore at the point where the two fluid phases meet. The wetting fluid will always tend
to fill the smallest pores, so that the contact between the fluid phases will move to larger
pores when the degree of saturation for the wetting fluid is increased. Thus pcp varies from
one pore to the next, and falls off rapidly with the degree of saturation for the wetting fluid.

The capillary suction has some effect on the effective stresses in the rock, and we may
define a generalized effective stress (Bishop, 1959)

σ ′ = σ − α(pnw − Swepcp) (2.51)

Swe is the degree of saturation of the wetting fluid. The term Swepcp typically has a peak
at a low value for Swe (≈0.1 or less) and vanishes for Swe = 0 and Swe = 1. It is normally
quite small, however, typically less than 1 MPa even at its peak value, and can in most
cases be ignored with respect to the effective stresses.

The capillary suction also affects material properties that can be related to the intergran-
ular cohesion of the rock (Papamichos et al., 1997). This is a more significant effect that
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Fig. 2.22. Hydrostatic compression tests at different levels of water saturation on Pietra Leccese chalk. In the test
labelled Swe = 0.013 → 1.0 the sample was saturated at Swe = 0.013 until the stress had reached 40 MPa, then
the saturation was changed to Swe = 1.0 while the stress was kept constant. After Brignoli et al. (1995). Used
with permission.

may have a large impact on both the strength and the stiffness of the rock, as illustrated in
Fig. 2.22.

2.6.3. Chemical effects

Some abundant components in rocks, like salts and some clay and carbonate minerals, are
dissolvable in water. Over geological time, the solid minerals in a rock will establish a
chemical equilibrium with the pore water, which implies that the minerals dissolve and
precipitate at the same rate. If the pore fluid is changed, for instance during drilling or
production, the chemical equilibrium may be disturbed, and a net dissolution or deposition
of minerals may occur. This may have a strong effect on the rock properties, typically a
reduction in strength of 30–100% is seen in many rocks due to deterioration of the cement
(Broch, 1974). For instance, dry or oil saturated Red Wildmoor sandstone has a uniaxial
compressive strength of about 14 MPa, while it essentially turns into loose sand if it is
saturated with fresh water. The reason for this is that this rock consists of quartz grains
cemented together only by clay minerals which dissolve in water.

The solubility of minerals in the pore water may also be affected by the acidity (pH-
value) of the water, as well its temperature and pressure. Thus, it is to be expected that the
strength of some rocks may be sensitive to changes in these parameters too, if the changes
are given sufficient time to act.

Experimental studies by Risnes et al. (2003) have shown that the chemical activity of
the pore water seems to have an impact on the strength of chalk. In a set of K ′ = 0.9 tests
(see Section 7.3.9) on Liège chalk, they found the relation

�σyield

�aw
= −6 MPa (2.52)
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between the yield stress (σyield) and the water activity (aw). Thus, a low salt concentration
in the pore water (which corresponds to a high water activity) makes the chalk weaker.
Risnes et al. (2003) concluded that the water activity seems to be the key parameter in the
water weakening effect seen in chalk, and that capillary effects play only a minor role.

2.7. Presentation and interpretation of data from failure tests

To determine the mechanical properties of a rock, normally a series of triaxial compression
tests are performed at different confining pressures. From the stress strain diagrams both
elastic properties and failure or yield data are obtained. The strength data resulting from
such a test series will consist of pairs of corresponding yield (or failure) and confining
stresses. This set of failure data can be displayed in different types of diagrams.

It may be confusing that the word failure is often used in a somewhat general sense, not
distinguishing between failure and yield. An argument for this practice is that yield can
be considered as the onset of failure. However, when actual failure data are presented, it
should be checked if the data refer to yield or failure in the strict sense.

Three types of plots are commonly used to present failure data: the principal stress plots
(Fig. 2.10), the τ–σ ′ plots (Fig. 2.8), and the q–p′ plots, which will be described below.

In a principal stress plot, the stress path of a given test can be traced as a line, while
failure is represented by the point where the stress path crosses the failure surface. The
principal stress plot is suitable for mapping the entire failure surface, including all types of
failure, as demonstrated in Fig. 2.13.

A τ–σ ′ plot displays effectively how the shear stress and the normal stress across a plane
in a stressed rock varies with the orientation of the plane relative to the orientation of the
principal stress axes. It is therefore well suited for identifying critical shear stresses, and
for illustrating orientational effects, like Fig. 2.19. As explained in Section 2.4, the τ–σ ′
plot is not well suited for displaying collapse.

The q–p′ plot essentially displays the maximum shear stress versus the mean effective
stress. It is based on the parameter q, usually called the generalized shear stress and defined
as (see Eq. (1.46))

q = 1√
2

√
(σ ′

1 − σ ′
2)

2 + (σ ′
2 − σ ′

3)
2 + (σ ′

1 − σ ′
3)

2 (2.53)

and the parameter p′ which is identical to the mean effective stress σ̄ ′:

p′ = 1

3
(σ ′

1 + σ ′
2 + σ ′

3) = σ̄ ′ (2.54)

Both q and p′ are stress invariants (see Sections 1.1.7 and 1.1.8). Under triaxial conditions
σ ′

2 = σ ′
3, which implies that q = σ ′

1 − σ ′
3.

As for the principal stress plot, the stress path of a given test can be traced as a line in the
q–p′ plot, and failure occurs where the stress path crosses the failure line. The q–p′ plot
corresponding to Fig. 2.13 is shown in Fig. 2.23. Note that the transition from Fig. 2.13 to
Fig. 2.23 is not unique since both q and p′ depend on σ ′

2.
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Fig. 2.23. Location of the various failure modes in the q–p′ plane, as defined by Eq. (2.3) for tensile failure, by
Eq. (2.22) for shear failure, and by Eq. (2.29) for compactive yield, assuming σ ′

2 = σ ′
3.

Some of the three dimensional failure criteria are simpler to express in terms of q and
p′ than in terms of the principal stresses, for instance,

– the von Mises criterion (Eq. (2.31)):

q2 = 1

2
C2 (2.55)

– the Drucker–Prager criterion (Eq. (2.32)):

q2 = 1

2
C2

1(3p
′ + C2)

2 (2.56)

– the modified Lade criterion (Eq. (2.36))—with f1(ϑ, ηL) given by Eq. (2.42); note the
similarity with Eq. (2.56):

q = f1(ϑ, ηL)(SL + p′) (2.57)

– the extended Griffith criterion (Eq. (2.33)):

q2 = 36T0p
′ (2.58)

– and the compactive yield criterion (Eq. (2.29)):

p′ 2 + q2 = p∗ 2 (2.59)

The q–p′ plots are standard for plotting of failure surfaces in soil mechanics (see Sec-
tion 2.8.2), and have a growing popularity also in rock mechanics.

2.8. Beyond the yield point

In the previous sections, we have studied various failure criteria and their failure surfaces
in principal stress space without clearly expressing what we mean with failure. This is
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partly due to the fact that failure is not very well defined. Although the failure point can
be defined relatively precisely for the uniaxial test in Fig. 2.2, the situation is much less
clear for the higher confining pressures in Fig. 2.3. Here we have a gradual transition to a
material with decreased stiffness, but still with an increasing capacity to carry load as the
strain increases. Thus the material can not be considered as completely failed, although it
has been significantly altered at this stage. Whether the alteration is critical or not, depends
on the actual situation. For example, the practical criteria for a road tunnel and a wellbore
may be quite different. Whereas no change in profile is acceptable for a road tunnel, one
may well live with a borehole with breakouts in many cases (see e.g. Guenot, 1989).

The remarks above illustrate the need for a post-yield description linked to the defin-
ition of failure and the failure criterion. To properly describe post-yield behaviour, one
would need a description treating the rock as an inhomogeneous medium, penetrated by
interacting faults and cracks.

Compared to a continuum model, such a description would—of course—be very com-
plicated. It is therefore reasonable to look for a continuum theory, that can at least model
some post-yield behaviour with some precision, although the physical interpretation may
be less precise. One possible candidate is the theory of plasticity, which is widely used in
the description of metals. An introduction to plasticity is given in Section 2.8.1.

Beyond the yield point the solid framework of the rock is gradually destroyed, and it
may become increasingly relevant to compare its behaviour to unconsolidated materials.
A model derived for the description of soils is presented in Section 2.8.2.

At some point in the failure process, the description of the rock as homogeneous is
clearly not valid, even on a macroscopic scale, as exemplified by the formation of shear
planes in a triaxial test. This calls for other types of modelling. Models addressing local-
ization effects at failure are briefly discussed in Section 2.8.3.

2.8.1. Plasticity

Plasticity is a concept describing non-elastic deformation of a material. Unlike elastic de-
formation, plastic deformation is not recovered when the load causing the deformation is
released. Rocks stressed beyond the yield point typically suffer such deformations, and it
is often relevant to describe post yield behaviour of rocks by the concepts of plasticity.

The theory of plasticity is designed to model ductile behaviour, that is—behaviour in
which the material can sustain a load comparable to the failure load well beyond failure,
and no attempt should be made to model brittle failure with this theory.

The theory of plasticity is based on four major concepts:

1. Plastic strain. The total strain increment associated with a stress increment is as-
sumed to consist of an elastic part and a plastic part:

dεij = dεe
ij + dεp

ij (2.60)

dεe
ij is related to the stress increment by conventional elasticity theory, and will vanish

when the stress is released. The plastic strain dεp
ij is a permanent deformation, and

will remain when the stress is relieved.
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Fig. 2.24. Stress–strain curve for a linearly elastic – ideally plastic material.

2. A yield criterion. In Section 2.1 we defined yield as the point at which irreversible
changes occur in the rock. Thus, the yield point represents the onset of plastic defor-
mation. Clearly, yield can be defined more precisely than failure. A yield criterion is
similar to the failure criteria defined in Sections 2.2–2.4, and defines the surface in
stress space where plasticity is initiated.

3. A flow rule. The flow rule describes how the plastic strains develop for a given loading
situation.

4. A hardening rule. We mentioned in Section 2.1.1 that a rock under certain condi-
tions may sustain increasing load after the initial failure. This is described by the
hardening rule. The hardening (or, alternatively, the softening) may be interpreted
as a change of the yield surface in principal stress space. This can be described by
changing Eq. (2.1) to

f (σ ′
1, σ

′
2, σ

′
3, κ) = 0 (2.61)

where κ is a parameter describing the hardening effects.

An ideally plastic material is a material that can endure infinite plastic strain without
change in the stress level. Fig. 2.24 shows schematically the stress–strain diagram for a
linearly elastic – ideally plastic material. After the initial elastic phase, the material de-
forms at constant stress.

Plastic flow

The function of the flow rule is to describe the development of the plastic strain increments.
The basic assumption concerning plastic flow dates back to Saint-Venant in the nineteenth
century. It states

dεp
ij = dλhij (σ

′
kl) (2.62)
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where λ is a scalar not specified by the flow rule. It is seen that the hij ’s are functions of
the stress components. There are two main implications of Eq. (2.62). First, it states that
the direction of plastic flow is determined by the stress state, and is not influenced by the
stress increments or by stress gradients. Second, the magnitude of the plastic strain is not
unique. Referring to Fig. 2.24, this is quite trivial for an ideally plastic material, since the
yield stress is maintained for any magnitude of the plastic strain.

The assumption that the plastic strains are independent of stress increments, is intuitively
understandable in the following simple example. Consider an object resting on some sur-
face, and assume that a force nearly overcoming the rest friction between the object and
the surface is applied. Now, a small force increment is applied at some angle to the pri-
mary force. If the increment has a component in the direction of the primary force, the rest
friction will be overcome, and the object will start to slide in the direction of the primary
force, irrespective of the direction of the force increment.

Eq. (2.62) puts some restrictions on the plastic behaviour, however it is far from a com-
plete description which requires a specification of the functions hij . Some help is found
from the fact that plastic deformation is a dissipative process, which implies that∑

ij

σ ′
ijdε

p
ij � 0 (2.63)

A significant simplification results from the assumption of von Mises (1928), that the hij ’s
can be derived as the gradient of a function g in stress space:

dεp
ij = dλ

∂g

∂σ ′
ij

(2.64)

The function g is called plastic potential and must of course be chosen such that Eq. (2.63)
is obeyed. Although the assumption of a plastic potential reduces the need for a specifica-
tion of six functions hij of six variables to one function g of six variables, it is by no means
sufficient to completely specify plastic flow.

One solution to the problem is Drucker’s (1950) definition of a stable, work hardening
material. Such a material is defined by a more strict version of Eq. (2.63):∑

ij

dσ ′
ijdε

p
ij � 0 (2.65)

Note that while Eq. (2.63) is a thermodynamic law, Eq. (2.65) is not, and thus the con-
sequences derived from Eq. (2.65) need not be obeyed by all materials. From Eq. (2.65)
Drucker found that the plastic potential g is identical to the function f describing the yield
surface, that is:

dεp
ij = dλ

∂f

∂σ ′
ij

(2.66)

Thus, once the yield surface is specified, so is plastic flow—a gratifying result indeed.
However, we shall see that some of the consequences of Eq. (2.66) are not always fulfilled
by rock materials, such that one may need to return to the more general assumption (2.64).

Since, in Eq. (2.66), plastic flow is derived from the yield criterion, it is called an associ-
ated flow rule. The flow rule derived from the more general plastic potential g is conversely
called non-associated flow.
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Fig. 2.25. Associated plastic flow for the Coulomb criterion in a principal stress plot.

Associated flow

In this section, we shall discuss associated plastic flow, mainly in conjunction with the
Coulomb criterion. Fig. 2.25 shows a principal stress plot with a Coulomb failure line (see
Fig. 2.10). We assume that this line represents the yield surface. According to Drucker
(1950) it thus also represents the plastic potential, as described above. Consider that a
material is brought to the stress state represented by point A on the figure. Any small
increment of the stresses that brings the stress state above the line will result in a plastic
deformation.

The axes of plastic strain increments coincide with the principal stress axes. According
to Eq. (2.66) the plastic strain increment is parallel to the gradient of the plastic potential.
This implies that the direction of the plastic flow is parallel to the normal of the yield
surface at point A, as indicated by the arrow on the figure. (The gradient of a function is
always normal to the equisurface of that function.) From the figure we see that

dεp
1 = dλ cos γ (2.67)

dεp
3 = −dλ sin γ (2.68)

and therefore

dεp
3 + dεp

1 tan γ = 0 (2.69)

The Coulomb criterion does not depend on the intermediate principal stress σ ′
2, hence the

failure surface is normal to the σ ′
1, σ

′
3-plane, and therefore dεp

2 = 0. The volumetric strain
increment dεp

vol = dεp
1 + dεp

2 + dεp
3 is then

dεp
vol = dεp

1(1 − tan γ ) (2.70)

For the Coulomb criterion, γ is greater than 45°, and therefore

dεp
vol � 0 (2.71)

This means that the volume increases (remember our sign convention from Chapter 1). This
effect is called dilatancy. Referring to Fig. 2.24, we note that for an ideally plastic material,
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Fig. 2.26. Associated flow for the Coulomb criterion in a shear stress–normal stress plot.

this effect occurs while the mean stress is constant. This is different from a linearly elastic
material, for which a change in volume only occurs as a result of a change in the mean
stress.

In the literature, one will encounter plots in which the direction of plastic flow is in-
dicated as a normal to the yield criterion in a τ–σ ′-plot, as shown in Fig. 2.26. Since the
interpretation of this at first glance may be unclear, we will briefly discuss it here. Eq. (2.16)
may be written as:

σ ′
1 − σ ′

3

2 cosϕ
= S0 + 1

2
(σ ′

1 + σ ′
3) tanϕ (2.72)

Therefore, a plot giving the stress deviation (σ ′
1 − σ ′

3) scaled by 1/(2 cosϕ) versus ((σ ′
1 +

σ ′
3)/2) will look exactly like Fig. 2.26. Hence, to find the plastic strains, we may interpret

the y axis of Fig. 2.26 as (εp
1 − εp

3)/(2 cosϕ), and the x axis as (εp
1 + εp

3)/2. It can thus
be concluded that the inclination of the arrow in Fig. 2.26 determines the dilatancy of the
material as follows:

1. If the arrow is tilted to the left (ϕ � 0), the material is positively dilatant.

2. If the arrow is vertical (ϕ = 0), the material does not change volume (incompressible
plastic flow).

3. If the arrow is tilted to the right (ϕ � 0), the material is negatively dilatant, or con-
tractant.

Thus, a normal Mohr–Coulomb criterion describes dilatant plastic flow, whereas the Tresca
criterion describes an incompressible plastic flow.

Experimentally, one often observes some dilatation, but rarely to the degree predicted
by the Mohr–Coulomb criterion and associated plastic flow. This is an indication that the
assumptions leading to associated flow do not always hold. Also, the restriction given by
Eq. (2.65) means that the stress–strain curve is a monotonically increasing curve, again a
consequence of associated plastic flow that is by no means always fulfilled.
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Non-associated flow

Non-associated plastic flow may occur if the plastic potential is not identical to the yield
surface. It is a convenient model to use in order to have control on dilatancy without chang-
ing the yield criterion.

For plastic flow associated with the Coulomb criterion, the plastic potential can be writ-
ten as

f (σ ′
1, σ

′
3) = σ ′

1 − C0 − σ ′
3 tan γ = σ ′

1 − C0 − σ ′
3

1 + sinϕ

1 − sinϕ
(2.73)

A non-associated yield criterion is found by choosing a different angle in Eq. (2.73), i.e.

g(σ ′
1, σ

′
3) = σ ′

1 − C0 − σ ′
3 tanΨ = σ ′

1 − C0 − σ ′
3

1 + sinΨ

1 − sinΨ
(2.74)

Ψ is called the dilatancy angle, and from the discussion in the previous section, we know
that we will have dilatant, incompressible, or contractant flow—depending on whetherΨ is
larger than, equal to, or smaller than zero. Note that the allowable range for Ψ is restricted,
since Eq. (2.63) has to be fulfilled.

Hardening

According to Eq. (2.61) hardening can be described by a change in the yield surface as a
function of a parameter κ that is, in some way, related to the plastic strains. This is shown
schematically in Fig. 2.27. In the figure we define the initial yield surface, and a current

Fig. 2.27. Sketch of hardening in stress space.
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yield surface, i.e. the yield surface after some plastic straining. Also shown is the failure
surface, which is defined as the surface that separates accessible states from inaccessible
states. Note that for an ideally plastic material, the initial yield surface and the failure
surface coincide. The use of only one parameter κ to describe hardening is, of course, a
simplification, since there are six plastic strain components.

There are two common ways to relate κ to the plastic strain. One way is to assume that κ
is a function of the total plastic strain. This is called strain hardening, and can be expressed
as

κ = κ
(∫

S
dεp
ij

)
(2.75)

where
∫

S symbolizes integration over the stress path. Another way is to relate κ to the total
plastic work:

κ = κ
(∫

S
σ ′
ijdε

p
ij

)
(2.76)

This is called work hardening.
Hardening is commonly decomposed into two main modes, isotropic hardening and

kinematic hardening. Fig. 2.28 illustrates the difference between these concepts. Isotropic
hardening means that the yield surface expands (or shrinks) in a uniform way about the
hydrostatic axis. Kinematic hardening consists of a translation of the failure surface in
stress space. In practice, hardening must be described by a combination of the modes or an
even more complicated behaviour, in which different parts of the yield surface deform in
different ways.

Before concluding, we shall mention one important effect concerning hardening, which
is normally observed experimentally. The Baushinger effect states that if a material is
subjected to a given plastic strain in one direction, given a yield stress σ ′

1, the correspond-
ing yield stress found when the specimen is later loaded in the opposite direction will
be smaller than σ ′

1. One will see that the Baushinger effect may be obeyed by kinematic
hardening, but not by isotropic hardening.

Fig. 2.28. Isotropic and kinematic hardening in principal stress space.
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2.8.2. Soil mechanics

The failure mechanics described so far in this chapter was primarily developed for hard
rocks. Weak sedimentary rocks are however intermediate between hard rocks and soils,
and it has been found that a mechanical model developed for soils may be applied with
success in some weakly cemented sedimentary rocks, such as shale (Nakken et al., 1989;
Marsden et al., 1989) and chalk (Jones and Leddra, 1989). We shall here give an introduc-
tion to the main concepts of this mechanical model called “soil mechanics” (also called
the “Cam Clay model”). For more details and a more comprehensive description, see for
instance Atkinson and Bransby (1978), Head (1984) or Wood (1990).

Soil mechanics has been developed for systems with no or little cement between the
individual grains. Clay is a material that fits into this description. In this section we will take
a look at the behaviour of a clay under isotropic compression, and define some concepts
commonly used in soil mechanics.

Voids ratio e is the volume of voids Vvoid relative to the volume of the solid grains Vsolid
in the material:

e = Vvoid

Vsolid
(2.77)

Specific volume υ is the total volume (grains + voids) divided by the volume of the solid
grains, that is

υ = Vsolid + Vvoid

Vsolid
= 1 + e (2.78)

The specific volume and the voids ratio are related to the porosity φ by

φ = e

1 + e = υ − 1

υ
(2.79)

In a drained test the fluid pressure in the sample is controlled at a given value, by allow-
ing the fluid to enter or leave the sample (see Section 1.6). An undrained test is a test where
no fluid is allowed to enter or escape from the sample during the test. The fluid pressure in
the sample will change during an undrained test.

Fig. 2.29 shows schematically the result of isotropic loading of a clay under drained
conditions. The plot shows specific volume υ versus the logarithm of effective mean stress
p′ = p−pf (= the Terzaghi effective pressure, see Section 1.6.3). Note that we use the soil
mechanics convention of denoting the mean stress by p (= σ̄ in Section 1.1.7). The reason
for using logarithmic scale on the pressure axis is that the loading paths are close to straight
lines in this case. As a sample is loaded, the specific volume will decrease along the line
1–2–3–4 in the figure. Assume now that we start with an identical sample and load it up to
the point 2, and then unload it. The unloading path follows the line 2–2′, which has a lower
slope. Reloading again from 2′, the path follows the line 2′–2 up to the point 2, thereafter it
follows the line of the first sample towards point 3. Unloading again after reaching point 3,
the sample follows the line 3–3′, which has a slope equal to that of 2–2′.

The description above is idealized. In practice the lines will not be exactly straight, there
will be some hysteresis along the lines 2–2′ and 3–3′, and the slopes of 2–2′ and 3–3′
will differ somewhat. Still, the description gives a good picture of the overall behaviour of
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Fig. 2.29. Isotropic compression of clay, schematically.

clays. A main point to be learned is the following: the stiffness of a sample which is loaded
above the highest pressure it has been exposed to before, is lower than the stiffness of a
sample which has seen higher pressures than the present state.

A sample which is at the highest stress it has ever experienced is said to be normally
consolidated. The sample described above was normally consolidated whenever it was
on the line 1–4 (Fig. 2.29). A sample which has been subjected to higher stresses before
is said to be overconsolidated. The sample above was overconsolidated when it was on
one of the lines 2–2′ or 3–3′ (Fig. 2.29). The highest stress a sample has been exposed
to is commonly called preconsolidation stress. The overconsolidation ratio of a sample is
defined as the highest stress it has been experienced, divided by the current stress.

Triaxial tests on sandstones are usually run on drained samples, and plots showing stress
versus strain (like Figs. 2.2 and 2.3) are used to present the results. Due to the low per-
meability, triaxial tests on a material like clay are usually run on undrained samples. It is
also customary to analyse the test results in terms of the effective mean stress p′ and the
generalized shear stress q, defined in Section 2.7.

Fig. 2.30 shows schematically a typical test on a normally consolidated clay. The loading
path curves to the left, which means that the mean effective stress is decreasing. Thus the
pore pressure increases throughout the test. For strongly overconsolidated samples, one
expects the path to curve to the right as the sample approaches failure.

Typical behaviour during undrained triaxial testing, for normally consolidated clays and
strongly overconsolidated clays can be summarized as follows:

Normally consolidated clay:

1. No peak stress in the stress–strain diagram, i.e. the shear stress does not fall below
previous value as the strain increases.

2. The sample contracts throughout the loading.

3. The loading path in a q–p′-plot curves to the left, i.e. the pore pressure increases.
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Fig. 2.30. Loading path for an undrained test on a normally consolidated clay in the q–p′ domain.

Strongly overconsolidated clay:

1. A peak is normally observable in the stress–strain diagram, i.e. at some point the
shear stress falls below previous values as the strain increases.

2. The sample contracts initially, then dilates as failure is approaching.

3. The loading path in a q–p′-plot curves to the right near failure, i.e. the pore pressure
decreases.

The normally consolidated clays and the strongly overconsolidated clays are seen to behave
quite differently. We shall now describe each of them in more detail.

Normally consolidated clays

Fig. 2.31 illustrates the stress paths for three undrained tests on samples of a normally
consolidated clay, starting from three different isotropic compression levels. The arrows
show the paths of the tests from the start of the triaxial phase to the failure state, that is to
the point where the stress–strain curve flattens out and large shear strains may occur at no
increase in the shear stress. The loading paths in the υ–p′-plot are horizontal, since there
is no change in specific volume during an undrained test. Note that the ends of the paths
seem to fall on continuous “failure” lines in both plots.

Fig. 2.32 shows the corresponding stress paths for drained tests. Again the end points
are seen to fall on continuous lines. It has been found that the continuous failure lines
defined by the ends of the tests in Figs. 2.31 and 2.32 are indeed the same lines to a fair
approximation. If we plot the test results in a three-dimensional plot, with υ–p′–q as the
axes, we find that the failure lines in the q–p′ and υ–p′ planes are projections of a line
in this three-dimensional space, the critical state line (CSL). The critical state line with
its projections onto the q–p′ and υ–p′ planes are shown in Fig. 2.33. The critical state
represents an ultimate state where large shear strains may occur at no change in shear
stress.
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Fig. 2.31. Undrained triaxial compression tests from three different isotropic compression levels, on samples
from a normally consolidated clay. CSL is the critical state line.

Fig. 2.32. Drained triaxial compression tests from three different isotropic compression levels, on samples from
a normally consolidated clay.

A large number of drained tests on identical samples, starting from different isotropic
compression levels, will define a surface in the υ–p′–q space. Similarly, undrained tests
also define a surface in this space. Since the two surfaces have the critical state line and the
isotropic consolidation line in common, it seems reasonable to assume that the two surfaces
may actually be the same. This assumption has been confirmed with reasonable precision
from experiments. The surface is called the Roscoe surface. Its location in υ–p′–q space
is a characteristic property of the actual material. All tests on a normally consolidated
sample of this material—drained, undrained or intermediate—will follow a path on the
Roscoe surface, and end at the critical state line at failure. The Roscoe surface is shown in
Fig. 2.33.
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Fig. 2.33. The Roscoe surface in υ–p′–q space.

Overconsolidated clays

For a normally consolidated clay, there is a unique relationship between the specific vol-
ume and the effective stress, defined by the normal consolidation line in the υ–p′ plane.
For an overconsolidated clay, there may be a range of voids ratios for a given effective
stress, depending on the preconsolidation stress from which the material was unloaded.
This means that whereas an undrained test on a normally consolidated material traverses
a unique path in the υ–p′–q space if the starting specific volume is given, there will be a
range of possible paths for an overconsolidated material.

We now imagine that we do a series of undrained tests on a clay, for a given specific
volume, but start at different effective hydrostatic stress levels, corresponding to different
overconsolidation ratios. Fig. 2.34 shows the (idealized) results of these tests, projected
onto the q–p′ plane. A slightly overconsolidated material moves more or less vertically
until it reaches the Roscoe surface, and then follows this surface until it reaches the critical
state. (The curve is initially vertical only to the extent that the Skempton B coefficient is
close to 1, otherwise the curve tilts slightly to the right; see Section 1.6.5.) For strongly
overconsolidated specimens the movement is again vertical in the initial phases of the ex-
periment. The path does not reach the Roscoe surface, but changes direction upon reaching
a limiting curve which like the Roscoe surface passes through the critical state. This lim-
iting curve is nearly a straight line. In the figure we have assumed that the sample can not
sustain tensile stresses, and the change on slope at low p′ reflects this.

If similar tests are done for the same material at various specific volumes, one will find
that they map out a surface in the υ–p′–q space, the Hvorslev surface. This surface plays
a similar role for overconsolidated samples as the Roscoe surface does for normally (and
slightly over-) consolidated samples. It is a limiting surface for all stress paths, not only
undrained tests. The Hvorslev surface and the Roscoe surface are shown in Fig. 2.35. Note
that they are joined together at the critical state line.

The behaviour of the material at the Hvorslev surface is less predictable than at the
Roscoe surface. If the material behaved uniformly, it would follow the Hvorslev surface up
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Fig. 2.34. Undrained tests on samples with various overconsolidation ratios, for a given specific volume, pro-
jected onto the q–p′ plane. The change in slope for low p′ corresponds to tensile stress states.

Fig. 2.35. The Hvorslev and Roscoe surfaces in υ–p′–q space.

to the critical state line. However, overconsolidated samples often behave in a non-uniform
way, due to localization effects such as the formation of shear bands, as discussed earlier
in this chapter. This means that different parts of the sample take different loads, and thus
the recorded behaviour is not indicative of the intrinsic material properties. As a result,
the sample does not end up at the ultimate critical state as it would have if it had behaved
uniformly.

2.8.3. Localization

Complete failure of a rock sample usually implies that the sample breaks up into several
pieces, and falls apart. This implies that the rock at some point in the failure process ceases
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to behave as a homogeneous material even on the macroscopic scale. It also implies that
failure is complete only within a few restricted areas of the rock sample, like fracture planes
developed under tensile failure, and narrow shear bands developed under shear failure.

The formation and growth of localized failure zones occurs when it is energetically
favourable for cracks or other (preexisting or randomly induced) defects to grow and in-
teract with nearby defects. For tensile failure and unconfined shear failure this is usually
an unstable situation that rapidly leads to macroscopic failure of the sample. However, for
failure under compressive stresses, the situation may lead to non-uniform deformation in a
planar band within the sample, while the deformation outside the band remains homoge-
neous, and the material remains stable.

Rudnicki and Rice (1975) described the conditions for localization of deformation into
planar bands. The formation of such bands can be considered as a constitutive instability,
closely linked to the plastic hardening of the material. It is found that for a material obeying
associated plastic flow (see Section 2.8.1) the formation of shear bands can only occur after
the peak stress point. For materials obeying non-associated plastic flow, such bands may
also be formed prior to the peak stress point, at least for stress configurations close to pure
shear.

At lower stress levels, the rock sample is supposed to follow one unique path of uniform
deformation. When the conditions for the formation of a localized deformation band are
fulfilled, there are at least two possible orientations of the band. Thus, further deformation
of the rock sample will follow one out of several equivalent paths. This spontaneous split-
ting of the deformation path is called bifurcation, and the point where the conditions for
localized deformation are first fulfilled is called the bifurcation point (see Vardoulakis and
Sulem, 1995).

Other forms of non-uniform deformation are also possible, for instance surface buckling
(Biot, 1965; Vardoulakis, 1984) which implies that the material spontaneously changes
its shape when the conditions for such deformation are fulfilled. It has been demonstrated
(Mollema and Antonellini, 1996; Olsson, 1999; Olsson and Holcomb, 2000) that also com-
paction can be localized, in so-called compaction bands. Such bands may act as barriers
for fluid flow, and may therefore be of importance under given conditions, by changing
flow paths or altering pore pressure gradients and thereby also the effective stresses. (See
also Borja and Aydin, 2004; Fossen et al., 2007.)

2.8.4. Liquefaction

Failure of a highly porous rock results in a volume reduction and a corresponding reduction
in the pore space. If the rock fails under undrained conditions, the pore space reduction will
lead to increasing pore pressure. This implies reduced effective stresses and a correspond-
ing reduction in confinement. For a poorly consolidated (or previously damaged) rock, this
is a highly unstable condition that may result in very large deformations driven by the static
shear stresses.

This extreme condition is called liquefaction. It is sometimes observed in connection to
earthquakes, and is highly noticeable due to its sudden appearance and quick development,
and the large distance the liquefied material may move (see for instance Kramer, 1996).
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2.9. Failure of anisotropic and fractured rocks

In the discussion so far, it has been assumed that the material properties are isotropic, so
that the strength is independent of the orientation of the applied stresses. In reality this may
not be the case. Isotropy is often assumed just for simplicity.

We shall here distinguish between intrinsic anisotropy and structural anisotropy. Intrin-
sic anisotropy implies that an otherwise homogeneous material have different mechanical
properties in different directions. Structural anisotropy is associated with localized discon-
tinuities like planes of weakness or fractures.

2.9.1. Intrinsic anisotropy and the failure surface

For isotropic materials the principal axes of strain and the principal axes of stress coin-
cide. For anisotropic materials this is not the case in general. Still it is possible, at least in
principle, to determine a failure surface in stress space, by performing experiments along
different stress paths. However, such a failure surface will depend on the orientation of the
anisotropic material relative to the principal stress axes. There is no longer a unique failure
surface that characterizes the material behaviour. The concept of a failure surface is thus
less convenient for visualizing failure properties.

2.9.2. The plane of weakness model

The plane of weakness model is a simple approach to strength anisotropy. The model as-
sumes that the inherent strength is the same in all directions, except for one set of parallel
planes where the strength is lower. Since the bedding planes in sedimentary rocks may be
planes of weakness, the model has a physical basis, and it is therefore quite important in
spite of its simplicity. Obviously the model also applies to a set of parallel fracture planes.

Assume that we run a series of triaxial tests on a material with a set of parallel planes
of weakness. According to Mohr–Coulomb-type failure criteria, it is clear that the weak
planes have no effect on strength if we choose the axis of the plug normal to or parallel to
the planes, since we have no shear stress on the weak planes in these cases. (Remember
though, that the assumption of shear failure may not be correct—see the discussion of
uniaxial compressive and tensile strength in Section 2.3.2.) It is also clear that for some
intermediate orientations, we expect the weak planes to fail at a lower stress than expected
for the intact material.

Consider a τ–σ ′-plot for this material, as illustrated in Fig. 2.36. The material has two
failure criteria—one ordinary, isotropic criterion and one for the weak planes—and corre-
spondingly two failure lines. The weak plane criterion is given by the cohesion S0w and
the friction angle ϕw. The corresponding failure angle is given as

βw = π

4
+ ϕw

2
(2.80)

If the stress state in the rock sample is such that the Mohr circle touches the failure line for
the weak planes, as shown in Fig. 2.36, the material will fail only if the sample is oriented
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Fig. 2.36. τ–σ ′-plot for a material containing a plane of weakness. The illustrated stress configuration represents
the lowest strength possible for any orientation of this material.

Fig. 2.37. τ–σ ′-plot for a material containing a plane of weakness. The illustrated stress configuration is acces-
sible only for some orientations of the material.

such that the angle θ between the major principal stress and the normal to the weak planes
is equal to βw. If the sample has a different orientation, it can take a higher value for σ ′

1
and a correspondingly higher shear stress. The situation is then as shown in Fig. 2.37,
where the Mohr circle intersects the weak plane failure line in two points. At this stress
level, the sample will fail only if θ = β1 or θ = β2. For any orientation within the range
β1 < θ < β2 the sample will have failed along the weak planes at a lower stress level.

Finally, if the stress state is such that the Mohr circle touches the failure line for the
isotropic criterion, as shown in Fig. 2.38, the sample will fail for any orientation of the
weak planes—except for orientations where βmin < θ < βmax, in which case the sample
will already have failed along the weak planes at a lower stress level.

For the stress configuration considered here (σ ′
2 = σ ′

3) we can express the two failure
criteria as follows (see Eqs. (2.14)–(2.17)):
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Fig. 2.38. τ–σ ′-plot for a material containing a plane of weakness. The illustrated stress configuration represents
the highest strength possible for any orientation of this material.

Isotropic failure criterion (cohesion S0, friction angle ϕ)

σ ′
1 − σ ′

3 = 2
S0 cosϕ + σ ′

3 sinϕ

1 − sinϕ
(2.81)

Weak plane failure criterion

σ ′
1 − σ ′

3 = 2
S0w cosϕw + σ ′

3 sinϕw

sin 2θ cosϕw − (cos 2θ + 1) sinϕw
(2.82)

The criterion that predicts the lowest strength for a given orientation θ is always the relevant
criterion. Fig. 2.39 illustrates how the strength varies with the orientation of the sample for
such a material.

Note that for a general, three dimensional stress state, the shear and normal stresses
over the weak planes are given by Eqs. (1.36)–(1.37), and the weak plane failure criterion
becomes much more complicated.

More advanced theories may be developed by allowing cohesion and friction angle to
vary as function of orientation. Such theories will predict a smoother dependence on orien-
tation. A more empirical approach to the problem was given by Hoek and Brown (1980).

2.9.3. Fractured rock

The behaviour of a fractured rock depends both on the properties of the fractures and on
the properties of the intact rock. Generally, fractured rocks will be much weaker than the
corresponding intact rock, as the resistance against shear failure is considerably less for an
already existing fracture.

To predict the behaviour of a fractured rock it may be necessary to apply numerical
simulation methods to the actual fracture system. Alternatively, effective rock properties
may be assigned to a representative volume that is much larger than the fracture spacing.
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Fig. 2.39. Sketch of failure stress as function of the angle θ between the major principal stress and the normal to
the weak planes.

Hoek and Brown (1980) derived an empirical failure criterion for fractured rocks:

σ ′
1 = σ ′

3 +
√
mbC0σ

′
3 + sC2

0 (2.83)

where C0 is the uniaxial compressive strength of intact (unfractured) rock, while mb and
s are constants depending on the rock properties and the fracture system. The uniaxial
compressive strength of the fractured rock is given by

C0f =
√
sC2

0 (2.84)

Obviously, s = 1 for intact rock, so that 1 − s represents the degree of fracturing. A com-
parison of the Hoek–Brown criterion to the Mohr–Coulomb criterion (Eq. (2.22)) indicates
that mb has some relation to the internal friction (see Eqs. (2.13) and (2.8)), however there
is no direct correspondence between Eqs. (2.83) and (2.22).

A typical application of this criterion implies that a value (mi) is determined for mb by
a set of triaxial tests on intact parts of the rock, while s is estimated by visual inspection,
following a specific characterization scheme (Hoek and Brown, 1997). The actual value of
mb is obtained as

mb ≈ mis
0.321 (2.85)

For highly fractured rocks, a generalized version of the Hoek–Brown criterion applies
(Hoek and Brown, 1997):

σ ′
1 = σ ′

3 + C0

(
mb
σ ′

3

C0
+ s

)a
(2.86)

where s → 0 and a → 0.65. Note that Eq. (2.86) is identical to Eq. (2.83) when a = 0.5.
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2.10. Stress history effects

In our discussion of failure we have in this chapter mostly assumed that the rock will fail
when it has been brought to a stress state that fulfils a failure criterion, regardless how it
was brought to this state. We have seen, however, that the yield surface may move as a
result of plastic deformation (Section 2.8.1), and that the presence of fractures—that may
be the result of previous loads—reduces the strength of the rock (Section 2.9.3). It was also
described in Section 1.9.2 that creep may eventually lead to failure. These examples tell us
that not only the current stress state, but also the stress history may have an effect on rock
failure.

2.10.1. Rate effects and delayed failure

It was shown in Section 1.9.2 that a rock may deform continuously under a constant shear
load. The effect is more significant the closer the actual load is to the shear strength of the
rock.

Consider a rock sample that has been tested in a standard triaxial test (Fig. 2.40a). In
a second test on an identical sample, we stop loading at some level (A) before the peak
stress of the standard test is reached, and maintain the stress at this level. When the stress
reached levelA, the rock may already have suffered some damage, so that on a microscopic
scale some parts of the rock are intact while other parts are not. While the stress is kept
constant the rock creeps, and the increasing shear deformation implies that the shear load
on the intact parts of the rock increases, and the areas of failure are growing. Thus, parts
of the deformation and corresponding damage that occurred at stress levels above A in the
standard test occurs while the stress is maintained at A in the second test, only delayed.

When the loading is stopped at a relatively low level, like A, the creeping process
declines and eventually stops after a limited amount of delayed deformation. For a sample
that is brought to a sufficiently high stress level (like B, Fig. 2.40a) before the loading is

Fig. 2.40. Schematic illustration of a triaxial test, showing the effects of: a) creep, b) strain rate.
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stopped, the creeping process is unstable and it will after a while accelerate and result in
failure (accelerating creep, see Section 1.9).

The fact that all of the damage that may occur at a given stress level does not occur
immediately, points directly to an effect of loading rate on rock strength. Clearly, if the
rock is loaded at a lower rate, more damage may occur per unit of stress increase, and the
rock will essentially be weaker (Fig. 2.40b).

Note that effects of loading rate may also be seen in hydrostatic loading, even if creep is
primarily thought to be related to shear deformation. This can be ascribed to local fluctua-
tions in the stresses that will occur in a heterogeneous material like a porous rock.

2.10.2. Fatigue

Excessive deformation at a limited stress level, as described in the previous paragraph, may
be provoked and accelerated if the stress is released and reapplied over and over again. For
each unloading-reloading cycle a little more damage is added, and the rock sample deforms
correspondingly. Eventually, the rock may be destroyed by fatigue failure. The number of
cycles required to bring a rock to failure increases dramatically if the peak stress level for
the loading cycles is reduced.

If the peak stress of the loading cycles is kept sufficiently low, the rock may not fail
even after a very large number of cycles. Still, the cyclic loading may have affected the
strength of the rock, so that in a subsequent failure test the rock will fail at a stress level
different from its normal strength. Typically, cyclic loading will reduce the strength of a
rock sample, however increased strength due to cyclic loading is also reported (Ray et al.,
1999).
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Chapter 3

Geological aspects of petroleum related rock mechanics

From a practical rock mechanics view point, the present state of a rock and its present
mechanical properties are of interest. The long and in many cases complicated process
from an initial state as a loose sediment to the present state as a rock will however clearly
affect rock mechanical behaviour.

A sedimentary basin may be exposed to sedimentary subsidence, sea-level changes and
tectonic forces creating repeated cycles of elevation and depression, in addition to erosion,
changes in sedimentary environment, changes in sedimentation rate, solution and precipita-
tion of cementing material etc. All these effects will complicate the geological description
of the sedimentary basin. These geological activities and events will affect not only current
rock mechanical properties, but also current boundary conditions in terms of in situ stresses
and pore pressure.

Therefore, knowledge of geological processes is valuable in rock engineering. Although
on a totally different time scale and length scale, geological processes are often comparable
with events in rock mechanics laboratory testing, which means that such tests may be used
to enhance our understanding of geological phenomena.

The purpose of this chapter is to give an introduction to geological aspects which are of
particular importance in petroleum related rock mechanics.

3.1. Underground stresses

Normally, an underground formation has to carry the weight of the overlying formations.
The vertical stress at the bottom of a homogeneous column of height z is σv = ρgz, where
ρ is the density of the material and g is the acceleration of gravity. If the density varies
with depth, the vertical stress at depth D becomes

σv =
∫ D

0
ρ(z)g dz (3.1)

Note that the z-axis is here pointing vertically downwards, with z = 0 corresponding
to the Earth surface. The average density of sediments in the overburden is between 1.8
and 2.2 g/cm3, so as a rough number, the vertical stress increases downwards with about
20 MPa/km (typically 1 psi/ft).

The sedimentary rocks encountered during oil well drilling and production are porous
and hence contain fluids. One refers to the pore pressure at depthD as normal if it is given
by the weight of a fluid column above, i.e. in analogy to Eq. (3.1) the normal pore pressure
pfn is

pfn =
∫ D

0
ρf(z)g dz (3.2)
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The pore fluid density in case of brine with sea water salinity is in the range 1.03–
1.07 g/cm3, so the pore pressure increase with depth is roughly 10 MPa/km (0.45 psi/ft).
The effective vertical stress, σ ′

v, is then also increasing with approximately 10 MPa/km.
In many important cases, however, the pore pressure deviates from the normal value pfn.
We will return to these so-called abnormal pore pressures and their possible origins in
Section 3.2.

The underground stress state consists of the three mutually orthogonal principal stresses,
plus the pore pressure. It is very common (and convenient) in the oil industry to assume
that the vertical stress is a principal stress. This is reasonable at large depth within a homo-
geneous Earth, in areas that have not been exposed to tectonic activity or are relaxed in the
sense that there are no remnant stresses from previous tectonic activity. The vertical stress
is governed by gravity, which has a unique direction, pointing towards the centre of the
Earth. So it is not unreasonable to assume that the vertical is a principal stress direction.
Let us however be aware that there will be cases when this is not fulfilled, such as near
the surface: Because the surface is stress free, the principal stress directions at and near it
will be governed by the surface topography. In the case of a strongly sloping surface, even
at depth, the principal stress directions may be far from the vertical-horizontal directions.
Also, near heterogeneities such as inclusions or faults, near underground openings such as
boreholes (Chapter 4), or near depleting reservoirs (Chapter 12), principal stress directions
will differ from the vertical–horizontal orientation.

Below we will consider the vertical stress as a principal stress. To begin with, assume
a relaxed area where the horizontal stress is induced simply as a result of the vertical
stress. For simplicity, think of a fluid: The overburden causes a vertical stress (pressure) in
the fluid, but at the same time an equal horizontal stress (pressure). In a rock, the ability
to resist shear stresses causes the horizontal stress σh in general to be different from the
vertical stress. We write (in terms of effective stresses):

σ ′
h = K ′σ ′

v (3.3)

The ratio K ′ between the effective horizontal and effective vertical stress may vary signifi-
cantly. At shallow depths (0–150 m) it may vary from 1 to 10 or even higher, while values
from 0.2 to 1.5 may be found at larger depths. Bjørlykke and Høeg (1997) pointed out that
chemical compaction increases in importance at depths below 2–3 km, and will contribute
to horizontal stresses by altering the trend seen from pure mechanical compaction above
this level.

It has been suggested that, with time, K ′ → 1, so that the stress state becomes hydro-
static, with the magnitude given by the weight of the overburden according to Eq. (3.1).
This is called Heim’s rule, after work by the Swiss geologist Albert Heim in the nineteenth
century. Heim suggested that the mechanism causing this development is creep. This state
of stress is referred to as lithostatic.1

1 In the literature, the term lithostatic stress is sometimes defined as the vertical stress being given by Eq. (3.1),
without reference to the horizontal stresses. In this book, we follow Jaeger and Cook (1979), Engelder (1993) and
others, and take lithostatic to imply that the stress state is also hydrostatic.
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The transition toward lithostacy is normally a very slow process, and the lithostatic state
of stress is rare in the lithosphere (Engelder, 1993). Some examples of underground stress
illustrating non-lithostatic stress states are shown in Figs. 3.1, 3.12 and 9.10.

The idea that creep brings the stress state towards lithostacy is however considered
sound, and it is therefore not likely to find a general rule for predicting horizontal stress
at depth, unless very sophisticated models taking long-time stress history into account are
developed.

We now consider two very simple models for estimating the in situ stress state. First,
assume that the formation under consideration is laterally constrained; i.e. there is no
horizontal strain under the process of rock formation. Furthermore, we assume that the
rock during this process behaves according to the theory of linear elasticity. Then, from
Eqs. (1.102)–(1.103), with εx = εy = 0, one finds:

σ ′
h = νfr

1 − νfr
σ ′

v (3.4)

In this particular case, the coefficient K ′ is given the name Ko. In a fluid, where Poisson’s
ratio is 1/2, Ko = 1. For a rock with νfr = 1/3, Ko = 1/2.

There are many reasons to apply the relationship above with great care. We assumed
linear elasticity, and we assumed zero lateral movement. In reality we also assumed that
the elastic properties of the rock have been constant throughout the whole process of rock
formation. This is clearly not true. An approach based on a complete stress history analy-
sis was presented by Warpinski (1989), incorporating variations in mechanical properties
over time. Consolidation, diagenesis, changes in pore pressure due to gas generation, tem-
perature gradients, and various tectonic and thermal episodes may be incorporated in this
model. Viscoelasticity appeared, for the cases studied, to be more relevant for stresses in
shale than in sandstone.

Another simple approach is to say that the rock has been, and still is, in a critical state
within the Earth, i.e. it should obey some kind of a failure criterion. Leaning on ideas of
self-organized criticality (see e.g. the book by Bak, 1996), this may be a reasonable as-
sumption, in particular in areas of active tectonics. Choosing the Mohr–Coulomb criterion
Eqs. (2.18) or (2.22) as criterion for active faulting, the ratio between the minimum and
the maximum effective stress should be (for the case when the unconfined strength C0 is
negligible)

σ ′
3 � 1 − sinϕ

1 + sinϕ
σ ′

1 = 1

tan2 β
σ ′

1 (3.5)

If the vertical stress is the maximum principal stress, Eq. (3.5) predicts the following lim-
iting value for K ′:

K ′ = 1 − sinϕ

1 + sinϕ
(3.6)

If the friction angle is 30°, then K ′ = 1/3. A lower friction angle will result in a higher
value for K ′.

These are very simple examples of models for horizontal stress estimation. In reality,
as mentioned above, horizontal stresses are difficult to assess from mathematical models.
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Fig. 3.1. Stresses versus depth: Vertical stress (from Eq. (3.1) with density 2.1 g/cm3, full line), horizontal
stress (from Eqs. (3.7) and (3.8), dashed line), and pore pressure (from Eq. (3.2) with fluid density 1.05 g/cm3,
dotted line).

The most direct method of obtaining horizontal stress is to measure it, for instance by a
fracturing test of the formation (see Sections 8.3 and 11.5).

Breckels and van Eekelen (1982) used fracturing data from whole regions, and derived
relationships between horizontal stress and depth. They also accounted for possibly ab-
normal pore pressures. For the US Gulf Coast, Breckels and van Eekelen presented the
following relations:

σh = 0.0053D1.145 + 0.46(pf − pfn) (D < 3500 m) (3.7)

σh = 0.0264D − 31.7 + 0.46(pf − pfn) (D > 3500 m) (3.8)

whereD is depth in metres, pf is the pore pressure in MPa, pfn is the normal pore pressure
(corresponding to a gradient of 10.5 MPa/km) and σh is the smallest horizontal stress
in MPa. Note that these relations were developed at zero or shallow water depths (see also
Section 8.3).

The predicted horizontal stress from Breckels and van Eekelen’s relationship is shown
in Fig. 3.1 together with trends for vertical stress and normal pore pressure (from Eqs. (3.1)
and (3.2), using constant densities for rock and pore fluid).

The Gulf Coast curve (Eqs. (3.7) and (3.8)) may be used with a fair degree of confidence
also in other tectonically relaxed areas such as the North Sea.

The principal horizontal stresses are in general not equal, contrary to what has been
anticipated in Eqs. (3.3)–(3.8). We will in the continuation refer to the maximum horizontal
stress as σH and the minimum horizontal stress as σh. The main reason for horizontal stress
anisotropy is tectonic stresses. The terms tectonic activity and tectonic stresses relate back
to the theory of tectonophysics. The Earth’s crust consists of a number of discrete tectonic
plates. These are extensive (a few hundred to thousands of kilometres across) but thin (15–
200 km thick) plates that move about the Earth’s surface as rigid bodies. Fig. 3.2 shows
two types of plate boundaries: spreading ridge (two plates moving away from each other)
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Fig. 3.2. Schematic illustration of tectonic plate movement.

and subduction zone (two plates moving toward each other and one plate subducts under
the other).

A third type of plate boundary is a transform fault, where two plates slide past each
other. Extensive deformation (faulting, earthquakes) occurs along plate boundaries where
the plates interact. Tectonic activity refers to all forms of breaking and bending in this outer
layer of the Earth. A tectonic stress component in one direction may also be accompanied
by stress components in other directions. Consider for example a situation where there is
a tectonic stress �σ ′

x in the x-direction. If there is no horizontal displacement in the y-
direction (εy = 0), and no vertical restriction, the accompanying stresses �σ ′

y and �σ ′
z

would become (according to linear elastic theory, Eqs. (1.102)–(1.104)):

�σ ′
y = νfr�σ

′
x (3.9)

�σ ′
z = 0 (3.10)

The total stresses in the region are then given by superimposing these stresses on the
stresses given in Eqs. (3.1) and (3.4). Previous tectonic activity and associated effects are
thus of major concern when discussing underground stresses, as both magnitudes and prin-
cipal directions are affected.

Fig. 3.3 shows a stress map of the North Sea region, where principal stress orientations
obtained from various techniques (primarily earthquake focal mechanisms and borehole
breakouts; see Section 8.3.2) are indicated. More detailed maps and maps of other geo-
graphical areas can be found at http://www.world-stress-map.org.

As mentioned above, the horizontal stresses may become very large at shallow depths.
This may be because of residual stresses originating in the previous history of the rock or
structural stresses (caused by large scale inhomogeneities).

An example of how residual stresses may originate is illustrated in Fig. 3.4. This figure
shows how relative block movement exposes one block to erosion. The uplifted block will
now, at the same depth as the neighbouring block, have a different stress history. If erosion
takes place relatively rapidly, the higher stresses which existed previously will not decay as
rapidly as the erosion takes place. If the rock behaves as a viscoelastic material, the stresses
will at some stage die away. If the rock yields however, the stresses may not relax back to
normal stresses at that depth.

The maximum stress a rock has ever been exposed to is often referred to as the pa-
leostress. In soil mechanics (Section 2.8.2), the term preconsolidation stress is used. The
uplifted and unloaded block in Fig. 3.4 has previously experienced higher effective stresses.
Such a sediment is in soil mechanics said to be overconsolidated (Section 2.8.2). Examples
of structural stresses are stress fields below slopes or mountains. The structural inhomo-
geneities affect both stress magnitudes and directions.
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Fig. 3.3. Stress map of the North Sea, as given by the World Stress Map Project. (Reinecker et al., 2004, available
online at http://www.world-stress-map.org.)

The Ekofisk field in the North Sea provides a good example of how geological events
can explain the present state of stress. Ekofisk is the largest of several chalk reservoirs in
the southern part of the Norwegian sector of the North Sea. The chalks are of Maastrichtian
(Upper Cretaceous) and Danian (Lower Tertiary) age, and the field has a dome-like struc-
ture of elliptical shape. The chalk has a relatively high porosity (around 30% average), but
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Fig. 3.4. Residual stresses due to uplift and erosion.

a low matrix permeability (around 1 milliDarcy). The reservoir is however highly frac-
tured, providing a much (around two orders of magnitude) higher reservoir permeability.
This fracturing is believed to be a result of stresses induced by the growth of an underly-
ing salt dome (Byrd, 1975). Teufel and Farrell (1990) presented results from in situ stress
measurements in the Ekofisk field. The stress measurements were made using hydraulic
fracturing and anelastic strain recovery (ASR) of oriented cores (more about this technique
in Section 7.4).

Fig. 3.5 shows the azimuth of the maximum horizontal stress determined from ASR.
On the crest the maximum horizontal stress tends to be oriented sub-parallel to the long
axis of the ellipse, while on the flanks the maximum horizontal stress tends to be oriented
perpendicular to the structural contours of the dome. Teufel and Farrell also looked at the
distribution of natural fractures and found that a radial fracture pattern existed, aligned
closely with the direction of the maximum horizontal stress on the flanks of the structure.
Teufel and Farrell assumed the principal stress directions to lie in the horizontal and ver-
tical planes. This is a reasonable assumption, since the areal extent of the dome is large
compared to its curvature.

Since the structure of the field obviously affects the horizontal stress directions, it is
however reasonable to infer that principal stress directions will not be completely horizon-
tal and vertical at all locations. Rather, they will tend to have one principal direction normal
to the dome surface. This implies that on the crest, principal stress directions are likely to
be vertical and horizontal, while they will become tilted on the flanks of the dome.

There is a close relationship between structural geology and rock mechanics. Rock
mechanics laboratory experiments permit us to study processes in small scale which are
similar to those of the large scale of structural geology. For instance, a brittle shear failure
in a laboratory specimen is a miniature analogue of a fault. Faults are by definition shear
fractures with relative displacement along the plane of the fracture. The surface of the frac-
ture is the fault plane, which can be described by its dip and strike; see Fig. 3.6. Strike
is defined by a horizontal line formed by intersection of a horizontal plane and the tilted
layer, and is given in degrees relative to a compass direction. The dip-angle is the angle
between the tilted layer and a horizontal plane. Brittle behaviour leading to fault formation
is characteristic of rocks subjected to low confining pressure, i.e. in some respect close to
the surface of the Earth.
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Fig. 3.5. Structure contour map for the top of the Ekofisk formation showing the azimuth of the maximum
horizontal stress determined from anelastic strain recovery measurements. The crest of the structure is at a depth
of approximately 2.9 km (9500 ft) and contour intervals are 15.2 m (50 ft). (From Teufel and Farrell, 1990; with
permission from the authors.)
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Fig. 3.6. Illustration of dip and strike.

Fig. 3.7. Illustration of fault types.

An extensional, brittle failure in a laboratory test produces a miniature joint. A joint is
characterized by no displacement along (parallel to) the fracture plane. The rock on each
side of the tensile fracture is moved apart, perpendicular to the failure plane.

The various types of faults can be classified (Anderson, 1951; Twiss and Moores, 1992)
according to well-known theories of shear failure (e.g. Mohr–Coulomb). According to
these theories, fracturing will take place in one or both pairs of conjugate planes which
are parallel to the direction of the intermediate principal stress, and are both at equal an-
gles of less than 45° to the direction of the maximum principal stress. Some of the most
common types of faulting are illustrated in Fig. 3.7, assuming that one principal direction
is vertical.

Normal faulting occurs when the maximum principal stress (σ1) is vertical, and the dip is
hence larger than 45° (usually around 60°). If the minimum principal stress (σ3) is vertical,
the hanging wall is moving upwards, the dip is less than 45° (usually around 30°), and a
thrust fault is formed. Thrust faults with very shallow dips (less than 10°) are also called
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Fig. 3.8. Relation between ψ and β.

overthrusts. If the intermediate principal stress (σ2) is vertical, vertical failure planes are
created. This is referred to as strike-slip faulting.

With reference to Fig. 3.7, ψ is the angle between the maximum principal stress and the
failure plane. This angle is then related to the failure angle, β, such that (see Fig. 3.8):

ψ = π/2 − β (3.11)

Laboratory testing of sand and sandstone commonly yield values of the failure angle in the
range 55°–70°, corresponding to ψ values in the range 35°–20°. According to the Mohr–
Coulomb failure criterion (see Section 2.3.1), shear fracturing will take place when:

σ ′
1 = C0 + σ ′

3 tan2 β (3.12)

where C0 is the unconfined (uniaxial compressive) strength of the rock.
The type of fault is dependent on the relative values of the principal stresses. Whether

faulting will take place, and at what angle, is however also dependent on the failure para-
meters of the rock.

To illustrate this further, let us consider some simple examples, using the Mohr–
Coulomb criterion for shear fracturing.

Consider an unconsolidated sand with zero unconfined strength (typical of shallow
sediments). A typical failure angle of the sand is 60°, corresponding to ψ = 30°. The
Mohr–Coulomb criterion in this case (note the use of effective stresses) reduces to:

σ ′
1 = 3σ ′

3 (3.13)

We assume principal stresses to be vertical and horizontal, with the total vertical stress
equal to ρgz. If the vertical stress is the largest principal stress (see Fig. 3.9a), the effective
horizontal stress must be as low as one third of the effective vertical stress in order for
normal faulting to occur. For thrust faulting, the effective horizontal stress must be 3 times
larger than the effective vertical stress (see Fig. 3.9b). For strike-slip faulting, the vertical is
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Fig. 3.9. Stresses causing faulting illustrated by Mohr-circles.

Fig. 3.10. Oblique slip, normal fault.

the intermediate principal stress. The two horizontal stresses are limited as follows: If the
maximum horizontal stress is equal to the vertical, then the minimum effective horizontal
stress must be σ ′

h = (ρgz − pf)/3. If the minimum horizontal stress equals the vertical,
then the maximum effective horizontal stress must be σ ′

H = 3(ρgz− pf).
There are however also examples of faults which can not directly be identified from the

three types shown in Fig. 3.7. One such example is a so-called oblique slip, where there
is both vertical and horizontal movement; see Fig. 3.10. The most obvious reason for this
fault direction is that the principal stresses are not aligned vertically and horizontally. In
a formation which has not been fractured by previous tectonic activity, the fault direction
is mainly controlled by principal stress directions. The fault direction may however be
disturbed if the rock has been fractured previously. Fault movement can then be partly
controlled by the previous fault direction and partly by present principal stress directions.
Complex fracture systems are generated in this way.

Rocks buried deep in the Earth, at high confining stress and high temperature, tend to
exhibit a more ductile behaviour when exceeding the elastic limit. This plastic flow can
involve both change in shape and in volume. This may result in folding of the rock, see
Fig. 3.11.
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Fig. 3.11. Illustration of compressional folding, cross-section.

Available techniques for measurement and estimation of in situ stress directions and
magnitudes are discussed further in Section 8.3 The most direct measurements are those
involving hydraulic fracturing, where detection of fracture closure pressure yields informa-
tion about stress magnitudes. Borehole imaging and/or borehole shape measurements (by
e.g. a 4-arm caliper) may reveal information about fracture or drilling-induced breakout
directions, and hence stress directions (Section 8.3). There is also a number of core based
techniques (anelastic strain recovery, wave velocity anisotropy, differential strain or wave
velocity analysis, acoustic emission) that can be related to stress magnitudes and direc-
tions (Section 7.4). For large scale stress fields, earthquake focal mechanisms represent a
valuable source of information.

3.2. Pore pressure

Pore pressure is an important parameter in any rock mechanics study of porous, fluid-filled
rock systems. The pore fluid will carry part of the total stresses applied to the system,
thus relieving the rock matrix from part of the load. The effective stress as defined by
Terzaghi is equal to the total stress minus the pore pressure. This effective stress concept
was introduced in soil mechanics in 1923 on an empirical basis. It has later been refined
by Biot; see Section 1.6 for further details.

There is overwhelming evidence that porous, saturated and permeable rocks obey an
effective stress law. Both strain, given by the stress–strain relationship (constitutive equa-
tion), and yield or failure of the rock is controlled by effective rather than total stresses.

Therefore, when studying borehole stability during drilling, rock stability during produc-
tion, and compaction/subsidence, knowledge of the pore pressure in the various formations
is extremely important.

Pore pressure will develop in a saturated formation as sediments are buried. If the pore
fluid can escape and migrate to the surface at about the same rate as the rate of compaction,
a normal pore pressure gradient is maintained, given by the weight of the fluid column
above (Eq. (3.2)).

There are however several cases where the pore pressure within a zone has a value dif-
ferent from the expected normal pore pressure. Usually the pore pressure will in such cases
be higher than the normal, and the zone is referred to as abnormally pressured or overpres-
sured. High pore pressures in a reservoir will of course make the field more prolific. On the
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other hand, overpressured formations are a potential hazard during drilling. Furthermore,
borehole stability problems are often encountered in overpressured shales.

Briefly stated, abnormal pore pressure (overpressure) has three main causes (Osborne
and Swarbrick, 1997; Yassir and Addis, 2002):

1. The rate of sedimentation and compaction being higher than the rate of fluid expul-
sion and migration (disequilibrium compaction; undercompaction).

2. Tectonic loading that leads to undrained shear stress with associated pore pressure
development.

3. Pore fluid generation or expansion by thermal or chemical processes.

Due to the low permeability of compacted clays, shaly zones can easily become overpres-
sured. Shale permeabilities are typically in the nanoDarcy range, but may be even lower
(Swan et al., 1989; Chenevert and Sharma, 1991; Katsube et al., 1991; van Oort et al.,
1996; and others). Actually, laboratory measurements representative of in situ shale per-
meability are very scarce, because of the experimental difficulties involved in measuring
such low permeabilities, and because shale cores when retrieved from depth are altered in
such a way that the permeability is likely to be overestimated from experiment. Anyway,
shale permeability is low enough that a thick shale formation may not be able to expel fluid
at the same rate as it is compacted. Sands which are embedded within such shale bodies
are also likely to become overpressured.

Rapid sedimentation is obviously another possible reason for the development of over-
pressures. Abnormal pressures generated by disequilibrium compaction tend to decline in
the course of geologic time. As pointed out by Osborne and Swarbrick (1997) this may
explain why overpressure is more common in Tertiary than Paleozoic sequences.

As an example, consider a shale with a permeability of 10 picoDarcy (0.01 nanoDarcy),
porosity of 25%, and uniaxial compaction modulus of 3 GPa, saturated with a brine of bulk
modulus 2.5 GPa and viscosity 1 cP. The characteristic diffusion time will be l2D/CD, where
CD is the diffusion constant given by Eq. (1.244) and lD is the characteristic diffusion
length, say the thickness of the shale layer. The characteristic time for establishment of
pore pressure equilibrium in a 100 m thick shale layer using these values turns out to be
about 30 million years, which is on the geological time scale. Osborne and Swarbrick
(1997) suggested that disequilibrium compaction is the primary mechanism responsible
for overpressure in shale sequences.

As pointed out by Yassir and Addis (2002), there is a strong correlation between oc-
currence of overpressure and compressional tectonics. According to Eq. (1.186) pore
pressure will increase with increasing shear stress, in a manner proportional to Skemp-
ton’s A-parameter. Consider as an example a situation where the horizontal stress σH is the
major and the vertical stress (given by the weight of the overburden) is the minor principal
stress. Keeping σv constant during tectonic activity, the pore pressure change is

�pf = AB�σH (3.14)

For normal consolidation processes, A may exceed 1, while B is close to 1, leading to
very high pore pressure, possibly exceeding the vertical stress. In overconsolidated or well
cemented low porosity rock on the other hand, shear loading is associated with dilatancy,
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leading to pore pressure reduction. This mechanism is therefore expected to cause abnor-
mally high pore pressure preferably in young sediments. Note that tectonic activity (e.g.
salt tectonics) will result in sustained abnormal pore pressure only if the system remains
closed and does not fracture.

Another possible source of overpressure is the uplift-erosion process shown in Fig. 3.4.
If the rock maintains its pore pressure after the uplift, it will be abnormally pressurized
compared with its neighbouring formations at the same depth. Often, however, faulting
is associated both with tectonic and uplift processes, and in such cases the pore pressure
build-up would be only transient.

As mentioned above, generation or expansion of pore fluid may lead to overpressure,
primarily in shale sections. This may be a result of increase in temperature (aquathermal
pressuring). It may be caused by hydrocarbon (kerogen or gas) generation. It may also
be caused by free water released during transformation of montmorillonite to illite. This
transition is temperature dependent, requiring temperatures of 70–90°C, corresponding to
depths of 2–3 km in areas of average geothermal gradient.

When the pore pressure increases due to fluid expansion/generation, there will be an
associated horizontal stress increase. The relation between horizontal stress and pore pres-
sure is hence not unique, but depends on the overpressure mechanism (Yassir and Addis,
2002).

Yet another class of mechanisms is associated with fluid movement caused by e.g. den-
sity differences between liquids and gases, or possibly by osmotic potentials. There is
however no evidence that these mechanisms play any significant role in practice.

Fig. 3.12 presents typical pore pressure gradient curves from two North Sea fields, the
Gullfaks field and the Valhall field. Valhall is a chalk reservoir (Cretaceous) in the Ekofisk
area of the Norwegian sector of the North Sea. Gullfaks is a sandstone reservoir (Jurassic),
located further north. Both parts of Fig. 3.12 include the estimated fracture pressure, taken
from leak-off and mini-frac tests (see Section 8.3). The Valhall field is characterized by a
high initial pore pressure. Close to the top of the reservoir at 2500 m, the pore pressure
is about 44.7 MPa. The overburden gradient is not included for the Valhall field, but at
this depth the total vertical stress is approximately 49 MPa, which makes the difference
between the overburden stress and the pore pressure quite small. Thus, the effective vertical
stress is very low.

In such a situation, the net grain-to-grain stress is small, and unless the strength of the
cement between the grains is significant, particles may easily be mobilized. Production
problems have been experienced in the North Sea chalk fields, materializing both as inflow
of solids and casing collapse (see Chapter 10 for analysis of particle production).

Both fields are characterized by a rapid increase of the pore pressure gradient just above
the reservoir (top of Gullfaks is at approximately 1850 m). This is relatively typical in
many of the North Sea reservoirs. The effective vertical stress in the Gullfaks field is ap-
proximately 6 MPa.

Pore pressures above the reservoir, in the low-permeability zones, are normally esti-
mated from trendlines and deviations from expected trendlines in wireline log readings.
In many cases the accuracy of these methods is not good enough, and stability problems
during drilling may be a consequence (see also Chapter 9). In the reservoir, where the rock
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Fig. 3.12. Pressure and stress gradients, given as equivalent mudweight: a) Gullfaks (Courtesy of Statoil); b) Val-
hall (Courtesy of the Amoco/NOCO-group).

has a higher permeability, more direct and accurate pore pressure measurement methods
can be applied, thus improving the quality of the estimates.

3.3. Sedimentological aspects

The mechanical properties of a rock normally refer to constants in the constitutive equa-
tion which the rock is assumed to obey. A linearly elastic and perfectly brittle isotropic
rock would hence be described by 4 mechanical parameters: two elastic parameters (e.g.
Young’s modulus and Poisson’s ratio; Section 1.3) and three strength parameters (e.g. fric-
tion angle and uniaxial compressive strength when applying the Mohr–Coulomb failure
criterion, plus the tensile strength; Chapter 2).

The present properties of a sedimentary rock are determined by the entire process from
erosion of rock fragments to transportation, deposition, compaction and lithification. Some
knowledge of these processes is therefore valuable when trying to assess the mechanical
properties of a rock.

3.3.1. Grains and minerals

Some definitions related to grains and granular materials are appropriate at this stage:
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TABLE 3.1 Grain-size scale for sediments. In geol-
ogy, the so called phi-scale is commonly used. It is
defined by phi = − log2(grain diameter in mm)

Grain diameter range [mm] phi-scale Term

>256 < −8 Boulder
64–256 −6– −8 Cobble
4–64 −2– −6 Pebble
2–4 −1– −2 Granule
1/16–2 4– −1 Sand
1/256–1/16 8–4 Silt
<1/256 >8 Clay

Grain size is a measure of the diameter of the grain, see Table 3.1. According to this
classification scheme, the grain size determines the classes of sedimentary rocks.

Grain shape involves both the roundness (angularity of corners) and sphericity (proximity
to a spherical shape).

Grain sorting is a measure of the range of grain sizes (grain size distribution). A rock
containing a wide range of grain sizes is said to be poorly sorted, whereas well sorted
implies a narrow distribution.

The packing of grains is important since it affects porosity and permeability. The packing
depends both on grain size, shape and sorting. Round grains will have a smaller friction
angle than the more angular grains at the same porosity. A poorly sorted sand will have a
higher friction angle than a well sorted sand.

There are several rock forming mineral groups: silicates (e.g. feldspar, clay, mica), car-
bonates (calcite, dolomite), oxides, sulphides, sulphates and phosphates.

The silicate group is the most important rock forming mineral group, making up more
than 90% of the Earth’s crust. The basic unit of the silicates is the SiO−4

4 silicon tetrahe-
dron. The various structures are formed by linking tetrahedral units together by sharing
oxygen. Feldspar is the most important single silicate mineral. The three main groups of
feldspars are: potassium feldspars (KAlSi3O8), sodium feldspars (NaAlSi3O8) and cal-
cium feldspars (CaAl2Si2O8). These are formed by Al substituting for Si, thus allowing
additional or different cations to enter the structure.

Although chemically an oxide, silica (SiO2), is closely related to silicates. Quartz, which
is one of the minerals in the silica group, is the most common mineral in sandstone, ranging
from 65% to practically 100%. The feldspar content in sandstone is typically 10–15%, and
mica and clay minerals may also be found.

The most important minerals in shaly rocks are clay minerals, which are composed
of layers of sheet shaped crystals. Two basic structural units exist: One type of sheet is
built from silica tetrahedra linked together in a hexagonal structure with chemical formula
Si4O4−

4 . The second type is an octahedral sheet in which silicon is replaced by cations like
Al3+ (this sheet is named gibbsite, with basic formula Al2(OH)6), Mg2+ (named brucite;
Mg3(OH)6), Fe3+ or Fe2+, surrounded by six hydroxide groups. Within a given sheet, ions
different from the dominant ones may be present (isomorphic substitution), giving rise to
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possible charge deficiency. Usually, mainly because of oxygen and hydroxide at the sur-
faces, these have negative excess charge, and will therefore attract cations.

The basic sheets are combined to form layered clay minerals. The most common groups
of clay minerals are kaolinite, illite, and smectite. Kaolinite is a two-layer mineral (often
referred to as a 1:1 layer silicate), consisting of alternate layers of gibbsite and silicon
tetrahedron sheet. A basic unit is 0.7 nm thick, while typical composite crystals may be
70–100 layers, have six-fold symmetry and are flake shaped, up towards the micrometre
range in lateral extent. The successive layers are strongly bonded to each other with a
hydrogen bonding, and therefore water is not permitted to enter in between layers. Mineral
density is 2.6–2.7 g/cm3.

Smectite is a 2:1 layer mineral, composed of a central gibbsite sheet embedded between
two silicon tetrahedron sheet, with a combined thickness of about 1 nm. Isomorphous sub-
stitutions are common both within the central octahedral sheet and in the tetrahedral sheet.
The bonding between two silica sheet connecting the unit layers is very weak (through van
der Waals’ forces). In smectite, this permits water and exchangeable ions to enter between
the platelets, leading to a swelling capacity: At surface conditions, smectite minerals may
absorb up to 10 times their own weight in water (“swelling clays”). Calcium and sodium
are common ions in the interlayer space. Smectite crystals are normally not more than
2–5 nm thick in hydrated state, with an average diameter of about 1 µm. Normally, the
basal spacing is found to be near 1.5 nm, indicating that two monolayers of water are ac-
commodated within the mineral. The specific surface area associated with the interlayer
space is 500–700 m2/g. Mineral density varies between 2.0 and 2.6 g/cm3.

Montmorillonite is a name often used synonymously with smectite, or as a common
term for expandable clay minerals. In principle, this is a member of the smectite group
with geographical origin in Montmorillon, France. Another well-known smectitic clay is
Bentonite, from Wyoming in the USA. Vermiculite, which is hydrated muscovite (a mica
mineral), is also classified as smectite, but has much less swelling capacity than the clay
minerals mentioned above.

Illite is another 2:1 layer clay mineral, formed by weathering of feldspars, degradation
of muscovite, and transformation of smectite to illite at depth. Some of the silicon atoms
in smectite are replaced by aluminium, causing a negative charge which is balanced by
potassium ions that provide bonding between the silica tetrahedron sheet. This bond is
much stronger than in smectite, preventing hydration, but it is considerably weaker than in
kaolinite. The basal layer thickness of illite is 1 nm. Mineral density is 2.6–2.9 g/cm3.

The water near the surfaces of clay crystals is different from free water. This was sug-
gested by Derjaguin and Churayev (1971). Molecular dynamics simulations (e.g. Skipper
et al., 1991; Karaborni et al., 1996; Park and Sposito, 2002) show that bound water in the
intralayer space and adsorbed water on surfaces have ordered, crystal-like structures.

Chlorite is often also referred to as a clay mineral. It has a 2:1 sandwich structure, but
with an additional brucite-like (where the dominant ion may be magnesium, iron or nickel)
layer embedded between the tetrahedral layers. It has the characteristic flake shape, but
does not have any swelling capacity. Density may be from 2.6 and up to 3.3 g/cm3.

The basic unit of carbonates is (CO3)2−. Common carbonate minerals are calcite
(CaCO3), aragonite (which is a polymorph of calcite) and dolomite (CaMg(CO3)2). Calcite
is the main component of carbonate sediments (chalk, limestone).
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3.3.2. Pre-deposition and deposition

Clastic sedimentary rocks originate from some sort of pre-existing rock. The pre-existing
rock is broken into fragments by weathering (mechanical and/or chemical) and erosion.
Then it is transported by water (rivers, tides) or wind to another site where it is deposited.
This accumulation of fragments from pre-existing rocks form what is called a clastic sedi-
ment. The most common types of clastic sediments are conglomerate, sandstone, siltstone
and shale. Other types of sediments are chemical sediments (e.g. precipitation of salt
crystals due to evaporation) and organic sediments (e.g. shells and skeletons from sea or-
ganisms forming a chalk or limestone). Note that for instance a limestone can be both
clastic and organic in origin.

Transport, deposition and sediment accumulation may take place in a variety of deposi-
tional environments. These various environments will give rise to different distributions of
grain size, grain shape etc., which may affect the mechanical properties of the rock millions
of years later. Particles may be transported by air (aeolian), water (fluvial) or ice (glacial
transport). Deposition occurs if the particle flow velocity is lower than a settling velocity,
being proportional to the square of particle size and the density contrast between particle
and suspending fluid, and inversely proportional to fluid viscosity.

When transported by air (aeolian transport), the particles have a very small buoyancy,
and the viscosity of the air is low. Particles transported by winds are therefore typically
more fine-grained than particles transported by water.

In water, such as in a river or a marine environment, particles can be transported in sus-
pension (suspended load) or along the bottom (bed load). Sediments deposited in running
water are termed alluvial (poorly sorted, emerging from a high energy environment) or flu-
vial (well sorted, low energy environment). As long as the concentration of particles in the
suspension is low, the water can be regarded as a Newtonian fluid, obeying ordinary hy-
drodynamic laws. As the concentration increases, the properties of the suspension (density,
viscosity) will start to deviate significantly from those of pure water. Such a suspension can
start to flow as a heavy liquid due to the difference in density between the suspension and
the surrounding water. This is known as a turbidity current. This kind of sediment transport
is believed to be an important mechanism when considering transport of sediments from
deltas and shallow areas, down the continental shelf and into the deep oceans.

Grain flow is another mechanism of sediment transport, resulting from grain collisions
that contribute to keep the grains from concentrating close to the bottom. Grain flow will
have a low content of clay matrix material. As the contents of silt and clay increases, debris
flow and eventually mudflow develops. Debris flow and mudflow sediments are often very
poorly sorted.

In the shallow beach zone, deposition will often result in well sorted coarse-grained
rocks with high porosity. The grains will tend to be well rounded due to the constant action
of waves, currents and tides. Further down, the grain size decreases and the sorting is
poorer. Clastic deposits of terrestrial origin, resulting from stream transport into the sea,
can also be well sorted, but normally contain more clay than the beach deposits. The delta
is the zone where fluvial and marine processes meet. If the marine activity is low, the
fluvial depositions in the delta will be maintained. If the marine activity is high, however,
the deposits will eventually accumulate as a marine sediment. In a delta front deposit,
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fresh water, sea water and pore water from previous sediments meet. Water from these
different sources will be of completely different composition, and form an environment of
active precipitation and dissolution. This can lead to cementation (silica, carbonate) of the
sediment.

Although carbonate rocks can originate from clastic sediments, the primary source of
carbonates is from plants and animals which make use of carbonates in some way. Car-
bonate sediments will be fine-grained (grain size in the micrometre-range), and the final
properties of the carbonate rock will depend very much on the post-depositional processes
(diagenesis), since the carbonates are strongly influenced by pore fluid chemistry and tem-
perature/pressure. Carbonates may also contain larger grains (e.g. fragments of fossils) of
sand particle size or larger. In the same way as for sand deposits, the carbonate is more
likely to be coarse grained and well sorted in high energy, shallow waters.

3.3.3. Post-deposition

After sediment deposition follows a lengthy process of transformation into a rock (sand
to sandstone, clay to shale, silt to siltstone). As the sedimentation process continues, an
overburden of younger sediments is deposited. This extra weight on top of a sediment
causes the sediment to compact. Compaction will result in a closer packing of the grains,
thus reducing both porosity and permeability. The friction angle will increase as a result of
compaction, see Fig. 3.13a. Compaction itself is however not sufficient to create a massive,
cemented rock, as closer packing alone does not affect the cohesion. The sediment will
however act as if it is stronger when the weight of the overburden increases, since the
friction angle is always larger than zero. The increased overburden will result in increased
horizontal stresses when the sediment is confined horizontally. This will have the same
effect as a confining pressure in the laboratory, and the sediment can tolerate larger shear
stresses before it fails. This is illustrated in Fig. 3.13b.

For the transformation to be complete, processes by which grains are cemented together
are required. These physical and chemical postdepositional processes are referred to as dia-

Fig. 3.13. Effects of compaction on strength properties: a) Increase of friction angle as a result of compaction;
b) Increase of failure stress as a result of confinement.
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genesis. The parts of the diagenetic processes which contribute to harden the rock, are also
referred to as lithification. The term consolidation is often used in a sloppy way by petro-
leum engineers, referring to the degree of cementation. For instance, “poorly consolidated
sandstone” is supposed to mean poorly cemented sandstone. Strictly speaking, however,
consolidation refers to time dependent deformation due to dissipation of pore pressure (see
Biot’s theory of consolidation in Section 1.6). That means; poorly consolidated basically
means poorly compacted. There is however often some correlation between the amount of
diagenetic cementation and the effective stresses developing in a formation due to com-
paction, especially in sand deposits.

Physical changes, in addition to compaction, include changes brought about by tectonic
activity. With respect to diagenetic effects, the chemical changes are however the most
important. Cementation is mainly the result of precipitation of a binding agent. When con-
sidering chemical processes, the interaction between the solid grain minerals (especially
the surface minerals) and the pore fluid is the basic process. As only the pore water is free
to move in the sediment (at least as long as porosity and permeability are maintained), these
processes are closely linked to changes in pore water chemistry. Precipitation of calcite
onto the surface of sand grains is one such example of chemically induced cementation.

Carbonate (especially calcite) and silica are the minerals that account for most of the
cementation of sandstones. If the contact stress between quartz grains gets sufficiently high,
pressure solution may occur. The idea is that dissolution at the grain contact points liberates
SiO2 to the pore water. The SiO2 is then reprecipitated as quartz overgrowth because the
pressure in the pore water is lower, resulting in silica-cementation. Both calcite and quartz
cementation lead to strong sandstones. If the grains are held together by clay minerals, the
sandstone will be weak.

In carbonate sediments (commonly called carbonates), cementation is mainly precipita-
tion of carbonate minerals. Primary cementation will often consist of aragonite or calcite
with a high (up to 30%) magnesium content. These calcium carbonates are metastable, and
will after some thousands of years transform to the more stable form, low-magnesium-
calcite, through dissolution and precipitation. Dolomitization involves conversion of cal-
cium carbonate and magnesium to dolomite:

2CaCO3 + MgCl2 → CaMg(CO3)2 + CaCl2

This process requires a certain ratio of Mg/Ca in order to take place. This required ratio
is reduced as sediments are buried and the temperature increases because the magnesium
ions then become less hydrated.

Dolomitization, as most other processes of precipitation and cementation, will often lead
to reduced porosity as the void space is fully or partially filled up. This increases the rock
strength in most cases, but also reduces the potential of the rock as a reservoir formation.

Cementation processes will however, as we have seen, require increased pressures or
some throughflow of pore water. If these conditions are not met, cementation will come
to a halt. Some of the North Sea reservoirs can exemplify this. Both the sandstone and
chalk reservoirs are characterized by abnormally high pore pressures (see Fig. 3.12). This
has prevented pressure solution, and an efficient cap rock has prevented further circulation
of pore fluid through the reservoir rock. This has helped maintain a very high porosity,
30–50% in the most prolific chalk and around 30% in the sandstone reservoirs. This has
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however also resulted in very low cohesive strengths, and some formations are more or
less uncemented, almost like soil. The cohesive strength in situ is then mainly a result of
capillary forces, and hence very low. This has resulted in significant production problems,
such as production of sand particles and flow of chalk material into wells (see Chapter 10).

As a general statement it can be said that the degree of cementation and hence the
strength of a given rock increases with depth of burial, due to increased compaction, pres-
sure solution etc. This general trend is however often broken, either due to lithological
changes or due to conditions which may retard the diagenetic processes, such as the abnor-
mal pore pressure mentioned above.

By volume, sandstones and carbonates make up around 15% and 10%, respectively, of
sedimentary rocks. The most abundant sedimentary rock is however shale (∼75%). Most
of the overburden which has to be drilled through to get down to the reservoir, consists of
shale. These shale sections are often associated with stability problems during drilling (see
Chapter 9) and are therefore of interest in petroleum rock mechanics.

Diagenetic processes in clay are mainly a result of reactions between the clay minerals
and the pore water. Unstable minerals react with the pore water, depositing new and more
stable minerals. For this process to continue, there must be a continuous flow of pore water
through the sediment, if not, the process will stop. In fine-grained sediments like clay, the
permeability is very low (nanoDarcy and below) and equilibrium between pore water and
minerals will be established. Clays will therefore not be much altered, and the diagenetic
processes which take place will be very slow.

One example of diagenesis in clay is the transition of montmorillonite to mixed layer
illite/montmorillonite and illite (see also Section 3.2). This transition requires temperatures
corresponding to depths of 2–3 km to take place, and is accompanied by release of water
to free pore water.

Due to its plate-like structure, an uncompacted and soft clay (as a soil) will normally
have a low friction angle. As compaction and consolidation takes place, and porosity and
fluid content decrease, the shale will develop a higher friction angle. Shale, like any other
sedimentary rock, is however anisotropic by nature. Often transversely isotropic symmetry
is assumed, with the symmetry axis normal to bedding. This will affect permeability, elastic
properties and strength parameters of the shale (Section 3.4).

3.4. Mechanical properties of sedimentary rocks

Here we give a brief overview of the mechanical properties of sedimentary rocks of interest
to the petroleum industry, namely sandstones, chalk, and shales. A main difference between
these rocks is grain (or pore) size, ranging from 0.1–1 mm in sands down to the nanometre
range in shales. This affects petrophysical characteristics, such as the permeability, which
has a profound influence on mechanical behaviour, in particular time dependent phenom-
ena. Also, the relevant laws of physics controlling the force transmission at microscale are
different in the nanometre and millimetre environments. However, in all cases we are deal-
ing with assemblies of bonded particles, and the gross behaviour of the different rocks are
largely seen more similar than different.

We have also included a brief description of rock salt, which impacts amongst other
seismic interpretation and drilling operations in many sedimentary basins.
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Fig. 3.14. Thin section image of Castlegate sandstone (courtesy of Reidar Bøe, SINTEF Petroleum Research).

3.4.1. Sandstone

A thin section image of a sandstone is shown in Fig. 3.14. The dominant grain sizes of
sandstone are typically 0.01–1 mm. Pore sizes are the same order of magnitude, but slightly
smaller. This gives permeabilities ranging from microDarcy to several Darcies.

The predominant matrix mineral is quartz. The cement may be quartz as well (in the case
of pressure solution), it may be carbonate (especially calcite), or clay minerals. Quartz has
a bulk modulus of 37.5 GPa and a shear modulus of 41 GPa (see Appendix A).

The texture may vary from isotropic to anisotropic. Intrinsic (lithological) anisotropy is
caused by microlamination (bedding), induced for instance by seasonal variations during
deposition. This typically gives alternating layers of coarse and fine grains. Anisotropy
may also be caused by deposition of flat grains with their long axis parallel to each other.

An unconfined test with a sandstone, or a triaxial test at a low confining pressure, typi-
cally shows nonlinear stress–strain behaviour during initial loading, with stiffening as the
stress is increased. This nonlinearity can be attributed to pre-existing microcracks within
the core, generated by stress release during coring (for cores from depth; see Section 7.1.2)
or caused by weathering (for outcrop or near surface cores). For weak sandstones, where
many grain contacts are not cemented, the grain contact itself is a nonlinear element
(cf. Hertzian contact theory; Chapter 6).

It is not possible to state any number that characterizes the strength or stiffness of a typ-
ical sandstone—a “typical” rock does simply not exist. We find sandstones with porosities
ranging from less than 5% up to 40%. The strength varies with porosity—as illustrated by
Fig. 3.15 (from Plumb, 1994).

Plumb found an empirical correlation for the unconfined strength of very clean sand-
stones:

C0 = 357(1 − 2.8φ)2 (φ < 0.357) (3.15)

with C0 given in MPa and φ as a fraction.
This represents an upper bound to the unconfined strength. For sandstones containing

clay, the strength falls well below the trend suggested by this equation. Note the similarity
between Eq. (3.15) and the critical porosity model discussed in Section 6.2.

Young’s modulus shows a strong correlation with strength. Deere and Miller (1966)
investigated 82 sandstones from 18 different locations in USA. They found the static
Young’s modulus to be proportional to the unconfined strength (C0), but with significant
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Fig. 3.15. Strength of sandstones. After Plumb (1994).

© 1994 Taylor & Francis Group. Used with permission.

scatter. Most data presented by Deere and Miller, and elsewhere, give a proportionality
ratio (E/C0) between 100 and 400.

Tensile strength (T0) is not often measured directly on sandstone cores. Values are nor-
mally derived from indirect measurements, such as Brazilian tests (see Section 7.5). The
general impression is that (C0/T0) is between 5 and 20 for sandstones. Note however that
unconfined data are often not very reliable, because of pre-existing cracks or flaws in the
rocks tested.

When a sandstone starts to yield at low confining pressure, the behaviour is often found
dilatant. There is a brittle-ductile transition: Above a certain confining pressure, the rock
fails in a ductile manner, and plasticity theory is required to describe the constitutive ma-
terial behaviour. The failure envelope is often matched to a linear criterion, although it is
usually found to be nonlinear, with a decreasing friction angle at high confining stresses.
The typical friction angle is near 30°, but may vary typically between 20° and 40°. The
higher friction angles are found for low porosities and low clay contents.

Sandstones are found to exhibit an end cap in their failure envelope (i.e. material failure
under high isotropic stresses). This is often associated with grain crushing, but may also
result from collapse of the pore structure by grain reorganization. Localized “compaction
bands” of crushed material have been observed in triaxial tests with high porosity sandstone
at high confining pressure (Olsson and Holcomb, 2000). The stress threshold for grain
crushing depends on particle size distribution and particle shape, and on the degree of
cementation. Data on sandstones between 15 and 25% porosity by Wong et al. (1997)
show (Boutéca et al., 2000) that the hydrostatic yield stress is 6–7 times the unconfined
strength.
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Fig. 3.16. SEM image of Liege outcrop chalk (from Risnes, 2001; with permission from the publisher).

3.4.2. Chalk

A microscope image of chalk is shown in Fig. 3.16. Chalk particles originate as skeletons
of algae that are called coccospheres, with a typical initial size of 30 µm. During burial the
coccospheres are crushed, and most particles (and pores) of present chalk are in the range
of a few (1–10) µm, with associated matrix permeabilities between micro- and milliDarcy.
The predominant mineral is calcite, which has a bulk modulus of 74 GPa and a shear
modulus of 27.5 GPa (see Appendix A). In addition to calcite, chalks contain silica and
clay minerals.

Chalk porosity may be as high as 70%. In normally pressured areas, chalk porosity is
typically less than 10% at depths larger than 2000 m. In North Sea reservoirs however,
chalk porosities of 15–50% are found at depths of 2500–3500 m because of overpressure.
These reservoirs are also naturally fractured, leading to high reservoir scale permeabilities
in the 100 milliDarcy range.

North Sea chalk has been widely studied because of the prominent chalk reservoirs
(Ekofisk, Eldfisk, Valhall, Tommeliten and others). Andersen (1995) gives a comprehen-
sive summary of these studies. Havmøller and Foged (1996) compiled a large amount of
North Sea reservoir and outcrop chalk data to establish correlations between mechanical
properties and porosity (see also Engstrøm, 1992). The overall trends they found (for North
Sea chalk), can be summarized in the following equations:

C0 = 174 e−7.57φ (3.16)
C0

T0
∼ 8 (3.17)

E = 22.5 e−11.2φ (3.18)

H = 13.6 e−9.29φ (3.19)

where C0 and T0 are given in MPa, E and H (uniaxial compaction modulus) are given in
GPa and φ is given as a fraction.

As for sandstone, chalk has a failure surface with a brittle shear failure at low confining
pressures, and also with an end cap at high stresses. Friction angles are typically between
10◦ and 30◦, with a decreasing trend as a function of increasing porosity. Risnes (2001)
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Fig. 3.17. Typical stress–strain curve for chalk under hydrostatic compression.

pointed out that compressive, tensile and end cap failure modes appear to be governed by
one failure surface. The end cap is associated with pore collapse, a phenomenon which may
significantly reduce the pore space in high porosity chalks. An example of a typical stress–
strain curve for chalk under hydrostatic compression (as for example given by Dahou et al.,
1995) is shown in Fig. 3.17. The stress reaches a plateau after an initial elastic phase. This
plateau represents pore collapse. After pore collapse, the material regains some stiffness if
it is continued to be strained.

From Havmøller and Foged (1996) the onset of yielding (pore collapse) in hydrostatic
tests is given as

σyield = 435 e−8.31φ (3.20)

where σyield is given in MPa and φ is given as a fraction. In uniaxial compaction the yield
stress is

σ
Ko
yield = 363 e−7.36φ (3.21)

The uniaxial compaction modulus in the plastic regime is

Hpl = 47.6 e−12.1φ (3.22)

Because of its significance as a reservoir rock in the North Sea, chalk has been widely
studied and characterized. Less comprehensive laboratory studies have been performed
with more competent carbonate rocks (e.g. Yasar and Erdogan, 2004; and references
therein). Yasar and Erdogan studied limestone, dolomite and (metamorphous) marble, and
established correlations between P-wave velocity (see Section 5.2) versus strength and
Young’s modulus:

C0 = 31.5vp − 63.7 (3.23)

E = 10.7vp − 18.7 (3.24)

where C0 is given in MPa, E is given in GPa and vp is given in km/s.
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Fig. 3.18. SEM image of Kimmeridge shale (from Swan et al., 1989; with permission from the publisher).

3.4.3. Shale

A Scanning Electron Image of a shale is shown in Fig. 3.18. Shales consist to a large extent
of clay minerals. From the rock mechanical viewpoint, it is natural to define a shale as a
rock in which clay minerals constitute a load-bearing framework. In practice this means
that clay content needs to be higher than about 40%. As demonstrated in Fig. 3.18, shale
texture is strongly anisotropic. This is often seen through a plane of weakness along which
the shale easily splits. It means that all non-scalar physical quantities will be anisotropic, a
fact which is often neglected in practical rock mechanical analysis, due to lack of data.

Because of the abundance of clay minerals, pore sizes in shale are very small; typically
between 5 and 25 nm. In addition, the clay minerals contain structurally bound water. This
means that it is difficult to measure as well as to define the elastic properties of the solid
material contained in shales.

Various approaches have been used, including theoretical models (Alexandrov and
Ryzhova, 1961; Katahara, 1996), extrapolation of wave velocity measurements on shales
(Tosaya, 1982; Han, 1986; Castagna et al., 1995; and others summarized in Mavko et
al., 1998) or clay powders (Vanario et al., 2003) to zero porosity, and theoretical inver-
sion of velocity measurements on epoxy impregnated shale samples (Wang et al., 1998).
Values scatter widely—the extrapolation techniques give bulk modulus between 5 and
25 GPa, and shear modulus ranging from 4 to 10 GPa. These numbers clearly depend
on which type of clay mineral (kaolinite, smectite, illite) is dominant, and in particular
on the adsorbed or bound water present within minerals and on mineral surfaces. When
sufficiently large crystals are available, such as in the case of muscovite, one may mea-
sure directly the stiffness of the solid material in a dry state (no bound water). Such
data give for this particular mineral (Carmichael, 1984; Alexandrov and Ryzhova, 1961;
Katahara, 1996) a bulk modulus of 51 GPa and a shear modulus of 32 GPa. Note however
that this mineral is strongly anisotropic, with moduli in the crystal symmetry plane being
4–6 times larger than moduli representing normal to plane stiffnesses.

Shales have, because of the narrow pore space, very large specific surface areas. These
surfaces are negatively charged, and attract cations from the pore water. Hydrated ions are
often attached to the mineral surfaces. Shale porosity may vary from very small (a few %)
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to quite high (up to 70%). Even with the highest porosities, permeability remains very
small. The nanometre size pores lead to laboratory measured permeabilities in the nano-
Darcy range (see references given under Section 3.2). Even lower values may be expected
for shale under in situ conditions.

The very low permeability makes shale a very special rock material to study. It means
that rock mechanical tests become extremely time-consuming, since pore pressure equili-
bration is slow. It also means that cores when taken out of the Earth, always will have a
tendency to be damaged by tensile failure occurring during core retrieval: The core would
have to be retrieved at an extremely low rate in order to prevent overpressure inside. This
means that shale cores may be incompletely saturated. Such a damaged core is clearly not
representative of the shale in situ. Resaturation of a shale core can not be done as in stan-
dard petrophysics analysis. Capillary forces may lead to further damage of the shale. The
authors’ experience is that the best results are obtained when a pore pressure is enforced
(or measured, as a response to applied stress).

The difficulties in testing and specimen preparation are discussed further in Chapter 7. It
means however that good laboratory test results are scarce, and have to be judged carefully
in light of the laboratory procedures applied. Also, because shale is not a reservoir rock
and has only indirect economic interest, it has not been studied to the same extent as other
sedimentary rocks.

Lashkaripour and Dusseault (1993) collected a large set of shale data from published
literature and in-house studies. The majority of shales tested had porosity below 20%. They
found unconfined strength to increase with decreasing porosity, and proposed a relation of
the form

C0 = 193φ−1.14 (3.25)

where C0 is given in MPa and φ is given in %.
Their data set also showed strength and stiffness to be related. The ratio between

Young’s modulus and unconfined strength (E/C0) is typically around 200. The compres-
sive strength is typically 10–15 times higher than the tensile strength.

Horsrud (2001) studied North Sea shales, most of them with higher porosities (30–55%).
He confirmed a proportionality between the Young’s modulus and unconfined strength,
with a proportionality constant of ∼150. These data show good correlation of strength with
porosity, but the correlations are different from those found for lower porosity shales by
Lashkaripour and Dusseault. Both works demonstrated that P-wave velocity measurements
show a good correlation to shale strength, which is a valuable result if one wants to relate
shale strength to sonic measurements on drill cuttings or from log/seismic data. Horsrud
(2001) found the relation

C0 = 0.77 v2.93
p (3.26)

where C0 is given in MPa and vp is given in km/s.
Due to its plate-like structure, an uncompacted and soft clay (like soil) will normally

have a low friction angle. As compaction and consolidation takes place, and porosity
and fluid content decrease, the shale will develop a higher friction angle. Horsrud also
showed that the friction angle in most tests with high porosity shale was very low, typi-
cally 10°–20°.
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Fig. 3.19. Samples loaded to failure: a) Maximum load normal to bedding; b) Maximum load parallel with
bedding.

As mentioned above, the plate-like structure of shale also leads to anisotropy. Fig. 3.19
shows two samples loaded to failure, one with the largest principal stress direction normal
to the bedding (a) and one parallel to the bedding (b). Samples with the maximum load
parallel to the bedding will often have a higher failure angle than samples with maximum
load normal to the bedding. With equal confining pressures, the sample with maximum
load normal to the bedding will require a higher maximum stress in order to fail. This gen-
eral trend is reasonable to expect, since the bedding planes will represent possible planes of
weakness. The strength anisotropy is also likely to influence borehole failure, in particular
for deviated holes. The degree of anisotropy may however vary significantly, depending on
both depositional environment and post-depositional processes. Tectonic activities result-
ing in fracturing of the rock may enhance or disturb this general trend, depending on the
direction of the induced fractures.

3.4.4. Rock salt

Rock salt is precipitated from sea water and may occur in the Earth as extensive salt beds
or interstratified with e.g. sedimentary rocks. The mineralogical composition of natural
rock salts varies from very homogeneous (99% halite; NaCl) to heterogeneous mineral
associations. In many areas salt domes are found, such as beneath the Ekofisk field in the
North Sea, where the underlying salt has a strong impact on the reservoir stresses (see
Section 3.1). Salt may also be found above reservoirs, such as in the Gulf of Mexico area.
Quite often salt is found to impose drilling problems. Salt has very low permeability and is
therefore of interest for long term storage of hazardous waste.
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Salt grains (or crystals) can be between 1 and 50 mm in size. Virgin rock salt is usually
characterized by very low porosity (<0.5–1.0%) which in some cases may be less than
0.1%. A significant portion of the pore volume may occur as closed voids containing gas,
brine or both. Pore sizes are in the nanometre to micrometre range. Permeability of virgin
rock salt in the Earth is probably in the nanoDarcy range or lower (Cosenza and Ghorey-
chi, 1996). Ultra low permeability of natural intact rock salt enables one to hold this rock
impermeable in many practical situations. The negligible permeability of rock salt is also
attributed to healing processes and creep taking place under in situ conditions (Horseman,
1988).

A practical problem of measuring porosity and permeability is the solubility of rock salt
in the liquids usually used in laboratory routine work. Therefore, organic fluids or inert
gas is often used for permeability tests. Laboratory measured permeabilities and porosities
may be much larger than those representative for field conditions.

The value of Young’s modulus in rock salt as obtained in a conventional static test is rate-
sensitive. To reduce the effect of rate sensitivity, Young’s modulus is usually measured
during unloading-reloading paths, yielding E-values of 10–30 GPa for various types of
rock salt. Poisson’s ratio ranges between 0.15 and 0.4 being 0.2–0.3 on the average (Hansen
et al., 1984).

Some rock salt types have tight cementation and are quite competent while others are
loosely cemented and can be crushed by hand pressure. Uniaxial compressive strength
C0 typically ranges from about 15 MPa to 35 MPa. Tensile strength T0 varies from less
than 1 MPa to 2–3 MPa. Low resistance against tensile stresses is one of the characteristic
features of rock salt. The ratio of C0/T0 can be above 20 (Silberschmidt and Silberschmidt,
2000). The angle of internal friction ranges from 40° to 65°. Confining pressure remarkably
increases the ductility of rock salt. Axial strain measured at failure in the confined regime
can reach 10–25% (Lux and Rokahr, 1984).

The plastic behaviour of rock salt is linked to very significant creep behaviour. This
phenomenon can be explained microscopically by a dislocation glide mechanism (Munson
and Wawersik, 1993; Fokker and Kenter, 1994), and can be modelled macroscopically in
analogy with time dependent metal plasticity. The amount of creep strain increases with
increasing deviatoric stress, and increases strongly with increasing temperature.
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Chapter 4

Stresses around boreholes. Borehole failure criteria

Underground formations are always in a stressed state, mostly due to overburden and
tectonic stresses (see Chapter 3). When a well is drilled into a formation, stressed solid
material is removed. The borehole wall is then supported only by the fluid pressure in the
hole. As this fluid pressure generally does not match the in situ formation stresses, there
will be a stress redistribution around the well. This may lead to deviatoric stresses greater
than the formation can support, and failure may result. Knowledge of the stresses around a
well is therefore essential for discussions of well problems.

4.1. Stresses and strains in cylindrical coordinates

To examine the stresses in the rock surrounding a borehole, we need to express the stresses
and strains in cylindrical coordinates. The stresses at a point P identified by the coordinates
r , θ , z, are denoted σr , σθ , σz, τrθ , τrz and τθz. The stresses in a plane perpendicular to the
z-axis are indicated in Fig. 4.1(a). The relations between the stresses in cylindrical and
Cartesian coordinates are as follows (compare to Eqs. (1.18)–(1.21), see also page 455):

σr = 1

2
(σx + σy)+ 1

2
(σx − σy) cos 2θ + τxy sin 2θ (4.1)

σθ = 1

2
(σx + σy)− 1

2
(σx − σy) cos 2θ − τxy sin 2θ (4.2)

σz = σz (4.3)

Fig. 4.1. Stresses and displacements in cylindrical coordinates.
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τrθ = 1

2
(σy − σx) sin 2θ + τxy cos 2θ (4.4)

τrz = τxz cos θ + τyz sin θ (4.5)

τθz = τyz cos θ − τxz sin θ (4.6)

The corresponding relations between the strains are obtained by replacing the stress para-
meters by corresponding strains.

εr = 1

2
(εx + εy)+ 1

2
(εx − εy) cos 2θ + Γxy sin 2θ (4.7)

εθ = 1

2
(εx + εy)− 1

2
(εx − εy) cos 2θ − Γxy sin 2θ (4.8)

εz = εz (4.9)

Γrθ = 1

2
(εy − εx) sin 2θ + Γxy cos 2θ (4.10)

Γrz = Γxz cos θ + Γyz sin θ (4.11)

Γθz = Γyz cos θ − Γxz sin θ (4.12)

The symbols u, v, w are often used for displacements also in cylindrical coordinates,
but now redefined as u being the displacement in the radial direction, v the displacement
in the tangential direction and w in the axial direction. This redefinition is illustrated in
Fig. 4.1(b). The relations between strains and displacements are

εr = ∂u

∂r
(4.13)

εθ = u

r
+ 1

r

∂v

∂θ
(4.14)

εz = ∂w

∂z
(4.15)

Γrθ = 1

2r

(
∂u

∂θ
− v

)
+ 1

2

∂v

∂r
(4.16)

Γrz = 1

2

(
∂w

∂r
+ ∂u

∂z

)
(4.17)

Γθz = 1

2

(
1

r

∂w

∂θ
+ ∂v

∂z

)
(4.18)

Hooke’s law (see Eqs. (1.93)–(1.98)) has the same form in cylindrical as in Cartesian co-
ordinates. For a porous and permeable formation, effective stresses should be used.

σ ′
r = (λfr + 2Gfr)εr + λfrεθ + λfrεz (4.19)

σ ′
θ = λfrεr + (λfr + 2Gfr)εθ + λfrεz (4.20)

σ ′
z = λfrεr + λfrεθ + (λfr + 2Gfr)εz (4.21)

τrθ = 2GfrΓrθ (4.22)

τrz = 2GfrΓrz (4.23)

τθz = 2GfrΓθz (4.24)
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The equations of equilibrium (1.14)–(1.16) may also be expressed in cylindrical coordi-
nates:

∂σr

∂r
+ 1

r

∂τθr

∂θ
+ ∂τzr

∂z
+ σr − σθ

r
+ ρfr = 0 (4.25)

1

r

∂σθ

∂θ
+ ∂τrθ

∂r
+ ∂τzθ

∂z
+ 2τrθ

r
+ ρfθ = 0 (4.26)

∂σz

∂z
+ ∂τrz

∂r
+ 1

r

∂τθz

∂θ
+ τrz

r
+ ρfz = 0 (4.27)

Note that these equations apply to the total stresses.

4.2. Stresses in a hollow cylinder

The hollow cylinder model, as sketched in Fig. 4.2, is a simple example of a borehole in
a stressed formation. The model is important in itself, as laboratory tests concerning well
stability often are carried out on such samples. The hollow cylinder model also provides a
model for vertical wells through formations where the horizontal stresses are equal.

4.2.1. The equilibrium equations

The infinite hollow cylinder has full rotational symmetry about the axis of the cylinder, as
well as full translational symmetry along the axis. We assume as a starting point that the
cylinder is loaded with an axial stress σv, and we shall derive expressions for the stresses
in the cylinder as it is loaded with an internal pressure pw and an external stress σro.
The external stresses on the cylinder are at all times normal, and independent of θ and z.
Therefore the cylindrical coordinate axes, (with the z-axis along the cylinder axis) also
represent the principal stress directions.

It is then clear that the only deformation will be in the radial direction, and that there will
be no variation along the axis. Thus the model will be in plane strain (see Section 1.2.4),

Fig. 4.2. Section of the hollow cylinder model.
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and εz = 0. (If we consider a finite height cylinder (e.g. in a lab test), the plain strain will
apply only if the top and bottom platens are fixed, and if end effects can be ignored.)

Ignoring body forces, the equations of equilibrium (4.25)–(4.27) are simplified to a sin-
gle equation

dσr
dr

+ σr − σθ
r

= 0 (4.28)

We now replace the stress with the radial displacement u using Eqs. (4.19)–(4.20) (Hooke’s
law), the definition of effective stress (Eq. (1.170)), and the strains in terms of u from
Eqs. (4.13) and (4.14). The result is

d2u

dr2
+ 1

r

du

dr
− u

r2
+ α

λfr + 2Gfr

dpf

dr
= 0 (4.29)

When this equation is solved, the radial and tangential strain can be determined, and hence
the stresses can be found using Hooke’s law.

4.2.2. Stress distributions with constant pore pressure

For constant pore pressure the displacement equation (4.29) reduces to

d2u

dr2
+ 1

r

du

dr
− u

r2
= d

dr

(
du

dr
+ u

r

)
= d

dr

(
1

r

d(ru)

dr

)
= 0 (4.30)

The sum in the parenthesis in the middle can be recognized as the sum of radial and tan-
gential strain, which thus is seen to be constant. Together with the plane strain condition,
εz = 0, this means that for the present case, the elastic rearrangement of the stresses
around a wellbore does not result in any volumetric changes. Further, from Hooke’s law
(Eq. (1.99)) it follows that the mean stress is constant.

The expression

u = C1r + C2

r
(4.31)

is the general solution of the displacement equation (4.30), with C1 and C2 as integration
constants.

The radial and tangential strains are given by

εr = du

dr
= C1 − C2

r2
(4.32)

εθ = u

r
= C1 + C2

r2
(4.33)

Substitution of the strain expressions (4.32)–(4.33) into Eq. (4.19) gives

σr − αpf = (2λfr + 2Gfr)C1 − 2Gfr
C2

r2
(4.34)

where pf is the constant pore fluid pressure.
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Before matching the boundary conditions, it is convenient to assemble all the r-inde-
pendent terms in one constant and the r−2 terms in another:

σr = C′
1 + C′

2

r2
(4.35)

This small mathematical trick simplifies subsequent calculations, and also makes it imme-
diately clear that pf and the elastic constants will not appear in the final answer.

Similarly, we find for the tangential stress

σθ = C′
1 − C′

2

r2
(4.36)

The two integration constants may now be found from the boundary conditions for the
radial stress

σr = pw for r = Rw (4.37)

σr = σro for r = Ro (4.38)

where we write pw and σro for the radial stresses at the inner and outer boundary, respec-
tively (see Fig. 4.2).

The result is

C′
1 = R2

oσro − R2
wpw

R2
o − R2

w
(4.39)

C′
2 = − R2

oR
2
w

R2
o − R2

w
(σro − pw) (4.40)

The radial and tangential stresses in a hollow porous cylinder can then be written

σr = R2
oσro − R2

wpw

R2
o − R2

w
− R2

o

R2
o − R2

w

R2
w

r2
(σro − pw) (4.41)

σθ = R2
oσro − R2

wpw

R2
o − R2

w
+ R2

o

R2
o − R2

w

R2
w

r2
(σro − pw) (4.42)

Note that the sum of the radial and tangential stresses is a constant, independent of r . Since
the mean stress is constant (see the discussion following Eq. (4.30)), this means that the
axial stress is constant.

When these hollow cylinder expressions are applied to well conditions, we may assume
that Ro 
 Rw. Assuming a vertical borehole, we write σh (the horizontal stress) instead of
σro, and find

σr = σh − (σh − pw)
R2

w

r2
=
(

1 − R2
w

r2

)
σh + R2

w

r2
pw (4.43)

σθ = σh + (σh − pw)
R2

w

r2
=
(

1 + R2
w

r2

)
σh − R2

w

r2
pw (4.44)

σz = const (4.45)

Fig. 4.3 shows an illustration of the stress distribution around a borehole as predicted by
the hollow cylinder model. Note that the tangential stress (commonly referred to as the
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Fig. 4.3. Stresses around a borehole in a linear elastic formation.

hoop stress) is significantly increased in the near borehole region. The effect that the stress
in the vicinity of an inhomogeneity (in our case the hole) rises above the far-field stress is
commonly referred to as stress concentration.

The radial displacement u can be determined by calculating C1 and C2 from C′
1 and C′

2,
and inserting into Eq. (4.31). Assuming Ro 
 Rw, the result is

u = σh − αpf

2λfr + 2Gfr
r + σh − pw

2Gfr

R2
w

r
(4.46)

Note that u as given in Eq. (4.46) is the displacement relative to the state where σh = pw =
0. This expression is relevant for a hollow cylinder test in the laboratory.

In a field situation it is convenient to use the in situ stress state as the reference. The
displacement due to the drillout is then seen to be given by:

ud = σh − pw

2Gfr

R2
w

r
(4.47)

Eq. (4.47) shows that a reduction in well pressure results in a positive radial displacement,
which corresponds to a reduction of the borehole radius, as expected.

4.2.3. Stress distributions with varying pore pressure

The displacement equilibrium equation, Eq. (4.29) is readily integrated to give

1

r

d

dr
(ru)+ α

λfr + 2Gfr
pf = 2C1 (4.48)

where 2C1 is an integration constant. (The factor 2 will disappear in the next steps.)
The solution of this equation is

u = C1r + C2

r
− α

λfr + 2Gfr

1

r

∫ r

Rw

r ′pf dr ′ (4.49)
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where C2 is a second integration constant.
The stresses are found by proceeding in the same way as for the constant pressure case,

i.e. by computing the strains, using Hooke’s law and matching boundary conditions.
Defining

�pf(r) = pf(r)− pfo (4.50)

the result can be written

σr = R2
o(r

2 − R2
w)σro + R2

w(R
2
o − r2)pw

r2(R2
o − R2

w)

+ 2η

r2

(∫ r

Rw

r ′�pf(r
′) dr ′ − r2 − R2

w

R2
o − R2

w

∫ Ro

Rw

r ′�pf(r
′) dr ′

)
(4.51)

σθ = R2
o(r

2 + R2
w)σro − R2

w(R
2
o + r2)pw

r2(R2
o − R2

w)

− 2η

r2

(∫ r

Rw

r ′�pf(r
′) dr ′ − r2�pf(r)+ r2 + R2

w

R2
o − R2

w

∫ Ro

Rw

r ′�pf(r
′) dr ′

)
(4.52)

σz = σv + 2νfr(σro − pw)
R2

w

R2
o − R2

w
+ 2η�pf(r)

− 4η
νfr

R2
o − R2

w

∫ Ro

Rw

r ′�pf(r
′) dr ′ (4.53)

where we have introduced the poroelastic stress coefficient η given by

η = Gfr

λfr + 2Gfr
α = 1 − 2νfr

2(1 − νfr)
α (4.54)

It is clear from the definition that 0 < η < 0.5 (assuming ν > 0).
Assuming Ro 
 Rw, and σro = σh, the equations simplify to

σr =
(

1 − R2
w

r2

)
σh + R2

w

r2
pw + 2η

r2

∫ r

Rw

r ′�pf(r
′) dr ′ (4.55)

σθ =
(

1 + R2
w

r2

)
σh − R2

w

r2
pw − 2η

r2

∫ r

Rw

r ′�pf(r
′) dr ′ + 2η�pf(r) (4.56)

σz = σv + 2η�pf(r) (4.57)

The stresses at the borehole wall are seen to be

σr = pw (4.58)

σθ = 2σh − pw − 2η
(
pfo − pf(Rw)

)
(4.59)

σz = σv − 2η
(
pfo − pf(Rw)

)
(4.60)

where pf(Rw) is the reservoir fluid pressure at the wellbore wall. If there is open commu-
nication between the well fluid and the formation, pf(Rw) is equal to the well pressure pw.
If there is a mud cake, pf(Rw) is the fluid pressure behind the mud cake.
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From a physical point of view this result can be explained as follows: If the well pressure
is higher than the reservoir fluid pressure, fluids are injected and the pore fluid pressure
is increased around the well. This will give a tendency for the material to expand and
the stresses increase. If on the other hand the well is on production, the well pressure is
lower than the reservoir pressure. The lower fluid pressure around the well will make the
formation shrink, and hence the corresponding reduction in the tangential and axial stress.

Note that the wall stresses are independent of the details of the radial variation in pf(r),
only the difference between the farfield value and the value at the borehole wall appears in
the equations.

The superposition principle

Since the governing equations are linear, the final expressions can be seen as a sum of
different basic loads, which are uncoupled. For the hollow cylinder, these basic loads are
the external radial stress, the borehole pressure and the pore pressure.

As an illustration, the well pressure term pwR
2
w/r

2 is the same in Eqs. (4.43) and (4.55).
Further, we expect the well pressure term to be the same if we introduce a more compli-
cated far-field stress, e.g. corresponding to a deviated hole in an anisotropic stress field.
(See Eq. (4.83).)

Radial flow

A special case is obtained if the pressure variation is given by stationary radial flow into
the well. We will first study the case of a hollow cylinder with outer radius Ro, and look
for a stationary solution, i.e. we assume that all transients have died away.

The fluid pressure can then be calculated from Darcy’s law (see Section 1.9.1)

Qo

2πrh
= k

ηf

dpf

dr
(4.61)

whereQo is the constant flow rate, h is the height of the cylinder, k is the permeability and
ηf is the fluid viscosity. Note that Qo is here defined to be positive for flow in the inwards
direction.

Solving the equation above, assuming a constant pressure pfo at the outer radius Ro, the
pressure is given by the well-known equation

pf = pw + pfo − pw

ln Ro
Rw

ln
r

Rw
= pfo + pfo − pw

ln Ro
Rw

ln
r

Ro
(4.62)

Inserting this result into Eqs. (4.51)–(4.53), the equations published by Risnes et al. (1982)
are found:

σr = σh + (σh − pw)
R2

w

R2
o − R2

w

[
1 −

(
Ro

r

)2]

− (pfo − pw)η

{
R2

w

R2
o − R2

w

[
1 −

(
Ro

r

)2]
+ ln(Ro/r)

ln(Ro/Rw)

}
(4.63)
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σθ = σh + (σh − pw)
R2

w

R2
o − R2

w

[
1 +

(
Ro

r

)2]

− (pfo − pw)η

{
R2

w

R2
o − R2

w

[
1 +

(
Ro

r

)2]
+ ln(Ro/r)− 1

ln(Ro/Rw)

}
(4.64)

σz = σv + 2νfr(σh − pw)
R2

w

R2
o − R2

w

− (pfo − pw)η

{
2νfrR

2
w

R2
o − R2

w
+ 2 ln(Ro/r)− νfr

ln(Ro/Rw)

}
(4.65)

A common assumption in reservoir engineering is that the reservoir pressure pfo is constant
at all times at a drainage radius Re. (We underline however, that in reality, true stationary
flow will never be reached in an infinite formation.)

If the drainage radius Re can be taken to be much larger than the well radius, the equa-
tions are simplified to

σr = σh − (σh − pw)

(
Rw

r

)2

+ (pfo − pw)η

[(
Rw

r

)2

− ln(Re/r)

ln(Re/Rw)

]
(4.66)

σθ = σh + (σh − pw)

(
Rw

r

)2

− (pfo − pw)η

[(
Rw

r

)2

+ ln(Re/r)

ln(Re/Rw)

]
(4.67)

σz = σv − (pfo − pw)η
2 ln(Re/r)− νfr

ln(Re/Rw)
(4.68)

These equations can be used as an approximation to a producing well. Eq. (4.68) depends
on the plane strain condition, which is valid for an infinitely long borehole. In a real case,
the flow will be in a reservoir of limited height, and hence a solution based on generalized
plane stress (see Section 1.2.4) would be valid when the depleted zone extends far into the
reservoir, and the full vertical stress is transmitted to the reservoir. In practise, there will be
some arching of the overburden preventing the maintenance of the full vertical stress, and
hence the true solution will be somewhere in between.

4.2.4. Stress distributions with heat flow

When a well is drilled, the drilling mud will alter the temperature of the surrounding for-
mation. When the temperature changes, the formation expands or shrinks, and the stresses
will change. (See Section 1.5 for the basic formulas of thermoelasticity.)

From the correspondence between poroelasticity and thermoelasticity, see Section 1.6.6
and Eqs. (4.58)–(4.60), we may immediately write the expressions for the stresses at the
wellbore wall:

σr = pw (4.69)

σθ = 2σh − pw + Efr

1 − νfr
αT (Tw − To) (4.70)

σz = σv + Efr

1 − νfr
αT (Tw − To) (4.71)
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Tw is the temperature in the well and To is the reservoir temperature. The thermally induced
changes in stress affect both the tangential and the axial stress. The radial stress is of course
equal to the well pressure regardless of any temperature changes.

4.2.5. Stress distributions in nonlinear formations

The results in Section 4.2.2 as displayed in Fig. 4.3 showed that there is a rapid increase in
the stress deviation towards the borehole wall. These results were based on the assumption
of linear elasticity, i.e. that the elastic moduli of the rock are independent of the stress
state. However, elastic moduli of rocks are normally stress dependent to some extent (see
Section 1.8). Thus, it is reasonable to assume that the elastic moduli close to the wellbore
wall will differ from those of the virgin formation, due to the stress alteration in the vicinity
of the borehole.

Santarelli et al. (1986, 1987) modelled this effect by assuming that Young’s modulus
depends on the minor principal stress σr as E(σr) = E0σ

a
r . Here E0 and a are empirical

constants; normally 0 < a < 1, and E0 may be interpreted as the value of Young’s mod-
ulus as measured in uniaxial compression tests. Based on this assumption, they found the
following expressions for σr and σθ corresponding to Eqs. (4.43)–(4.44).

σr = σh

{[(
pw

σh

)1−a
− 1

](
Rw

r

)N
+ 1

} 1
1−a

(4.72)

σθ = N

1 − a σh

(
σr

σh

)a
+Mσr (4.73)

where

N = 1

1 − νfr

[
(1 − 2νfr)(1 − a)+ 1

]
(4.74)

M = νfr(1 − a)− 1

(1 − νfr)(1 − a) (4.75)

The implications for the stress distribution around the borehole are significant. Fig. 4.4
shows the variation of stresses as functions of radial distance as calculated by Eqs. (4.72)–
(4.75) using a = 0.5 and νfr = 0.2. Also the vertical stress is reduced close to the wellbore,
as σz is linked to σr and σθ through Hooke’s law (although it is no longer linear).

An important consequence of the nonconstant E-modulus is the relative reduction of
σθ near the wellbore wall. This effect is most pronounced for low borehole pressures for
which it may even happen that the difference σθ − σr is larger at some distance into the
formation than at the borehole wall. Thus, the commonly observed effect that Young’s
modulus increases with increasing confining pressure, has the consequence that the stress
deviation near the borehole wall at low borehole pressures is reduced compared to the
linear elastic solution.
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Fig. 4.4. Stresses around a borehole in a formation with pressure dependent elastic properties.

4.3. Elastic stresses around wells—the general solution

In the previous sections we studied the simple example of a vertical borehole in a forma-
tion with isotropic horizontal stress. We shall now proceed to describe the general elastic
situation: the borehole is deviated, and the horizontal stress is anisotropic.

We shall assume that the principal stresses are the vertical stress σv, and the major and
minor horizontal stresses σH and σh. (The generalization to a case where the vertical stress
is not a principal stress is trivial.)

As an introduction, a brief historical overview may be appropriate: The stress distribu-
tion around a circular hole in an infinite plate in one-dimensional tension was published by
Kirsch in 1898.1 The Kirsch formulas generalize easily to a vertical borehole with unequal
farfield stress, such that this solution is also often referred to as the Kirsch equations.

The “standard”, easily available reference in petroleum rock mechanics literature for
the full solution is Bradley (1979), who quoted a report by Fairhurst (1968). However,
according to Peška and Zoback (1995), the equations were first published by Hiramatsu
and Oka (1962).

There appears to be a sign error in part of the τrθ expression in Bradley’s paper. This
error has propagated in the literature, for instance in the first edition of this book, and
several other works. An easily available reference that appears to be correct is Hiramatsu
and Oka (1968).

1 The famous paper of Ernst Gustav Kirsch (1841–1901) is an example of a classic paper that is probably more
often cited than read. As a result, many variants of the title and citation details exist in the literature, some of
which suggest that the writer does not understand the German language. It is therefore a pleasure to bring the
correct citation here. By the way, the original paper does not reveal Kirsch’ first name or initials. The Kirsch
paper is not a good starting point for those wishing to the study the derivation of the Kirsch equations, as the
paper relies on detailed references to a contemporary German textbook. We suggest that the interested reader
should instead study Chapter 10 of Jaeger and Cook (1979) or Chapter 5 of Charlez (1991).
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Fig. 4.5. Coordinate system for a deviated borehole.

4.3.1. Transformation formulas

The in situ principal stresses define a coordinate system which we denote (x′, y′, z′), as
indicated in Fig. 4.5. We take σv to be parallel to z′, σH to be parallel to x′ and σh to be
parallel to y′.

We introduce a second coordinate system (x, y, z) such that the z-axis points along the
axis of the hole, the x-axis points towards the lowermost radial direction of the hole, and
the y-axis is horizontal (see Fig. 4.5).

A transform from (x′, y′, z′) to (x, y, z) can be obtained in two operations (see Fig. 4.6):

1. a rotation a around the z′-axis,

2. a rotation i around the y-axis.

The transformation can be described mathematically by the direction cosines, where lij ′
is the cosine of the angle between the i-axis and the j ′-axis. With reference to Fig. 4.6 it is
straightforward to derive the following expressions

lxx′ = cos a cos i, lxy′ = sin a cos i, lxz′ = − sin i
lyx′ = − sin a, lyy′ = cos a, lyz′ = 0
lzx′ = cos a sin i, lzy′ = sin a sin i, lzz′ = cos i

(4.76)

(An alternate formulation, using the Euler angles, is discussed in Appendix C, see
page 453.)

Expressed in the (x, y, z) coordinate system, the formation stresses σH, σh and σv be-
come:

σ o
x = l2xx′σH + l2xy′σh + l2xz′σv (4.77)

σ o
y = l2yx′σH + l2yy′σh + l2yz′σv (4.78)

σ o
z = l2zx′σH + l2zy′σh + l2zz′σv (4.79)
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τ o
xy = lxx′ lyx′σH + lxy′ lyy′σh + lxz′ lyz′σv (4.80)

τ o
yz = lyx′ lzx′σH + lyy′ lzy′σh + lyz′ lzz′σv (4.81)

τ o
zx = lzx′ lxx′σH + lzy′ lxy′σh + lzz′ lxz′σv (4.82)

The superscript o on the stresses denote that these are the virgin formation stresses.

4.3.2. The general elastic solution

The solutions corresponding to Eqs. (4.43)–(4.45) are found assuming plane strain normal
to the borehole axis.

Again, it is convenient to express the stresses in terms of cylindrical polar coordinates
r , θ and z, where r represents the distance from the borehole axis, θ the azimuth angle
relative to the x-axis, and z is the position along the borehole axis (see Fig. 4.6). The stress
solutions can be written:

σr = σ o
x + σ o

y

2

(
1 − R2

w

r2

)
+ σ o

x − σ o
y

2

(
1 + 3

R4
w

r4
− 4
R2

w

r2

)
cos 2θ

+ τ o
xy

(
1 + 3

R4
w

r4
− 4
R2

w

r2

)
sin 2θ + pw

R2
w

r2
(4.83)

Fig. 4.6. The transformation geometry.
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σθ = σ o
x + σ o

y

2

(
1 + R2

w

r2

)
− σ o

x − σ o
y

2

(
1 + 3

R4
w

r4

)
cos 2θ

− τ o
xy

(
1 + 3

R4
w

r4

)
sin 2θ − pw

R2
w

r2
(4.84)

σz = σ o
z − νfr

[
2(σ o

x − σ o
y )
R2

w

r2
cos 2θ + 4τ o

xy

R2
w

r2
sin 2θ

]
(4.85)

τrθ = σ o
y − σ o

x

2

(
1 − 3

R4
w

r4
+ 2
R2

w

r2

)
sin 2θ

+ τ o
xy

(
1 − 3

R4
w

r4
+ 2
R2

w

r2

)
cos 2θ (4.86)

τθz = (−τ o
xz sin θ + τ o

yz cos θ)

(
1 + R2

w

r2

)
(4.87)

τrz = (τ o
xz cos θ + τ o

yz sin θ)

(
1 − R2

w

r2

)
(4.88)

The borehole influence is given by terms in r−2 and r−4, which vanish rapidly with in-
creasing r . Thus, for large r the borehole influence vanishes, and the equations degenerate
to Eqs. (4.41)–(4.46).

The solutions depend on the angle θ (see Fig. 4.5) indicating that the stresses vary with
position around the wellbore. Generally the shear stresses are non-zero. Thus σr , σθ and
σz are not principal stresses for arbitrary orientations of the well.

At the wellbore wall, the equations are simplified to

σr = pw (4.89)

σθ = σ o
x + σ o

y − 2(σ o
x − σ o

y ) cos 2θ − 4τ o
xy sin 2θ − pw (4.90)

σz = σ o
z − νfr

[
2(σ o

x − σ o
y ) cos 2θ + 4τ o

xy sin 2θ
]

(4.91)

τrθ = 0 (4.92)

τθz = 2(−τ o
xz sin θ + τ o

yz cos θ) (4.93)

τrz = 0 (4.94)

These are the equations which are used in linear elastic analysis of borehole stability.
The stress solutions as given by Eqs. (4.83)–(4.88) and Eqs. (4.89)–(4.94) are the stress

solutions for nonporous materials or for porous material with constant pore pressure. Due
to the superposition principle, pore pressure effects may simply be added. Thus, if we
assume a radially symmetric pressure distribution around the borehole, the pore pressure
terms from Eqs. (4.55)–(4.57) or Eqs. (4.66)–(4.68) may be used directly.

4.3.3. Borehole along a principal stress direction

For a hole along a principal stress direction, the general equations (4.83)–(4.88) simplify
considerably. We here give the resulting equations for a vertical borehole, but the expres-
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sions for a horizontal borehole along a principal stress are easily obtained by interchanging
the far-field stresses.

σr = σH + σh

2

(
1 − R2

w

r2

)
+ σH − σh

2

(
1 + 3

R4
w

r4
− 4
R2

w

r2

)
cos 2θ + pw

R2
w

r2
(4.95)

σθ = σH + σh

2

(
1 + R2

w

r2

)
− σH − σh

2

(
1 + 3

R4
w

r4

)
cos 2θ − pw

R2
w

r2
(4.96)

σz = σv − 2νfr(σH − σh)
R2

w

r2
cos 2θ (4.97)

τrθ = −σH − σh

2

(
1 − 3

R4
w

r4
+ 2
R2

w

r2

)
sin 2θ (4.98)

τrz = τθz = 0 (4.99)

Note that it is clear from the general definitions that θ is in this case measured relative to
the direction of the major horizontal stress.

At the borehole wall the equations simplify to

σr = pw (4.100)

σθ = σH + σh − 2(σH − σh) cos 2θ − pw (4.101)

σz = σv − 2νfr(σH − σh) cos 2θ (4.102)

τrθ = τθz = τrz = 0 (4.103)

The sum of the normal stresses is

σr + σθ + σz = σv + σH + σh − 2(1 + νfr)(σH − σh)
R2

w

r2
cos 2θ (4.104)

which shows that unlike the situation for equal horizontal stresses (see the discussion fol-
lowing Eq. (4.42)), the drillout leads to a change in the mean stress. The average change
(along a circular path concentric with the hole) is zero, but consists of an increase in mean
stress in the direction of the minor horizontal stress, and a decrease in the major horizontal
stress direction. See Fig. 4.7 for an illustration. Thus, immediately after drillout, we ex-
pect a pore pressure increase along the σh-direction and a pore pressure decrease along the
σH-direction (since a change in mean stress leads to a volumetric strain).

Eq. (4.101) shows that the tangential stress at the borehole wall varies between the max-
imum value

σθ,max = 3σH − σh − pw (4.105)

and the minimum value

σθ,min = 3σh − σH − pw (4.106)

where the maximum value occurs in the direction of σh and the minimum value in the direc-
tion of σH. The variation in tangential stress around the borehole is illustrated in Fig. 4.8.
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Fig. 4.7. Change in mean stress due to the drillout of a borehole in anisotropic far field stresses. White is increase
in mean stress, black is decrease in mean stress. The dotted lines shows the contours of no change.

Fig. 4.8. Change in tangential stress due to the drillout of a borehole in anisotropic far field stresses. White is
increase in tangential stress, black is decrease in tangential stress. The dotted lines shows the contours of no
change.

4.4. Poroelastic time dependent effects

In a nonporous, linear elastic material, the stress redistribution upon drilling or well pres-
sure change is immediate. In a porous and permeable medium, however, there are time
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effects due to the fact that the pore pressure propagates with a limited rate. (See Sec-
tion 1.9.1.)

There are two main sources of the poroelastic time effects:

1. Pore pressure change due to production or the invasion of the wellbore fluid.

2. Pore pressure change because the redistribution of the formation stresses gives a vol-
umetric strain, see e.g. Eq. (4.104).

While the first mechanism requires a non-sealing wellbore wall, the second will occur
even if the wellbore wall is completely sealed.

Detournay and Cheng (1988) discuss in detail the case of a vertical hole with unequal
far-field stresses. We reproduce some of their results here, but strongly recommend the
original paper for a complete discussion. See also Chapter 2 of Charlez (1997).

4.4.1. Wellbore pressure invasion

We consider first case 1, in which the pore pressure is changed by communication with
the wellbore pressure. Let us assume that initially pw = pfo, that we have a permeable
borehole wall and that at time zero the well pressure is changed by �pw. Assuming an
axisymmetric pressure profile, the pore pressure is decoupled from the deformation, and
the pressure inside the formation will develop according to a decoupled diffusion equation
similar to Eq. (1.241). The pressure development as a function of time and radial distance
into the formation is shown in Fig. 4.9. The parameter t ′ labelling the curves is a dimen-
sionless time, defined by

t ′ = t CD

R2
w

(4.107)

Fig. 4.9. Well pressure penetration. The curves are labelled by the dimensionless time t ′ (see Eq. (4.107)). After
Detournay and Cheng (1988), with permission from Elsevier Science Publishers.
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where the diffusion constant CD is given by Eq. (1.242). For an 8′′ hole, t ′ = 1 corresponds
to milliseconds or less for a high-permeable sand, and up to several days for a tight shale.

Once the pore pressure profile is known, the tangential stress may be computed by
Eq. (4.56). If we assume that as time tends to infinity the well pressure change has pen-
etrated deeply into the formation, we see from Eq. (4.56) that the contribution to the
tangential stress from the pore pressure change is

�σθ(t → ∞) = η�pw

(
1 + R2

w

r2

)
(4.108)

This is of course in addition to the elastic contribution as given by the first two terms of
Eq. (4.56) (or by Eq. (4.44)).

Note that the assumptions leading to Eq. (4.108) are different from those leading to
Eq. (4.67). The latter assumes a steady flow for large times, while the former assumes that
the pore pressure far into the formation has become equal to the well pressure for large
time. Both cases are approximations that are not fulfilled in practise.

We also see from Eq. (4.59) that at the borehole wall, the change in tangential stress is

�σθ = 2η�pw (4.109)

at all times.
There are no explicit analytical solutions of the diffusion equation for the current prob-

lem, and hence it must be solved by numerical methods.
In Fig. 4.10 we show the time development of the pore pressure induced contribution

to the tangential stress. Let us assume that we are considering production, i.e. �pw is
negative. We see that at the borehole wall, the tangential stress is reduced relative to the
elastic case at all times. However, for short times, we have an increase in the tangential
stress in the near wellbore region. The region of increased stress propagates outwards with
time.

Fig. 4.10. Tangential stress due to well pressure penetration. The curves are labelled by the dimensionless time t ′.
After Detournay and Cheng (1988), with permission from Elsevier Science Publishers.
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The origin of this increase in tangential stress may be understood by considering that
the reduced tangential stress near the borehole must be compensated by an increase of
tangential stress further away. The position of the region of increased radial stress follows
the position the pressure front. Hence it propagates outwards and broadens with time.

4.4.2. Drillout induced pore pressure changes

We saw (e.g. in Eq. (4.104)) that when the farfield horizontal stresses are unequal, the
drillout leads to a volumetric strain and hence to a change in pressure, which will dissipate
with time due to fluid flow. This will lead to time-dependence of the near wellbore stresses,
also when the wellbore wall is completely sealing.

The pore pressure change depends both on the radial position and on the azimuth. Hence
there will be both radial and tangential fluid flow as a result of the drillout. Since the
diffusion distance is shortest close to the borehole, pore pressure will reach equilibrium
fastest here. A partly or fully open wellbore wall will contribute further to this.

As a result, the near wellbore behaviour will be drained, whereas the response deeper
into the formation will be undrained for short times. Since the drained moduli are smaller
than the undrained, the stress concentration in the near wellbore region will initially be
shielded relative to its full elastic value. This is similar to the shielding seen for nonlinear
formation, or plastic formations, see Sections 4.2.5 and 4.6. Obviously, the effect will be
strongest when there is a significant difference between drained and undrained parameters,
i.e. for soft materials.

As the pore pressure imbalance dissipates, the shielding disappears, and the elastic stress
concentration is reestablished. Detournay and Cheng (1988) suggested that this may be a
mechanism of delayed failure for boreholes in tight formations.

Fig. 4.11 shows the variation in tangential stress as a function of radius in the minimum
stress direction for various dimensionless times (Eq. (4.107)). The plot has been generated
for ν = 0.4, νfr = 0.2 and Skempton’s B = 0.8. (An example of a set of parameters
in our notation that gives these values are φ = 0.15, Kfr = 4 GPa, Gfr = 4 GPa and
Ks = 37.5 GPa.)

We underline that the figure shows only the tangential stress due to the deviatoric load-
ing, i.e. the stress corresponding to the cos 2θ term in Eq. (4.96).

Fig. 4.12 shows the variation in tangential stress at the wellbore wall as a function of
time, again in the direction of the minimum horizontal stress. The initial reduction in stress
concentration is evident.

For a numerical example, assume pw = 20 MPa, σH = 40 MPa, σh = 30 MPa. Then
Fig. 4.12 shows that σθ ≈ 15 MPa initially and σθ ≈ 20 MPa at large times. The total
tangential stress is found by adding the contribution from the mean farfield stress, σθ =
σH + σh − pw = 50 MPa. Thus, the tangential stress at the borehole wall (in the direction
of the minor stress) increases from 65 MPa at early times to 70 MPa at large times.

In addition to the poroelastic time effects, there are also time effects due to temperature
change and chemical processes. See Chapter 9 for further discussion.
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Fig. 4.11. Time development of tangential stress (induced by anisotropic horizontal stresses) in the direction
of minimum horizontal stress. The different curves correspond to different t ′ as shown by the legend. After
Detournay and Cheng (1988), with permission from Elsevier Science Publishers.

Fig. 4.12. Time development of tangential stress (induced by anisotropic horizontal stresses) at the borehole
wall, in the direction of the minimum horizontal stress. After Detournay and Cheng (1988), with permission from
Elsevier Science Publishers.

4.5. Borehole failure criteria

As shown in the previous sections, there may be large stress deviations in the formation
close to the borehole, when the borehole pressure differs from the formation pressure. If
the stress deviation somewhere exceeds the failure criterion for the rock, the rock fails.
This situation is what we shall associate with the term “borehole failure” in this section.
Conversely, “borehole failure criterion” means the boundary conditions for which borehole
failure occurs.

The consequences of borehole failure according to this definition are normally bore-
hole deformations of some kind. Note, however, that such deformations are not necessarily



BOREHOLE FAILURE CRITERIA 155

dramatic from an operational point of view (see Chapter 9). Thus, “borehole failure” as
defined here should by no means be taken as a synonym for a lost well. Development of
borehole failure beyond failure initiation is discussed in Section 4.6.

4.5.1. Vertical hole, isotropic horizontal stresses and impermeable borehole wall

For a material that behaves linearly elastic, the largest stress differences occur at the bore-
hole wall, hence rock failure is expected to initiate there.

We start with the simplest case, a vertical borehole with constant pore pressure and
isotropic farfield horizontal stresses. We assume that the wellbore is lined with a perfect
mud cake, which means that the pore pressure is not influenced by the well pressure.

Within this assumptions, the principal stresses at the borehole wall are, according to
Eqs. (4.43)–(4.45)

σr = pw (4.110)

σθ = 2σh − pw (4.111)

σz = σv (4.112)

There are several conditions for which the borehole may fail, depending on the relative
magnitudes of the principal stresses. Let us first assume that we are lowering pw such that
σr = pw becomes the smallest principal stress. We see from Eqs. (4.111) and (4.112) that
depending on the relative magnitude of σh and σv, either σθ or σz will become the largest
principal stress at the borehole wall.

Consider first the situation where σθ > σz > σr at the borehole wall. According to the
Mohr–Coulomb criterion (Eq. (2.22)), failure will occur when

σ ′
θ = C0 + σ ′

r tan2 β (4.113)

Using an effective stress coefficient equal to 1 for failure (see Section 2.6.1) we find that
the failure criterion for the borehole becomes

pw,min = 2σh + pf(tan2 β − 1)− C0

1 + tan2 β
= pf + 2(σh − pf)− C0

1 + tan2 β
(4.114)

Thus, if the well pressure falls below the value given by Eq. (4.114), shear failure will
occur at the borehole wall.

Next, assume that σh is smaller relative to σv, such that σv is the largest principal stress
at failure. Proceeding as above, the failure criterion becomes

pw = σv + pf(tan2 β − 1)− C0

tan2 β
= pf + σv − pf − C0

tan2 β
(4.115)

In practice, one needs to calculate both cases, and pick the criterion that gives the largest
borehole pressure at failure.

In order to map the region of mechanical stability for a borehole, all six permutations
of the three principal stresses σr , σθ and σz need to be considered. The resulting equations
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TABLE 4.1 Conditions for shear failure in vertical boreholes with isotropic far-field horizontal stresses
and impermeable borehole wall

Case σ1 � σ2 � σ3 Borehole failure occurs if

a σθ � σz � σr pw � pf + 2(σh − pf)− C0

1 + tan2 β

b σz � σθ � σr pw � pf + σv − pf − C0

tan2 β

c σz � σr � σθ pw � pf + 2(σh − pf)− σv − pf − C0

tan2 β

d σr � σz � σθ pw � pf + 2(σh − pf) tan2 β + C0

1 + tan2 β

e σr � σθ � σz pw � pf + (σv − pf) tan2 β + C0

f σθ � σr � σz pw � pf + 2(σh − pf)− (σv − pf) tan2 β − C0

In practise, cases d, e and f are only of academic interest.

are summarized in Table 4.1. The various conditions for borehole failure are shown graph-
ically in Fig. 4.13. Cases d, e and f are mainly of academic interest however, since they
imply a wellbore pressure higher than the overburden stress, a condition that is usually
unacceptable in drilling. See discussion below.

The conditions constitute a polygon enframing a region where the borehole is stable
with respect to shear failure; if subject to stress states outside the polygon, the borehole
will fail.

In addition to the shear failure criteria, we must consider that σ ′
θ at the borehole wall

becomes negative if the well pressure is sufficiently large, according to Eq. (4.111). If
σ ′
θ < −T0, where T0 is the tensile strength of the material, tensile failure will occur at the

borehole wall. This adds an additional criterion for borehole failure to the list:

pfrac
w,max = 2σh − pf + T0 (4.116)

According to this criterion, tensile failure will occur at the borehole wall if the well pressure
is increased above the value given by Eq. (4.116). Borehole failure of this kind is called
hydraulic fracturing, which is a topic we will return to in Chapters 8, 9 and 11.

Note that the criterion in Eq. (4.116) applies if the full stress concentration around the
borehole as predicted by Eq. (4.111) exists. This requires a perfectly circular hole, and a
linear elastic material. In practice, both these criteria will be only partly fulfilled, and hence
the real limit for hydraulic fracturing will occur at a lower value for pw.

When the fracture has propagated away from the borehole, it may continue to propagate
if pw is higher than approximately σh + T0. (See further discussion in Section 11.3.) This
corresponds to the diagonal line labelled σr = σθ in Fig. 4.13 (for the case T0 = 0).

Fig. 4.13 is a graphical representation of the failure criteria discussed, assuming C0 = 0,
pf = 0.4σv and tan2 β = 3. The shaded region is bounded by the shear failure criteria,
while the oblique line labelled “Vertical fracture init.” represents hydraulic fracturing.
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Fig. 4.13. Graphical representation of conditions for borehole failure. The Mohr–Coulomb failure criterion with
C0 = 0, pf = 0.4σv and tan2 β = 3 is assumed. The polygon will grow in all directions if C0 is nonzero. In
particular, if T0 = 0, the line c will coincide with the vertical fracturing line if C0 = σv − pf. (After Guenot,
1987; with permission from A.A. Balkema.)

The horizontal line labelled “Horizontal fracturing” represents another failure criterion,
which needs to be taken into account: If there is any preexisting fracture or flaw in the
borehole wall, the wall pressure will act with a vertical component on the formation there.
A horizontal fracture will then grow if σv − pw is less than −T0, i.e. if pw > σv + T0.

4.5.2. Vertical hole, isotropic horizontal stresses and permeable borehole wall

If the borehole wall is permeable, the pore pressure at the borehole wall is equal to the well
pressure. This means that we must use pw rather than pf when computing the effective
stresses. In addition, we must take into account the change in the total stresses induced by
the varying pore pressure, as given by Eqs. (4.58)–(4.60)).

The stresses at the wellbore wall are thus

σr = pw (4.117)

σθ = 2σh − pw + 2η(pw − pfo) (4.118)

σz = σv + 2η(pw − pfo) (4.119)

where η is the poroelastic stress coefficient (see Eq. (4.54)) and pfo is the farfield pore
pressure. Remember that the last equation follows from the plane strain assumption, and is
hence strictly valid only for an infinitely long borehole.
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Inserting these expressions into the Mohr–Coulomb criterion, using pw when computing
the effective stress, we then find for σθ > σz > σr

pw,min = 2σh − 2ηpfo − C0

2 − 2η
= 2σh − α 1−2νfr

1−νfr
pfo − C0

2 − α 1−2νfr
1−νfr

(4.120)

Note that the equation contains Biot’s α because of the elastic redistribution of the stresses
due to the pore pressure profile, however we still use an effective stress coefficient equal to
unity in the failure criterion. Also, observe that since the minor effective stress is zero, the
failure angle does not appear in Eq. (4.120).

Similarly, for σz > σθ > σr we find

pw,min = σv − 2ηpfo − C0

1 − 2η
= σv − α 1−2νfr

1−νfr
pfo − C0

1 − α 1−2νfr
1−νfr

(4.121)

Since σ ′
r is always equal to zero, it is of little interest to study the cases corresponding to c,

d, e, f in Table 4.1. The remaining criteria to be considered are thus the hydraulic fracturing
criteria, σ ′

θ = −T0 and σ ′
z = −T0. We find for vertical fracturing

pfrac
w,max = 2σh − 2ηpfo + T0

2 − 2η
= 2σh − α 1−2νfr

1−νfr
pfo + T0

2 − α 1−2νfr
1−νfr

(4.122)

and for horizontal fracturing

pfrac
w,max = σv − 2ηpfo + T0

1 − 2η
= σv − α 1−2νfr

1−νfr
pfo + T0

1 − α 1−2νfr
1−νfr

(4.123)

Again, this last equation assumes plane strain conditions, and can not be directly applied to
pressurization of a limited section of a borehole. Hence, the equation has limited practical
applicability, and is mainly of academic interest.

4.5.3. Borehole along a principal stress direction

The stresses at the wall of a vertical hole with unequal far-field stresses, and constant pore
pressure, were given in Eqs. (4.100)–(4.103). Since all shear stresses vanish in this case,
σr , σθ and σz are the principal stresses and may be used directly in the failure criterion.

From Eq. (4.101) and Fig. 4.8 it is clear that the maximum tangential stress occurs in
the direction of the minimum horizontal stress, and hence shear failure at the borehole wall
will initiate in the direction of the minimum horizontal stress, see Fig. 4.14.

Comparing to Eq. (4.111) we see that the critical well pressure when σθ > σz > σr
(case a of Table 4.1) may be found by substituting 2σh with 3σH − σh in Eq. (4.114):

pw,min = pf + 3σH − σh − 2pf − C0

1 + tan2 β
(4.124)
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Fig. 4.14. Location of shear failure initiation at the wall of a vertical hole with anisotropic horizontal stresses.

Similarly, by comparing Eq. (4.102) to Eq. (4.112) we see that for σz > σθ > σr , (case b
of Table 4.1) we have

pw,min = pf + σv + 2|νfr|(σH − σh)− pf − C0

tan2 β
(4.125)

Note that we need to take the absolute value of the Poisson’s ratio. This is because the
largest value of σz in Eq. (4.102) occurs for θ = 0° for negative νfr and for θ = 90° for
positive νfr.

The tensile failure criterion Eq. (4.116) is also modified if the horizontal stress is
anisotropic. In this case, failure will occur at the positions where σθ is smallest, and hence
fracturing will occur in the direction of maximum horizontal stress (see Fig. 4.8). The
criterion becomes

pfrac
w,max = 3σh − σH − pf + T0 (4.126)

Here we see that an increase in the largest horizontal stress reduces the upper stability
limit for the well pressure. Thus anisotropy in the formation around a borehole reduces the
region where the borehole is stable.

Observe that if σH is sufficiently large, the pressure given by Eq. (4.126) may be smaller
than the criterion for fracture growth outside the influence of the borehole, which is pw ≈
σh + T0. Eq. (4.126) may thus be the criterion for initiation of a fracture that does not
propagate beyond the stress concentration around the borehole. See Section 11.2 for a
more detailed discussion.

The above equations were derived for a vertical borehole. It is however trivial to adept
them to a horizontal borehole along a principal stress direction by appropriately inter-
changing the far-field stresses. As an example, for a horizontal hole along σH, we must
interchange σv and σH (assuming σv > σh).

4.5.4. Borehole in a general direction

In the general case it is not possible to obtain closed-form expressions for the critical well
pressure, and one must resort to numerical solution methods.
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In brief, the procedure for establishing the lowest possible well pressure is as follows:

1. From the known far-field stresses, compute the stresses in the borehole coordinate
system according to Eqs. (4.77)–(4.82).

2. Compute the stresses at the borehole wall according to Eqs. (4.89)–(4.94).

3. Subdivide the interval 0 < θ < π into a number of sub-intervals (depending on the
accuracy required). For each sub-interval perform the following:

• Diagonalize the stress tensor at the borehole wall to find the principal stresses.

• Find the critical well pressure by inserting the principal stresses into the failure
criterion.

4. The lowest admissible pw is the largest critical well pressure found from the iteration
in the step above.

4.6. Beyond failure initiation

Borehole failure is commonly observed as breakouts in the borehole wall. Fig. 4.15 shows
a typical example of a failure mode denoted “borehole elongation”, due to the extension of
the borehole cross-section in one direction. The stress conditions causing this cavity to fail
corresponded to case a in Table 4.1. The diagram in Fig. 4.13 is split in various sectors by
the dashed border lines where two principal stresses are equal. Each sector is associated
with a failure condition in Table 4.1. A typical mode of rupture is associated with each
sector. These are described in Table 4.2 and Figs. 4.16–4.18 for the most relevant cases.

The orientation of breakouts due to failure of type a are related to the orientation of the
horizontal stresses, as discussed in Section 4.5.3. This connection is used in the field for
determining the direction of the stresses, see further discussion in Section 8.3.2.

Fig. 4.15. Cross-section of a cylindrical cavity after failure.
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TABLE 4.2 Rupture modes for the failure of boreholes (Maury and Sauzay, 1987)

Case Rupture mode Figure

Shear, a Rupture occurs in shear surfaces intersecting parallel to the axial stress Fig. 4.16
Shear, b Rupture occurs in fragments of toroidal shape Fig. 4.17
Shear, c Rupture occurs in multishear surfaces intersecting parallel to the radius Fig. 4.18
Tensile Hydraulic fracturing; isolated fractures parallel to the borehole axis Fig. 11.1

Fig. 4.16. Failure planes caused by the tangential (σ ′
1) and the radial (σ ′

3) stresses. (a) Stresses on an element at
the wellbore wall. (b) Breakouts.

Fig. 4.17. Failure planes generated by the vertical (σ ′
1) and the radial (σ ′

3) stresses. Breakouts will have toroidal
shapes. (a) Stresses on an element at the wellbore wall. (b) Breakouts.

Anisotropy in the material parameters of the rock also affects the orientation of break-
outs. When the horizontal stress is isotropic, the breakouts tend to be oriented normal to the
joints of bedding in the material (Kaiser et al., 1985). Note, however, that breakouts of the
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Fig. 4.18. Failure planes generated by the vertical (σ ′
1) and the tangential (σ ′

3) stresses. Radial fractures may
develop following a helical path along the well. (a) Stresses on an element at the wellbore wall. (b) Breakouts.

form shown in Fig. 4.15 may occur even if both the stress field and the material parameters
are isotropic.

The criteria for the initiation of borehole failure discussed in Section 4.5 only define
the initiation of borehole failure, and do not reveal the consequences of failure initiation,
which is of course of equal interest.

An idea of the development of borehole failure can be obtained by tracing a potential
failure plane from the borehole wall into the formation. We here choose the simplest case
of a linearly elastic formation and isotropic formation stresses, and assume pw < σh. The
orientation of a potential failure plane at a distance r from the borehole centre is given by
the orientation of the largest and smallest principal stress (σθ and σr , respectively), and the
failure angle β (which is related to the coefficient of internal friction, see Section 2.3.1).
The situation is shown schematically in Fig. 4.19. The plane proceeds in the direction

Fig. 4.19.
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(π/2 − β) relative to the direction of σθ . According to Fig. 4.19, we have

�r

r�θ
→ dr

r dθ
= tan

(
π

2
− β

)
(4.127)

Eq. (4.127) is a differential equation, with the solutions

r = C1 e±bθ (4.128)

where b is given by

b = tan

(
π

2
− β

)
=
√
μ2 + 1 − μ (4.129)

and C1 is a constant. (The coefficient of internal friction μ was defined in Eq. (2.6).) The
±-sign in Eq. (4.128) arises because we have an alternate failure plane which is the mirror
image about the σr -direction of the one indicated in the figure.

Fig. 4.20 shows a set of curves as given by Eq. (4.128). There are clear similarities in
the crack patterns of Figs. 4.15 and 4.20. In Fig. 4.20, the number of failure planes and the
positions of the failure plane initiations (determined by the constant C1) were deliberately
chosen such as to make the figure resemble the observation. In a more extended analysis,
Zoback et al. (1985) connect these parameters to horizontal stress anisotropy. They also
suggest that the formation of such breakouts takes place in successive stages, where new
generations of failure planes develop outside the initial ones.

This suggestion is founded on an important aspect of the problem: the formation of a
failure plane causes a redistribution of the stresses around the borehole. Thus the conditions
for failure of the still intact parts of the borehole wall are being altered. Unfortunately, this
alteration also implies a reduction in the symmetry of the problem so that calculation of
the stresses becomes more complicated.

Redistribution of stresses and a reduction of stress state symmetry may even occur prior
to the formation of shear failure planes, if the symmetric deformation becomes unstable

Fig. 4.20. Potential failure planes surrounding a borehole.
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relative to a surface buckling (Vardoulakis et al., 1988). Due to the reduced symmetry, the
complexity of the problem rises quickly, and numerical techniques are normally needed
for further modelling.

The failure process also involves opening of cracks oriented parallel to the major princi-
pal stress (or—more precisely—oriented with their normals parallel to the minor principal
stress), as discussed in Section 6.4.4. In a situation corresponding to case a, Table 4.1,
these cracks will be oriented parallel to the borehole wall. The opening and growth of
these cracks is by some authors considered as the fundamental fracture mechanism for
breakout formation in boreholes (Zheng et al., 1988; Ewy and Cook, 1989).

Theoretical simulations based on this consideration also resulted in elongated boreholes
similar to Fig. 4.15. The simulations further gave the important result that the elongated
borehole becomes stable when it has reached a specific shape. This shape depends on the
actual combination of stresses and strength, and also on the stress path.

In these simulations, a breakout is initiated as a slab of rock covering a certain angle
of the borehole wall is spalled off. This causes further stress concentrations in front of the
spalled region, and further spalling takes place within this sector of the borehole. Thus,
once a breakout is initiated within a sector, it will not become wider, but will deepen until
it reaches its stable shape.

4.6.1. A simple plasticity model

Stabilization of the borehole after failure initiation can also be described analytically, given
some simplifying assumptions. We shall here discuss a simple model, in which the rock is
assumed to behave according to the linear elastic/ideally plastic model described in Sec-
tion 2.8.1 (Fig. 2.24). Rock failure is in this model associated with the transition from
elastic to plastic behaviour. This transition does not involve the development of failure
planes, hence the symmetry of the stress state is preserved after failure.

Consider the situation discussed in Section 4.5.1, with a low well pressure. If the stress
state at the borehole wall fulfils the failure criterion, there will be a zone surrounding the
borehole where the rock acts as a plastic material. Outside this region the material remains
elastic. In the outer, elastic region the general solutions Eqs. (4.35) and (4.36) are still
valid (although the coefficients of integration will change). In the inner, “plastic zone”, the
equation of equilibrium (4.28) is valid, but the principal stresses must also satisfy a yield
criterion.

The Tresca criterion

To illustrate the main principles with as simple mathematics as possible, we first use the
Tresca criterion (Eq. (2.5)). We assume that σθ and σr will be the largest and smallest
principal stresses in the plastic zone. The Tresca criterion then requires

σθ − σr = C0 (4.130)
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in the plastic zone. Introducing Eq. (4.130) into Eq. (4.28) we have

dσr
dr

= C0

r
(4.131)

The solution of Eq. (4.131) taking into account the boundary condition σr(Rw) = pw is

σr = pw + C0 ln
r

Rw
(4.132)

The tangential stress then follows immediately from the failure criterion (Eq. (4.130)):

σθ = pw + C0

(
ln
r

Rw
+ 1

)
(4.133)

Eqs. (4.132) and (4.133) apply in the plastic zone, Rw < r < Rp, where Rp is the radius
of the plastic zone.

Outside the plastic zone, r > Rp, the elastic solutions given by Eqs. (4.35) and
Eqs. (4.36) apply. C′

1 is determined by the requirement that the stresses should be equal
to σh as r approaches infinity, while C′

2 is determined by requiring that σθ − σr fulfils the
failure criterion (Eq. (4.130)) at r = Rp. The result is

σr = σh − 1

2
C0

(
Rp

r

)2

(4.134)

σθ = σh + 1

2
C0

(
Rp

r

)2

(4.135)

The plastic zone radius is determined from the requirement that the radial stress should be
continuous at r = Rp. From Eqs. (4.132) and (4.134) we then find

Rp = Rw e
σh−pw
C0

− 1
2 (4.136)

The stress distribution around the borehole is shown in Fig. 4.21. Although this solution
has been obtained through a series of simplifying assumptions, it illustrates the general
features of the plastic zone concept. It will, however, become clear below that the Tresca
based solution above is not even approximately accurate in frictional materials.

The Mohr–Coulomb criterion

The calculation steps are essentially the same for the Mohr–Coulomb criterion, although
the formulas become more complex. As above, we assume that σr is the minimum stress
and σθ the maximum stress. For simplicity, we assume pf = 0. The generalization to a con-
stant pore pressure is however simple. We write the Mohr–Coulomb criterion (Eq. (2.22))
in the elastic zone on the form

σ ′
θ = C0 + kσ ′

r (4.137)

where k = tan2 β and β is the failure angle.
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Fig. 4.21. Stresses around a borehole with a plastic zone, according to the Tresca model. Parameters are
C0 = 0.5σh, pw = 0.25σh.

For the plastified zone we allow the possibility of altered parameters

σ ′
θ = C′

0 + k′σ ′
r (4.138)

Eliminating σθ from the failure criterion in the plastified zone, Eq. (4.138), and inserting
into the force balance equation, Eq. (4.28), we obtain

∂σr

∂r
+ σr(1 − k′)

r
= C′

0

r
(4.139)

Solving Eq. (4.139) using the boundary condition σr(Rw) = pw gives the solution within
the plastified region

σr =
(
pw + C′

0

k′ − 1

)(
r

Rw

)k′−1

− C′
0

k′ − 1
(4.140)

The tangential stress follows from the failure criterion, Eq. (4.138):

σθ = C′
0 + k′σr = k′

(
pw + C′

0

k′ − 1

)(
r

Rw

)k′−1

− C′
0

k′ − 1
(4.141)

From the requirement that σθ = σh as r becomes very large it follows that the elastic
zone stresses (Eqs. (4.35) and (4.36)) can be written

σr = σh + C′
2

1

r2
(4.142)

σθ = σh − C′
2

1

r2
(4.143)

Adding these equations gives the well-known relation

σθ = 2σh − σr (4.144)
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At the radius of the plastic zone, the intact material yield criterion must be fulfilled, hence
by inserting Eq. (4.144) into Eq. (4.137) we have:

σr(Rp) = 2σh − C0

k + 1
(4.145)

Equating this expression to the inner zone expression for σr , Eq. (4.140), gives an equation
to determine the plastic zone radius, which is found to be

Rp

Rw
=
[

2σh − C0 + (k + 1)
C′

0
k′−1

(pw + C′
0

k′−1 )(k + 1)

] 1
k′−1

(4.146)

The coefficient C′
2 is determined from Eq. (4.142)

C′
2 = R2

p

(
σh − σr(Rp)

)
(4.147)

which using Eq. (4.145) gives

C′
2 = R2

w
(k − 1)σh + C0

k + 1

[
2σh − C0 + (k + 1)

C′
0

k′−1

(pw + C′
0

k′−1 )(k + 1)

] 2
k′−1

(4.148)

In terms of the attraction, A = C0/(k − 1) (see Eq. (2.9)), Eq. (4.146) may be written
as

Rp

Rw
=
[

2σh + (1 − k)A + (1 + k)A′

(pw + A′)(k + 1)

] 1
k′−1

(4.149)

If A′ = A this simplifies to

Rp

Rw
=
[

2(σh + A)
(pw + A)(k + 1)

] 1
k′−1

(4.150)

The stress distribution around the borehole, assuming a friction angle of 30° is shown in
Fig. 4.22. Note that the extent of the plastic zone is considerably smaller than for the Tresca
case. Fig. 4.23 illustrates how the radius of the plastic zone depends on the well pressure.
Observe that the extent of the plastic zone is reduced as the friction angle increases.

The axial stress σz is more tricky to determine. More sophisticated models indicate that
the plastic region consists of two zones; in the inner zone the axial stress is equal to the
tangential stress, while in the outer zone all three principal stresses may differ.

The models presented above are simplifications, since both are based on ideal plas-
ticity, and do not take properly into account how the plastic strain changes the yield
criterion. More realistic models need to incorporate a description of plastic flow and hard-
ening/softening, and necessarily become significantly more complicated than the simple
models sketched here. Although the Mohr–Coulomb based equations above may be used
for quick overview calculations, more advanced models, normally implemented in Finite
Element codes, are necessary for precise calculations.
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Fig. 4.22. Stresses around a borehole with a plastic zone, assuming the same failure criterion in the intact and
plastic zones. Parameters are C0 = 0.1σh, pw = 0.2σh, ϕ = 30°.

Fig. 4.23. Radius of the plastic zone versus well pressure, for friction angles 10° and 30°. Full lines correspond
to C0 = 0.5σh, while dashed lines are for C0 = 0.1σh.

Deformation and plastic strain

The deformation and plastic strain may be computed by the general methods outlined in
Section 2.8.1. To simplify equations we restrict ourselves to the Tresca criterion, Eq. (2.5).
We rewrite the criterion in the general form of Eq. (2.61)

f (σ ′
1, σ

′
2, σ

′
3) = f (σ ′

r , σ
′
θ ) = σ ′

θ − σ ′
r − C0 = 0 (4.151)
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and find the plastic strains according to the associated flow rule, Eq. (2.66)

ε
p
r = dλp

∂f

∂σr
= −dλp (4.152)

ε
p
θ = dλp

∂f

∂σθ
= dλp (4.153)

ε
p
z = dλp

∂f

∂σz
= 0 (4.154)

The total strains are given by the deformations (Eqs. (4.13)–(4.15)), while the plastic strains
can be found from Eq. (2.60). Inserting the resulting expressions into Eq. (4.19) we find

σ ′
r = (λfr + 2Gfr)

(
∂u

∂r
+ dλp

)
+ λfr

(
u

r
− dλp

)
(4.155)

Proceeding in the same way for σ ′
θ , and using the yield criterion, Eq. (4.151), gives

dλp = 1

2

u

r
− 1

2

∂u

∂r
− C0

4Gfr
(4.156)

Inserting the expression for dλp into Eq. (4.155), and using the force balance equation
(4.28) then gives the displacement equation

d2u

dr2
+ 1

r

du

dr
− u

r2
− C0

λfr +Gfr

1

r
+ α

λfr +Gfr

dpf

dr
= 0 (4.157)

In the following we restrict ourselves to the case where pf is constant, or where the deriva-
tive of pf with respect to r is proportional to 1/r . The latter case corresponds to stationary
radial flow, see Eq. (4.62).

The displacement equation can then be rewritten as

d2u

dr2
+ 1

r

du

dr
− u

r2
= P

r
(4.158)

where (using Eq. (4.62))

P = C0

λfr +Gfr
− α

λfr +Gfr

pfo − pw

ln(Re/Rw)
(4.159)

The second term is replaced by zero for the constant pf case.
The general solution of Eq. (4.158) is

u = C1r + C2

r
+ P

2
r ln r (4.160)

Entering this solution into Eq. (4.156) gives

dλp = C2

r2
− P

4
− C0

4Gfr
(4.161)

The integration constant C2 is now determined by requiring that dλp should be zero at
r = Rp, giving

dλp = 1

4

(
C0

Gfr
+ P

)[(
Rp

r

)2

− 1

]
(4.162)
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We have used the Tresca criterion, because it allows the main points to be demonstrated
with simple mathematics. Using a more realistic criterion, like the Mohr–Coulomb crite-
rion, adds significantly to the complexity of the calculations. See Risnes et al. (1982).

4.7. Spherical coordinates

In petroleum related rock mechanics stress and strain solutions in spherical coordinates are
of much less importance than solutions in cylindrical coordinates. While the cylindrical
geometry is often a good approximation for a borehole, spherical cavities are to a less
extent a good approximation to real cases.

Still, solutions in spherical coordinates have been employed as a crude approximation
to producing cavities (see Section 10.2.3), and are also useful in some methods for the
estimation of surface subsidence (see Chapter 12).

We therefore give a short presentation of some basic equations here.

4.7.1. Basic equations

We use the standard convention, and denote the spherical coordinates by (r, θ, φ), and limit
ourselves to a situation with full spherical symmetry. The only deformation is then in the
radial direction, and the non-zero strains are given by (see Appendix D.1.2 for the complete
expressions for strain in spherical coordinates)

εr = ∂u

∂r
(4.163)

εφ = εθ = u

r
(4.164)

The force equilibrium equation for the r-direction, corresponding to Eq. (4.28), becomes

dσr
dr

+ 1

r
(2σr − σθ − σφ) = 0 (4.165)

while, due to the symmetry assumed, the force equilibrium equation for the θ -direction
requires

σθ = σφ (4.166)

Eq. (4.165) is then simplified to

dσr
dr

+ 2

r
(σr − σθ ) = 0 (4.167)

Hooke’s law is reduced to (using εφ = εθ )
σr − αpf = (λfr + 2Gfr)εr + 2λfrεθ (4.168)

σθ − αpf = λfrεr + 2(λfr +Gfr)εθ (4.169)
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Inserting the expressions for the strains, Eqs. (4.163) and (4.164), into Hooke’s law, and
using the force equilibrium equation (4.167) gives the displacement equation

d2u

dr2
+ 2

r

du

dr
− 2

r2
u+ α

λfr + 2Gfr

dpf

dr
= 0 (4.170)

4.7.2. Stress distribution around a spherical cavity with no fluid flow

With no fluid flow the pore pressure will remain constant, equal to pfo, and the displace-
ment equation becomes

d2u

dr2
+ 2

r

du

dr
− 2

r2
u = d

dr

(
du

dr
+ 2
u

r

)
= d

dr

(
1

r2

d

dr
(r2u)

)
= 0 (4.171)

The general solution is

u = C1r + C2

r2
(4.172)

where the integration constants are to be determined from the boundary conditions

σr = pw for r = Rc (4.173)

σr = σo for r → ∞ (4.174)

Rc is the radius of the spherical cavity.
Proceeding as in Section 4.2.2, using Hooke’s law (Eqs. (4.168)–(4.169)), the stress

distribution around a spherical cavity is found to be given by

σr = σo − (σo − pw)

(
Rc

r

)3

(4.175)

σθ = σo + 1

2
(σo − pw)

(
Rc

r

)3

(4.176)

These stress solutions are sketched in Fig. 4.24. The thin dashed lines show the corre-
sponding distribution for a cylindrical hole (see Fig. 4.3). If we assume σo to be equal to
σh, the stress difference between the tangential and the radial stress at the cavity wall will
be 2(σh − pw) in the cylindrical hole case but only (3/2)(σh − pw) in the spherical cav-
ity case. It follows that a spherical cavity tends to be more stable than an open hole with
respect to shear failure.

4.7.3. Stress distribution with fluid flow

Darcy’s law (see Eq. (1.229)) for symmetric spherical flow into a cavity can be written

Q

4πr2
= k

ηf

dpf

dr
(4.177)
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Fig. 4.24. Stress distribution around a spherical cavity with no fluid flow. The thin dashed lines show the corre-
sponding distribution for a cylinder, see Fig. 4.3.

where 4πr2 is the area of a sphere of radius r . All the other parameters are the same as in
Eq. (4.61). If we assume that the flow rate is independent of r , the fluid pressure distribution
is given by

pf = pfo − (pfo − pw)
Rc

r
(4.178)

Solving the displacement equation, the steady state solutions for fluid flow into the cavity
can then be written:

σr = σo − [
σo − pw − 2η(pfo − pw)

](Rc

r

)3

− 2η(pfo − pw)
Rc

r
(4.179)

σθ = σo + 1

2

[
σo − pw − 2η(pfo − pw)

](Rc

r

)3

− η(pfo − pw)
Rc

r
(4.180)

At the cavity wall we have

σr = pw (4.181)

σθ = σo + 1

2
(σo − pw)− 2η(pfo − pw) (4.182)

As for the cylindrical hole the stresses at the free surface are the same as in the no-flow
case, except that the tangential stress has an additional term due to pressure drawdown.
This term is exactly the same as derived for the cylindrical vertical well.
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Chapter 5

Elastic wave propagation in rocks

Elastic waves are mechanical disturbances that propagate through a material. Such waves
are able to travel over very long distances through the Earth, and thus bring us information
about parts of the formations that are otherwise inaccessible. In seismic surveys, elastic
waves are generated at the surface, and the echoes from various layers in the formations
below are used to map the structure of the underground. Earthquakes are generated by
abrupt failure processes and propagate as elastic waves.

Elastic waves in air and water are usually called acoustic waves, or sound waves. These
terms are often used about elastic waves in rocks too. Elastic waves in rocks propagate with
a velocity that is given by elastic stiffnesses and the density of the rock. These parameters
depend on other parameters such as porosity. Thus elastic waves also provide a method by
which specific formation parameters can be estimated in the field.

As we proceed, we shall see that this evaluation is not straightforward—for example,
the stiffness probed by an elastic wave is generally different from the static stiffness. How-
ever, the fact that elastic waves are mechanical disturbances means that there has to be a
fundamental connection between rock acoustics and rock mechanics.

In this chapter we first present the fundamentals of elastic wave propagation in porous
media (Sections 5.1–5.5). Section 5.6 addresses the main focus of this chapter: the con-
nection between rock acoustics and rock mechanics. Finally, we give some background to
understand sonic wave propagation in boreholes and seismic waves through the subsurface
(Sections 5.7–5.9).

5.1. The wave equation

When an elastic wave passes through a material, each part of the material is forced into
oscillating motion. Consider a volume element within the material. The element is pushed
by the adjacent element behind it, and accelerates. The movement causes the volume el-
ement to push on the next element in front of it. This way the movement is propagating
from volume element to volume element through the material as a wave.

Wave propagation is described mathematically by the wave equation. This equation fol-
lows directly from Newton’s second law of motion: Force = mass · acceleration. The force
(per unit volume) acting on a volume element due to the stress the adjacent elements exert
was derived in Chapter 1. The force Fx in the x-direction is given as (see Eq. (1.14)):

Fx = ∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
(5.1)

For simplicity, we shall first consider a plane, unidirectional mode of deformation in the
x-direction. We shall further assume that the material is a fluid, so that no shear forces can
exist, that is τxy = τxz = 0. The mass (per unit volume) is given as the material’s density
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ρ, and the acceleration is given as the second derivative (with respect to time t) of the
displacement u of the volume element. Newton’s second law of motion thus requires that

ρ
∂2u

∂t2
= ∂σx

∂x
(5.2)

The stress σx can be expressed in terms of the displacement u according to Hooke’s law
(Eqs. (1.93)–(1.98)), which under the conditions assumed here (plane wave in x-direction,
which implies that ∂/∂y = ∂/∂z = 0; and fluid, which implies that G = 0) becomes

σx = λ∂u
∂x

(5.3)

Note that for a fluid the Lamé coefficient λ is equal to the bulk modulus. Combining
Eqs. (5.2) and (5.3), we obtain

ρ
∂2u

∂t2
= λ∂

2u

∂x2
(5.4)

This is the wave equation for a plane wave propagating in the x-direction in a fluid. The
solution of the wave equation has the form

u = uo ej(ωt−qx) (5.5)

where j represents the imaginary unit. The real part of this expression describes a periodic
displacement in the x-direction, with amplitude uo. The complex formulation has been
chosen here because it is mathematically simpler to work with.

The periodic displacement is a wave which propagates in the x-direction, with angular
frequency ω, and wavenumber q. The angular frequency ω is related to the frequency f as

ω = 2πf (5.6)

The wave described by Eq. (5.5) extends from −∞ to +∞ both in space and time. A dis-
placement pulse, which is limited in space and time, is described as a sum of waves like
Eq. (5.5), each with different angular frequency and different amplitude, such that the net
displacement vanishes for large values of |x| and |t |.

The displacement u(x, t) represents the displacement of a volume element at position x
and time t , as the wave passes by. In this context, the volume element has been considered
as a particle, attached with “springs” to its neighbouring elements. The displacement is
therefore often called particle displacement. The displacement wave described by Eq. (5.5)
can also be considered as a pressure wave, through the relation between displacement and
stress given by Eq. (5.3).

Any two points x1 and x2, which are separated by a distance such that qx2 = qx1 + 2π ,
will at all times have equal displacement according to Eq. (5.5). The distance between two
such points, x2 − x1, is called the wavelength (λw). The wavelength is thus related to the
wavenumber as

q = 2π

λw
(5.7)

The term (ωt − qx) in the exponent of expression (5.5) is called the phase of the wave. If
we follow the wave, locked on to a fixed displacement like a surfer on a sea wave, we move
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with a velocity v = x/t such that the phase (ωt − qx) remains constant. This velocity is
called the phase velocity, and is related to the angular frequency, the wavenumber and the
wavelength as

v = ω

q
= λwf (5.8)

Inserting Eq. (5.5) into Eq. (5.4) and solving for ω/q, we find that the phase velocity is
given by the elastic stiffness and the density as

v =
√
λ

ρ
(5.9)

Thus, we have derived the general result that the phase velocity of an elastic wave is propor-
tional to the square root of an elastic modulus, and inversely proportional to the square root
of the density. This result provides our basis for using elastic waves to explore mechanical
properties of rocks.

The phase velocity is the velocity at which the phase of an elastic wave travels. Elastic
waves in fluids and gases are usually called sound waves, or acoustic waves, and the phase
velocity is usually called the sound velocity. For fresh water, the elastic modulus λ =
Kf ≈ 2.25 GPa and the density ρ ≈ 1.0 g/cm3 (where both depend on temperature
and pressure), hence the sound velocity is 1500 m/s, according to Eq. (5.9). For dry air
under normal atmospheric conditions, λ ≈ 0.14 MPa (adiabatic value; see Section 1.5)
and ρ ≈ 0.0012 g/cm3, thus the sound velocity is 343 m/s.

As shown above, the definition of the phase velocity is associated with a wave which
extends to infinity in space and time. In practice, we usually work with acoustic signals in
the form of pulses of finite duration. The velocity of a pulse, or equivalently, the velocity
of the wave energy, is called the group velocity, and is given as

vgroup = ∂ω

∂q
(5.10)

By comparing Eqs. (5.8) and (5.10) we see that if the phase velocity varies with the
frequency—a phenomenon called dispersion—the group and phase velocities will be dif-
ferent.

5.2. P- and S-waves

We now proceed to a more general case, and allow the material to possess a shear stiffness
so that shear forces may exist. That is, we shall look at elastic wave propagation in an
isotropic solid. Starting with Newton’s second law of motion, and the general expression
(5.1) for the force, we find the wave equation for displacement u in the x-direction

ρ
∂2u

∂t2
= ∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
(5.11)
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Introducing Hooke’s law (Eqs. (1.93)–(1.98)) we find

ρ
∂2u

∂t2
= (λ+G)

(
∂2u

∂x2
+ ∂2v

∂x∂y
+ ∂2w

∂x∂z

)
+G

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
(5.12)

(Note that the symbol v here represents displacement in y-direction.) A general solution of
this equation is

u = uo ej(ωt−ql̂·�r) (5.13)

The vector �r has the components x, y and z, while l̂ is a unit vector parallel to the di-
rection of wave propagation. The components lx , ly and lz will be the direction cosines
(see Eqs. (1.27)–(1.29)) of the propagation vector. Equations similar to Eq. (5.12) can be
derived for particle displacement in the y- and z-directions. In general, these are coupled
equations in u, v and w, however there are two relatively straightforward solutions which
can be derived from Eq. (5.12). First we search for a solution where the wave propagation
is parallel to the displacement u (that is, lx = 1; ly = lz = v = w = 0):

u = uo ej(ωt−qx) (5.14)

Such a wave is called a longitudinal wave, or alternatively a compressional wave, as it
involves a periodic compression of the material. It is also often termed a primary wave, a
name which originates from studies of earthquakes.

Since we are now considering a plane wave propagating parallel to the x-axis, we have
∂/∂y = ∂/∂z = 0, and Eq. (5.12) reduces to

ρω2 = q2(λ+ 2G) (5.15)

The phase velocity is

vp = ω

q
=
√
λ+ 2G

ρ
(5.16)

The subscript p denotes that this is a primary wave.
Eq. (5.12) also has other solutions. For instance, it is possible to establish a mode of

motion in which the particles are displaced only in the x-direction (that is, u �= 0, v =
w = 0), while the wave is propagating as a plane wave in the y-direction (which implies
∂/∂x = ∂/∂z = 0). The solution is then

u = uo ej(ωt−qy) (5.17)

Inserting this into Eq. (5.12), we find

ρω2 = q2G (5.18)

The phase velocity is

vs = ω

q
=
√
G

ρ
(5.19)
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Fig. 5.1. Particle motion in P-wave and S-wave propagation.

The subscript s denotes that this is the velocity of a secondary wave. Such a wave is also
called a transversal wave, or alternatively a shear wave, since it involves a periodic shear-
ing of the material. The motion of the volume elements (or “particles”) in a material during
propagation of compressional and shear waves is illustrated in Fig. 5.1. By comparing
Eqs. (5.16) and (5.19), and remembering that ν > −1 (see Section 1.4), we see that vp is
always larger than vs in an isotropic, linearly elastic solid.

The two solutions we found to Eq. (5.12), the compressional wave and the shear wave,
are the only types of waves that exist for an isotropic, homogeneous solid. For convenience,
these are often denoted P-wave and S-wave, representing the primary and secondary waves,
respectively. Also in this area there is a divergence in the use of names: In physics and rock
mechanics “acoustic waves” as well as “elastic waves” means both P- and S-waves. In
seismics, “acoustic waves” means only P-waves, while “elastic waves” means both P- and
S-waves.

The direction of particle motion is called the polarization of the wave. For any given
direction of wave propagation, there only exists one type of waves with polarization par-
allel to the direction of propagation (the P-wave), and one type of waves with polarization
normal to the direction of propagation (the S-wave). (Strictly speaking, two independent
S-waves exist for a given direction of propagation, since the polarization can be in any di-
rection in the plane normal to the direction of propagation. In an isotropic solid, however,
these S-waves are equivalent in all respects except for the polarization.)

By inverting Eqs. (5.16) and (5.19), we can express the elastic coefficients in terms of
the phase velocities:

G = ρv2
s (5.20)

λ = ρv2
p − 2ρv2

s (5.21)

Using Table 1.1, we find the corresponding expressions for the bulk modulus, Young’s
modulus and Poisson’s ratio:

K = ρv2
p − 4

3
ρv2

s (5.22)

E = ρv2
s

3v2
p − 4v2

s

v2
p − v2

s
(5.23)

ν = v2
p − 2v2

s

2(v2
p − v2

s )
(5.24)
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Further relations can be established by use of Table 1.1. Note that

λ+ 2G = H = K + 4

3
G = ρv2

p (5.25)

where H is the uniaxial compaction modulus (also referred to as plane wave modulus,
or P-wave modulus; see Section 1.3) Eqs. (5.20)–(5.25) were derived for a linearly elas-
tic, isotropic and homogeneous material, and show how values for elastic moduli can be
obtained from measurements of acoustic velocities in such a material. Rocks are usually
neither isotropic nor homogeneous, nor are they linearly elastic, and we shall see later
(Section 5.6) that this complicates the relations between static elastic moduli and acoustic
velocities.

5.3. Elastic waves in porous materials

The elastic response of a porous material may be significantly affected by the presence of
a pore fluid. In poorly consolidated sediments, the P-wave velocity for a water saturated
material can be several times larger than it is when the material is dry. Qualitatively, we
can explain this as a consequence of the added resistance against compression provided by
the pore fluid. For more competent materials, or materials under high confining pressure,
the frame stiffness is higher and the contribution of the pore fluid is relatively less, hence
the effect of saturation is much smaller. As saturation also implies an increase in density, it
may even result in a reduction of the P-wave velocity for a stiff rock. Saturation is assumed
not to affect the shear modulus for a permeable rock (see Section 1.6.2), hence it usually
results in a small decrease in velocity for S-waves.

Clearly, the impact of the pore fluid on the velocities is strongly related to the porosity
of the rock. A simple assumption, that has been frequently used for interpretation of well
logs, is that the interval transit time (which is the inverse of the P-wave velocity) is related
linearly to the porosity, according to the time average equation (Wyllie et al., 1958):

1

vp
= φ

vfluid
+ 1 − φ
vsolid

(5.26)

vfluid and vsolid denote the P-wave velocities of the pore fluid and the solid grain mater-
ial, respectively. The equation has an empirical basis (it is theoretically valid in the high
frequency limit for a material consisting of layers of fluid and non-porous solid), and it
works with reasonable accuracy for several practical purposes. If the lithology (and hence
vsolid) is known, it can be used to estimate the porosity, or alternatively—it can be used for
identification of the lithology if the porosity can be estimated by other means. The equa-
tion is not applicable for predicting the effect of saturation, however, nor can it be used for
S-waves.

5.3.1. Biot’s theory of elastic wave propagation

In Chapter 1 we applied Biot’s theory of poroelasticity to describe the effect of the pore
fluid on the elastic properties of porous materials. The same formalism may also be used
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to describe elastic wave propagation in saturated rocks (Biot, 1962; Stoll, 1974). The pro-
cedure for establishing the wave equation and deriving the velocities is analogues to that of
Sections 5.1 and 5.2, however we now have to account for the pore pressure pf in addition
to the external stress. Also, we have to take into account that the displacement of the fluid
(uf) may be different from the displacement of the solid material (us).

Considering longitudinal motion parallel to the x-axis, and following the same approach
as in Section 5.1 we find that Newton’s second law of motion requires that

φρf
∂2uf

∂t2
+ (1 − φ)ρs

∂2us

∂t2
= ∂σx

∂x
(5.27)

We now differentiate with respect to x on both sides of the equation, introduce the strain
parameters εx , ζ (from Eq. (1.134)) and H (from Eq. (1.237)). As we are considering only
wave motion in the x-direction, we have ∂/∂y = ∂/∂z = 0. Expressing the stress σx in
terms of the strains according to Eq. (1.136) we find that Eq. (5.27) may be written as

∂2

∂t2
(−ρfζ + ρεx) = ∂2

∂x2
(Hεx − Cζ) (5.28)

Here ρ, defined as

ρ = φρf + (1 − φ)ρs (5.29)

is the bulk density of the porous medium. Eq. (5.28) is a wave equation, similar to Eq. (5.4),
although we here use strain rather than displacement as the variable. However, Eq. (5.28)
has two variables (ζ and εx), hence we need one more equation. Turning to the movement
of the fluid, we find according to Eqs. (1.229) and (1.230) that the net effective force (per
unit area) acting on the fluid part of a volume element is

�∇pf − ηf

k
φ

(
∂ �uf

∂t
− ∂ �us

∂t

)
(5.30)

Considering only wave motion in the x-direction, and denoting the x-components of �uf
and �us as uf and us, respectively, Newton’s second law of motion gives

∂2

∂t2
(ρfuf) = ∂pf

∂x
− ηf

k
φ

(
∂uf

∂t
− ∂us

∂t

)
(5.31)

We now differentiate this equation with respect to x, make use of Eq. (1.142) to eliminate
pf and Eq. (1.136) to introduce ζ , and find the second wave equation:

∂2

∂t2

(
ρfεx − ρf

φ
ζ

)
= ∂2

∂x2
(Cεx −Mζ)+ ηf

k

∂ζ

∂t
(5.32)

The two wave equations (5.28) and (5.32) have the solutions

εx = εxo ej(ωt−qx) (5.33)

ζ = ζo ej(ωt−qx) (5.34)

Two modifications were introduced by Biot:
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1. The pore fluid does not flow strictly in the direction of the pore pressure gradient, but
is constrained to follow the pore channel network. To compensate for this, the second
term on the left hand side of Eq. (5.32) is multiplied by a parameter T , called the
tortuosity. The tortuosity is a measure of the twistedness of the pore channels. Given
a porous sample with thickness L, the pore fluid has to travel a distance Le > L to
penetrate the sample. The tortuosity is defined as T = (Le/L)

2. Thus T � 1. For
sandstone, T is typically in the range 2–3.

2. The fluid flow at higher frequencies is not laminar. This is compensated for by mod-
ifying the viscosity ηf → ηfF(κ), where

κ = ap

√
ωρf

ηf
(5.35)

and ap is equal to the radius of an average pore. F(κ) = 1 at ω = 0, while F(κ) ∝√
ω when ω → ∞. A specific expression for F(κ) is given in Appendix D.2.1.

Introducing the expressions (5.33) and (5.34) into the wave equations (5.28) and (5.32),
including Biot’s modifications above, and making use of the relation vp = ω/q, we obtain
the two equations for the amplitudes εxo and ζo:

(H − ρv2
p)εxo − (C − ρfv

2
p)ζo = 0 (5.36)

(C − ρfv
2
p)εxo −

(
M − ρfT

φ
v2

p + j
v2

p

ω

ηfF(κ)

k

)
ζo = 0 (5.37)

This homogeneous system of equations has non-trivial solutions if the determinant van-
ishes (see Appendix C.2.11), that is if∣∣∣∣∣

(H − ρv2
p) −(C − ρfv

2
p)

(C − ρfv
2
p) −(M − ρfT

φ
v2

p + j
v2

p
ω
ηfF(κ)
k
)

∣∣∣∣∣ = 0 (5.38)

Eq. (5.38) is an equation for vp. Since it specifies how the velocity changes with frequency,
it is a so called dispersion relation. Attenuation is also implicitly included, through the
imaginary parts of the solution (see Section 5.4). In the low frequency limit, the term
including ω−1 goes to infinity and the only solution to Eq. (5.38) is

vp(ω → 0) =
√
H

ρ
=
√

K + 4
3Gfr

φρf + (1 − φ)ρs
(5.39)

Here we have introduced the expression (5.29) for the density ρ, while the modulus H =
λ+ 2Gfr = K + 4

3Gfr and K is given by Eq. (1.155).
Introducing the velocity given by Eq. (5.39) into Eq. (5.36) we find that ζo = 0 in the

low frequency limit. Thus the solid and the fluid are moving in phase (that is: together)
during the oscillatory movements caused by the elastic wave.

An equation similar to Eq. (5.38) can be established for the shear wave velocity:∣∣∣∣ (Gfr − ρv2
s ) ρfv

2
s

−ρfv
2
s −(−ρfT

φ
v2

s + j v
2
s
ω
ηfF(κ)
k
)

∣∣∣∣ = 0 (5.40)
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Fig. 5.2. P- and S-wave velocities versus porosity for dry and saturated rocks, based on Biot’s theory in the low
frequency limit. The frame moduli are given by the critical porosity relations (6.16)–(6.17) with a critical porosity
of 0.39. Dashed lines: dry rock; Solid lines: saturated rock.

In the low frequency limit, the solution of this equation is

vs(ω → 0) =
√
Gfr

ρ
=
√

Gfr

φρf + (1 − φ)ρs
(5.41)

Eqs. (5.39) and (5.41) describe the effect of saturation on elastic wave velocities, in the low
frequency limit.

To illustrate the predictions of the equations, we shall look at an example. In a water-
saturated sandstone, we have Kf ≈ 2.2 GPa, ρf ≈ 1.0 g/cm3 and ρs ≈ 2.7 g/cm3, while
for a dry rock we may assumeKf = ρf = 0. The frame moduliKfr andGfr are not specified
by the Biot theory, however these will vary with the porosity and the degree of cementation
(see Chapter 6). Various empirical relations between the frame moduli and porosity have
been presented. For this example, we choose to use the critical porosity relations. Fig. 5.2
illustrates how fluid saturation affects the elastic velocities in the low frequency limit for
sandstones with various porosities, according to Eqs. (5.39), (5.41), (6.16) and (6.17). We
can see that saturation will lead to an increase in vp for soft (high porosity) rocks, while it
may lead to a slight decrease in vp for stiff rocks. We also see that saturation always leads to
a reduction in vs. The effect of saturation depends on the ratio between the frame stiffness
and the fluid modulus, and an increase in vp may thus be seen also for low porosity rocks
if the frame stiffness is sufficiently low.

The frequency dependence of vp and vs is controlled by the term j
v2

p
ω
ηfF(κ)
k

in Eqs. (5.38)
and (5.40). In the high frequency limit this term vanishes. For the shear wave, this gives
the solution

vs(ω → ∞) =
√

Gfr

ρ − φρf
T

=
√

Gfr

(1 − 1
T
)φρf + (1 − φ)ρs

(5.42)
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By comparing Eq. (5.41) and (5.42) we see that the shear wave velocity will increase with
frequency. The effect is quite small—typically less than 3% from the low frequency limit
to the high frequency limit for tortuosity T = 3. The velocity increase is a result of the
coupling to the pore fluid motion. It may be shown that ζo �= 0 in the high frequency
limit, thus the pore fluid is moving out of phase with the solid framework. The actual mass
involved in the wave motion is therefore reduced, and the velocity increases, as Eq. (5.42)
shows. This flow of fluid relative to the solid framework is often called “Biot flow”.

For the P-wave, the solution is more complicated for higher frequencies. First of all,
Eq. (5.38) is a second degree equation in v2

p for ω > 0, and thus it has two solutions. The
largest root is the solution (5.39) in the low frequency limit. This is the “normal” P-wave
that is observed in seismic surveys and well logging. The expression for this solution in the
high frequency limit is somewhat complicated, however it can be shown that there is only
a marginal increase (typically less than 1 per cent) in velocity from the low frequency limit
to the high frequency limit in most cases. However, for very soft rocks (in the suspension
limit), the dispersion can be significantly higher. In general, the dispersion is larger for
higher porosity and lower tortuosity.

The other solution is a so-called “slow wave” which is highly attenuated. At low fre-
quencies the wave does not exist as a propagating wave, however it is rather a diffusive
mode approaching ordinary (Darcy) flow through the porous rock in the limit ω → 0. Al-
though the slow wave is usually not observed as a propagating wave, its existence has been
proven in laboratory experiments (first time by Plona, 1980) which provides justification
of the basis of the Biot theory.

5.3.2. Dispersion due to local flow

In reality, the actual P-wave dispersion is higher than predicted by Biot’s theory. It is
assumed that this is related to thin cracks in the solid framework (at grain contacts, for
instance). At low frequencies, the fluid pressure within these thin cracks will be equal to
the pore pressure outside the cracks, and the cracks will thus be a part of the pore space in
Biot’s model. At high frequencies, the fluid pressure within the thin cracks will not be able
to follow the rapid oscillations of the pore pressure outside. The cracks will then effectively
be sealed off and no longer be a part of the pore space in Biot’s model (which requires that
the entire pore space is connected). As thin, sealed, fluid-filled cracks are almost incom-
pliant (see Section 6.4), the effective stiffness of the solid framework will thus increase at
higher frequencies.

The thin cracks tend to be closed at high external stresses. Thus, we may expect to find
a relation between the bulk and shear moduli of the framework in the high frequency limit
and the effective bulk modulus of the dry rock at high external pressure (Mavko and Jizba,
1991). The dispersion effect caused by the local flow is usually comparable to or larger
than the effect predicted by the Biot theory alone.

5.4. Attenuation

The waves described in Sections 5.1 and 5.2 are waves propagating with plane wavefronts
without any loss of energy, so that the amplitude remains constant. In reality, the amplitude
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of an elastic wave that travels through a rock will be reduced as the wave propagates. We
say that the wave is attenuated. This will partly be due to geometrical spreading caused
by a non-planar wavefront, partly due to scattering of wave energy in other directions, and
partly due to transformation of wave energy into other forms of energy (absorption).

The amplitude reduction is a certain fraction of the amplitude itself, hence the amplitude
will fall off exponentially with travelled distance. For a plane wave propagating in the
positive x-direction, the amplitude will thus fall off as

u = u0 e−αx (5.43)

where α is a measure of the attenuation. The unit for α is inverse length [m−1], but it is
often referred to in decibel per metre [dB/m]:

α [dB/m] ≡ (20 log10 e )α [m−1] ≈ 8.686α [m−1] (5.44)

The quality factor Q (often called the Q-factor, for short) is another parameter that is
frequently used as a measure for attenuation. The Q-factor is inversely proportional to α,
hence a highQ-factor implies low attenuation and vice versa. It is defined as

Q = ω

2αv
(5.45)

Another measure for attenuation is the loss tangent δ, defined as

δ = π

Q
(5.46)

While α represents the loss per unit length, the loss tangent is a measure for the loss per
wavelength. Measured Q-factors vary strongly with conditions and type of rock. Fig. 5.3
shows typical laboratory data (ultrasonic frequencies) for sandstone. Reliable data for at-
tenuation is usually hard to obtain, and the amount of data reported in the literature is
limited.

Fig. 5.3. Q-factor for P- and S-waves vs. external pressure in dry and fluid-saturated sandstone. (After Johnston
et al., 1979; with permission from SEG.)
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Geometrical spreading is associated with the radius of curvature for the wavefront. For
a wave propagating spherically from a point source, the radius of curvature is equal to the
radius (r) of the sphere that the wavefront constitutes at the time of investigation. The am-
plitude then falls off inversely proportional to r . For a plane wave, the radius of curvature
is infinite. If the radius of curvature R is so large that it can be considered as a constant
over the distance we are considering, the amplitude falls off with travelled distance x as

u = u0 e−x/R (5.47)

Thus geometrical spreading causes an apparent attenuation. Notice that the radius of cur-
vature for a wavefront may be altered when the wave crosses an interface and enters into
a different material where the phase velocity is different. This is a consequence of refrac-
tion, which will be discussed in Section 5.7. The radius of curvature will also be affected
by anisotropy. Under special conditions (usually caused by reflection at a curved interface)
the radius of curvature may become negative. This corresponds to a spherical wave trav-
elling inwards, towards the sphere centre. As Eq. (5.47) shows, the amplitude will then
increase as the wave propagates.

Geometrical spreading is mostly independent of the material the wave propagates
through. More interesting to us is attenuation which depends explicitly on the rock prop-
erties. Several mechanisms are of importance—which ones are most important depend on
the conditions: lithology, saturation, frequency, strain amplitude etc. The most important
mechanisms are:

1. Solid friction (Walsh, 1966; Johnston et al., 1979). Elastic waves induce displace-
ments between grains or crack faces. Due to friction, this implies that a part of the
mechanical energy of the acoustic wave is absorbed and transformed into heat, and
the wave is attenuated. Absorption due to friction gives aQ-factor which is indepen-
dent of frequency, that is:

QSF = const.; αSF ∝ ω (5.48)

Since the static friction increases with increasing normal stress, the solid friction
losses decrease with increasing external stress on a rock. Solid friction has tradition-
ally been considered to be the dominating attenuation mechanism in rocks, however
recent studies indicate that fluid mobility is a more significant mechanism (Batzle et
al., 2006).

2. Local (squirt) flow (Mavko and Nur, 1979; Murphy et al., 1984; Jones, 1986;
Mavko and Jizba, 1991). These losses only occur in partially or fully saturated rocks.
The periodic contraction and expansion in a rock when an acoustic wave passes by
also involves contraction and expansion of the pore space. Due to local variations
in shape, the volumetric strain of the pore space will differ considerably over short
distances. For instance, a flat crack may suffer large volumetric deformations while
a spherical pore close by only experiences minor volumetric strains. This gives rise
to local variations in pore pressure, which will make the pore fluid flow back and
forth following the oscillating deformations. The energy required for the fluid flow
oscillations are taken from the acoustic wave, thus elastic energy is absorbed and
transformed into other forms of energy and the wave is attenuated.
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Fig. 5.4. Sketch of stiffness (solid line) and Loss tangent (dashed line) versus frequency for a liquid saturated
grain to grain contact. (After Murphy et al., 1984; with permission from AIP.)

The attenuation effect is most pronounced in a frequency range where the period
of the oscillations matches the characteristic relaxation time for the local fluid flow.
At lower frequencies, the fluid has sufficient time to flow so that the pore pressure
is almost equalized at any time. At high frequencies, the oscillations are so quick
that the fluid has no time to move. Deformations of the most compliant parts of
the pore space will then be counteracted by local pore pressure build-ups. The rock
will effectively be stiffer, so that the velocity of the elastic wave will be higher, as
described in Section 5.3.2. Fig. 5.4 shows schematically how attenuation and velocity
change with frequency due to local flow at a grain to grain contact. The transition
frequency is inversely proportional to the fluid viscosity. For water-saturated rocks
the transition frequency is typically a few kHz.

3. Macroscopic (Biot) flow (Biot, 1956a, 1956b; 1962). An elastic wave may also in-
duce fluid flow on a macroscopic scale, as described in Section 5.3.1. Like the local
(squirt) flow, the fluid flow oscillations will suck energy out of the acoustic wave,
which is thus attenuated. There will also be a velocity dispersion and a peak in at-
tenuation associated with the macroscopic flow. An expression for the attenuation
can be derived from the imaginary part of the solution of Eq. (5.38), and the relation
outlined below (Eq. (5.50)). The transition frequency is proportional to the fluid vis-
cosity, and inversely proportional to the permeability of the rock. At low frequencies
α ∝ ω2, while α ∝ √

ω at high frequencies. For water-saturated rocks, the transition
frequency is typically about 100 kHz. The effect is however rather small: The peak
attenuation has a minimumQ-value of about 100.

4. Scattering. Heterogeneities in velocity or density within a rock will result in Rayleigh
scattering when an elastic wave passes by. The scattered energy is not absorbed and
transformed into other forms of energy, however the primary pulse loses energy and
is thus attenuated. The effect is stronger the larger the impedance contrast of the
heterogeneity is, thus pores are strong scatterers, also for P-waves if the pores are
empty (that is: the material is dry). Cracks and fractures may also be strong scat-
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terers, unless both the direction of propagation and the polarization are parallel to
the crack/fracture. Scattering is strong when the wavelength (λw) is comparable or
smaller than the size (a) of the heterogeneity. For longer wavelengths, attenuation
falls off quickly with decreasing frequency:

αscatt. ∝ ω/Qscatt. ∝ a3ω4 for λw > a (5.49)

In sandstones, scattering on grains and pores is dominating in the MHz range, and
effectively prohibits wave propagation over distances longer than a few centimetres at
these (and higher) frequencies. At lower frequencies, scattering on grains and pores
can be neglected, however scattering on cracks and fractures may still be significant.
Scattering loss usually decreases with increasing external stress, since confinement
tends to close cracks and fractures in the rock. Scattering also reduces the velocity.
This is further discussed in Chapter 6.

Comparing Eqs. (5.43) and (5.5) we find that the attenuation coefficient α can be asso-
ciated with the imaginary part of the wavenumber q, that is:

α = −Im[q] (5.50)

According to the wave equation, the wavenumber is complex if the corresponding elas-
tic modulus is complex. Thus the phase velocity is related to the real part of the elastic
modulus and attenuation to the imaginary part. Denoting by C the relevant elastic modulus
(which may for instance be (λ + 2G) as in Eq. (5.15), or G as in Eq. (5.18), etc.), the
general relations are

ρv2 ≈ Re[C] (5.51)
1

Q
≈ Im[C]

Re[C] (5.52)

provided that the attenuation is sufficiently small, so that Q−2 � 1. Note that this link
between the imaginary part of the elastic modulus and the attenuation is not valid for
apparent attenuation due to geometrical spreading.

The real and imaginary parts of the elastic constants are related to each other, accord-
ing to the physical principle called causality (the principle that a reaction can never occur
before its cause). A specific result of this is that—within the frames of linearity—the ve-
locity can only be independent of frequency if the corresponding attenuation is zero. That
is: no velocity dispersion implies no attenuation. Fig. 5.4 shows a typical relation between
attenuation and velocity dispersion in accordance with causality.

Finally, consider a simple mechanical system consisting of a spring in parallel with a
viscous dash pot element coupled in series to another spring (Fig. 1.27, except for the
right-hand dash pot element). This could represent a rock which responds to stress changes
with some degree of transient creep. An elastic modulus C of this rock can be expressed
as (see Eqs. (1.91), (1.248), (1.249) and (5.33))

C = σ

ε
=
(

1

κ1 + jωχ
+ 1

κ2

)−1

= κ2
κ1(κ1 + κ2)+ ω2χ2 + jωχκ2

(κ1 + κ2)2 + ω2χ2
(5.53)
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Thus, the elastic modulus of this rock is complex and the elastic wave corresponding to
C will be attenuated. For sufficiently low frequencies, such that ω < (κ1 + κ2)/χ , the
imaginary part of C will be proportional to ω and consequently 1/Q ∝ ω according to
Eq. (5.52). For higher frequencies we find that 1/Q ∝ 1/ω. On the other hand the real part
ofC is seen to approach κ1κ2/(κ1+κ2)when ω → 0 while it approaches κ2 when ω → ∞.
Thus the model describes dispersion and a corresponding peak in attenuation, similar to
Fig. 5.4. This example also illustrates the relationship between creep and attenuation.

5.5. Anisotropy

Most sedimentary rocks are to some extent anisotropic. This was discussed in Section 1.7,
regarding directional dependence of rock stiffness. This directional dependence does of
course also affect the acoustic properties of the rock. To account for this, we need to es-
tablish a generalized version of the wave equation and its solutions. We shall here present
an outline of the procedure and the results. For a detailed discussion, see for instance Auld
(1990).

5.5.1. The Christoffel equation

As described in Section 5.1, the wave equation can be established by looking at the sta-
bility of a volume element. For this general case, we choose not to simplify in terms of
longitudinal or transversal wave motion from the start. Using the generalized form for the
stress (Eq. (1.195)), we see that Newton’s second law requires:

ρ
∂2ui

∂t2
=
∑
j

∂σij

∂xj
(5.54)

We assume that the solutions are of the type (ref. Eq. (5.13)):

ui = uoi ej(ωt−q∑k lkxk) (5.55)

Combining Eqs. (5.54) and (5.55) with (1.195), using the expressions (1.74) and (5.8), we
find (after some algebra) the so-called Christoffel equation∑

j,l

(Cijkl lj ll − ρv2δik)u
o
k = 0 (5.56)

δik is Kronecker’s δ (see Appendix C.11.2). Eq. (5.56) is in fact 3 equations with 3 un-
knowns: uo1, uo2 and uo3. The equations can be written on matrix form, as

MC

(
uo1
uo2
uo3

)
= 0 (5.57)

where MC is called the Christoffel matrix. The elements of the matrix are defined as

MC
ik =

∑
j,l

Cijkl lj ll − ρv2δik (5.58)
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Non-trivial solutions of Eq. (5.57) exist if the determinant of the Christoffel matrix is zero,
that is if: ∣∣∣∣∑

j,l

Cijkl lj ll − ρv2δik

∣∣∣∣ = 0 (5.59)

This is a compact way of writing a rather lengthy equation. The expanded expression for
the determinant of a 3 × 3 matrix is shown in Appendix C.2.10. It turns out that Eq. (5.59)
is a cubic equation for v2. Thus, we shall in general expect to find 3 independent so-
lutions for the wave velocity. One of these represents a P-wave (or, in the most general
case, a quasi-P-wave, meaning a wave with polarization nearly parallel to the direction
of propagation). The other two represent S-waves with mutually orthogonal polarizations
(or quasi-S-waves, meaning waves with polarizations nearly normal to the direction of
propagation).

To demonstrate how velocities and polarizations can be found from these equations,
we shall consider the special case of transversal isotropy (see Section 1.7.2). Switching
to the Voigt notation (see Appendix C.10), and choosing the z-axis as the unique axis,
the stiffness matrix is given by expression (1.221). The Christoffel equation (5.56) then
becomes, in expanded form:(

C11l
2
1 + C66l

2
2 + C44l

2
3 − ρv2 (C11 − C66)l1l2 (C13 + C44)l1l3

(C11 − C66)l1l2 C66l
2
1 + C11l

2
2 + C44l

2
3 − ρv2 (C13 + C44)l2l3

(C13 + C44)l1l3 (C13 + C44)l2l3 C44(l
2
1 + l22 )+ C33l

2
3 − ρv2

)(
uo1

uo2

uo3

)
= 0

(5.60)
The direction cosines l1, l2, and l3 defines the direction of wave propagation, and the par-
ticle displacement vector �uo defines the polarization. The next step is to choose a direction
of wave propagation that we want to study. For simplicity, we first choose the x-direction,
for which l1 = 1, l2 = l3 = 0. The Christoffel equation (5.60) then simplifies to:(

C11 − ρv2 0 0
0 C66 − ρv2 0
0 0 C44 − ρv2

)(
uo1
uo2
uo3

)
= 0 (5.61)

and the requirement that the determinant of this matrix shall be zero becomes

(C11 − ρv2)(C66 − ρv2)(C44 − ρv2) = 0 (5.62)

This is a cubic equation for v2, as it should be, hence it has three solutions. One solution is
v2 = C11/ρ. Introducing this result for v into Eq. (5.61) shows that we have to have uo2 =
uo3 = 0, with uo1 �= 0 as the only non-trivial solution for the particle displacement. Thus,
for this particular solution, both the direction of wave propagation and the polarization is
in the x-direction. This wave is therefore a P-wave.

Another solution of Eq. (5.62) is v2 = C66/ρ. Introducing this result into Eq. (5.61)
we find uo1 = uo3 = 0, with uo2 �= 0 as the only non-trivial solution. For this solution, the
polarization is thus in the y-direction, that is normal to the direction of wave propagation,
hence this is an S-wave. The last of the three solutions is v2 = C44/ρ. Eq. (5.61) tells
us that this is also an S-wave, polarized in the z-direction. Thus, there are three different
waves that can travel in the x-direction in this medium, one P-wave and two S-waves.
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Considering next wave propagation in the z-direction, the Christoffel equation becomes:(
C44 − ρv2 0 0

0 C44 − ρv2 0
0 0 C33 − ρv2

)(
uo1
uo2
uo3

)
= 0 (5.63)

Following the same procedure as above, we find one P-wave solution with v2 = C33/ρ

and two S-wave solutions, both with v2 = C44/ρ. Introducing the S-wave solution for v,
Eq. (5.63) only tells us that uo3 has to be equal to 0, while both uo1 and uo2 may be non-zero.
Thus, for an S-wave travelling parallel to the unique axis, the velocity is independent of
the polarization.

For wave propagation in a general direction, the off-diagonal terms of the Christoffel
matrix no longer vanish and the solutions become more complicated mathematically. Typ-
ical for the transversely isotropic medium is that for any direction of wave propagation,
there exists one pure S-wave with polarization normal to the unique axis, plus one P-wave
and another S-wave. Except for wave propagation parallel or normal to the unique axis,
the last two waves will not have polarization exactly parallel or normal to the direction of
propagation, hence they will in general be a quasi P-wave and a quasi S-wave, respectively.

A full treatment of wave propagation in anisotropic media is beyond the scope of this
book. We refer the interested reader to for instance Auld (1990).

5.5.2. Weak anisotropy

Thomsen (1986) simplified the description of anisotropy considering transversely isotropic
rocks with weak anisotropy. His description is relevant for oilfield rocks and the data avail-
able in field situations, and has become widely applied. Thomsen introduced a new set of
parameters:

εTh = C11 − C33

2C33
(5.64)

γTh = C66 − C44

2C44
(5.65)

δTh = (C13 + C44)
2 − (C33 − C44)

2

2C33(C33 − C44)
(5.66)

The wave velocities in a general direction in a transversely anisotropic material can be
derived from Eq. (5.59). When linearized in terms of the Thomsen parameters (5.64)–
(5.66), the expressions for the velocities take the relatively simple forms:

vp(θ) ≈ αTh(1 + δTh sin2 θ cos2 θ + εTh sin4 θ) (5.67)

vsv(θ) ≈ βTh

(
1 + α2

Th

β2
Th

(εTh − δTh) sin2 θ cos2 θ

)
(5.68)

vsh(θ) ≈ βTh(1 + γTh sin2 θ) (5.69)
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where αTh = √
C33/ρ, βTh = √

C44/ρ, and θ is the angle between the unique axis and
the direction of wave propagation. vsh is the velocity of the S-wave polarized normal to the
unique axis, and vsv is the velocity of the other S-wave (see Section 5.5.1).
εTh can be interpreted as the P-wave anisotropy and γTh as the S-wave anisotropy. How-

ever, for P-waves propagating at small angles to the unique axis the anisotropy will be
dominated by δTh. The special case where δTh = εTh is known as “elliptical anisotropy”.

It can be shown (Tsvankin, 1997; Mensch and Rasolofosaon, 1997) that, by making the
Thomsen parameters depend on the azimuth, these equations can also be applied for ma-
terials with even lower symmetry than transversely isotropy—provided that the anisotropy
is weak.

5.6. Rock mechanics and rock acoustics

At the beginning of this chapter, we argued that elastic waves may provide means to esti-
mate mechanical parameters of rocks. We shall here take a closer look at the links between
the parameters describing elastic waves, and the parameters describing rock mechanical
properties.

5.6.1. Static and dynamic moduli

Sound velocities depend explicitly on elastic moduli. This was shown in Section 5.2
(Eqs. (5.20)–(5.24). These relations imply that we for instance should obtain the same value
for E if we measure the acoustic velocities and the density and make use of Eq. (5.23), or
we measure stress and strain in a uniaxial compression test and make use of Eq. (1.91).
With knowledge about the P- and S-wave velocities and the density, for instance from well
logs or seismics, it should thus in principle be a simple job to obtain the elastic moduli
even if we do not have the possibility to perform rock mechanical tests.

In reality, this is not quite so simple. There is a wide range of experimental evidence
showing that the elastic moduli obtained from stress and strain measurements in a rock
mechanical test (“static moduli”) differ significantly from those obtained from acoustic
velocities and density (“dynamic moduli”). Normally, the dynamic moduli are larger than
the corresponding static ones. The difference is largest for weak rocks, and is reduced with
increasing confinement (King, 1970). In the relatively well cemented Berea sandstone, the
difference at a stress level corresponding to depth in the kilometre range is 20–30%. In a
weak sandstone, however, the difference can be an order of magnitude or more, depending
on the stress state. Fig. 5.5 shows as an example how the static and dynamic moduli changes
with the stress state in a relatively weak rock. These measurements were performed on a
dry sample.

The pore fluid is a potential cause for the difference between static and dynamic mod-
uli in rocks. In a velocity measurement the deformation of the rock is undrained, which
implies that the pore fluid contributes to the velocity (see Section 5.3.1). Thus the moduli
derived from velocity measurements on a saturated rock are likely to be higher than the
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Fig. 5.5. Static and dynamic bulk moduli as measured during a hydrostatic test (left), and static and dynamic
Young’s moduli as measured during a triaxial test (right), on dry Red Wildmoor sandstone.

corresponding static moduli measured in a drained test. This effect does however not ex-
plain the large differences between static and dynamic moduli observed in soft dry rocks,
and we have to look for other causes.

As discussed above, velocity dispersion in fluid-saturated rocks typically amount to a
few per cent from seismic to ultrasonic frequencies. Thus, this is neither a likely mecha-
nism to explain significant differences between static and dynamic moduli.

In a velocity measurement, the strain rate varies from about 1 s−1 (at ultrasonic frequen-
cies) to about 10−4 s−1 (at seismic frequencies), while the strain amplitude is typically
10−6–10−7. For a measurement of static moduli the strain rate is 10−2 s−1 or lower, while
the strain amplitude is typically 10−2–10−3. Thus the major difference between static and
dynamic measurements is—despite the name—the strain amplitude, not the strain rate. Sta-
tic moduli, measured as slopes of stress–strain curves, differ from small strain amplitude
dynamic (elastic) moduli because of plasticity or nonlinear effects.

Unloading-reloading cycles in a static test (Fig. 5.6) are somewhat intermediate be-
tween a normal static test and a velocity measurement, as the material will experience
similar stress cycles (with low amplitudes) when an acoustic wave passes by. In a set of
measurements on dry Castlegate sandstone, Plona and Cook (1995) demonstrated that the
elastic modulus derived from the slope of the stress–strain curve during such cycles ap-
proaches the corresponding elastic modulus derived from velocity measurements when the
amplitude of the cycles approaches zero. Thus the difference in strain amplitude explains
to some extent the difference between dynamic moduli and the static moduli measured
in unloading-reloading cycles. However, the material is usually much stiffer during an
unloading-reloading cycle than during initial loading (see Fig. 5.6), and it is the behaviour
during initial loading that is normally studied in standard rock mechanical tests.
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Fig. 5.6. Unloading-reloading cycle in a rock mechanical test.

To further understand the origin of the static-dynamic discrepancy, it is interesting to
notice that the static and dynamic moduli are equal for a homogeneous, elastic material
like steel (Ledbetter, 1993). Thus the physical origin of this discrepancy is likely to be
related to the heterogeneous microstructure of the rocks. It is furthermore to be expected
that much of the effect originates at the grain contacts, since the stress concentrations in the
contact areas may exceed the elasticity limit of the material even at low external stresses.

A quantitative model for the relations between static and dynamic moduli was formu-
lated by Fjær (1999), based on observations on weak sandstones:

Kstat = Kdyn

1 + (Pz + 2Pr)Kdyn
(5.70)

Estat = Edyn

1 + PzEdyn
(1 − F) (5.71)

Here Kdyn and Edyn are the bulk modulus and Young’s modulus, respectively, obtained
from velocity measurements, while Kstat and Estat are the corresponding moduli obtained
from the slope of the relevant stress–strain curve during initial loading. The expressions
are related to a standard triaxial test, and the subscripts z and r refer to the axial and radial
directions of the test geometry. The difference between the static and dynamic moduli is
contained in the parameters Pi and F . Analyses of tests like the one shown in Fig. 5.5
have shown that Pi is largest at lower stress levels, while F increases with increasing
shear deformation. (Note that for F = 1 we have Estat = 0 according to Eq. (5.71). This
represents the peak point in the stress–strain curve.)

It is suggested that Pi is predominantly a measure of a process which involves crushing
of asperities at the grain contacts, while F is associated with friction controlled sliding
along contact points or closed micro-cracks in the material during shear loading. Thus
the discrepancy between static and dynamic moduli in weak rocks is interpreted as being
caused by a series of local failure processes on a microscopic scale occurring during the
entire loading sequence.



ROCK MECHANICS AND ROCK ACOUSTICS 195

Fig. 5.7. Ultrasonic velocities as functions of stress state as measured on dry Red Wildmoor sandstone.

5.6.2. Stress state and stress history

Sound velocities in rocks also depend on the state of stress. To some extent, this effect can
be ascribed to stress induced changes in porosity. However, this is not sufficient to explain
the stress sensitivity of velocities in most rocks. Fig. 5.7 shows the typical behaviour for
a sandstone. The behaviour can be understood in terms of micro-cracks (much smaller
than the wavelength) that are opened or closed by the action of the stress. An open crack
strongly reduces the velocity of a wave if the crack is oriented normal to the direction of
propagation or polarization of the wave, while its effect on the velocity is only marginal
otherwise (see Section 6.4).

During hydrostatic loading the velocities increase uniformly, with a gradually diminish-
ing rate. This is to be expected due to closure of cracks which make the rock stiffer, or
similar processes which broadens or multiply grain contacts. These effects are discussed in
detail in Sections 6.3 and 6.4. During uniaxial loading, the velocities of waves with polar-
ization and/or direction of propagation parallel to the increasing load are seen to increase
initially, due to the same type of processes that causes increases in velocities during hy-
drostatic loading. Upon further loading, the velocities of waves with polarization and/or
direction of propagation normal to the minimum principal stress are seen to be reduced.
This is associated with the formation of tensile cracks (often illustrated as “wing cracks”
formed during frictional sliding of closed cracks, as shown in Section 6.4.4, Fig. 6.11).
Thus stress anisotropy induces acoustic anisotropy. The relevance of interpreting stress
induced velocity changes in sandstones in terms of changes in the occurrence of disconti-
nuities such as cracks, has been nicely demonstrated by Sayers (2002).

The impact of micro-cracks on acoustic wave propagation is also reflected in the atten-
uation, as the scattering losses due to such cracks can be significant. Thus attenuation is
typically reduced with increasing confining pressure, as can be seen from Fig. 5.3.
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Using observed acoustic anisotropy as a measure for stress anisotropy is however not
straightforward. This is partly due to the fact that also other effects—like fine layering or
grain orientation—can cause anisotropy, and partly to the fact that rocks are usually formed
and cemented under stress. Stress induced anisotropy in uncemented sediments is a conse-
quence of static loading making the grain contacts stiffer (see Section 6.3). Different stress
in different directions thus induce different stiffness in different directions, which results in
acoustic anisotropy. The cementation process provides added stiffness to all grain contacts,
so the relative stiffening is largest for the weakly loaded ones. The characteristic signature
of the stress state is thus masked. Subsequent stress induced anisotropy is characteristic
for the stress changes occurring after cementation, rather than the current stress state. Thus
the stress history of a rock may have a significant impact on the stress dependency of the
velocities.

For a core taken from a deep well, the major recent stress history is the unloading process
taking place during and after coring. The cement which was formed free from effective
stress at the grain contacts will be subjected to tensile stress as the grain contacts deform
when the load disappear. This will generate cracks which reduce the elastic stiffness and
thus also the acoustic velocities. When sufficient stress is applied to the core in a laboratory
test, these cracks will close and the velocities will increase correspondingly. A significant
part of the stress dependency of acoustic velocities observed in laboratory tests may there-
fore be related to core damage effects, and not be representative for the in situ behaviour.
This has been demonstrated through tests on synthetic sandstones cemented under stress
(Nes et al., 2002). The effect is illustrated in Fig. 5.8. Note that the velocity is quite insen-
sitive to small changes in the stress while the rock is still in the vicinity of its cementation
state, and that it drops significantly upon extensive unloading. Upon reloading, as for a core
tested in the laboratory, the velocity increases with a rate that is lower than the decreasing

Fig. 5.8. Schematic illustration of velocity versus stress for a rock, following two different stress paths from
the cementation state (marked with a circle). The upper right curve could represent in situ loading (caused by
depletion), the upper left curve in situ unloading (caused by injection or coring), and the lower curve a laboratory
test on a core plug.
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rate at the end of the unloading path, yet significantly higher than the initial (“in situ”) rate
in the vicinity of the cementation stress (see also Chapter 7).

It was shown in Section 1.6.3 that the deformation of a porous, linear elastic rock is
controlled entirely by an effective stress (Eq. (1.168)) that accounts for the combined action
of the external stress and the pore pressure. It is tempting to assume that this principle is
also valid for acoustic velocities, however this is not the case in general. Often, but not
always, the velocities may depend on an effective stress

σ ′ = σ − npf (5.72)

within a limited range of stress and pore pressure. The coefficient n depends on the type of
wave as well as the type of fluid, and may be larger as well as smaller than 1. In some cases
this principle is not applicable at all. One simple example is a linearly elastic material, for
which the frame moduli are stress independent (as will be the case for instance for a well
cemented rock not suffering from core damage). Since the P-wave velocity also depends
on the bulk modulus and density of the fluid, which in turn depend on the fluid pressure, it
is clear that the effects of changes in σ and pf are fundamentally different, and Eq. (5.72)
is not valid in this case.

5.6.3. Additional effects

Elastic wave propagation in rocks is also affected by other parameters, which we shall only
mention briefly here.

Temperature

There is normally a slight reduction in velocities with increasing temperature. This ef-
fect is usually less than 5% for a 100 °C increase in temperature (Bourbie et al., 1987;
Christensen, 1982). The effect may be significantly larger if one or more of the rock con-
stituents undergoes a phase transition within the actual temperature range, for instance if
the pore fluid is freezing or melting. Attenuation is also reduced with increasing tempera-
ture. This effect appears to be somewhat larger than the temperature effect on the velocities
(Jones and Nur, 1983).

Partial saturation

Partial saturation may have a significant effect on both velocities and attenuation. Consider
a rock saturated with water and gas. At low frequencies, the pore fluid may be considered
as a suspension of gas bubbles in a liquid (at least if the water saturation Sw is larger than
about 20%). We may then assume that the gas pressure follows that of the water at any time,
and the effective fluid bulk modulusKf is then given by an equation similar to Eq. (1.132):

1

Kf
= Sw

Kw
+ 1 − Sw

Kg
(5.73)
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Fig. 5.9. P- and S-wave velocities versus saturation in a gas/water saturated rock, as predicted by
Eqs. (5.73)–(5.74), (5.39), (5.41) and (1.155) (solid lines), for a dataset representing a relatively weak rock at
low pressures and low frequency. The dashed line indicates the P-wave velocity for patchy saturation, while the
gray area indicates the range of possible values for the P-wave velocity for various fluid distributions at higher
frequencies.

Kw and Kg are the bulk moduli of water and gas, respectively. Typically, Kg � Kw, and
we thus have that Kf � Kw unless Sw is very close to 1. The bulk density

ρ = ρs(1 − φ)+ φ(Swρw + (1 − Sw)ρg
)

(5.74)

is much less sensitive to Sw, hence the net effect is that the P-wave velocity (Eq. (5.39))
drops dramatically when Sw falls below 1, and only picks up slowly as Sw continues to
decrease (Fig. 5.9). The S-wave depends only on ρ in addition toGfr (which is not affected
by the degree of saturation, at least not for permeable materials at low frequencies), hence
the S-wave velocity is only marginally dependent on the saturation. For very low satura-
tion, capillary forces (see Section 2.6.2) may provide an additional stiffness that makes the
velocities increase.

At higher frequencies, the distribution of the water and gas in the pore space becomes
significant. For instance, water trapped in thin cracks may effectively respond to compres-
sion with a stiffness close toKw, and the velocities will be correspondingly higher (see also
Section 6.4). The distribution of water and gas is a result of the wetting properties of the
rock and the way the actual saturation was reached. Consequently, there is not a one-to-one
relationship between P-wave velocity and water saturation (Endres and Knight, 1989), but
rather a range of possible values for the velocity at each saturation level, as indicated by
the gray area on Fig. 5.9.

The water and the gas may also be separated on a larger scale, such that some areas are
fully water saturated while others are not (patchy saturation). The fully saturated areas will
behave as saturated, undrained rock if the pore pressure diffusion length is less than the
typical size (l) of the fully saturated areas, that is—if√

CD

f
< l (5.75)
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TABLE 5.1 Some examples of pore fluid properties (based on Batzle and Wang, 1992)

Fluid Conditions Density

[g/cm3]

Bulk modulus
[GPa]

Brine 50 °C, 15 MPa 1.02 2.60
Brine 100 °C, 30 MPa 1.00 2.65

Dead oil 50 °C, 15 MPa 0.70–0.80 0.90–1.30
Dead oil 100 °C, 30 MPa 0.65–0.75 0.75–1.10

Live oil 50 °C, 15 MPa 0.60–0.70 0.55–0.85
Live oil 100 °C, 30 MPa 0.60–0.70 0.45–0.70

Gas 50 °C, 15 MPa 0.20–0.40 0.03–0.10
Gas 100 °C, 30 MPa 0.25–0.40 0.10–0.20

where CD is the pore pressure diffusion constant (see page 48), and f is the frequency. The
dashed line in Fig. 5.9 indicates how the P-wave velocity changes with saturation for such
cases.

Similar behaviour may be seen for partially oil saturated rocks. Note however that oil
may contain significant amounts of dissolved gas (“live oil”), which reduce the density as
well as the bulk modulus of the oil, and hence reduce the contrast between the oil and the
gas. Note also that for gases, both the bulk modulus and the density increases significantly
with increasing pressure, hence the effect of partial saturation decreases with increasing
fluid pressure.

The considerations above may also be used to estimate the behaviour of rock saturated
with water and oil. The effects of partial saturation are significantly less in this case, how-
ever, since the differences in bulk modulus and density are much less for water and oil than
for water and gas.

Table 5.1 shows some typical values for pore fluid properties, for a couple of pres-
sure/temperature combinations corresponding roughly to about 1500 m depth and 3000 m
depth, respectively. Note however that there are significant variations in the properties of
oil and gas, depending on their chemical composition, as well as variations in pressure and
temperature conditions at a given depth. Also the properties of brine vary somewhat with
salinity and amount of dissolved gas. The brine properties listed in Table 5.1 represent a
salinity typical for sea water.

Chemical effects

The minerals of the rock framework may react chemically with the pore fluid. In particu-
lar, chalk and clay minerals become soft or even dissolve in water (if the water is not in
chemical equilibrium with the minerals). This implies that fluid substitution may actually
change the framework moduli (Kfr and Gfr), due to chemical effects. Hence the elastic
wave velocities, as well as the static elastic moduli, may be strongly sensitive to the type
of saturating fluid (see also Section 2.6.3).
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5.7. Reflections and refractions

When an elastic wave hits a boundary of the medium it is travelling through, the wave may
be reflected—like light in a mirror, or refracted—like light at a water surface, or converted
into other types of elastic waves. Such boundaries, or interfaces between different parts of a
medium, are important for most aspects of rock acoustics. In particular, reflections at inter-
faces are the foundation of surface seismics, while sonic logging tools rely on refractions
for obtaining a wave path through the rock along the hole.

Consider first the simple situation where a plane P-wave like (5.14) approaches a bound-
ary normal to the direction of propagation. The laws of physics require that

• the displacement normal to the boundary is continuous at the boundary,

• the stress normal to the boundary is continuous at the boundary.

To fulfil these requirements when the wave hits the boundary, two new waves are created
at the boundary: one reflected wave and one transmitted wave. We shall now see how these
physical continuity requirements can be used to identify the amplitude and phase of both
the reflected wave and the transmitted wave, relative to the amplitude and phase of the
initial wave. We denote by subscript 1 the parameters of the medium through which the
wave is initially travelling, and by subscript 2 the parameters of the medium on the other
side of the boundary. The three waves interacting at the boundary are then

ui = uo,i ej(ωt−q1x) Initial wave

ur = uo,r ej(ωt+q1x) Reflected wave

ut = uo,t ej(ωt−q2x) Transmitted wave

The initial wave is travelling in medium 1 towards the boundary, the reflected wave is
travelling in medium 1 away from the boundary, and the transmitted wave is travelling in
medium 2 away from the boundary. Note that the frequency ω is the same in both media.
The two physical continuity requirements can now be expressed as

ui + ur = ut (5.76)

(λ1 + 2G1)

(
∂ui

∂x
+ ∂ur

∂x

)
= (λ2 + 2G2)

∂ut

∂x
(5.77)

Positioning for simplicity the x-axis such that the interface is located at x = 0, introducing
the expressions for ui, ur and ut, and dividing by ejωt , we find

uo,i + uo,r = uo,t (5.78)

(λ1 + 2G1)(−jq1uo,i + jq1uo,r) = (λ2 + 2G2)(−jq2uo,t) (5.79)

These are two equations with two unknowns, namely uo,r and uo,t. These equations are
complex, thus the equations give us both the amplitude and the phase of the reflected and
transmitted wave. Rather than presenting these expressions explicitly, we now introduce the
reflection coefficient rpp, which expresses the stress amplitude of the reflected wave, and
the transmission coefficient tpp, which expresses the stress amplitude of the transmitted
wave, both relative to the stress amplitude of the initial wave.
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Expressed in terms of particle displacement amplitudes, these coefficients are defined as

rpp = −uo,r

uo,i
(5.80)

tpp = ρ2vp2

ρ1vp1

uo,t

uo,i
(5.81)

Expressions for rpp and tpp can be found from Eqs. (5.78) and (5.79). Introducing further
Eqs. (5.8) and (5.16) the expressions take the following form:

rpp = ρ2vp2 − ρ1vp1

ρ2vp2 + ρ1vp1
(5.82)

tpp = 2ρ2vp2

ρ2vp2 + ρ1vp1
(5.83)

The product ρvp is called the acoustic impedance of the medium. Thus the reflection and
transmission coefficients depend on the impedance contrast between the two media. Note
that rpp and tpp may be defined in different ways, depending on the choice of coordinate
system and wave describing parameters. The definition used here implies that a compres-
sion is reflected as a compression if rpp > 0, while for rpp < 0 the reflection involves phase
inversion.

The amplitude of the reflected wave depends on the density and velocity of the sec-
ond medium, although the incoming and reflected waves have only propagated through
medium 1. This may be used in analyses of seismic data, as we shall see in Section 5.9.

This example was particularly simple, since the displacement as well as the stress only
had one component, normal to the interface between the two media. Consider next a
P-wave which hits an interface at an angle of incidence θi relative to the normal of the
interface. It is now convenient to consider the wave as a ray, as we here wish to focus on
the direction of propagation. A part of the wave will be reflected at an angle θr = θi (see
Fig. 5.10). Another part of the wave will be transmitted at an angle θt. The relation between

Fig. 5.10. Reflection and refraction of an acoustic ray at the interface between two media.
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the angle of incidence θi and the transmission angle θt is given by Snell’s law:

sin θt
vp2

= sin θi
vp1

(5.84)

Thus the transmitted wave will proceed in a direction somewhat different from the incom-
ing wave, provided that vp2 �= vp1. This effect is called refraction.

Note that we may have a situation where (vp2/vp1) sin θi > 1, which would imply that
sin θt > 1 according to Eq. (5.84). This is mathematically and physically unacceptable,
hence θt is not defined in this situation. This implies that the refracted wave does not exist,
and we have total reflection at the interface. The condition for total reflection of the P-wave
is thus

sin θi > sin θcr ≡ vp1

vp2
(5.85)

The angle θcr is called the critical angle for total reflection.
P- and S-waves are different modes of propagating elastic energy, and are not coupled

in an ordinary medium due to symmetry. When a wave hits an interface at a skew angle
relative to the direction of propagation, the symmetry is broken and the waves may become
coupled at the interface. In our example here, the incoming P-wave has a particle motion
which is not fully orthogonal to the particle motion of an S-wave “reflected” from the in-
terface at an angle θrs (Fig. 5.11), with polarization in the same plane as the incoming wave
and the normal to the interface. Thus such an S-wave may be generated at the interface.
The angle θrs is given by the equation

sin θrs
vs1

= sin θi
vp1

(5.86)

Fig. 5.11. Polarization (indicated by double arrows) of reflected, refracted and converted waves at an interface,
due to an incoming P-wave.
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Fig. 5.12. Reflection coefficient for a P-wave reflected at an interface between two media. Parameter values used
in this example: vp1 = 2500 m/s, vs1 = 1450 m/s, ρ1 = 2.1 g/cm3, vp2 = 3000 m/s, ρ2 = 2.2 g/cm3.

The incoming P-wave will also be coupled to a “refracted” S-wave, propagating in medium
2 at an angle θts given by

sin θts
vs2

= sin θi
vp1

(5.87)

This wave also has its polarization in the same plane as the incoming wave and the normal
to the interface. The two S-waves are said to be converted waves, since they originated
from a wave of a different type. Similarly, if the incoming wave is an S-wave with polar-
ization in this plane, two converted P-waves may be generated at the interface in addition
to the reflected and refracted S-waves. Note that an S-wave with polarization parallel to the
interface is not coupled to any P-wave at the interface, hence no such wave is created from
an incoming P-wave, nor will such a wave generate converted P-waves.

The degree of coupling between the incoming wave and the reflected, transmitted and
converted waves will vary with the angle θi. The expressions for the reflection, trans-
mission and conversion coefficients are rather complicated, and are therefore given in
Appendix D.2.2.

Fig. 5.12 shows an example where the reflection coefficient for the incoming P-wave
has been calculated for various angles of incidence. The figure shows that the reflection
coefficient increases abruptly just below the critical angle (Eq. (5.85)) for total reflection.
The reflection coefficient is furthermore seen to depend on the shear wave velocity vs2 of
the second medium.

5.7.1. Interface waves

In addition to the P- and S-waves, which can propagate through a material, there also
exist some elastic waves that only propagate along the interface between two media. One
familiar example is sea waves, which only exist at the surface of the water. An interface
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wave along the surface of a solid material is called a Rayleigh wave. This is the wave
normally observed as a result of an earthquake. Since the wave is confined to the surface,
it has a lower loss due to geometrical spreading than a body wave, and therefore may
propagate over larger distances. The velocity of a Rayleigh wave (vR) is given by the shear
wave velocity of the solid and the Poisson’s ratio (see for example Viktorov, 1979):

vR ≈ 0.87 + 1.12ν

1 + ν vs (5.88)

Waves along a planar solid–fluid interface are called Scholte waves, while waves along
a solid–solid interface are called Stoneley waves. There is a tradition within the petro-
leum industry, however, that both types of waves are called Stoneley waves. Such interface
waves can be excited at the sea floor when a seismic wave passes through, or at the bore-
hole wall during sonic logging operations, and thus be observable during normal field data
acquisition.

The direction of propagation of any interface wave is obviously along the interface. For
the Rayleigh wave the particle motion is an elliptical movement in the plane normal to the
interface and parallel to the direction of propagation. The amplitude of this motion falls off
exponentially into the solid material. Characteristic features of interface waves in borehole
geometry are discussed in Section 5.8.

5.8. Borehole acoustics

Sonic well logging is an important application of elastic waves in the petroleum industry.
The purpose of such logging is to measure the sonic velocity of the formation surrounding
the well. The basic elements of a sonic logging tool are shown in Fig. 5.13. The tool
consists of a transmitter and a receiver separated by a distance L. When the transmitter
emits a pulse, it generates a P-wave which travels through the mud and hits the borehole
wall at different angles along the hole, where it may be reflected, refracted or converted

Fig. 5.13. Schematic illustration of an acoustic logging tool with one transmitter and one receiver, situated in a
borehole with radius R.
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Fig. 5.14. Refractions of waves transmitted from an acoustic logging tool. The dashed line represents a ray
incident at sub-critical angle. The solid line is a critical refraction, that continuously emits acoustic energy into
the borehole.

into different modes. Eventually, a series of pulses arrive at the receiver: the direct P-wave
travelling through the mud, a refracted P-wave, a converted S-wave, and a set of borehole
eigenmodes.

Fig. 5.14 illustrates refractions in the borehole geometry. Rays that hit the borehole wall
at a sub-critical angle, will be refracted into the formation, and the energy can never return
to the borehole. However, the ray that hits the wall at an angle such that the transmission
angle θt = 90° will propagate parallel to the wall. This wave will continuously radiate
energy into the borehole. We say that this wave is critically refracted. Some of this energy
will reach the receiver. Since the critically refracted wave continuously loses energy, it will
be attenuated even in the absence of absorption.

Using the notation of Figs. 5.13 and 5.14, we can find an expression for the expected
arrival time of the critical refraction as a function of transmitter–receiver separation. The
length travelled in the fluid is

Lw = 2
R

cos θcr
(5.89)

while the length travelled in the formation is

L′ = L− 2R tan θcr (5.90)

Introducing sin θcr = vw/v (see Eq. (5.85)) where v is the velocity of the refracted wave
and vw is the velocity of the borehole fluid, we find the arrival time to be

t = Lw

vw
+ L′

v
= L

v
+ 2R

(
1

vw

√
1 − ( vw

v
)2

− vw

v2
√

1 − ( vw
v
)2

)

= L

v
+ 2R

√
1

v2
w

− 1

v2
(5.91)
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Fig. 5.15. Arrival time of the critical refraction as a function of transmitter/receiver separation (solid line). Also
shown is the arrival time of a direct wave with the velocity of the fluid (dashed line). The following parameters
were used: v = 3500 m/s, vw = 1500 m/s, R = 10 cm.

Thus, the arrival time is a constant, plus a term that is equal to the separation between
the transmitter and the receiver divided by the velocity of the formation. This means that
the difference in arrival time between two receivers at different separations from the trans-
mitter directly measures the velocity of the formation. Fig. 5.15 illustrates Eq. (5.91), and
compares it with a direct wave travelling with the velocity of the borehole fluid. As can be
seen, the refracted wave will be the first arrival, as long as the source-receiver separation is
above a limiting minimum.

In the above discussion, we have not specified whether v is the shear or compressional
velocity of the formation. The arguments work equally well for both cases, which means
that we may have both a critically refracted compressional wave and a critically refracted
(converted) shear wave. This conclusion is, of course, subject to the condition that the
formation velocities are higher than the fluid velocity. For the compressional wave this
will nearly always be fulfilled, but for the shear wave this is not so. Indeed, formations are
characterized as slow or soft when the shear wave velocity is slower than the fluid velocity,
and as fast or hard otherwise.

5.8.1. Borehole modes

In addition to the refractions, the full wavetrain also consists of borehole modes. These
are modes that are localized to the borehole, and do not radiate into the formation (at least
for some parameter ranges). This means that they are often the dominating components
of the full wavetrain as far as amplitude is concerned. The borehole modes also contain
information about the formation parameters, albeit in a more complicated manner than the
refractions.

The most important eigenmode is the Stoneley wave, which is an interface wave. (The
name “Stoneley wave” actually deviates from the strict definition of the type of interface
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Fig. 5.16. The low frequency limit of the Stoneley velocity as a function of shear velocity for ρ/ρw = 1.0 and
ρ/ρw = 2.5.

wave we are considering here; see page 204.) Its velocity is always smaller than that of the
fluid in the borehole. The wave has relatively low dispersion. In the low frequency limit
the wave is known as the tube wave and its velocity vSt is

vSt = vw√
1 + ρwv2

w
ρv2

s

(5.92)

where vw and ρw are the velocity and density, respectively, of the fluid in the borehole,
while vs and ρ are the shear velocity and density, respectively, of the formation. This rela-
tion is plotted in Fig. 5.16 for two different density ratios. Note that for sufficiently small
shear velocities, the Stoneley wave becomes attenuated in the low frequency limit. This is
due to the fact that it will radiate energy in the form of ordinary shear waves when vSt is
higher than the solid’s shear velocity.

Eq. (5.92) indicates the possibility of using the Stoneley velocity to determine the shear
wave velocity of a formation. Quite conveniently, the sensitivity to the shear wave veloc-
ity is highest when this velocity is small and no shear refraction exists. Some remarks of
caution are however necessary. The high Stoneley wave attenuation in slow formations, as
mentioned above and illustrated in Fig. 5.16, is a main limiting factor. Further, Eq. (5.92)
is a low frequency approximation, and should for practical applications be replaced by
a numerical inversion in the frequency band of the source. More important, the Stoneley
wave velocity is quite sensitive to the formation permeability, especially at low frequencies
(see e.g. Schmitt, 1988a). Finally, the Stoneley wave and the refracted (converted) S-wave
are sensitive to different components of the stiffness tensor, which may be significant in
anisotropic formations. In principle, this offers the possibility of assessing the acoustic
anisotropy of a fast formation, but in practice this is very difficult since the Stoneley veloc-
ity has a low sensitivity to the shear velocity when the shear velocity is high.

The shear eigenmodes or pseudo-Rayleigh waves have phase velocities that are higher
than the fluid velocity, and slower than the shear velocity of the formation. Consequently,
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Fig. 5.17. Example of dispersion of the Stoneley mode and the three lowest pseudo-Rayleigh modes in a fast
formation. Solid lines are phase velocity, broken lines are group velocity. vp = 3500 m/s, vs = 2000 m/s,

vw = 1500 m/s, ρ = 2.3 g/cm3, ρw = 1.2 g/cm3, R = 10 cm.

they only exist as undamped modes in fast formations. The pseudo-Rayleigh modes have a
cut-off frequency that increases with mode number (in principle, infinitely many pseudo-
Rayleigh modes exist). The cut-off frequency can be roughly estimated by requiring that
an integer number of half wavelengths should fit into the borehole. For a borehole with
diameter of 20 cm, this means that the order of magnitude of the cut-off frequency for the
lowest mode is 10 kHz. Note that the presence of the logging tool in the borehole reduces
the effective radius of the hole.

Fig. 5.17 shows examples of dispersion relations for the Stoneley mode and the lowest
pseudo-Rayleigh modes. Fig. 5.18 shows examples of (computed) full wavetrains in a fast
formation for three different source spectra. All wavetrains are shown in the same scale.
In the lower left, the early part of the wavetrains are shown amplified by a factor 10.
The figure illustrates that the full waveform depends strongly on the source spectrum. The
arrows indicate the expected arrivals of the P- and S-refractions and the Stoneley wave
based on ray theory.

Considering the high frequency source in the lower frame, the wavetrain is dominated by
the P-refraction and the pseudo-Rayleigh waves. No Stoneley wave is seen. In the middle
frame, the onset of the P- and S-refractions coincide well with the expectations from ray
theory. The Stoneley overlays the pseudo-Rayleigh waves, and is seen as a marked change
in amplitude.

For the low frequency case in the upper frame, there are no pseudo-Rayleigh waves,
and the waveform is dominated by the Stoneley wave. Note that the Stoneley wave breaks
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Fig. 5.18. Example of (computed) full acoustic wavetrains in a fast formation. Same parameters as in Fig. 5.17.
L = 2.44 m. Source centre frequencies are 20 kHz, 10 kHz and 2 kHz for the lower, middle and upper frames,
respectively. The early parts of the wavetrains are also shown with 10 times amplification. The amplitude scale is
the same in all three frames.

before the time expected from the low frequency velocity. This is due to dispersion. It is
not possible to determine clear P- and S-refractions in this case.

The wavetrains in a slow formation, as Fig. 5.19 show examples of, are considerably
simpler, due to the absence of the shear refraction and the pseudo-Rayleigh modes. In
certain cases, damped pseudo-Rayleigh modes may however be seen in slow formations.

In the high frequency case in the lower frame of Fig. 5.19, the only clear feature is the
P-refraction. Looking at the middle frame of Fig. 5.19, we find two clear events: the P-
refraction and the Stoneley wave. Note the relatively low frequency of the Stoneley wave.
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Fig. 5.19. Example of (computed) full acoustic wavetrains in a slow formation. vp = 2100 m/s, vs = 1200 m/s,

vw = 1500 m/s, ρ = 2.1 g/cm3, ρw = 1.2 g/cm3, L = 2.44 m. R = 10 cm. Source centre frequencies are
20 kHz, 10 kHz and 2 kHz for the lower, middle and upper frames, respectively. The amplitude scale is the same
in all three frames. The low frequency wavetrain is also shown with the amplitude reduced by a factor 20 (dashed
line).

This is due to the fact that the Stoneley wave is excited most strongly at low frequencies,
such that it favours the low frequencies of the excitation pulse. It is also evident that the
early part of the Stoneley wave is lower in frequency than the later part. This is due to
the dispersion of the Stoneley mode in slow formations, where the low frequency parts
propagate fastest. (In a fast formation, however, the high frequency parts are the fastest.)
The slow onset of the Stoneley mode in a slow formation of course makes picking of
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Fig. 5.20. Schematic illustration of flexural borehole motion induced by a dipole transducer.

the arrival time rather difficult for real data, where noise is a complicating factor. This is
another reason why the application of Eq. (5.92) for estimation of vs is difficult.

For the low frequency source in the upper frame, the amplitude of the Stoneley wave
is strongly increased, due to higher contents of low frequencies in the source. Note that
the frequency of the Stoneley wave is more or less the same as in the middle frame. The
P-refraction breaks where it is predicted from the ray theory.

In fast formations, one may in principle get the shear wave velocity from the shear refrac-
tions, but in practice the shear wave may be embedded in the ringing of the compressional
wave and noise, such that its extraction is at least non-trivial. In slow formations, one may
obtain the shear velocity from the Stoneley wave. However, as discussed, this method is
subject to several restrictions making it a far from ideal method.

For estimation of mechanical properties, one is most interested in the shear velocity
in slow formations, since a low shear velocity indicate low strength, and hence potential
stability problems. Dipole and quadrupole acoustic logging tools, which enable direct mea-
surements of the shear wave velocity in both slow and fast formations, are very useful tools
for this purpose.

The basic concept of the “Hula” log was suggested by White (1967). A dipole transmitter
can in principle be pictured as two close monopole transmitters driven with opposite phase.
The result may be thought of as a force oriented normal to the borehole wall which induces
a flexural motion of the borehole (see Fig. 5.20).

At sufficiently low frequencies, such that the wavelength is much longer than the bore-
hole diameter, the flexural mode is little affected by the borehole and propagates with the
shear velocity of the formation. At higher frequencies, the propagation velocity becomes
lower. In fact, the dispersion of the flexural mode is quite similar to the Stoneley mode,
with the exception that it is less affected by the permeability of the formation. An example
of the flexural mode dispersion is shown in Fig. 5.21. A quadrupole tool excites a mode
called the screw mode, which also propagates at the shear velocity at low frequencies and
has a similar dispersion.
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Fig. 5.21. Dispersion of the flexural mode and the screw mode, compared to the Stoneley wave in a slow forma-
tion. (After Schmitt, 1988b; with permission from AIP.)

Fig. 5.22. Principle sketch of an axisymmetric altered zone. The index a denotes altered parameter values.

5.8.2. Borehole alteration

We have seen that the full waveform is quite complicated even in the simple model used
above. We will here discuss briefly a slightly more complicated situation, in which there
is a concentric altered zone around the wellbore. The alteration may be due to mud filtrate
invasion, or stress induced damage (see Section 4.5). We assume that the zone is homoge-
neous and isotropic. Fig. 5.22 sketches the situation.

From the ray-theory point of view, it is now clear that we may have refractions both from
the borehole wall and from the interface between the two formation zones (assuming that
the velocity of the altered zone is lower than that of the virgin formation).

Fig. 5.23 shows the expected arrival times as a function of distance. The first refracted
arrival will be the shallow refraction for short transmitter receiver distances, and the deep
refraction for longer separations. This effect has been used by Hornby and Chang (1985),
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Fig. 5.23. Arrival times for the model of Fig. 5.22. Virgin formation as in Fig. 5.15. The altered velocity is
reduced by 20%. The altered zone thickness is 20 cm.

Fig. 5.24. Synthetic wavetrains in an altered slow formation. Soft means that the altered layer is 10% slower
than the virgin zone, hard means that it is 10% faster. The unaltered case is the same as in the middle frame of
Fig. 5.19. The altered zone thickness is 10 cm.

who—using data from several runs of an experimental logging tool with variable trans-
mitter receiver spacing—computed the altered zone thickness and velocity as a function
of depth. Such calculations should, of course, be considered with some caution, since the
model used is very simple. The assumption of an axisymmetric altered zone is dubious,
and the abrupt transition from altered to unaltered formations is only a first approximation.

Fig. 5.24 shows examples of synthetic wavetrains in an altered soft formation. The al-
tered zone velocities are 10% higher/lower than those of the virgin formation. It is clear
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from the figure that alteration affects significantly the character of the wavetrain. The am-
plitude of the P-refraction is changed considerably, and the dispersion characteristics of
the Stoneley wave are also changed. This is due to the fact that the Stoneley wave samples
some average of the altered and virgin shear velocities at low frequencies, but sees only the
altered zone at high frequencies.

5.9. Seismics

A seismic survey is the only tool available for mapping and characterization of large sub-
surface structures. The major objectives for surface seismic surveys are to identify and
localize the subsurface structures. From a rock mechanical point of view, the fact that
P- and S-wave velocities, density and to some extent anisotropy may be determined from
seismic data, provides a basis for large scale applications.

The basic element in a seismic survey is a seismic shot, as shown in Fig. 5.25. The
distance (x) between the source and the receiver is called the offset. When a shot is fired by
the source, a semi-spherical wave is propagating down through the rock masses. At each
interface between the various layers in the formation, a part of the wave is reflected and
propagates back towards the surface, and is eventually detected at the receiver. The elapsed
time (tT) from the shot is fired until the reflection is detected at the receiver is called the
Two-Way Traveltime (TWT).

Consider a situation as shown in Fig. 5.25, where the wave propagates with velocity v
through a uniform formation until it is reflected at a plane, horizontal interface at depth D.
By a simple geometric analysis, we find that the TWT for a given offset can be expressed
by the hyperbolic equation

t2T(x) = t2T(0)+
x2

v2
(5.93)

where tT(0) = 2(D/v).

Fig. 5.25. A seismic shot.
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Consider now a set of shots with different offsets around the same midpoint. Corre-
sponding values of TWT and offset should then fall on a straight line in a plot of t2T(x)
versus x2. From this plot it is possible to identify both tT(0) (from the intercept at x = 0)
and v (from the slope). Thus it is possible to identify both the depth D and the velocity v
from the seismic data.

A collection of shots around a common midpoint is called a CMP gather. In order to
enhance the useful information (i.e. the reflected pulse) and suppress noise, it is standard
procedure to add up all recorded traces in a CMP gather, after having scaled the time axis
of each trace as

tT(x)→
√
t2T(x)−

x2

v2
(5.94)

This scaling ensures that the reflection occurs at the same place for all traces. Such a sum
of traces is called a CMP stack. Note that stacking disturbs information about amplitude
and phase in the signals.

If the formation consists of several layers, the wave is refracted at each interface both
before it reaches the actual interface we are considering and on its way back to the surface.
The expression for TWT is then rather complicated, however in the hyperbolic approxima-
tion we have (Dix, 1955)

t2T(x) ≈ t2T(0)+
x2

v2
RMS

(5.95)

where the so called “root-mean-square velocity” vRMS is given as

v2
RMS = 2

tT(0)

N∑
j=1

Ljvj (5.96)

Lj and vj are the thickness and velocity of layer j , respectively, and N is the number of
layers, while the TWT at zero offset is given as

tT(0) = 2
N∑
j=1

Lj

vj
(5.97)

As we are able to obtain both vRMS and tT(0) from the CMP gather for the reflection from
each layer, we have the 2N equations needed to determine the 2N unknowns Lj , vj . This
procedure, called Dix inversion, allows us to determine both velocity and thickness of each
layer.

An alternative form of the traveltime equation (5.95) is found by Taylor expansion of
the traveltime in x:

tT(x) = tT(0)+ x2

2tT(0)v2
NMO

+ · · · (5.98)

The function�tT(x) = tT(x)−tT(0) is called the normal moveout (NMO), and the velocity
vNMO is called the normal moveout velocity. In general, vNMO differs from vRMS, however
for plane, horizontal, homogeneous layers, we have vNMO = vRMS.
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In practice, the processing of seismic data is complicated by several factors, such as
dipping layers (which imply that the reflection point differs from the common midpoint),
lateral velocity variations and anisotropy (which both implies that the velocity is different
for different offsets), and spurious reflections originating from refracted waves, converted
waves, interface waves and multiple reflections. Data derived from seismic processing may
thus suffer from large uncertainties.

We have shown earlier that the amplitude of a reflection generated at an interface de-
pends on the acoustic impedance. Since the acoustic impedance depends on both velocity
and density, the amplitude of a seismic reflection also carries information about the rock
density. In general, the reflection coefficient depends on the angle of incidence, the P-wave
velocities and densities of both layers, as well as the shear wave velocity vs2 of the lower
layer (see example in Fig. 5.12). Thus, the variation in amplitude versus offset (correspond-
ing to the angle of incidence) for a P-wave reflected at the interface between two layers
carries information about both the P- and S-wave velocity of the layer below the interface.
In marine seismic surveys, both the source and the receivers are floating in water, hence all
information to be extracted about the formations below the sea floor has to be carried by
P-waves. Application of the method outlined above is a possible way to extract also shear
wave velocities from marine seismic data. The method is known as AVO (Amplitude Ver-
sus Offset). In land- or ocean bottom-based seismic surveys, where both P- and S-waves
are generated and detected, an extended method called Multicomponent AVO may be ap-
plied to improve the confidence of the estimated shear wave velocity. This method also
includes analyses of amplitudes of reflected S-waves, by a similar set of equations as those
described in Appendix D.2.2.

A velocity derived from a seismic data set is a kind of “average” velocity over a distance
given roughly by the wavelength. If the rock is heterogeneous on a scale shorter than this
distance, the observed velocity will not be fully representative for the velocity on a shorter
length scale. Examples of how the “average” velocity relates to the short scale velocities
and the geometrical structure of the heterogeneities are given in Section 6.1.

The resolution of seismic data—that is, the typical size of the smallest objects that can
be seen as reflections—is usually assumed to be about a quarter of the wavelength. As a
seismic wave contains a band of frequencies (typically 10–100 Hz), the resolution limit is
usually defined as the wavelength of the component that has the highest frequency. The fre-
quency content in a seismic signal is mainly given by the attenuation (which is a constant-Q
type withQ in the order of 30–100 for underground formations), the distance travelled by
the wave, and the type of wave. For a P-wave reflected at about 1000 m depth, the typical
wavelength is about 100 m, while the resolution limit is about 20 m, depending of course
on the local conditions. The loss of the highest frequencies with increasing travel-time
(which is a consequence of constant-Q attenuation) implies that the resolution is poorer for
deeper reflections. For a P-wave reflected at about 4000 m depth, the typical wavelength
is about 200 m, and the resolution limit about 50 m. Improved recording technology may
improve the resolution somewhat, maybe as much as a factor of 2. Still the resolution is
quite poor, and this limits the applicability of seismic data for determination of formation
properties. Further improvements in the resolution require different processing techniques
which may be more sensitive to noise.
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Chapter 6

Rock models

In the previous chapters, we have discussed the mechanical behaviour of rocks in terms
of continuum mechanics. That is, we have treated the rocks as homogeneous materials.
However, sedimentary rocks are made up of small particles, and are largely heterogeneous
materials on a length scale comparable to the particle size (Fig. 1.18). Furthermore, inho-
mogeneous distribution of particle types and particle sizes in the form of layers or clusters,
as well as fractures, produce heterogeneities on larger length scales. The mechanical prop-
erties of the rock will differ largely from one part to another if measured on a length scale
which is small or comparable to the size of the heterogeneities. The continuum approach
can be applied with confidence only as an average, and on a length scale which is large
compared to the size of the heterogeneities.

For many practical applications the continuum approach is valid. However, it is intu-
itively clear that the mechanical properties of the rock even on a large scale must depend in
some way on the microscopical nature of the rock. We have already touched this problem
when we introduced the poroelastic formalism (Section 1.6). The theory of poroelasticity
is based on the assumption that the rock consists of both a solid part and a fluid part, which
are separated on a microscopic scale, but coexist on a macroscopic scale. One of the state-
ments of this theory is that the rock’s framework has its own moduli, separate from those
of the solid material and the pore fluid.

The poroelastic formalism of Biot introduced earlier (Chapter 1) is capable of predict-
ing the elastic properties of a porous material provided that parameters like the frame bulk
(Kfr) and the shear (Gfr) moduli are known. These are macroscopic parameters, describing
the properties of the rock on a length scale much larger than the grains and pores. The Biot
theory is called a macroscopic theory since it only deals with macroscopic quantities. It is
an ultimate goal to be able to express the macroscopic parameters likeKfr andGfr in terms
of the properties of the constituents the rock is made of and the microstructure of the rock
fabric. Having obtained values for the macroscopic parameters from the microscopic the-
ories, we may consider these parameters to represent a material which is homogeneous on
a macroscopic scale. This virtual, homogeneous material is commonly called an effective
medium.

The elastic properties of a composite material like a sedimentary rock depend primarily
on the following three factors:

1. the relative amount of each component present

2. the elastic properties of each component

3. the geometrical distribution of each component.

It is not possible to obtain accurate data for all three factors for a given rock, hence any
model of the rock will necessarily be based on simplifying assumptions. A model is there-
fore valid as a representation for the real rock only to the extent that the features governing
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the observed behaviour of the rock are accounted for in the model. This also implies that a
model may be a good representation for the rock in a given situation, while it is not at all
describing the actual behaviour of the rock in other situations.

A large number of rock models have been derived over the years, describing various
properties of various rocks under various conditions. A comprehensive collection of such
models was given by Mavko et al. (1998). Here, we shall first take a look at a model for
a simple heterogeneous material, in order to illustrate how the physical properties may
depend on the length scale on which the material is being observed (Section 6.1). Some
models for porous rocks involve only porosity, with no explicit reference to the shape
of the pore space. Such models are presented in Section 6.2. Other models are based on
the forming process of sedimentary rocks, and describe essentially packs of grains. Such
models are described in Section 6.3. Models describing cracked and fractured rocks are
described in Sections 6.4 and 6.5.

6.1. Layered media

Consider a material made up of parallel, isotropic layers. This is one of the simplest exam-
ples one can find of a non-homogeneous material. We shall use this as an example to see
how a material can be considered as heterogeneous on one scale, and effectively homoge-
neous on another.

Given a sample of a layered material. We denote the thickness of layer number i as Li ,
so that the total thickness L of the sample is the sum of all Li . If an external load σz is
applied in the direction normal to the layers, all layers have to carry the same load. The
strain of layer i will be εz,i = σz/Ei , where Ei denotes the Young’s modulus of layer i.
The sample will thus deform according to

εz = − 1

L

∑
i

�Li = 1

L

∑
i

εz,iLi = 1

L

∑
i

σz

Ei
Li = σz 1

L

∑
i

Li

Ei
≡ σz

〈
1

E

〉
(6.1)

We use 〈x〉 to denote the average of the quantity x weighted by the volumetric proportion
of each layer (often called Backus average). The effective Young’s modulus E∗ of the
layered material is according to Eqs. (1.91) and (6.1) given as

E∗ =
〈

1

E

〉−1

(6.2)

Note that the layered material has transversely isotropic symmetry, so that the effective
Young’s modulus will vary with orientation of the applied stress. The total effective stiff-
ness tensor of this layered material is given as (Backus, 1962; Helbig, 1994):

C11 = C22 =
〈

4G(λ+G)
λ+ 2G

〉
+
〈

1

λ+ 2G

〉−1〈
λ

λ+ 2G

〉2

(6.3)

C33 =
〈

1

λ+ 2G

〉−1

(6.4)
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C12 =
〈

2Gλ

λ+ 2G

〉
+
〈

1

λ+ 2G

〉−1〈
λ

λ+ 2G

〉2

(6.5)

C13 = C23 =
〈

1

λ+ 2G

〉−1〈
λ

λ+ 2G

〉
(6.6)

C44 = C55 =
〈

1

G

〉−1

(6.7)

C66 = 〈G〉 = 1

2
(C11 − C12) (6.8)

For an elastic wave with sufficiently low frequency, such that the wavelength λw is much
larger than the thickness of any of the layers, the layered material will effectively appear
as a homogeneous and anisotropic material with stiffness given by Eqs. (6.3)–(6.8). The
velocity of a P-wave travelling normal to the layers is then, according to Eq. (6.4) and
Section 5.5, given as

vp(λw 
 Li) =
√
C33

ρ∗ =
√

1

〈ρ〉
〈

1

λ+ 2G

〉−1

(6.9)

ρ∗ is the average density, given as ρ∗ = 〈ρ〉.
For an elastic wave with high frequency, such that the wavelength is much shorter than

the thickness of the layers, the material will appear as a sequence of layers with different
velocities. The time �t needed for a P-wave to travel through the sample (normal to the
layers) is given as the sum of the time needed to travel through each of the layers, that is

�t = L

vp(λw � Li)
=
∑
i

Li

vp
=
∑
i

Li

√
ρi

λi + 2Gi
(6.10)

where vp is the velocity of layer i. The average velocity is given as (see Eq. (5.26)):

vp(λw � Li) =
〈√

ρ

λ+ 2G

〉−1

(6.11)

The difference between Eq. (6.11) and Eq. (6.9) represents the different properties dis-
played by a heterogeneous material when it is studied on two different length scales.
Eq. (6.11) represents a situation where the relevant length scale of the observation (i.e.
the wavelength of the elastic wave) is much smaller than the length scale of the hetero-
geneities (i.e. the layer thickness), hence the material appears as heterogeneous. Eq. (6.9)
represents on the other hand a situation where the length scale of the observation is much
larger than the length scale of the heterogeneities, and the material appears effectively as
homogeneous.

The transition between these two cases was nicely demonstrated in a laboratory experi-
ment by Marion and Coudin (1992), where acoustic waves with different wavelengths were
transmitted through a stack of plates of alternating steel and plexiglass. A simulation of a
similar experiment, using a discrete element code, is shown in Fig. 6.1. Note that the ve-
locity of the wave is significantly lower when the thickness of the layers is much smaller
than the wavelength, as compared to the situation when the layer thickness is larger than
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Fig. 6.1. Recorded signals of P-waves transmitted through 7 different samples, as simulated by a discrete element
code. The excitation is a one-cycle sine pulse. Each sample is a stack of hard and soft layers of equal thickness.
Only the layer thickness L is different for each sample. The hard-layer:soft-layer ratios for stiffness and density
are 20:1 and 8:1, respectively.

the wavelength. Note also the strong attenuation for the intermediate cases, indicating that
the wave is almost unable to propagate under such conditions. Hovem (1995) showed by
analytical modelling that wave propagation is dispersive with no loss for frequencies below
a critical limit, while waves with higher frequencies are evanescent, suffering loss at each
interface. The critical frequency limit depends on the periodicity of the layered material
and the impedance contrast between the layers.

This example demonstrates clearly that the properties of a heterogeneous material may
be very different when observed on different length scales. An effective medium repre-
senting the material has the properties of the material when it is observed on a length scale
much larger than that of the heterogeneities.

6.2. Models involving porosity only

For a simple porous rock consisting only of one type of solid material and being saturated
with only one type of fluid, the relative amount of the components is specified by the
porosity φ, while the elastic properties of the components are given by the bulk modulus of
the fluidKf, and the bulk (Ks) and shear (Gs) moduli of the grain material. Many available
expressions for the elastic properties of rocks are based only on these parameters, as details
about the geometrical distribution of each component is normally not known.

Precise estimates for the elastic moduli of a rock can not be obtained without the vital
information about the geometrical distribution of each component, however there are upper
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and lower limits for their values. Such limits—or bounds as they are usually called—can
be established by considering extreme geometrical distributions of the constituents.

Assuming a distribution such that both the grain material and the fluid experiences the
same strain due to an external hydrostatic stress, the bulk modulus (KV) of the rock is given
as

KV = φKf + (1 − φ)Ks (6.12)

KV is an upper bound for the bulk modulus of a real rock, and is called the Voigt bound.
Similarly, if we assume that the stress is the same in both the grains and the fluid, we find
that the bulk modulus (KR) of the rock is given as (see Eq. (1.132))

1

KR
= φ

Kf
+ 1 − φ

Ks
(6.13)

KR is a lower bound for the bulk modulus, called the Reuss bound. Similar bounds can
be found for the shear modulus simply by replacing the bulk moduli in Eqs. (6.12) and
(6.13) by the corresponding shear moduli. Note that the Reuss bound for the shear modulus
GR = 0 for any φ > 0 (since Gf = 0), while the Voigt bound GV > 0 for any φ < 1.

Physically, the Reuss bound represents a suspension, e.g. solid particles in a liquid. It
may also describe gas bubbles in a liquid (in which case the bulk modulus Kg of the gas
has to replace Ks in Eq. (6.13)). The Voigt bound represents an alloy of constituents, and
is most appropriate for a rock at low porosity.

The Voigt and Reuss bounds are very wide, and of limited value for modelling of rock
properties. A narrower range is given by the Hashin–Shtrikman bounds. In a general form,
these are given as (Hashin and Shtrikman, 1963)

KHS± = K1 + v2
1

K2−K1
+ v1

K1+ 4
3G1

(6.14)

GHS± = G1 + v2
1

G2−G1
+ 2v1(K1+2G1)

5G1(K1+ 4
3G1)

(6.15)

Subscripts 1 and 2 denote component 1 and 2, respectively, while v represents the vol-
ume fraction of the actual component. The upper (KHS+,GHS+) and lower (KHS−,GHS−)
bounds are found by interchanging material 1 and 2 (the upper bound is found when mate-
rial 1 is the stiffest one). Physically, the Hashin–Shtrikman bounds represent the moduli of
an assembly of spheres of material 2, each of which is surrounded by a shell of material 1.
Note that for the simple grain-fluid model of a rock described above, the lower Hashin–
Shtrikman bound is identical to the Reuss bound for both the bulk and the shear modulus.
This is also the exact solution for a suspension of grains in a fluid (see Section 1.6).

The arithmetic average of the Voigt and Reuss bounds are sometimes used to ob-
tain estimates of the moduli, rather than just the allowable range. These averages, K =
(KV + KR)/2 and similar for the shear modulus, are usually called the Voigt–Reuss–Hill
average moduli (Hill, 1952). The Voigt–Reuss–Hill average moduli represent no well de-
fined model of the rock microstructure, however it may be seen as a specific mixture of the
extreme structures represented by the Voigt and Reuss bounds.
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An alternative approach would be to look for the most probable microstructure in a
porous rock and try to estimate the moduli for such a structure. Considering for instance a
collection of sand grains, it is clear that there exists a maximum porosity, above which the
grains will no longer be in contact with each other and the frame moduli will vanish. For
an ordered simple cubic packing of equally sized spheres, this critical porosity φc is 0.476,
for a random packing it is about 0.36, while for a typical clean sand it is about 0.40. Based
on this simple argument, combined with the expectation that the moduli should be equal
to the moduli of the grain material if the porosity is zero, we find as the simplest possible
expression

Kfr = Ks

(
1 − φ

φc

)
(6.16)

Gfr = Gs

(
1 − φ

φc

)
(6.17)

The critical porosity concept (Nur et al., 1991, 1995) is not really a micromechanical
model, and the critical porosity is an empirical constant which will differ from one rock
type to another, however the concept provides an explanation for the characteristic behav-
iour of the frame moduli of sedimentary rocks. Fig. 6.2 shows the undrained bulk modulus
versus porosity for a rock, as given by Eq. (6.16) with φc = 0.39. The figure also shows
the Voigt, Reuss and Hashin–Shtrikman bounds for a dry rock, and the Voigt–Reuss–Hill
average. For comparison, the empirical results of Murphy et al. (1993) for clean sands are
also included.

Fig. 6.2. Undrained bulk modulus versus porosity for water saturated rocks, according to various models. The
dotted line is based on the empirical curve of Murphy et al. (1993) for clean sandstones. The fluid contribution
has been accounted for by use of the Biot–Gassmann equation (1.155) for both the empirical curve and the critical
porosity curve.
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The critical porosity concept also provides some understanding of the properties of
sand–clay mixtures (Marion and Nur, 1991). Small amounts of clay in a sandstone usu-
ally appear as pore fill, and the mechanical properties of the rock are mainly determined by
the framework of sand grains. The stiffness of the rock is however still largely determined
by the sand grain framework, as the sand grains are stiffer than the clay. On the other hand,
clay mixed with only a small amount of sand will behave as a kind of suspension, where the
mechanical properties will be dominated by those of the clay. The transition between the
two types of behaviour will occur when the relative volume of sand is about 1 − φc, that is
when the sand volume is just large enough for the grains to make a continuous framework.

6.3. Grain pack models

Sedimentary rocks are formed by small pieces of solid material that are compacted and to
some extent cemented. Models describing the elastic properties of grain packs may thus
provide interesting information about such materials.

Consider two spherical grains that are pressed together with a normal force F acting
along the line through the centres of the spheres (Fig. 6.3). Due to the force, the grains
will be deformed in the vicinity of the contact spot. The contact area will be a circle with
radius b, depending on the force F as

b =
[

3(1 − ν2
s )aF

4Es

]1/3

(6.18)

This equation was originally derived by Hertz (1882), assuming linearly elastic grain
material and that the contact radius is small (b � a). νs and Es are the Poisson’s ratio and
Young’s modulus of the grain material, respectively. The distance between the centres of
the grains is reduced with s due to the external force:

s =
[

9(1 − ν2
s )

2F 2

2E2
s a

]1/3

(6.19)

The normal stress σ within the grain contact area is given as

σ = 3F

2πb2

(
1 − r2

b2

)1/2

(6.20)

where r is the lateral distance from the centre line between the two spheres. A force con-
stant Dn relating the longitudinal deformation �s to an increment �F can be derived
from Eqs. (6.18) and (6.19), utilizing the relationship between Es and the shear modulus
Gs (Table 1.1):

Dn = �F

�s
=
[

3E2
s aF

4(1 − ν2
s )

2

]1/3

= 2Gsb

1 − νs
(6.21)

The response to an incremental shear force �F ′ over a grain contact that is already under
the same external load F as above, can be found by a similar consideration of the forces in
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Fig. 6.3. Normal stress distribution at the grain contact in a normally loaded contact between two equally sized,
spherical grains. (After White, 1983; with permission from Elsevier Science Publishers.)

the grain contact area (see Fig. 6.4). A shear force constant

Dt = �F ′

�s′
= [6E2

s aF(1 − ν2
s )

2]1/3

(2 − νs)(1 + νs)
= 4Gsb

2 − νs
(6.22)

relates the shear force between the grains to the lateral displacement (�F ′ and�s′ defined
in Fig. 6.4). This theory was first developed by Mindlin (1949), so the grain pack theory as
it stands is usually called the “Hertz–Mindlin”-theory.

The relationship between the force F and the external pressure σp causing the force, as
well as the relationship between the displacement s and macroscopic strain εvol, depend on
the packing of the grains.

For a random packing of identical spheres, εvol = 3s/(2a) while

F = 4πa2σp

Nc(1 − φ) (6.23)

Nc is the average number of contacts per sphere, also called the coordination number.
Note that the porosity is given essentially by the packing, and is not a free variable in these
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Fig. 6.4. Tangential stress distribution at the grain contact in a contact between two equally sized, spherical
grains, which is initially hydrostatically loaded, followed by an incremental shear load. (After White, 1983; with
permission from Elsevier Science Publishers.)

equations. The bulk modulus for the random packing of identical spherical grains under
isotropic external stress is thus given as

K = ∂σp

∂εvol
= Nc(1 − φ)

6πa
Dn =

[
N2

c (1 − φ)2E2
s σp

72π2(1 − ν2
s )

2

]1/3

(6.24)

The shear modulus G of a random pack of identical spherical grains is given as (Digby,
1981):

G = Nc(1 − φ)
10πa

(
Dn + 3

2
Dt

)
= 5 − 4νs

10(2 − νs)

[
3N2

c (1 − φ)2E2
s σp

π2(1 − ν2
s )

2

]1/3

(6.25)

These equations are valid when there is no slip between the spheres. Walton (1987) also
considered possible slip at the contact surfaces, which implies that the friction coefficient
at the contact area has an impact on the elastic moduli. For perfectly smooth spheres (the
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friction coefficient is zero; perfect slip), Walton found

K = 1

6

[
3N2

c (1 − φ)2σp
π4B2

]1/3

(6.26)

G = 1

10

[
3N2

c (1 − φ)2σp
π4B2

]1/3

= 3

5
K (6.27)

where

B = 3

2π

(1 − 2νs)(1 − νs)

Es
(6.28)

Eqs. (6.24) and (6.25) can be used to estimate how acoustic velocities depend on an
external hydrostatic stress σp for a dry rock. Since both K and G depend on σ 1/3

p , we

immediately see that both vp and vs depend on the stress as σ 1/6
p . Experiments on loose

sands (Domenico, 1977; Bachrach et al., 1998; Han and Batzle, 2006) have shown vp and vs
depending on the stress as σnp , where n is in the range 1/4 to 1/5. There are several possible
reasons for this discrepancy (Makse et al., 2001). The analytical grain pack models do not
account properly for partial slip and associated grain rotation and rearrangement. The load
is further assumed to be carried equally by all grain contacts, while in reality, it is carried by
localized force chains through the grain assembly. This may be described by an effective,
stress-dependent coordination number. With realistic grain shapes, the surface roughness
of the grains may also lead to grain contact stiffnesses described by an exponent different
from 1/3 (as in Eqs. (6.21) and (6.22)). An example of such behaviour is the “bed of nails”
model by Carlson and Gangi (1985), which is described under Section 6.5.1. Note that the
theory also predicts that the ratio between vp and vs does not depend on the external stress.

The Hertz–Mindlin contact theory has also been derived for various ordered packings
of grains (see f.i. Wang and Nur, 1992, for a review). Extensions to the model have been
made to take into account the effects of a saturating fluid (White, 1983; Brandt, 1955),
and to describe cemented rather than pressure generated grain contacts (Digby, 1981;
Schwartz, 1984; Dvorkin et al., 1991). For cemented contacts the force constants Dn and
Dt become unknown parameters. and the stress dependency of the acoustic waves tends
to be less pronounced. The Hertz–Mindlin theory is no longer valid at high stress levels,
when plastification of the grain contacts may occur. The stiffness will then increase with
stress at a rate lower than indicated by the exponent 1/6.

The general case of variously sized, cemented particles in a random dense pack has not
been solved analytically yet. However, such systems can be studied numerically. Discrete
particle modelling has developed rapidly over the last few years, with the continuous de-
velopment of faster and more powerful computers. One such approach is the PFC (Particle
Flow Code1), which is based on the pioneering work of Cundall and Strack (1979).

In PFC, which may be formulated both in 2D and 3D, circular or spherical particles of ar-
bitrary size distribution are packed into a granular assembly under a specific applied stress.
Each disk or sphere is treated as a rigid body, with translational and rotational degrees of

1 Trademark of Itasca Consulting Group, Minneapolis, USA.
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freedom. When two particles come in contact, forces are generated as a result of relative
(normal and shear) displacements at the contact. Using a so-called soft contact approach,
the particles are permitted numerically to overlap each other, and the degree of overlap
controls the contact forces through a contact law. The contact law may be Hertzian, or lin-
ear, or user-defined. By applying boundaries representative for the problem to be studied
(e.g. flat walls to mimic pistons, in case a laboratory test is simulated), the stress conditions
can be changed and the contact forces and associated particle movements calculated, until
equilibrium is reached and a new load increment can be applied. This procedure is cycled
over and over again until a numerical experiment is completed.

The particle contacts may be unbonded or bonded. When simulated cement bonds are
inserted, they have bond stiffnesses that are in general different from those of the unce-
mented contacts. In addition, the bonds have shear and tensile strength. When a shear or
tensile failure criterion is exceeded locally, the bond fails, and it then retains the properties
of the uncemented contact. With the features described above, the discrete model permits
calculation of the complete stress–strain behaviour of an uncemented or cemented granular
medium (Potyondy and Cundall, 2004). It thus serves as a tool for studying rock failure
mechanics on the particle scale.

Several features may be added to permit direct comparison between laboratory measure-
ments and discrete element computations, such as fluid coupling to simulate stress effects
on permeability. For instance, wave propagation may be simulated directly in PFC, since
the model is inherently dynamic (Li and Holt, 2002). Also, acoustic emissions may be
simulated by calculating the energy associated with bond ruptures (Hazzard and Young,
2000).

Discrete particle modelling may be used to gain understanding and insight, in particular
in comparison with laboratory experiments. It may also be used to solve engineering prob-
lems, in competition with continuum methods. The main benefit (Cundall, 2001) is that no

Fig. 6.5. Distribution of contact forces in a 2D specimen created by PFC2D, loaded in the vertical direction. The
width of the lines is proportional to the force magnitude, and the direction indicates the orientation. The figure
shows only a section of the specimen.
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Fig. 6.6. Grain contact failures at a given stress level in the 2D specimen shown in Fig. 6.5. The black lines show
failures that are predominantly tensile, while the grey lines show shear failures.

pre-assumed constitutive material law is needed: complex behaviour, including develop-
ment of localized fractures and cracks is a natural output of the modelling.

From a fundamental viewpoint, one may ask to what extent the assumptions behind the
simple effective medium theories sketched above are valid. As an illustration of that, a
distribution of contact forces in a 2D network is shown in Fig. 6.5. The distribution is
clearly heterogeneous, with a small number of contacts carrying a large part of the load
(see also Radjai et al., 1996; Williams and Rege, 1997). This allows a.o. for studies of
various stress geometries, stress history and degrees of cementation. Note that the network
of force lines is heterogeneous on a larger scale than the grain size.

The numerical calculations also allow for “snap-shots” of grain contact failures at given
points in time, as shown in Fig. 6.6. Such figures may help to better understand deformation
mechanisms and failure processes in sedimentary rocks.

6.4. Models for cracks and other inclusions

The grain pack models discussed above describe the porous material as a collection of
grains with varying degree of contact between the grains. This may seem to be a logical
path to follow when studying sedimentary rocks, since they are indeed formed this way.
However, we may also consider a porous material as a solid with lots of holes in it, like a
“Swiss cheese”. For some purposes it appears that this approach may be equally relevant,
especially for well cemented rocks. More generally, we talk about such models as inclusion
models, as they consider the effect of including an object in a host material.

To establish a model for such a material, we need descriptions for how holes of various
shapes affect the elastic properties of the solid. In a static approach (Eshelby, 1957; Walsh,
1965a, 1965b), it is assumed that a static external load is imposed on a sample consisting of
a host material with embedded inclusions. The elastic properties of the effective medium
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are obtained by requiring that the effective medium shall suffer the same deformation as
the real sample when subjected to the same external load. In a dynamic approach (Kuster
and Toksöz, 1974), it is assumed that a region consisting of inclusions embedded in a
host material is embedded in the effective medium. The elastic properties of the effective
medium are defined such that the scattering of elastic waves from the embedded region is
eliminated. The wavelength of the elastic wave is assumed to be much larger than the size
of the region.

The two approaches converge when the concentration of inclusions is low. In Sec-
tions 6.4.1 and 6.4.2 we shall take a look at models valid for low concentrations of
inclusions. Models intended to account for higher concentrations of inclusions are dis-
cussed in Section 6.4.3.

6.4.1. Linear, isotropic models

Assuming that the concentration of inclusions is so low that interactions can be neglected,
we may express the impact of the inclusion on the elastic stiffness of the material as a
perturbation, proportional to the concentration of the inclusions. Assuming also that the
host material is isotropic, the effective bulk modulus K∗ and the effective shear modulus
G∗ of a material containing inclusions, can be written as

K∗ = Ks(1 −QKξincl) (6.29)

G∗ = Gs(1 −QGξincl) (6.30)

Ks and Gs are the bulk modulus and shear modulus, respectively, of the solid material
without inclusions. ξincl is an appropriate measure of the concentration of the inclusions,
depending on their shape (as will be seen below). QK andQG are measures of the impact
these inclusions have on the respective moduli of the material. QK and QG are functions
of the moduli of the host material and the material within the inclusions. Other moduli can
be represented by similar expressions.

Consider first the case where the inclusions are spherical, fluid-filled holes. The poros-
ity φ, which is here given as the sum of the volumes of the holes relative to the total volume,
is a suitable measure for the concentration of inclusions, thus ξincl = φ. The expressions
for the effective moduli can for instance be derived from Eqs. (6.14) and (6.15), by defining
KHS+ = K∗, GHS+ = G∗, v2 = 1 − v1 = φ, K1 = Ks, K2 = Kf, G1 = Gs, G2 = 0 (the
upper Hashin–Shtrikman bound then represents a solid surrounding a spherical, fluid-filled
inclusion), and linearizing the expressions in φ. The results are (see also Mackenzie, 1950;
Eshelby, 1957; Walsh, 1965a):

K∗ = Ks

(
1 − 3(1 − νs)(1 − Kf

Ks
)

2(1 − 2νs)+ (1 + νs)
Kf
Ks

φ

)
(6.31)

G∗ = Gs

(
1 − 15

1 − νs

7 − 5νs
φ

)
(6.32)

Here νs is the Poisson’s ratio of the solid material, without inclusions. By comparing
Eq. (6.31) to Eq. (1.155) we find (after some algebra) that K∗ is in agreement with Biot’s
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theory (Section 1.6.2). Note also that G∗ does not depend on Kf, thus G∗ is the same
whether the material is dry or saturated, again in agreement with Biot’s theory. This is not
the case in general for inclusion models, as we shall see below.

We shall now consider the case where the inclusions are thin, flat cracks. For such inclu-
sions, it turns out that the most suitable measure for the concentration of inclusions is the
crack density ξ , defined as

ξ = 2n

π

〈
A2

P

〉
(6.33)

A is the area and P the perimeter of a crack, and n is the number of cracks per unit vol-
ume. The brackets 〈 〉 denote an average over all cracks. For circular cracks with radius a,
Eq. (6.33) becomes

ξ = n〈a3〉 (6.34)

Assuming that the cracks are randomly oriented, we have (Walsh, 1965a, 1965b; Garbin
and Knopoff, 1973, 1975; Budiansky and O’Connell, 1976; see also Watt et al., 1976):

K∗ = Ks

(
1 − 16

9

1 − ν2
s

1 − 2νs
Dξ

)
(6.35)

G∗ = Gs

(
1 − 32

45
(1 − νs)

[
D + 3

2 − νs

]
ξ

)
(6.36)

The parameter D is given as

1

D
= 1 + 4

3πγ

1 − ν2
s

1 − 2νs

Kf

Ks
(6.37)

where γ is the aspect (thickness-to-diameter) ratio of the cracks. Note that for a dry mater-
ial, for which Kf = 0 and consequently D = 1, the only crack-related parameter affecting
the effective moduli is the crack density ξ . For very thin, fluid-filled cracks, for which
γ � Kf/Ks, we have that D → 0 which implies that the cracks are almost incompliant.
Again, only the crack density affects the effective moduli. Thus, details regarding the shape
of thin cracks have no impact on the effective moduli (Budiansky and O’Connell, 1976;
Mavko and Nur, 1978).

Eq. (6.36) states that G∗ is affected by saturation, hence it is clear that these equations
are not consistent with Biot’s theory (Section 1.6.2). The reason for this discrepancy is that
some of the cracks will necessarily have an orientation such that they will be compressed
(or opened up) due to an applied shear stress. This change in volume of the crack implies
that the fluid occupying the crack will be compressed (or expanded), to an extent that is
partly given by Kf. Biot’s theory, which has no assumptions about the shape of the pore
space and hence should be valid also for thin, flat (crack-shaped) pores, is based on the
fundamental assumption that the material is permeable. Hence the compression of one
crack due to an applied shear stress will only lead to flow of fluid from this crack into
another crack whose orientation implies that it expands due to the same stress state. Thus
there is no local build-up (or reduction) of fluid pressure, and the fluid bulk modulus does
not affect the effective shear modulus.
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It is possible to make an inclusion model consistent with Biot’s theory by defining that
G∗ is not affected by saturation. This is a way of implementing hydraulic connections
between the elements of the pore space (i.e. making the material permeable; see Thomsen,
1985). Alternatively, one may use the inclusion model only for the material in a dry state
(for which D = 1), thus modelling the frame moduli, and add the effects of saturation by
Biot’s theory. The actual situation we are trying to model determines which alternative is
the most representative. For instance, for high frequency elastic waves (see Chapter 5), the
fluid may not have time to flow into and out of the cracks, hence the cracks will effectively
be closed, and expressions like Eqs. (6.35)–(6.37) may give a good representation of the
moduli. At low frequencies, the fluid pressure will have time to equalize, and a better
representation of the moduli is found by using the inclusion model to estimate the frame
moduli, and the Biot model to add the fluid effects.

6.4.2. Anisotropic models

Cracks in rocks are not always randomly oriented. More typically, cracks grow as a result
of anisotropic changes in the stress state, which leads to a preferred crack orientation with
respect to the stress state (see also Section 1.8). The elastic constants of a material with
parallel cracks can be expressed, similar to Eqs. (6.29) and (6.30), as:

C∗
ij = Coij (1 −Qij ξ) (6.38)

Co is the stiffness tensor of the host material (without cracks), andQij is the impact of the
cracks on C∗

ij (note that the Einstein summing convention, page 459, is not applied here). If
the cracks are oriented normal to the z-axis, the coefficientsQij are given as the respective
components of the matrixQ (see for instance Hudson, 1981):

Q = 16

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν2
s

1−2νs
D

νs(1−νs)
1−2νs

D
(1−νs)

2

1−2νs
D 0 0 0

νs(1−νs)
1−2νs

D
ν2

s
1−2νs

D
(1−νs)

2

1−2νs
D 0 0 0

(1−νs)
2

1−2νs
D

(1−νs)
2

1−2νs
D

(1−νs)
2

1−2νs
D 0 0 0

0 0 0 1−νs
2−νs

0 0

0 0 0 0 1−νs
2−νs

0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.39)

Eqs. (6.38) and (6.39) show thatC∗
33 < C

∗
11, hence a rock containing a set of parallel cracks

is softer when loaded perpendicular to the cracks than parallel to them. Thus the parallel
cracks induce elastic anisotropy in the rock. Stress dependence of acoustic velocities in
sedimentary rocks, as well as stress induced acoustic anisotropy, can to a large extent be
described in terms of cracks. This was also discussed in Chapter 5. This is a consequence
of the fact that shear stresses tend to create cracks with a preferred orientation.

The impact of a crack set with a different orientation can be found by proper rotation
of the matrix Q. For a rock that has several crack sets, with densities ξ (1), ξ (2), . . . and
corresponding matricesQ(1),Q(2), . . . , respectively, the effective elastic stiffness tensor is
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given as

C∗
ij = Coij

(
1 −Q(1)ij ξ (1) −Q(2)ij ξ (2) . . .

)
(6.40)

assuming no mechanical interaction between the cracks.
We remember that D → 0 for thin, fluid-filled cracks (Section 6.4.1). This can be ex-

plained as follows: Even a small normal stress tends to impose a very large volumetric
strain on an empty crack. If the crack is filled with a fluid, the volumetric strain will imme-
diately be counteracted by a large alteration of the fluid pressure. Consequently, the crack
is almost non-deformable due to normal stresses.

These considerations imply that cracks induce only a small P-wave anisotropy in a satu-
rated rock, according to Eqs. (6.39) and (5.59). Thomsen (1995) pointed out that this model
does not necessarily give a realistic description of a porous rock, since the pore fluid may
flow between the cracks and the pores that deform differently under stress. For a low fre-
quency wave, the fluid pressure in the cracks and the pores will be nearly equalized at any
time, which implies that the presence of the pore fluid can not prevent the cracks from
deforming—at least not to such an extent as for isolated cracks. Assuming perfect pore
pressure equalization, Thomsen derived a modified expression (Dcp) for the D-parameter
that accounts for the hydraulic interaction between flat cracks and spherical pores.

Assuming that Kf � Ks so that higher order terms of (Kf/Ks) can be neglected, and
neglecting mechanical interaction between the inclusions, we find from Thomsen’s work
that the D-parameter can be expressed as

1

Dcp
= 1 +

[
3

2

1 − νs

1 − 2νs

φp

φ
+ 4

3πγ

1 − ν2
s

1 − 2νs

(
1 − φp

φ

)]
Kf

Ks
(6.41)

(Note that Eq. (6.41) is slightly different from Thomsen’s definition of Dcp, in order to
keep the expressions (6.41) and (6.37) consistent.) φp is the porosity due to the pores only.
The porosity due to the cracks is given as

φ − φp = 4

3
πγ ξ (6.42)

hence (1 − (φp/φ))/γ does not depend on γ , and Dpc will not vanish regardless how thin
the cracks are, provided that φp > 0. The realism in Thomsen’s model was confirmed in a
model experiment by Rathore et al. (1995).

The expression (6.41) is valid for static or low frequency oscillations of the external
stress. At high frequencies, the pore fluid will not have time to flow between the cracks and
the pores, and the cracks will effectively appear to be sealed. For this situation, Eq. (6.37)
is the relevant expression for the D-parameter.

For completeness, the direct impact of the pores should also be taken into account.
Within the approximations used here, this can be done by adding an extra term to the
expression (6.38) for the effective elastic stiffness tensor:

C∗
ij = Coij (1 −Qij ξ −QP

ij φp) (6.43)

The matrixQP
ij can be derived from Eqs. (6.31) and (6.32). Assuming thatKf � Ks it can

be expressed by

QP
11 = QP

22 = QP
33 = 1

2

(
1 + νs

1 − 2νs
Dp + 10

1 − 2νs

7 − 5νs

)
(6.44)
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QP
12 = QP

13 = QP
23 = 1 − νs

2νs

(
1 + νs

1 − 2νs
Dp − 10

1 − 2νs

7 − 5νs

)
(6.45)

QP
44 = QP

55 = QP
66 = 15

1 − νs

7 − 5νs
(6.46)

At low frequencies Dp = Dcp (given by Eq. (6.41)), while at high frequencies where the
pores and the cracks are hydraulically isolated, Dp is given by

1

Dp
= 1 + 3

2

1 − νs

1 − 2νs

Kf

Ks
(6.47)

Eq. (6.43) in combination with Eqs. (6.39), (6.41), and (6.44)–(6.47) describe a mate-
rial with spherical pores and a set of flat, parallel cracks, where the hydraulic connection
between the cracks and the pores are accounted for. Mechanical interaction between the
inclusions have not been accounted for, however. Such mechanical interactions, and the
question whether they should be included or not, are discussed in Section 6.4.3.

Sayers and Kachanov (1995) introduced a model where cracks are considered more
generally as discontinuities, and their impact on the rock properties are described in terms
of the displacement discontinuities they induce. In this model, the compliance S∗

ijkl of a
rock containing a set of cracks is expressed as

S∗
ijkl = Soijkl +

1

4
(δikαjl + δilαjk + δjkαil + δjlαik)+ βijkl (6.48)

where Soijkl is the compliance of the rock without cracks, and the second rank tensor αij
and the fourth-rank tensor βijkl are defined as

αij = 1

V

∑
r

BrT n
r
i n
r
j Sr (6.49)

βijkl = 1

V

∑
r

(BrN − BrT )nri nrjnrknrl Sr (6.50)

BrN and BrT are the normal and shear compliances of the rth discontinuity, ni is the ith
component of the normal to the discontinuity, Sr is the area of the discontinuity, and V is
the rock volume. For open, penny-shaped cracks BN/BT = 1 − νs/2 which is close to
1, hence βijkl is small and can be ignored, while it can be shown that αij is proportional
to the crack density. In general, however, BN and BT may be considered as independent,
and the model thus allows for a description of more general discontinuities than open
cracks. The fact that this model describes the impact of the discontinuities as additions to
the compliance, rather than deductions from the stiffness (as in Eq. (6.38)), is of minor
importance as long as the concentration of discontinuities is small.

6.4.3. Models accounting for interactions

Eqs. (6.29) and (6.30) are based on the assumption that the concentration of inclusions is
so small that interactions between the inclusions can be neglected. When several inclusions
are present, they will interact in the sense that the impact of one inclusion on the material’s
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stiffness is affected by the presence of the others. This implies that QK and QG to some
extent depend on ξincl. Alternatively, we can express this by adding higher order terms in
ξincl to Eqs. (6.29) and (6.30).

A number of models have been derived, where interactions between the inclusions are
accounted for in one way or another in order to make the model valid also for high densities
of inclusions. Several of these models are based on the concept of self consistency. This
implies that the inclusions are assumed to be surrounded by the effective medium, rather
than the host material. Thus, we can make Eqs. (6.29) and (6.30) self consistent by redefin-
ing the coefficients of the impact terms (KsQK and GsQG, respectively) by replacing the
elastic moduli Ks and Gs of the solid host material with the resulting moduli K∗ and G∗
of the effective medium.

This approach was used by Budiansky and O’Connell (1976) when they introduced self
consistent expressions for the elastic moduli of a cracked material, except that they started
by introducing the impact of the cracks as a perturbation to the compliance rather than the
stiffness. That is, their initial equations were of the type

1

K∗ = 1

Ks
+ QK(νs)

Ks
ξ (6.51)

1

G∗ = 1

Gs
+ QG(νs)

Gs
ξ (6.52)

rather than Eqs. (6.29) and (6.30). For low concentrations of cracks, this makes no dif-
ference since the corresponding expressions converge for small values of ξ . The relevant
expressions for QK and QG can be derived from Eqs. (6.35) and (6.36), respectively.
Eqs. (6.51) and (6.52) are made self consistent by making the impact terms functions of
the effective medium parameters, that is:

1

K∗ → 1

Ks
+ QK(ν

∗)
K∗ ξ (6.53)

1

G∗ → 1

Gs
+ QG(ν

∗)
G∗ ξ (6.54)

Making in addition use of the relation betweenK ,G and ν from Table 1.1, we find that for
a dry rock (D = 1) containing isotropically distributed flat cracks with crack density ξ the
effective moduli K∗, G∗ and ν∗ may be expressed by the equations

K∗ = Ks

(
1 − 16

9

1 − ν∗2

1 − 2ν∗ ξ
)

(6.55)

G∗ = Gs

(
1 − 32

45

(1 − ν∗)(5 − ν∗)
2 − ν∗ ξ

)
(6.56)

ξ = 45

16

(νs − ν∗)(2 − ν∗)
(1 − ν∗2)(10νs − ν∗ − 3ν∗νs)

(6.57)

The effective Young’s modulus may be derived by combination of these equations, using
suitable relations from Table 1.1. After linearization in ξ , in order to make the expression
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Fig. 6.7. Effective elastic moduli for a material with flat, dry cracks. (After Budiansky and O’Connell, 1976; with
permission from Pergamon Press PLC.)

consistent with the others, we find

E∗ = Es

(
1 − 16

45

(1 − ν∗2)(10 − 3ν∗)
2 − ν∗ ξ

)
(6.58)

The effective moduli derived from this model are shown in Fig. 6.7.
Berryman (1980) introduced self consistency into the dynamic theory of Kuster and Tok-

söz (1974), and derived a set of implicit equations for the effective moduli. The equations
are given in Appendix D.3.2. These solutions approach the linear solutions given in Sec-
tion 6.4.1 for low concentrations of inclusions. Berryman also showed that if the material
contains non-solid inclusions, the effective shear modulus vanishes at a critical concentra-
tion of that inclusion. The critical concentration depends on the shape of the inclusions.

The concept of self consistency is a simple and yet efficient way to account for in-
teractions between inclusions. However, the approach does not give unique solutions.
Berryman’s model, as well as the model of Budiansky and O’Connell which express the
impact of inclusions as a perturbation to the compliance, predict that the shear modulus
vanish when the concentration of non-solid inclusions reaches a critical limit. On the other
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hand, a self-consistent version of Eqs. (6.29) and (6.30) predicts that the shear modulus
never vanish completely.

One attempt to get around this apparent problem was the Differential Effective Medium
theory, initially introduced by Salganik (1973), and later studied in detail by Zimmerman
(1991). This model considers the effect of introducing an infinitesimal amount of inclu-
sions into a material. The equations describing the impact of the inclusions (like Eqs. (6.29)
and (6.30)) can then be written on differential form, in which case it does not matter
whether the inclusions are considered as perturbations to the compliance or the stiffness.
The effective moduli for a finite concentration of inclusions can be found by integration.

The Differential Effective Medium model appears to eliminate the problem of non-
uniqueness, however this does not imply that this model is in general more correct than
the others. Which of the models that gives the most accurate description of the interactions
between inclusions in a material depends on the actual positions of the inclusions relative
to each other. This is closely related to the statement we made at the beginning of this
chapter, that the elastic properties of a composite material also depend on the geometrical
distribution of each component.

None of the models described above include any explicit information about the positions
of the inclusions relative to each other, however the fact that the models predict different
results implies that they represent different configurations. Unfortunately, most papers pre-
senting such models do not specify which configuration the model represents. Thus it may
be difficult to decide whether a given model is a suitable representation for a given mate-
rial or not. We may get an indication however, by looking at an example that shows how
different positions of inclusions affect the interactions between them.

Consider the simple, 2-dimensional sample shown in Fig. 6.8a. By applying a force on
the sample (indicated by the arrows on the figure) and measuring the deformation, we
obtain a measure of the stiffness of the material. The thin slit in the middle of the sample
represents an inclusion similar to a crack. The presence of the crack reduces the stiffness
of the sample, as shown in Fig. 6.9.

The presence of the crack also makes the stress distribution in the sample nonuniform. In
the areas at the side of the crack the stress level will be larger than it would have been if the
crack was not present. If new cracks are introduced in these areas, as shown in Fig. 6.8b,
the stiffness of the sample will be more reduced than a simple linear extrapolation of the

Fig. 6.8. Two-dimensional material with cracks.
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Fig. 6.9. Stiffness of a two-dimensional sample (Fig. 6.8) versus number of cracks. “Positive interaction”—the
cracks are positioned such that they enhance the effect of each other, as in Fig. 6.8b. “Negative interaction”—the
cracks are positioned such that they reduce the effect of each other, as in Fig. 6.8c. The solid line shows the
prediction of a linear (non-interacting) model. The markers show results obtained by finite element calculations
for the geometries shown in Fig. 6.8.

impact of one crack would predict (positive interaction; see Fig. 6.9). If we keep adding
cracks in these areas, the sample will eventually split in two, and the stiffness will vanish.

On the other hand, the areas above and below the initial crack will be less exposed to
the applied stress because of the presence of the crack. Adding more cracks in these areas
as shown in Fig. 6.8c, will only have a marginal effect on the sample stiffness, which
will asymptotically approach the value for two separate pillars (negative interaction; see
Fig. 6.9). Thus, the reduction in stiffness due to the presence of a large number of cracks
may be very different for different positions of the cracks relative to each other. In some
cases the actual stiffness may be larger than predicted by a simple linear model, in other
cases it may be less.

We may deduce from this example that a self-consistent model based on a perturbation
of stiffness represents a material similar to the one shown in Fig. 6.8c, where the inclusions
are positioned such that they tend to shield each other from the external load. On the other
hand, a self-consistent model based on a perturbation of compliance represents a material
similar to the one shown in Fig. 6.8b, where the inclusions are positioned in areas that are
particularly exposed to the external load because of the presence of other inclusions.

To pick which model that is best suited as a representation for a specific material, we thus
need to know something about the distribution of inclusions in the material. Knowledge
about the process that created the inclusions may be of some help. For instance, cracks in-
duced by a tensile stress tend to appear in particularly exposed areas, like Fig. 6.8b. A linear
model like Eqs. (6.29) and (6.30) represents a kind of average over both types of geome-
tries, and may be a good starting point if we know nothing about the actual distribution of
inclusions.
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6.4.4. Crack development in stressed rocks

Changes in the stress state of a rock may cause cracks to initiate and grow, or maybe
to close, depending on the orientation and sign of the principal stresses relative to the
orientation of the cracks. Thus, the number, size and predominant orientation of the cracks
in a rock specimen largely reflects the stress state and stress history of the specimen.

A compressive stress acting in a direction more or less normal to a crack tends to close
the crack. The closure process depends on the shape of the crack (Mavko and Nur, 1978).
Mismatch between the crack faces implies that the closure process extends over a large
range of stress values (see Section 6.5.1).

It is intuitively clear that a crack may grow if the crack faces are pulled apart with a
sufficiently large force. Following Griffith (1921), we shall consider crack growth induced
by tensile stress in a planar (2-dimensional) system. The specimen under consideration
is a plate of thickness t , and the crack is a flat, elliptical slit of length 2a penetrating
the plate. A tensile stress σ (<0) acting normal to the crack causes the plate to deform
(Fig. 6.10). The strain energy due to the crack, Wc, defined as the strain energy of the
specimen containing the crack minus the strain energy a similar specimen without a crack
would have if it was exposed to the same stress, is given as

Wc = πa2t

E
σ 2 (6.59)

where E is the Young’s modulus of the material the plate is made of. A free surface is
supposed to possess a surface energy ws per unit area (associated with broken atomic
bonds), thus the surface energyWs of the crack is

Ws = 4wsat (6.60)

The surface energy required to increase the crack size by a small amount 2�a is
(∂Ws/∂a)�a while the strain energy available for this increase is (∂Wc/∂a)�a. Thus,
the crack is unstable and will start to grow if

∂Wc

∂a
� ∂Ws

∂a
(6.61)

By combining Eqs. (6.59)–(6.61), we find that the crack will start to grow if the tensile
stress exceeds the threshold value

T0 =
√

2wsE

πa
(6.62)

Crack growth implies that a increases, and consequently the threshold value decreases, ac-
cording to Eq. (6.62). The situation is thus unstable, and the crack will continue to grow
until the specimen fails. Therefore, T0 represents the tensile strength of the specimen con-
taining the crack. This demonstrates that pre-existing cracks have a pronounced effect on
the tensile strength of a rock.

Crack growth is often analysed in terms of stress intensity factors, which define the
stress state at the tip of a crack. For a crack that is experiencing tensile stress as described
above (also called Mode I loading) the stress field in the vicinity of the crack tip can be
expressed as
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Fig. 6.10. Crack tip coordinates.

σij = KI√
2πr

f
(I)
ij (θ) (6.63)

The coordinates r and θ are defined in Fig. 6.10. f (I)ij (θ) are known functions of the angle θ
(see for instance Anderson, 1995; see also Appendix D.3.1).KI is called the stress intensity
factor for Mode I loading, and is a measure for the stress singularity at the crack tip. It is a
function of the farfield stress σ and the crack length 2a:

KI = −yσ√
πa (6.64)

where y is a dimensionless constant depending on geometry. For a slit in a plate as de-
scribed above, y = 1. For a penny-shaped crack (with radius a) in an infinite medium,
y = 2/π .

If KI exceeds a critical limit KIC called the fracture toughness, the crack will start to
grow.

Crack growth may also occur under compressive stresses. If the stress state is
anisotropic, the stress conditions at the tip of a crack oriented at a skew angle relative
to the largest principal stress may become tensile, and the crack will grow if this tensile
stress exceeds a critical value. Based on such considerations, Griffith extended his theory
to general stress conditions. The resulting failure criterion is given in Section 2.3.2. As the
crack growth is assumed to be caused by local tensile stress, the tensile strength is a key
parameter also for the compressive failure criterion.

The situation is illustrated in Fig. 6.11a (also discussed in Section 1.8). Even though the
initial crack may be closed because of the compressive stress σ , the crack faces may start
to slide relative to each other due to the shear stress τ if the static friction is overcome. The
orientation of the local stresses at the tip of the crack is such that the crack growth will
occur parallel to σ1, and normal to σ3, thus the so-called wing cracks will develop.

The relation between crack growth and global failure of a sample is in general more
complicated for compressive stresses. In unconfined situations (σ3 = 0), failure typically
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Fig. 6.11. a. Sliding grain boundary crack thought to be of central importance for rock failure under triaxial stress
conditions. b. Local failure (shear: grey lines, and tensile: black lines) caused by external loading on a 2D sample,
as simulated by PFC. (This figure is a subset of Fig. 6.6.)

occurs by axial splitting, starting with opening of axial cracks from the tip of the largest
pre-existing crack or flaw in the specimen. Under confinement, like in a standard triaxial
test, the wing cracks related to a suitably oriented crack will grow when the conditions are
fulfilled, however these cracks will not be able to grow critically and cause macroscopic
failure on their own. Global failure is thus related to interaction and coalescence of several
cracks forming an array along the plane that eventually becomes the global failure plane.

A mathematical model was developed by Horii and Nemat-Nasser (1985), incorporating
both shear failure and axial splitting. The input parameters to their model were:

1. The length and the orientation of the largest pre-existing crack.

2. The cohesive yield stress and average friction coefficient of the crack interface.

3. Fracture toughness for crack opening in the matrix material.

4. The confining pressure.

Clearly, such detailed knowledge of material properties may be hard to obtain in a general
situation. The model is however useful in the sense that it can explain from microscopic
principles the shape of the observed failure envelopes: the nonlinearity of the failure enve-
lope, which is often observed in practice, is here explained by the transition from failure
initiated at the largest pre-existing flaws (at low confining pressures) to failure initiated at
critically oriented flaws (at high confining pressures). Horii and Nemat-Nasser obtained
a good fit between model prediction and experimental observations for the variation of
ultimate strength with confining pressure in Westerly Granite.

Cracks of the type shown in Fig. 6.11a are not normally observed in rocks. However,
local damage induced by shear stress typically involves both shear and tensile failure, as
illustrated on Fig. 6.11b. The construction shown in Fig. 6.11a represents a model that
provides a coupling between shear and tensile failure, and is as such intuitively useful.
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The fact that the irregular microstructure of a granular material makes this coupling more
complex is not surprising.

6.5. Fractured rocks

Most rocks that we see in nature appear to be fractured masses rather than intact, solid
materials. We may also expect fracture systems to penetrate the formations in the under-
ground. This may be the case on many length scales, from major faults on a scale larger
than reservoirs, to microfractures seen in a core plug. An example is the fractured chalk
reservoir of the Ekofisk field in the North Sea. Here the fractures are responsible for the
main part of the permeability. It is therefore of importance to be able to identify as early as
possible the existence of such fracture systems in reservoirs, and to find the directions of the
fractures. It may also be important (with reference to e.g. the Ekofisk case and prediction of
reservoir compaction during depletion) to know how much the fractures contribute to the
overall mechanical behaviour of a rock mass. In this section, we shall discuss how fractured
(or jointed) rocks behave mechanically, starting with the mechanical behaviour of a single
fracture (or joint). The terms fracture and joint will be used synonymously throughout this
section, although there is a difference from the geological viewpoint (see Chapter 3). With
the mathematical idealizations presented here, they can however be treated within the same
framework.

6.5.1. Single fractures

Previously in this chapter we considered the effect of cracks on rock mechanical and
acoustical properties. By a crack we meant an open void of a given, idealized shape (spher-
oid, penny-shaped) which acts as a local discontinuity. In practice however, a crack in a
porous rock does not have an ideal geometry. Fracture surfaces are rough, and they may
touch each other at some points.

In general, the complete stress–strain behaviour of a fracture relates normal displace-
ment (δwF) to normal stress (δσ ) on the fracture, and shear displacement (δuF) to shear
stress (δτ ) along the fracture interface. We may define δwF such that δwF = wF

o − wF,
where wF

o is the initial fracture opening and wF the actual fracture opening. The frac-
ture is closed when δwF = wF

o − wF
max, where wF

max is the fracture opening at maxi-
mum closure. The stress-displacement relation can be written as (see e.g. Bandis, 1990;
Saeb and Amadei, 1992): (

δσ

δτ

)
=
(
Knn Knt
Ktn Ktt

)(
δwF

δuF

)
(6.65)

where the indices in the fracture stiffness tensor (Kij ) denote n for normal and t for tan-
gential. Observed deformational behaviour is highly nonlinear for increasing compressive
load, while unloading causes large hysteresis and inelastic behaviour. Under tension, the
associated fracture stiffness is close to zero. Under shearing, the stress–strain relation may
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exhibit “plastic” as well as “brittle” behaviour, depending on the fracture size. On an empir-
ical basis, the following type of expression forKnn has been proposed for joints (Goodman,
1974):

Knn = Konn

[
Konnw

F
max + σ

Konnw
F
max

]2

(6.66)

Konn is the initial normal stiffness of the joint. The appearance ofKonn andwF
max in Eq. (6.66)

implies that stress history dependence may be accounted for in the joint stiffness.
The shear stress dependence of Ktt has been described by a relationship of the type

Ktt = Kott
[

1 − τ

τs

]2

(6.67)

Kott is the initial shear stiffness and τs is the asymptotic value for τ at large shear displace-
ments. The off-diagonal terms in the stiffness tensor (Eq. (6.65)) account for coupling
between shear and normal behaviour due to dilatancy. A mathematical model incorporat-
ing these terms has been presented by Saeb and Amadei (1992).

Given the fracture stiffness parameters (Eq. (6.65)), one may calculate the frequency
dependent time delay, and the sound transmission and reflection coefficients caused by a
single fracture (Pyrak-Nolte et al., 1990). The calculations show an increased damping of
high frequencies in a transmitted acoustic signal when the fracture stiffness is reduced. The
effect of viscosity in a fluid filling the fracture was also analysed, showing increased high
frequency damping with decreasing viscosity.

From a microscopic viewpoint, closure of a fracture can be described mathematically
by parameters depending on the roughness characteristics of the fracture surfaces. Brown
and Scholz (1986) derived a relationship where they accounted for the following fracture
surface parameters: a distribution function for asperity heights, the number of local maxima
per unit area, the effective radius of curvature of the asperities, the fracture width at zero
stress, and a correction factor for tangential stress contributions. For a particular choice of
the asperity height distribution function, the strain vs. stress relationship can be written

δεF = A+ B ln δσ (6.68)

where δεF = δwF/wF is the fracture strain. A and B are functions of the fracture surface
parameters described above. The joint closure is thus a highly nonlinear function of the
normal stress.

Carlson and Gangi (1985) modelled a fracture using a “bed of nails” concept (see
Fig. 6.12). A set of cylindrical rods of different lengths Li are attached to the crack walls,
simulating a distribution of asperities. The rods are assumed to act as springs. As the nor-
mal stress is increased across the fracture, the walls of the fracture move closer and more
and more rods come in contact with the opposite wall. Therefore, the stiffness is increased
as the strain increases, similar to Eq. (6.68). For a through-going fracture, the fracture strain
can be expressed as:

δεF =
(
δσ

σc

)m
(6.69)
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Fig. 6.12. A natural fracture (above) and the mechanically and hydraulically equivalent “bed of nails” fracture
model, introduced by Carlson and Gangi (1985).

where σc is the stress required to close the crack. The exponent m (�1) is given by the
distribution of rod lengths. The fraction n of rods in contact is:

n = (δεF)(1−m)/m (6.70)

m is thought to be constant throughout a given experiment. The value m = 1 corresponds
to a closed crack with perfectly smooth surfaces, while m = 0 corresponds to and open
crack with smooth surfaces.

Carlson and Gangi modified the expression (6.69) for the case of an isolated crack in a
solid matrix, giving

δεF =
(
δσ + σo
σc

)m
(6.71)

Here σo is equivalent to an initial stress (associated with the tensile strength of the ma-
terial). The expressions can be used quantitatively to evaluate the stress dependence of
P-wave velocities in cracked media, leading to a relationship of the following form which
is applicable for high porosity sedimentary rocks:

vp = vop
(

1 + σ

σo

)(1−m)/2
(6.72)

In Section 6.3 we found for a model consisting of spheres in contact (where the contacts
behave according to Hertzian theory) that the sound velocity would increase with stress
according to a power law behaviour, with exponent 1/6. This corresponds to m = 2/3
(and σo → 0) in Carlson and Gangi’s theory. In many rocks, exponents <1/6 have been
observed, indicating that m is closer to 1 (Carlson and Gangi, 1985).
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The shear strength of a joint or fracture is often expressed in terms of a Mohr–Coulomb
criterion with zero cohesion (see Section 2.3.1):

τ = σ tanϕ (6.73)

Based on laboratory experiments with more than 200 artificial tensile fractures, Barton and
Bandis (1990) found that the friction angle ϕ can be expressed as

ϕ = JRC log
JCS

σ
+ ϕr (6.74)

JRC is called the joint roughness coefficient, while JCS is the wall strength, identified as
the unconfined compressive strength of the intact rock. ϕr is the residual angle of friction
(≈30°, see Chapter 2). JRC can be found from simple shear tests, and has typically a value
around 20 for a rough joint without steps. It is a scale dependent factor, and a scaling
relation has been established (see Barton and Bandis, 1990), giving JRC as a function of
roughness amplitude over profile length.

6.5.2. Rocks with many fractures

A rock mass normally contains a system of fractures. Such a system is specified in terms
of fracture orientation, fracture width, length and spacing. While the orientation is mainly
determined by the stress state at the time the fracture was formed, the remaining parameters
are primarily given by the lithology. These parameters are necessary in order to quantify the
flow of fluids in a fractured reservoir. In nature, there is of course a distribution of fracture
parameters. Many investigators have claimed that fracture size distributions observed in
outcrops tend to be scale invariant (fractal).

Several Finite Element and Finite Difference codes have been developed in order to
analyse the mechanical behaviour of discontinuous media. Standard input parameters are
a set of fracture stiffnesses and the elastic moduli of the intact material. We shall not de-
scribe any of these methods here, but rather discuss one analytical model for the elastic
behaviour of fractured rocks. This theory was developed by White (1983). Consider a
cube (Fig. 6.13) consisting of fractured blocks. Each block is spot-welded to the neigh-
bouring blocks (Fig. 6.14). The average dimensions of a block are Lx , Ly and Lz, and
the number of contact points per unit area Nx , Ny and Nz, respectively. The spot-welded
contacts are assumed to be circles of average diameters Dx , Dy and Dz. The elastic prop-
erties of the fractured cube is derived based on the Hertz–Mindlin approach introduced
in Section 6.3. For the effective contact radius b (Eq. (6.18)) we here use the parameter
Σxb = (DxNxLyLz)/2 for a surface normal to x, and corresponding expressions for y
and z. The compressive strain εx due to a force σx has two contributions:

Firstly, the deformation at the fracture planes normal to x causes a strain (see Eq. (6.21))

εf
x = 1 − νs

2GsΣxb

LyLz

Lx
σx (6.75)

Secondly, the deformation of the solid blocks gives a strain

εs
x = 1

(λs + 2Gs)(1 − ax)σx (6.76)
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Fig. 6.13. Elementary cube of fractured rock.

Fig. 6.14. Average sized block of fractured rock and contact areas. (After White, 1983; with permission from
Elsevier Science Publishers.)

where ax accounts for the effect of the fracture planes normal to y and z. The total strain is

εx = εf
x + εs

x = 1

C11
σx (6.77)

These equations allow us to find the elastic stiffness C11. It is convenient to introduce the
parameters Rx , Ry and Rz given by expressions of the form

Rx = NxDxLx (6.78)

The resulting expression for C11 is

C11 = λs + 2Gs

1
1−ax + 2(1−νs)2

1−2νs

1
Rx

(6.79)
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Similar expressions can be obtained for C22 and C33, with Ry, ay and Rz, az, respectively,
substituted for Rx, ax . The derivation of ax is rather tedious and is not included here. The
result is

ax = 2ν2
s

1 − 2νs

4(1 − νs)+ Ry + Rz
(Ry + 2(1−νs)2

1−2νs
)(Rz + 2(1−νs)2

1−2νs
)− 4ν2

s (1−νs)2

(1−2νs)2

(6.80)

The shear moduli are given by

C44 = Gs

1 + 2−νs
2 ( 1

Ry
+ 1
Rz
)

(6.81)

and similar expressions for C55 and C66. Note that Rx = Ry = Rz → ∞ means that the
material effectively contains no fractures, i.e. the elastic moduli are those of the solid. As a
plausible example, consider an average distance between fractures Lx = Ly = Lz = 1 m,
with Nx = Ny = 5 m−2 contacts per unit area and an average contact spot diameter of
Dx = Dy = 0.1 m. Thus, Rx = Ry = 0.5. Fig. 6.15 shows how the shear velocities
associated with C44 (SV) and C66 (SH) vary as functions of Rz in this case (assuming
νs = 0.25). The figure also shows the case of a planar fracture system (Rx = Ry → ∞).
Both shear moduli are strongly reduced by the presence of fractures. This also underlines
the existence of a size effect: if a sample is smaller than the smallest fracture block, one
will measure the solid properties rather than the properties of the rock mass. White’s model
can also be used to reveal the effects of a directional distribution of fracture planes, which

Fig. 6.15. Shear wave velocities in a fractured rock relative to velocities in a solid block, calculated by White’s
theory. Rx,Ry and Rz are defined in the text.
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give rise to a significant anisotropy. Observations of seismic/VSP anisotropy can thus be
used to characterize fractured reservoirs.
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Chapter 7

Mechanical properties and stress data from laboratory
analysis

Evaluation of in situ rock mechanical behaviour requires relevant input data: What is the
stress state and the pore pressure at the depth of interest? What are the elastic moduli and
the strength parameters? Can we expect creep or other types of non-elastic behaviour to
take place?

Our main data sources in order to answer these questions are core material and data
recorded in the field (measurements while drilling, wireline logs, seismic data and vari-
ous well tests). The logs provide data recorded continuously vs. depth, but do not measure
directly the parameters that are needed for a rock mechanical analysis. For instance, rock
strength can not be measured from wireline logs. Strength estimates may, however, be
given if a proper interpretation procedure is applied. Field measurements of rock mechan-
ical parameters are discussed in Chapter 8.

In this chapter we shall discuss rock mechanical core analysis. Cores provide a possibil-
ity for direct measurement of e.g. rock strength parameters and static elastic properties. We
shall start by looking at the rocks to be tested: the cores in the laboratory may not be fully
representative of the formation we intend to study. They may also have been altered during
coring and subsequent handling. Some of these problems can not be solved, others can
be overcome by proper sample preparation methods, test procedures and correction proce-
dures. On the other hand, if proper preparation procedures are not applied, severe errors
in the test results may be introduced. These factors will be discussed in more detail below
(Section 7.1). We shall then discuss the laboratory equipment and measurement techniques
(Section 7.2) applied in rock mechanical testing, including also acoustic measurements.

A rock mechanical core analysis has to be designed according to the purpose of the in-
vestigation. If the objective is to predict reservoir compaction, then the tests and testing
procedures may not be the same as for instance in a borehole stability study. Consideration
also has to be given to the rock type which is going to be tested. Shales require both spe-
cial preparation procedures and special test procedures. In Section 7.3 we shall describe
relevant test procedures which are applied in rock mechanical testing and give some rec-
ommendations for test interpretation.

The literature reports numerous attempts to determine in situ stresses from laboratory
testing of core samples. The most relevant test methods will be discussed in Section 7.4.

In some cases it may be useful to perform a set of simpler measurements which can
be used as indicators of rock strength and stiffness. This can provide information at less
cost and at less material consumption. The latter is particularly relevant if the core is in
a poor state and larger test plugs can not be prepared. If performed at the rig-site, results
may be available closer to real-time. Some of these so-called index tests are described in
Section 7.5.
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7.1. Core samples for rock mechanical laboratory analysis

7.1.1. Core representativeness and size effects

As we stated above, cores are our only possibility of obtaining direct measurements of
rock strength and static mechanical parameters. Cores are, however, only available from
discrete levels, and may only be representative of the formations in or near the borehole
itself. The limited availability of core material may cause large uncertainty in the results.
Normally, cores are taken mainly or only in the reservoir, while the mechanical behaviour
of the overlying strata may be of large importance for drilling problems, subsidence and
repeated seismic interpretation during reservoir depletion.

A core plug used in standard mechanical testing has a diameter of 1–2.5′′. Only in spe-
cial cases will larger (4–5′′) or smaller (0.1–1′′) samples be used. This means that the
tested cores may, in case of inhomogeneities, not be representative of the interval under
investigation. For instance, in a fractured zone, the rocks to be tested are normally taken
from the intact parts. One has to recall that the elastic behaviour of the fractured rock mass
can be very different from that of the intact rock (Chapter 6). This means that if the prop-
erties which are important are those of the rock mass, then the analysis will be biased. The
samples should then, if possible, be taken so that fractures are contained in them. If, on the
other hand, the data will be applied in e.g. sand prediction analysis, then the fractures may
not be relevant, and the samples should be taken from the intact parts of the rock.

The discussion above shows that the size of the sample may be important. If the fractures
occur on a scale of several metres, then it is very unlikely that tests on small samples will
provide reliable data. Fractures and cracks may, however, occur on several length scales,
down to and below the sample size. Statistically, a larger sample is expected to contain
larger cracks than a small sample. Qualitatively, this would lead to an increased strength
with decreasing sample size, since the strength decreases with the size of the largest crack.
This hypothesis is often valid in experiments (see e.g. Vutukuri et al., 1974), but is not
generally confirmed. In fact, experiments with sedimentary rocks some times may show an
opposite trend (strength increases with sample size). Even though the size effect problem
has been focused since the advent of material property testing in the 18th century (see the
interesting historical overview in Hudson et al., 1972), it still remains unsolved.

Clearly, in granular rocks, there is a lower limit to the sample size given by the require-
ment that the sample should contain a large number of grains. In the procedures suggested
by the ISRM (International Society for Rock Mechanics) (Brown (Ed.), 1981), it is stated
that the diameter of a specimen prepared for rock mechanical testing should be at least ten
times the diameter of the largest grain in the rock.

7.1.2. Core alteration

A rock specimen is most likely altered when taken from in situ to laboratory conditions.
In situ it may have been at a depth of one or more kilometres, at an ambient temperature
of say 50–150 °C, and in chemical equilibrium with its own pore fluid. When cored, it is
brought to atmospheric conditions in terms of stress, pore pressure and temperature. It is
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Fig. 7.1. Schematic illustration of the effective stress field alteration experienced during coring of a vertical core
in a normally stressed rock. (After Holt et al., 2000; with permission from Elsevier.)

also in contact with some chemically active/inactive drilling mud, and mud filtrate may
penetrate the core. Thus the main core alteration mechanisms are stress release, pore pres-
sure release (especially in low-permeability rocks), thermal effects and chemical effects
due to fluid exposure. The cores may be further damaged by the action of the drill bit, and
by subsequent improper handling and storage (see Section 7.1.3).

Stress release probably has the most severe effect on rock mechanical properties. Fig. 7.1
shows schematically the effective stress field alterations experienced by a core during the
coring process. This is under the assumption of a vertical well drilled in an initial stress field
with a vertical stress and isotropic horizontal stresses. As the core is drilled, the vertical
stress is reduced first, while the horizontal stress is reduced as the core enters the core
barrel. Thus there is a period where the horizontal stress may be significantly larger than
the vertical stress. This may result in yielding and/or failure of the core. The amount of
core recovery and the size of the recovered pieces are thus qualitative measures of the rock
strength. The weaker the rock, the less intact core material will be recovered. Macroscopic
failure may also occur as tensile failure (core discing). This has been used to evaluate in
particular the ratio between horizontal and vertical principal stress components (Maury et
al., 1988).

Laboratory testing of rock alteration due to stress release has shown an effect on the
mechanical properties of sandstone (Holt et al., 2000), resulting in a reduced uniaxial
compressive strength, reduced stiffness, reduced acoustic velocities and increased stress
sensitivity.

Shale may have nanoDarcy or lower permeability (Section 3.4.3) which means that pore
pressure equilibrium will not be maintained when the core is retrieved from depth. Thus,
tensile failure is very likely to occur, either macroscopically, or on a microscopic level.
This process, as well as volumetric expansion during coring and retrieval, causes the shale
core to be incompletely saturated when reaching the surface. As discussed further below
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(see Section 7.1.4), this may affect shale properties significantly, and needs to be accounted
for in sample preparation and conditioning.

7.1.3. Core handling

We have seen above that cores may be disturbed by the coring process itself. Further treat-
ment on the rig, during transport, during storage and prior to testing in the laboratory may
also be critically important to the outcome of the rock mechanical analysis. There are two
major problems which are relevant for sedimentary rocks: one is the fact that they can be
mechanically weak, and in some cases completely unconsolidated. The other is that they
may be sensitive to the exposure to or loss of fluids.

For poorly consolidated sandstones, samples may not be kept intact unless they are
frozen immediately after coring, and kept so until mounted in the triaxial cell. Freezing
should, however, be avoided if possible, since it may induce permanent changes in the
rock. This is in particular the case if water is present. Since clay minerals contain bound
water, freezing may cause disintegration and redistribution of these minerals. If the clay
minerals act as cement, this will clearly affect the mechanical properties.

For sandstones (in particular clay-rich sandstones) the rock mechanical properties are
also found to depend on moisture content. The general observation is that (see e.g. Colback
and Wiid, 1965) uniaxial compressive strength decreases with increasing moisture content.
Colback and Wiid relate this to a change in the surface energy.

It has been observed by the authors of this book that a sandstone stored in normal labo-
ratory atmosphere for one year after sampling increased its strength by a factor of two due
to drying. This was an effect of smectite in the sandstone which contributed significantly
to the cementation when dried.

Shales contain both bound water and free water and should therefore never be frozen.
Shales are also extremely sensitive to contact with wetting fluids like water, or to loss of
water from the pores. This means that the samples should be preserved as soon as the core
is retrieved, so that the natural water content is not reduced. Dehydration may cause them
to disintegrate completely within a matter of minutes. In other cases, depending on the
microstructure and the shale composition, dehydration may lead to strengthening of the
material.

Shale cores intended for rock mechanical tests should be sealed immediately after cor-
ing, for instance by wrapping them in a plastic film with further protection like aluminium
and wax on the outside. If this packing process can not be performed immediately after the
core has been landed on the rig, it is still important to ensure that water transport effects
are avoided. One alternative is to cut the core and the core liner in appropriate lengths
(typically one metre), wipe the mud from the core surface (especially if water-based mud
has been used), fill the annulus between the core and the liner with an inert fluid like oil
and then seal the liner. In all cases it is essential to minimize the period when the core is
exposed to air.

Shales should not be contacted with water or any other fluid which wets the shale. Even
if the water is assumed to completely match the chemistry of the pore water, large capillary
suction pressures may be induced because the shale core is no longer 100% saturated when
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it is under atmospheric conditions. The capillary pressure is generated to counterbalance
the surface tension which develops at the interface between the wetting (water) and the
non-wetting (gas) fluid.

The capillary pressure generated in a gas bubble as a rock sample is entirely surrounded
by water is given by the Laplace equation:

p = 2γ cos θ

r
(7.1)

where γ is the interfacial tension between the two phases, θ is the contact angle between
the wetting phase and the solid, and r is the radius of the capillary tube which in a porous
medium would be characteristic of the pore size.

Consider a water/air interface in shale with a mean pore size (radius) of 20 nm (Horsrud
et al., 1998). With an interfacial tension of 0.07 N/m and fully wetting conditions (θ = 0),
this gives a potential capillary pressure of 7 MPa. Such a large internal pressure may easily
exceed the tensile strength of the shale and cause rupture and disintegration of the shale.

7.1.4. Preparation of test samples

Cores normally arrive in the laboratory at 4′′–5′′ in diameter and in lengths up to one metre.
Core plugs then have to be drilled from these full-size core sections. When drilling the core
plugs it is important to be consistent with respect to drilling direction, since rock properties
often are anisotropic. This is often linked to the bedding direction. The strength has a
minimum when the sample is oriented with its long axis at an oblique angle to the bedding
(see Section 2.9). It may therefore be necessary to perform a series of measurements with
specimens oriented with their axes parallel to, normal to, and at intermediate angles with
respect to the bedding plane. The possibility of performing this type of investigation is in
practice limited by the amount of core material available. In deviated wells with unoriented
core it is therefore necessary to make sure that the bedding direction can be established
before core plugs are drilled.

It is recommended to avoid sampling the outer centimetre of the core, due to potential
alteration of this part of the core. This alteration may have been induced by the drilling
mud and invasion of drilling mud filtrate.

Core drilling may be very difficult in weak rocks. Although not recommended, drilling
and handling of unconsolidated sandstone may be impossible unless the sample is kept
frozen. For a somewhat consolidated sandstone, pressurized air may be used for cooling
and for removal of drill cuttings instead of water. If a drilling fluid is used, it should be
chemically compatible with the rock. When drilling chalk cores it is customary to apply a
water which has been saturated with the same chalk.

Shales and other strongly layered rocks may be difficult to drill normal to the bedding,
since the bedding is often a weak plane. The tendency for core discing may be reduced by
applying a small axial load on the sample (inside the coring bit) during drilling.

Shale samples should be drilled using an inert fluid like a mineral oil. For reasons already
discussed, contact with water may induce capillary effects, even if the water is believed to
have exactly the same chemical composition as the pore water. These capillary effects are
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due to incomplete saturation of the shale and the presence of air in the sample. It has been
proposed to remedy this by resaturating the shale (e.g. Schmitt et al., 1994). This is not
done by immersion, but in a controlled humidity atmosphere where water vapour con-
denses in the pores. To avoid trapped air it is preferable to have a continuous gas phase
before starting resaturation. This may require a first stage with drying of the sample. How-
ever, it has been strongly argued that such a process may change the structure and properties
of the shale (Santos et al., 1996). Therefore, attempts to resaturate shale should be avoided.
The best approach is to make sure that the shale is well preserved, so that sufficient resat-
uration can be obtained by loading the sample prior to or during testing (Horsrud et al.,
1998). The water content of the rock should always be measured before rock mechanical
tests are performed.

The significance of sample saturation is well known from soil mechanics. In rocks with
small pores (shale, chalk), the presence of air may cause significant overestimation of the
mechanical properties of the rock (Schmitt et al., 1994; Papamichos et al., 1997). As a first
order approximation one may express this as a generalized effective stress:

σ ′′ = σ − pgas + Sw(pgas − pwater) (7.2)

where Sw is the water saturation and pgas − pwater is the pore-water capillary suction. The
capillary suction effect may then be compared with the effect of a confining stress. To
some extent this is consistent with the observations of increased strength and stiffness with
reduced saturation.

Reservoir rocks (sandstone, chalk) may also be sensitive to the fluid in the pores. A dry
rock is usually stronger than a fluid saturated rock. When measuring petrophysical prop-
erties of sandstone it is common procedure to clean the sample and then resaturate it with
the relevant fluid(s). When doing rock mechanical testing of weak sandstone this is not
recommended, since the cleaning process may disturb the cementation of the rock. Weak
sandstones should be well preserved and tested with the native fluid content.

Another important observation relates to the high porosity North Sea chalks. Laboratory
testing has shown that oil saturated chalk samples are significantly stronger than water sat-
urated samples (Andersen, 1995). It has been suggested that this effect could be explained
be capillary forces which are caused by the irreducible water still present in oil saturated
chalk. However, it has been shown that the chalk is strengthened (both in compression and
tension) also when saturated with methanol which is fully miscible with water (Risnes and
Flaageng, 1999). Thus there must be other mechanisms present which have not yet been
explained.

The ISRM (International Society for Rock Mechanics) standards (Brown (Ed.), 1981,
and revision by Kovari et al., 1983) require that specimens intended for standard rock me-
chanical tests are right, circular cylinders with a length (L) to diameter (D) ratio between
2 and 3. The reason for this is that the sample should be sufficiently long to accommodate
a shear plane penetrating through the side walls. If the sample is too short, the shear plane
will penetrate through the end faces, and an additional support will be provided. Fig. 7.2 il-
lustrates this, and the expected effect of variations inL/D on strength. The chosen criterion
therefore makes sure that the length to diameter ratio is such that the uniaxial compressive
strength is rather insensitive to minor deviations in L/D. This type of relationship has been
confirmed by experiments (see e.g. Vutukuri et al., 1974).
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Fig. 7.2. Sketch of the effect of length/diameter (L/D) ratio on the uniaxial compressive strength of rock.

As mentioned above, the diameter should be at least ten times the diameter of the
largest grain. The end surfaces should according to ISRM standards be flat to within
±0.01 mm (which is unrealistic in coarse-grained, weak materials!), the parallelism better
than �L/L = 0.001, and the sides smooth and straight to within 0.3 mm over the full
sample length. The sample diameter should be measured to the nearest 0.1 mm by averag-
ing diameters measured at right angles to each other at the top, the middle and the bottom
of the sample. Sample length should be determined to the nearest 1.0 mm, but a higher
accuracy is requested if e.g. acoustic velocity measurements are performed during rock
mechanical testing.

A geological description of the rock samples should be made. This includes an overview
of the mineralogy, with focus on how the rock is cemented. The grain size distribution
should be obtained, either from sieve analysis or from thin section analysis. Photos of the
samples should be made prior to and after testing.

Since the results are going to be used in downhole operations (drilling, completions,
stimulation), it is important that the laboratory results can be compared with well log read-
ings. An accurate measure of the core depth is therefore required. Abrupt lithology changes
can easily be recognized in the recovered core as well as on logs. One possibility is to use
a Gamma ray detection tool during coring and compare the signatures with readings of the
Gamma ray logging tool. If anelastic strain recovery, differential strain curve analysis (see
Section 7.4) or other techniques for determining the orientation of the in situ stress field
are applied, it is necessary also to have oriented cores. Cores may be oriented by knives
inscribing the geographical direction on the core during coring, or by using geological
markers.

7.2. Laboratory equipment

A standard rock mechanical test laboratory for studies of sedimentary rocks includes (see
Fig. 7.3) the following equipment:
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Fig. 7.3. Schematic drawing of a rock mechanics laboratory system. On other systems the triaxial cell may e.g.
be closed by bolts instead of a reaction column, and the axial actuator may be mounted on the lower platen.

• Load frame.

• Triaxial cell.

• Confining pressure system.

• Pore pressure system.

• Computer for control and data processing.

7.2.1. The load frame

The load frame is a central element in the test equipment. Two features are essential for its
operation in a rock mechanical laboratory: the frame stiffness and the ability to operate the
system in a mode of constant displacement rate (Hudson et al., 1972).

Traditionally, force was regarded as the independent variable in materials testing. If a
brittle rock sample is loaded with a constant load increment per unit time, then the material
will fail abruptly and no controlled measurement can be achieved in the post-failure region.
This is unsatisfactory for most rock testing, since the load bearing capacity of a rock after it
has failed may be an important design parameter. In order for the post-failure behaviour to
be properly recorded, the experiment has to be run in displacement control. This is achieved
with most modern equipment, which is servo-hydraulically controlled. This means that
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a feedback control system is implemented: a detected difference between the recorded
displacement and the programmed displacement can then be used to control a servo-valve,
which induces further displacement of the loading pistons.

Studies of post-failure behaviour of brittle rocks require also that the testing apparatus
is stiff compared to the maximum slope in the descending part of the stress–strain curve
(Hudson et al., 1972). If not, a major part of the energy stored in the machine-specimen
system will be released during the fracture process, causing the measured characteristics
beyond failure to be an artifact induced by the test machine. However, using a stiff and
servo-hydraulically controlled test machine, the experiment can be run at a constant defor-
mation rate, provided the response time of the feedback system is sufficiently fast. In this
mode, post-failure behaviour can be studied in detail.

While in situ changes have taken place on a geological time scale and changes during
drilling or petroleum production occur within seconds, minutes or years, laboratory test-
ing is normally performed with strain rates of 10−7–10−1 s−1. The choice of a particular
strain rate depends on the nature of the rock and the problem which is actually studied. It
is generally thought that rock strength increases with increasing strain rate. Experiments
with different rocks (Vutukuri et al., 1974) show significant increases in strength at strain
rates above ≈10−2 s−1. There are at least two mechanisms which may cause such strain
rate effects, namely creep and consolidation. In particular, if tests are performed with low
permeability rocks (e.g. shales) in which pore fluid drainage should be facilitated, then it
is important that sufficient time is allowed for the pore fluid to escape during sample com-
pression (see e.g. Swan et al., 1989). If one wishes to quantify strain rate effects as part of
a dedicated test programme, then at least three orders of magnitude in the strain rate should
be spanned (Jones, 1988). This may mean that tests in extreme cases have to be run over
periods of several weeks or even months, which imposes a strong requirement on system
stability.

Further key parameters of the load frame are maximum operating force in compression
and extension, total stroke, free compression space and accuracy of the force or displace-
ment control.

7.2.2. The triaxial cell

The other central element of the test system is the triaxial cell (Fig. 7.4). There are two
types of triaxial cells used in rock testing (Jones, 1988). One is a cell where the sample
is placed between two movable pistons (the “Hoek cell”; Hoek and Franklin, 1968). The
other uses a fixed pedestal carrying the sample.

A triaxial cell (Fig. 7.4) contains the loading pistons, which are pressed against the
sample. The sample is surrounded by a sleeve, which separates it from the confining fluid
in the case of confined tests.

The pistons should be made of a hard material (ISRM requirements (Brown (Ed.), 1981)
are steel pistons having a minimum specified hardness). The surfaces should be ground
and polished, and their flatness should be within 5 µm. The flatness of the pistons has an
important effect on the test results. If the friction coefficient between the sample and the
piston is large enough to prevent radial expansion of the sample at the end faces, then this
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Fig. 7.4. Principle sketch of the interior of a triaxial cell, showing the loading piston with fluid ports, optional
sintered plates for fluid distribution, a radial strain jig (suspended from the specimen) measuring two orthogonal
diameters, and an axial strain jig measuring change in sample length between the pistons. It is also possible to
measure axial strain directly on the sample, and to measure radial strain in more than 2 directions, or measure the
change in circumference by a chain around the sample.

is equivalent to providing the material with an additional support. This will manifest itself
as a length:diameter effect, since the support of the end faces will give rise to a higher
measured strength with a short than with a long sample.

In rock testing for petroleum applications one may wish to have fluid inlet and outlet in
the pistons in order to apply and measure pore pressure. This can be done by using sintered
pistons or by introducing flow channels in the piston surfaces.

For acoustic measurements, the piston material should ideally have acoustic properties
which provide an acoustic impedance-matching between the acoustic transducers and the
rock material. The choice of steel as a piston material is in that case not ideal for studies
of soft rock samples. Thus the requirements to piston material, flatness and hardness may
have to be relaxed in order to combine rock mechanical testing with other petrophysical
measurements. When measuring the permeability during loading, it is recommended to
have a system for distribution of the fluid flow at the end surfaces. This can be obtained
by making grooves in the pistons or by inserting a sintered plate between the piston and
the rock sample. This can, however, impose end effects (e.g. sedimentation of fines in the
sintered plates). This is a potentially significant error source if the pressure drop along the
core is measured on the outside of the sample.

The sleeve should be soft enough not to provide a significant support to the core. This is
normally not a problem, but should be considered when testing very weak samples at low
confining pressures. Sleeves are made from rubber, plastic, Teflon or other soft materials.
Sleeve wall thicknesses are normally around a few millimetres. To improve the accuracy
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of radial deformation measurements (and also measurements of acoustic velocities for ra-
dially propagating waves) the sleeve should be made as thin as possible.

7.2.3. Measurements of stresses and strains

Stress measurements are performed with strain gauges in the load cell, and fluid pressure
transducers in the confining fluid in the triaxial cell. The load cell may be external or
internal to the pressure vessel. The use of an internal load cell eliminates problems caused
by loading ram friction, but makes calibration more difficult (Jones, 1988). Pore pressures
are measured with pressure transducers that are connected to the pistons. By monitoring
the pore pressure drop along a specimen with transducers both in the top and the bottom
pistons, and in addition measuring the flow rate, it is possible to measure permeability as
part of a rock mechanical test.

The radial deformation of the sample can be measured in several ways. One technique
is to use LVDTs (Linear Variable Differential Transformers, which operate on a magnetic
induction principle) pressed against the sleeve at various points circumferentially around
the core. Another widely used method is to have strain gauges glued directly to the sample.
A third technique is to use a cantilever system, where the displacement of the arms is
measured by strain gauges. A fourth technique is to use a chain wrapped around the core
plug, where the change in circumference is monitored with strain gauges. The latter method
is accurate, but does not have the potential to monitor anisotropic deformations. The other
techniques are all essentially point measurements. The accuracy depends on calibration for
sleeve deformation. The radial deformation sensors should be mounted on a jig which is not
attached to the walls of the triaxial cell. Otherwise, the measurements must be calibrated
for deformation of the entire cell.

Axial deformation can be monitored in several ways. Measurement of stroke (i.e. piston
movement) is the most common method. This should be done between the pistons inside
the triaxial cell and not between the loading platens on the outside, in order to obtain the
true sample deformation. If measured outside the cell, corrections for piston deformation
have to be made. Attempts have also been made to measure axial deformation by monitor-
ing the relative displacement of two knife-edges pressed against the sleeve at different axial
positions. This technique provides a strain measurement which eliminates end effects, but
will not cover the entire length of the sample.

Measuring devices mounted inside the triaxial cell must always be calibrated for pres-
sure effects exerted by the confining fluid.

Volume changes may also be used to monitor deformations. The change in pore volume
can be measured by monitoring the amount of pore fluid entering or leaving a fully satu-
rated sample. The change in bulk volume may in principle be measured by monitoring the
volume change of the confining fluid.

7.2.4. Acoustic measurements

The importance of acoustic measurements has been stated several times throughout this
book. A major motivation for doing acoustic laboratory measurements is to support the
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Fig. 7.5. Ultrasonic test apparatus (left) and transducer positions inside the triaxial cell (right).

interpretation of sonic log and seismic measurements. Acoustic laboratory measurements
can provide correlations with rock strength, and may help evaluate the difference between
static and dynamic moduli (Chapter 5). They may also provide information about the in
situ stress state.

The range of frequencies where acoustic measurements can be made is limited mainly
by the sample size. The attenuation of sound sets an upper limit, while the requirement
that a sample should contain several wavelengths in order for a propagating wave to be
set up, imposes a lower limit to the frequency. With normal sample sizes (say 5–10 cm
transmission length) the frequency will be in the 100 kHz – 1 MHz range.

The ultrasonic sources and detectors used at these frequencies are piezo-electric (nor-
mally piezo-ceramic) transducer elements. They are deformed mechanically when an ex-
ternal voltage is applied to them, and vice versa: an electric field is generated when they
are deformed by an external force. Differently manufactured piezo-elements are used for
generation of P- and S-waves. By placing transducers at two opposing faces of a rock
specimen, the sound velocities are measured from transit times of pulsed wavelets through
the sample. Measurements at various frequencies can be obtained by a spectral analysis
of the waveforms (see Winkler and Plona, 1982), but this is only possible if the transduc-
ers are broadband in operation. The transducers can be embedded inside the pistons of a
triaxial cell, or in the confining fluid for radial transmission. Fig. 7.5 illustrates a set-up
used for acoustic laboratory measurements, and particularly shows how transducers can be
integrated into a rock mechanical test system.

For practical purposes, the quality of acoustic signals is extremely sensitive to the
acoustic coupling between the transducers and the sample. This coupling is normally ob-
tained by a thin layer of grease, a gel or another viscous fluid placed between the face of
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the transducer and the surface of the specimen. It is important that the couplant layer is
thin enough not to contribute significantly to the measured transit time.

With shear wave transducers, it is important to make sure that the polarization of the
transmitting and the receiving transducers point in the same direction. The polarization will
normally be marked on the transducers, but should be checked by placing the transducers
face to face. Maximum signal is then obtained when the polarizations are parallel, while
minimum signal is obtained when they are at 90° to each other. If lower frequencies than
the 100 kHz – 1 MHz range are required, one may use the resonant bar technique. In
this case, the resonance frequency of a vibrating sample is determined. The resonance
frequency is related directly to the wave velocity. Different frequencies can be obtained by
using samples of various size.

In the seismic frequency range (10–100 Hz), velocities may be obtained from stiff-
nesses measured in very low strain (<10−6) and stress cycles (Spencer, 1981; Batzle et
al., 2006). By measuring strains in various directions and assuming isotropic and homo-
geneous specimens, both P- and S-wave moduli are estimated. Monitoring of phase shifts
permits measurements of attenuation. These are however challenging experiments that can
not yet be considered as routine.

Acoustic measurements in the laboratory should be performed with rocks in unconfined
as well as stressed conditions. As discussed later (Section 7.4), unloaded cores are thought
to contain an orientational distribution of microcracks, reflecting the in situ stress field. The
possibility of using acoustic velocity measurements on cores to evaluate the in situ stress
field will be discussed further in Section 7.4.3.

Measurements of P- and S-wave velocities on core plugs at atmospheric conditions are
sometimes performed and correlated with rock strength or elastic moduli measured in a
pressure vessel or a triaxial cell. Such correlations are invalid, since the two measurements
refer to different stress conditions. Therefore, for the purpose of obtaining such correla-
tions, acoustic velocities should be measured during the static tests. In order to compare
with log readings, the acoustic velocities should be measured in the same direction, at the
same stress state, and with the same saturating fluid as under downhole conditions. When
this is done, experience shows that laboratory measured sound velocities can be different
from those measured in the borehole. This may be due to a dispersion effect (Chapter 5),
since the frequencies in laboratory studies normally are higher than those used in the field.
It may also be due to core alteration, as discussed in Section 7.1.2.

7.3. Laboratory tests for rock mechanical property determination

In this section we will discuss procedures for performing the most common types of rock
mechanical tests, including some comments about test interpretation.

7.3.1. Stresses on cylindrical samples

For cylindrical coordinates, r , θ and z, Hooke’s law can be written (with Biot’s coefficient
α = 1)
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The remaining three shear stress equations in Hooke’s law disappear, as the directions r , θ
and z correspond to the principal stress directions due to the symmetry of the sample and
the set-up. The equations are written with effective stresses to make them applicable both
to porous and non-porous materials.

The confining pressure will generate an isotropic stress field perpendicular to the sample
axis, as long as the sample can be considered isotropic and homogeneous. (Note that the
case of a hollow cylinder does not comply with these conditions. The material may be
isotropic and homogeneous, but the sample is not.) The radial and tangential stresses will
be equal, and so will the radial and tangential strains. If pc is the confining pressure, we
must have

σr = σθ = pc (7.6)

εr = εθ (7.7)

There are thus only two independent stresses, the radial stress σr and the axial stress σz.
Hooke’s law can then be reduced to

Eεr = (1 − ν)σ ′
r − νσ ′

z (7.8)

Eεz = σ ′
z − 2νσ ′

r (7.9)

7.3.2. Drained and undrained test conditions

In drained tests the outlets through the pistons will be open, so that the pore fluid pressure
can be kept at any prescribed value. Most often, the outlets are open to the atmosphere, so
that the pore fluid pressure will be zero. In that case the effective stresses in the sample will
be equal to the total stresses. But sometimes it is of interest to run tests at actual reservoir
conditions. The pore pressure must then be kept at the reservoir pressure level.

In testing of low permeability materials, for instance like chalk, drained condition means
that the test must be run sufficiently slow, in order to avoid unacceptable pressure build-up
when the sample deforms.

In undrained tests the outlets are in principle closed, so that the pore fluids contained
in the sample cannot escape. If the pore fluid pressure is to be measured, there must of
course be hydraulic contact through one of the outlets, but the condition of no fluid flow
must be assured. Undrained conditions are commonly used when testing extremely low-
permeability rocks like shale (Section 7.3.7).

From a more formal point of view, drained conditions mean that the pore pressure in
the sample is an independent variable. In undrained conditions on the other hand, the pore
fluid pressure will be a dependent variable.
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7.3.3. Standard triaxial compression tests

Rocks at depth are exposed to an anisotropic stress field. During drilling or petroleum
production, enhanced shear stresses occur near the borehole or the producing perforations
(see Chapter 4). The lowest effective principal stress component is zero at the borehole
or cavity wall if the wall is permeable, and slightly higher if e.g. a mudcake blocks the
fluid transport across the boundary (and pw > pf). The unconfined compressive strength
C0 is the most important strength parameter in order to describe stability at the borehole
wall. At some distance from the wall, however, the minimum principal stress increases. In
order to evaluate borehole or cavity stability it is therefore of great value to know how the
mechanical properties and the strength characteristics depend on external load conditions.

The most commonly adopted experimental procedure for this purpose is the so-called
triaxial compression test. The axial stress σz and the radial confining pressure σr are kept
equal and increased to a preset level, from which σz is increased further until failure has
occurred, keeping σr constant. Results from a triaxial failure test are shown in Fig. 7.6. By
performing a series of tests at different confining pressures, it is possible to map the entire
failure envelope (Section 2.7). If the aim of the test programme is a borehole stability
or sand prediction analysis, then care should be taken that sufficient data is collected at
low confining pressures, representing the stress state near the borehole. The maximum
confining pressure should correspond to the minimum principal effective stress far from the
borehole. For a producing reservoir, the value at maximum depletion should be selected.

The test can be run under drained or undrained conditions. Since both the elastic prop-
erties and the strength depend on the effective stress, drained tests provide a better experi-
mental control because the pore pressure is kept constant at a known value. With extremely
low-permeability shales (nanoDarcy range), however, undrained tests with pore pressure
measurement performed during the experiment may be advantageous, since undrained tests
require shorter stabilization times (see Section 7.3.7).

Fig. 7.6. Triaxial test—example of experimental result.
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Beyond the brittle-ductile transition it may be very difficult to define the failure point,
which may be visible only as a minor change in slope of the stress–strain curve. The post-
failure behaviour is important, since it tells us how much the remnant strength of the rock
is, i.e. how much load it can sustain after failure has occurred. It is therefore strongly
advised that triaxial tests are run with the load frame in displacement control mode.

7.3.4. Interpretation of elastic moduli from triaxial tests

Fig. 7.6 illustrates a typical response of a drained triaxial test, including the hydrostatic
loading phase. If we simplify the test response, assuming the stress–strain curves to be
linear up to failure, it is straightforward to interpret the elastic moduli from such a plot.

In the hydrostatic phase the stresses are equal (see also Section 7.3.1), so the bulk mod-
ulus of the framework, is given as Kfr = �σ ′

z/�εvol = �σ ′
z/(�εz + 2�εr).

In the triaxial phase �σ ′
r = �σ ′

θ = pc = 0. Young’s modulus is then given by the slope
of the axial stress–strain curve in the triaxial phase, i.e. Efr = �σ ′

z/�εz, while Poisson’s
ratio is given by the ratio between the slopes of both the radial and the axial stress–strain
curves in the triaxial phase, i.e. νfr = −�εr/�εz.

The shear modulus can of course now be calculated directly from Young’s modulus and
Poisson’s ratio (Table 1.1). Alternatively we have Gfr = 1

2�σ
′
z/(�εz −�εr).

It is important to realize that if the pore pressure is not kept constant during the test,
this interpretation requires that the Biot constant is known. In a general case one should
consider the full expression (Eqs. (1.136)–(1.142)) and then only eliminate parameters
which are kept constant during the test phase of interest.

Another simplification we have made is that the elastic stress–strain response is linear.
As illustrated by Fig. 7.6 this is generally not the case, neither in the hydrostatic phase
nor in the triaxial phase. When presenting elastic moduli it is therefore essential to define
how the interpretation has been made. For the triaxial phase, the following alternatives are
commonly accepted (see Fig. 7.7):

Fig. 7.7. Illustration of different methods for calculating Young’s modulus from axial stress–strain curves.
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• Initial modulus, given as the initial slope of the stress–strain curve.

• Secant modulus, measured up to a fixed percentage of the peak stress.

• Tangent modulus, given at a specific percentage of the peak stress.

• Average modulus of a linear portion, given within a specific maximum and minimum
stress level.

Out of these, the tangent modulus at 50% of the peak stress value is probably the most
used method. However, if the curve is strongly nonlinear, complete information can only
be given if the entire curve is presented. Comparing moduli from different sources it is
thus essential to ensure that the same interpretation method has been used. As illustrated
by Fig. 7.7, the moduli can vary significantly with the method used for interpretation.

Such an interpretation is based on several assumptions, where the assumption of an
elastic material has already been mentioned. Clearly, this assumption is violated, if the
stress–strain curve looks like Fig. 7.7. In such a case, the rock is either nonlinearly elas-
tic or elasto-plastic (or both). One should therefore refer to the measured quantities as
static moduli, and avoid the term “static elastic” moduli. To reduce the problem of non-
linearity and variation of the stress–strain slope, it is often recommended to perform
unloading-reloading cycles at different stress levels and interpret the elastic moduli from
the stress–strain response of these loading cycles. The stress levels should be chosen such
that the sample is well within the elastic range. This may result in a much more consistent
interpretation of the elastic moduli.

Another assumption is that the sample is completely isotropic and homogeneous. Given
perfect boundary conditions, this implies that the stress- and strain-field is homogeneous
throughout the sample and throughout the test sequence. Observations of experiments have
shown that this is not always true. Barreling, buckling and shear-band formation are typical
examples of loss of homogeneity. This can occur significantly below the peak point of a
load-displacement curve, and can for instance be identified by loss of uniformity of radial
strain measurements in different directions.

These phenomena have been the subject of extensive investigation using bifurcation
theory, both from an experimental and a more theoretical approach. Examples with appli-
cation to failure around boreholes are given by Santarelli and Guenot (1990) and Sulem
and Vardoulakis (1989).

7.3.5. Unconfined (uniaxial) compression tests

In an unconfined compression test, a sample is inserted into a load frame and the axial load
is increased with zero confining pressure. This test is hence a simplification of a standard
triaxial compression test. Monitoring the axial stress plus the axial and the radial deforma-
tions, one can under drained conditions measure (by definition—see Chapters 1 and 2):

• The unconfined compressive strength C0 (also termed the uniaxial compressive
strength, UCS) as the peak stress.

• Young’s modulus Efr (tangential modulus as the slope of the axial stress versus axial
strain curve).

• Poisson’s ratio νfr as the ratio between radial and axial strain.



268 MECHANICAL PROPERTIES AND STRESS DATA FROM LABORATORY ANALYSIS

Most rocks exhibit brittle failure in unconfined failure tests, so it is straightforward to
identify C0. For interpretation of Young’s modulus and Poisson’s ratio, see Section 7.3.4.

If the rock is anisotropic, Poisson’s ratio and Young’s modulus are not proper para-
meters to describe the mechanical behaviour. In Section 1.7, the elastic stiffness tensor
was defined. Eqs. (1.219)–(1.220) illustrate that the value of the measured Poisson’s ratio
depends both on the direction of the applied load and the direction of lateral strain mea-
surement. Thus the orientation of the sample’s symmetry with respect to the directions of
applied and measured stress and strains needs to be specified.

Theoretically, the uniaxial compressive strength depends on the largest crack or flaw
present in the sample. Thus, measurements of C0 are expected to be very sensitive to sam-
ple heterogeneity, and to cracks induced by coring and core treatment procedures. Large
experimental uncertainties may therefore be expected, especially in weak rocks. Since the
uniaxial compressive strength is a key parameter in many petroleum related rock mechan-
ics applications, it may be worthwhile considering other methods to obtain or estimate
the uniaxial compressive strength. One alternative may be to perform triaxial tests at low
confining pressures, where some of the cracks not associated with the intrinsic rock be-
haviour are closed. Another alternative is a Constant Mean Stress (CMS) test, see also
Section 7.3.9.

In low-permeability rocks like shale, unconfined tests are normally not run, since this
test mode requires fully drained conditions which are too time-consuming and difficult to
obtain in low-permeability rocks.

7.3.6. Hydrostatic tests

Hydrostatic measurements are performed mainly to determine the bulk modulus of the
rock (or the frame modulus) and of the solid grains. This test represents the first phase of a
standard triaxial test. Normally, failure does not occur under hydrostatic loading, although
pore collapse in chalk and grain crushing in sandstone may induce failure at high stress
levels.

Hydrostatic tests can be performed under drained or undrained conditions. The dif-
ference between moduli measured in drained and undrained conditions was outlined in
Section 1.6. Let us repeat here the most important results for laboratory testing:

In a drained hydrostatic experiment, the slope of the stress vs. volumetric strain curve is
the bulk frame modulus (Kfr) of the rock (see Section 7.3.4).

In an undrained, hydrostatic experiment, the pore pressure will change during the test
and the slope of the stress–strain curve will be equal to the undrained bulk modulus Ku of
the rock, including the effect of the pore fluid (Eq. (1.155)). The increase of pore pressure
during undrained loading in a poroelastic (Biot) medium is (see also Section 1.6.3):

pf = (C/Ku)σp (7.10)

The constant C is given in Eq. (1.157). The ratio C/Ku is identical to Skempton’s
B-parameter (see Section 1.6.5). For fluid and frame bulk moduli (Kf and Kfr) signif-
icantly smaller than the bulk modulus of the grain material (Ks), one finds C/Ku →
Kf/(φKfr + Kf). It is seen that for a stiff framework, or a situation where gas is present



LABORATORY TESTS FOR ROCK MECHANICAL PROPERTY DETERMINATION 269

in the pore fluid (Kf → 0), the pore pressure development can be neglected. For a weak
frame, however, the pore pressure may be almost as high as the external stress. One ex-
ample of such behaviour is in soils. In shales, where pore fluid saturation may be hard to
achieve, a measured pore pressure response during undrained loading is a useful indica-
tion that full saturation is actually reached. Note that in case that the rock also deforms
plastically, like in normally consolidated clays or shales (Section 2.8.2), the pore pres-
sure response may be larger than predicted by Eq. (7.10). To reduce the problem of
nonlinearity and variation of the stress–strain slope, it is often recommended to perform
unloading-reloading cycles at different stress levels and interpret the elastic moduli from
the stress–strain response of these loading cycles. The stress levels should be chosen such
that the sample is well within the elastic range. This may result in a much more consistent
interpretation of the elastic moduli.

In an “unjacketed” test, i.e. with the pore pressure equal to the confining pressure, the
slope of the stress–strain curve gives the bulk modulus Ks of the solid particles (1/Ks
is often also termed “grain (or matrix) compressibility”) (Eqs. (1.148) and (1.151)). This
measurement can be performed on a core plug in direct contact with a fluid bath. The
volume change of fluid in the cell is measured as a function of pressure with and without
the core present, and the results are subtracted in order to obtain the grain compressibility.
Since the volume change is small, the results are very sensitive to changes in temperature
or other factors which may influence the measurement of fluid compressibility.

7.3.7. Triaxial testing of shales

For testing of shales it has been recommended to perform so-called Consolidated-
Undrained (CU) tests (Steiger and Leung, 1992; Nakken et al., 1989; Horsrud et al., 1998).
The procedure is adopted from soil testing (e.g. Head, 1984). This test consists of three
distinct phases:

1. Loading to the predetermined level of confining pressure and pore pressure.

2. Consolidation, maintaining a constant confining pressure and allowing drainage of
the pore fluid against a constant pore pressure.

3. Undrained axial loading under a constant axial displacement rate beyond failure of
the sample.

This test sequence is illustrated schematically in Fig. 7.8. The triaxial phase is performed
in undrained conditions to reduce the time required to complete a test. A fully drained test
of a low-permeability shale may require weeks or months to complete. In the CU-test, the
pore pressure must be monitored throughout the test.

The time required to run such a test depends mainly on the permeability of the shale.
Concepts from soil mechanics testing can be applied to assist in determining when con-
solidation is completed and also to determine the appropriate displacement rate in the
undrained part of the test (Head, 1984). For instance, allowing drainage at the end sur-
faces as well as the sides of the core will reduce testing time considerably. As shown in
Section 1.9 the consolidation response depends both on the permeability of the rock and
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Fig. 7.8. Schematic illustration of a Consolidated–Undrained test.

the elastic properties of the rock. It should thus be noted that in soil mechanics approaches,
the “weak frame” assumption is implicit.

The displacement rate in the undrained phase is chosen such that pore pressure gradients
within the sample are avoided. The total test time thus depends both on the permeability, the
elastic properties, the sample dimensions and the drainage conditions around the sample.
To reduce the test time as much as possible, both axial and radial drainage should be
implemented.

The results can be plotted in a q–p′ plot (see Section 2.7), which facilitates an interpre-
tation of whether the shale behaves as normally consolidated or overconsolidated.

Examples from testing of a Tertiary shale are shown in Fig. 7.9 (from Horsrud et al.,
1998). This shows three tests at different confining pressures which fail macroscopically
by shear. The peak stress values fall on a straight line which can thus be represented by a
Mohr–Coulomb failure criterion.

7.3.8. Oedometer (Ko) test

Laboratory experiments are often performed with rock specimens in uniaxial compression,
i.e. in a situation with no lateral deformation. This type of test is thought to simulate e.g. the
compaction of a reservoir during depletion. For geotechnical applications, similar studies
of soils are routinely performed to evaluate e.g. the stability of foundations. In that case, the
soil can be placed inside a solid, undeformable cylinder and compressed vertically. With
rocks, it is recommended to use a triaxial cell and adjust the confining pressure so that
zero or negligible radial deformation is recorded as the axial load is increased. The normal
way to apply the zero strain criterion is to use point measurements and diametrical strain
recordings in one plane as the control parameters. This requires a homogeneous specimen,
which is isotropic or transversely isotropic with the sample axis as the symmetry axis.

Theoretically, the stress–strain curve of an elastic, isotropic rock in an oedometer test
(drained) is given through Hooke’s law (Eqs. (1.93)–(1.95)), keeping εr = 0. Written with
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Fig. 7.9. CU-tests of Tertiary shale. (After Horsrud et al., 1998; with permission from Int. J. Rock Mech. Min.
Sci.)

stress and strain increments we have

�σ ′
z = (λfr + 2Gfr)�εz = Efr(1 − νfr)

(1 + νfr)(1 − 2νfr)
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The modulus dσz/dεz is called the oedometer modulus or uniaxial compaction modulus
(Hfr) (see also pages 21 and 394). In the elastic limit it is given by Eq. (7.11).

The oedometer test is most commonly used in geotechnical engineering. The test is
then performed by placing the sample (which normally has an L/D-ratio of ≈1/2) in a
steel ring. Drainage may be allowed both through top and bottom pistons, or alternatively,
through only one of the pistons. Load is applied incrementally, or in a continuous mode.
Axial stress and strain vs. time, plus pore pressure changes are the parameters measured
throughout these tests.

It has been observed that cyclic loading of sandstones produce moduli that are very dif-
ferent from the first loading segment (see for instance Mess, 1978). In a study of synthetic
sandstones formed under stress (Holt et al., 2000), the modulus of the second and subse-
quent cycle was observed to be at least two times larger than the modulus of the first cycle.
The initial modulus of the second cycle was found to be close to the initial modulus of
the expected behaviour of a virgin rock, i.e. a rock which had not been through the coring
process.



272 MECHANICAL PROPERTIES AND STRESS DATA FROM LABORATORY ANALYSIS

In addition to the modulus given by Eq. (7.11), the oedometer tests can also provide
information about the coefficient of consolidation CD (see Section 1.9), if the test is run
incrementally. Further, when specimens are brought beyond the elastic limit, the oedome-
ter test provides a simple method of determining the preconsolidation stress. One way of
obtaining this, is to plot the oedometer modulus vs. effective vertical stress. A minimum in
the modulus then corresponds to the preconsolidation stress (Janbu, 1985). Other ways of
interpreting the preconsolidation stress from oedometer tests have also been proposed (see
e.g. Lambe and Whitman, 1979).

7.3.9. Stress path tests

By the use of a triaxial test cell, the tests may be predefined to follow a specific stress path
other than those already discussed. This is mainly done for special purposes, e.g. to mimic
stress path conditions in a depleting reservoir, but can in principle follow a large variation
of stress paths. Two examples will be included in this section.

Constant stress ratio tests

Constant stress ratio tests are compression tests where the ratio between the confining
pressure and the axial stress is kept constant. This constant ratio is mostly referred to as
capital K ′ (not to be confused with the bulk modulus), where K ′ is given by

K ′ = �σ ′
r

�σ ′
z

= constant (7.13)

A K ′-ratio equal to 0 corresponds to a drained triaxial compression test, while a K ′-ratio
equal to 1 represents a hydrostatic test.

The interest in this type of tests comes from the fact that stress measurements in com-
pacting reservoirs have revealed that the boundary condition of no lateral movement is not
always adequate. A stress path with constant stress ratio may give a better description.

Constant Mean Stress (CMS) tests

The CMS test has been proposed as an alternative to provide more reliable estimates of
the unconfined compressive strength (UCS) of rocks (Kenter et al., 1997). The principle
of the test is shown in Fig. 7.10. The rock sample is first loaded hydrostatically to a stress
level which is close to 50% of the expected UCS. The sample is then loaded axially and
unloaded radially until the radial stress is zero. Then the sample is loaded in a uniaxial
stress mode until failure.

The idea behind this approach is that coring-induced microcracks are closed prior to
failure, and thus more reliable and less scattered values of UCS are expected. This method
requires that a rough estimate of the expected UCS can be made prior to testing. If failure



LABORATORY TESTS FOR ROCK MECHANICAL PROPERTY DETERMINATION 273

Fig. 7.10. Principle sketch of stress path in CMS test.

occurs before the radial stress is completely unloaded, the measured strength can be ex-
trapolated towards unconfined conditions, or another test at a lower initial stress level can
be run.

Note that the term “constant mean stress” is not entirely correct, since for a cylindrical
sample the mean stress is given as (σz + 2σr)/3, while here it is (σz + σr) which is kept
constant. The use of this term has been justified by the fact that the average of the largest
and smallest principal stresses is kept constant.

7.3.10. Other triaxial failure tests

Extension tests

Triaxial tests can also be run in extension: after applying a hydrostatic confining pressure
σr , just like in the standard compression tests, the axial load σz is decreased, keeping σr
constant. If failure does not occur until σz reaches zero, σr is increased. According to
the Mohr–Coulomb criterion the shear strength τc should be the same in extension and
compression. The Griffith criterion, however, takes into account the intermediate stress.
The use of this criterion implies a certain difference in the measured strength values. It is
also commonly observed that rocks are stiffer during unloading than loading, so that the
elastic properties are also different between the two tests.

Multiple and continuous failure state triaxial tests

Determination of the failure envelope is a key task in the analysis of borehole stability and
sand prediction. Normally, there are strong limitations on the amount of material available
for rock mechanical tests. It may therefore be attractive to carry out tests where an entire
failure envelope can be measured with just one sample. There are two slightly different
methods for doing this; one is the multiple failure state test and the other the continuous
failure state test (Kovari et al., 1983). In the first case (see Fig. 7.11), the test is started
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Fig. 7.11. Sketch of the stress path followed in a multiple failure state test.

as a normal triaxial test from a given initial confining pressure. When failure is reached
(detected manually or automatically as a significant change in the slope of the stress–strain
curve), the confining pressure is increased to a higher level. Changes in acoustic velocities
(especially the radial velocity) measured during the test may also be used as an indicator
of failure (Holt and Fjær, 1991). Another alternative is to use the Acoustic Emission hit
rate as an indicator. The axial stress is then increased further until failure occurs, and in
this way the test continues at a multiple of confining stress levels. This test turns out to
give quite reliable results with regards to failure stresses, at least in weak, brittle rocks like
sandstones (Holt and Fjær, 1991). Obviously, failure detection in ductile materials is more
complicated. In addition, in hard rocks, failure in one of the steps may weaken the material
considerably. Generally, the elastic moduli are influenced by damage caused in previous
load steps, so this test is not recommended for elastic properties evaluation.

The idea behind continuous failure state tests is similar to that of the multiple failure
state tests. In the continuous failure state test (Kovari et al., 1983), both the radial and the
axial stresses are increased in order to monitor the failure envelope continuously rather
than stepwise.

True triaxial tests

To evaluate further the role of the intermediate stress on the failure envelope, it is possi-
ble to perform tests in test machines that can supply a true triaxial (polyaxial) stress, i.e.
σ1 �= σ2 �= σ3. These systems normally include three mutually perpendicular pairs of
hydraulic jacks compressed against the faces of a cubically shaped sample. Other applica-
tions of polyaxial tests include testing of sand production, fracturing, perforating, injection
and screen integrity. A limitation for the use of such tests within petroleum related rock
mechanics is that the tests usually require larger specimens than can be obtained from field
cores.
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7.3.11. Hollow cylinder tests

Hollow cylinders can be used as scaled models to simulate the borehole situation in the
laboratory (see e.g. van den Hoek et al., 1992). Besides that, by changing the external
stresses and/or the internal (hole) pressure, a variety of load situations can be studied,
including a true triaxial stress state at the borehole wall. Thin-walled cylinders offer the
possibility of having an almost homogeneous stress state, but are difficult to prepare.

The stress state at the borehole wall of an externally loaded hollow cylinder is (follows
from a calculation similar to that in Section 4.2):

σzi = Fz

π(R2
o − R2

i )
(7.14)

σθ i = 2σroR2
o

R2
o − R2

i

(7.15)

σri = 0 (7.16)

Fz is the axial load and σro is the confining pressure. σr = σro at the outer boundary
of the sample, while σz shows no radial variation. The ratio between the axial and radial
external load determines which of the stresses σzi or σθ i is the maximum principal stress.
From Eqs. (7.14) and (7.15) we find that σzi is larger than σθ i if Fz > 2πσroR2

o and vice
versa. When σzi is the larger, and if the cylinder is thick-walled (R2

i � R2
o), the failure

process will develop in much the same way as it does in a normal triaxial compression
test, i.e. as a shear fracture. When σθ i is the larger, macroscopic fractures are expected to
develop along spiral surfaces parallel to the axis of the cylinder and to the direction of
the intermediate principal stress. By altering the ratio between σzi and σθ i it is possible to
investigate the influence of the intermediate stress on the failure stress. In addition, it is of
interest to investigate the failure mode. In both cases, also the ratio Ro/Ri can be used to
tune the failure stress and the failure mode. A convenient choice may beRo/Ri = 5, and the
same hydrostatic external pressure on the sample boundaries and on the loading pistons,
i.e. σz = σroR

2
o/(R

2
o − R2

i ) = 25/24 σro. Failure will then be induced by the hoop stress
σθ i on the borehole wall. According to Eq. (7.15), σθ i = 25/12 σro, i.e. failure should occur
when the confining pressure is 12/25 of the uniaxial rock strength. Experimental results,
however, tend to show that failure occurs at larger stresses than predicted. It should be
noticed, however, that it may be difficult to determine the actual stress inducing borehole
failure from the external stress–strain curve. Measurements inside the borehole are thus
necessary. Such measurements include the use of cantilever systems with strain gauges
monitoring borehole deformation.

An alternative way of studying the stability of hollow cylinders is to apply a pressure in
the hole. For a permeable rock, a sleeve can be applied to simulate e.g. a mudcake. Bore-
hole collapse is studied by reducing the internal pressure, keeping the confining pressure
constant. In principle, hydraulic fracture generation can be simulated by increasing the
borehole pressure.

The stability of cavities or perforation tunnels, especially in sandstone, can be studied by
terminating the hole a representative distance into the sample (e.g. Tronvoll et al. (1992)).
For simulation of the sand production potential, fluid flow should be included, and both
confining pressure and flowrate should be varied during a test.
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7.3.12. Measurements on small samples

The need for intact core material in laboratory testing in many cases represents a serious
restriction. Either a core is simply not available, or the core may be in such a state that it
is impossible to drill sufficiently large test samples. This has motivated the use of smaller
samples (sub-cm) for testing. Especially if drill cuttings can be used, a new source of
information is available without any additional cost.

Again acoustic measurements are attractive, because of the close relation to the me-
chanical response of the rock. Alternative techniques are available, both a sonic pulse
technique (Santarelli et al., 1998) and a continuous wave technique (Nes et al., 1998a).
The sonic pulse technique is in principle similar to the transmission technique described
in Section 7.2.4. The continuous wave technique (CWT) is well known from solid state
physics and fluid studies. This technique also requires a specimen with smooth and par-
allel end surfaces mounted between two acoustic transducers, one used for acoustic wave
generation and the other for detection. This technique relies on the establishment of ul-
trasonic standing wave resonances as the excitation frequency is swept over a frequency
range containing several resonance frequencies. A typical resonance spectrum is shown in
Fig. 7.12. Resonances will occur each time the sample length (thickness) equals an integer
number of half wavelengths. The acoustic phase velocity is then given as

v = 2l�f (7.17)

where �f is the frequency difference between resonance peaks, l is the sample thickness
and v is the phase velocity (P or S). CWT is particularly suited for measurements on fine-
grained material like shale, where samples of sub-mm thickness may be used.

When used on core material, such measurements may represent a valuable supplement
to more time-consuming and expensive tests, or an alternative when larger samples can not
be prepared. Efforts have also been made to simultaneously perform static measurements

Fig. 7.12. CWT test—example of recorded resonance spectrum.
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on such small samples (Nes et al., 1998b). However, questions related to sample size in
relation to material heterogeneities should be considered.

These techniques may also be used on drill cuttings, and as such they have a potential
for field use. This is discussed further in Chapter 8. When drill cuttings are used, addi-
tional uncertainties are related to the quality and representativity of the cuttings, i.e. stress
unloading effects, drill bit effects, effects of the drilling fluid etc.

7.4. Laboratory tests for stress determination

The stress release experienced by a rock sample during coring causes opening of microc-
racks by elastic as well as viscoelastic mechanisms. These cracks are thought to be oriented
with respect to the stress field experienced in situ. It is normally assumed that most cracks
open such that the crack normals are parallel to the direction of maximum in situ stress,
which is also the direction of maximum stress release. After the period of crack opening,
the cracks remain open. The orientational distribution and the amount of cracks still contain
information about the orientation and the magnitudes of the previously experienced princi-
pal stress components. Clearly, influence may be expected from earlier loading-unloading
cycles experienced by the rock throughout geological history. It is not clear to what extent
the entire stress history influences the observations. It is however often assumed that the
most recent and the most rapid unloading will dominate the behaviour (de Waal and Smits,
1988).

If the crack pattern contains information about the in situ stress field, then any technique
by which the orientational distribution of microcracks can be measured may provide stress
field data.

This section discusses some methods which are based on core measurements. A require-
ment for such testing is of course that the core is oriented, i.e. the geographical orientation
of the core must be known (see Section 7.1.4). This is done by orienting the scribe on the
core by the Paleomagnetic orientation method. The described methods have mostly been
used for determination of horizontal stress directions. The measurements thus have to be
performed in the horizontal plane, either using a vertical core, or mounting the measure-
ment devices such that they are measuring in the true horizontal plane.

Attempts have also been made to estimate the stress magnitudes from these techniques,
but the general experience is that the uncertainty of the results can be considerable.

7.4.1. Differential strain curve analysis

One way of obtaining this orientational information is to measure the anisotropic deforma-
tion of the core upon hydrostatic reloading. In the general case this is done by machining
a cube from the core and attaching strain gauges. The instrumented (and cleaned/dried)
sample is subsequently cast in a compliable medium (e.g. silicone) to prevent confining
fluid from entering the sample during testing. The result is a series of stress–strain curves
for different directions. They will all exhibit initial nonlinearities related to crack closure.
Most strain will occur in the direction of maximum in situ stress.
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Fig. 7.13. Geometry of measurement directions in an ASR experiment. Note that here we use ε1 and ε2 to
represent the two principal directions in the horizontal plane.

If one of the principal strain directions is known, four independent strain measurements
are required to determine the complete strain tensor. This will be the case if the vertical
stress is a principal stress and the core is vertical. In that case, one measurement is made in
the vertical direction and three in the transverse plane. In the general case, when a principal
stress direction can not be assumed to be known, it takes six independent measurements to
determine the complete strain tensor. Note that if one principal direction is assumed verti-
cal, only the three measurements in the horizontal plane are strictly required to determine
the directions of the principal horizontal stresses. The horizontal measurements are made
at 45° to each other, as illustrated in Fig. 7.13.

To see how the direction of principal stresses can be determined, we use Eq. (4.7)

εr = εx cos2 θ + εy sin2 θ + 2Γxy sin θ cos θ (7.18)

Referring to Fig. 4.1, εx and εy are the strains in the x- and y-direction, and εr is the
radial strain in a direction with an angle θ relative to the x-axis. If we now assume that the
x- and y-directions are the principal strain directions, we have

εr = ε1 cos2 θ + ε2 sin2 θ (7.19)

By measuring εr(θ), εr(θ + 45) and εr(θ + 90) we have three equations with three
unknowns (ε1, ε2 and θ ). This yields the following results:

tan 2θ = εr(θ)+ εr(θ + 90)− 2εr(θ + 45)

εr (θ)− εr(θ + 90)
(7.20)

ε1 = 1

2

(
εr(θ)+ εr(θ + 90)+ εr(θ)

cos 2θ
− εr(θ + 90)

cos 2θ

)
(7.21)

ε2 = 1

2

(
εr(θ)+ εr(θ + 90)− εr(θ)

cos 2θ
+ εr(θ + 90)

cos 2θ

)
(7.22)

By hypothesis, the total strain associated with crack closure is proportional to the in situ
stress. The constant of proportionality for stress magnitude estimates can be obtained from
the vertical strain measurement, assuming that the effective vertical stress is known from
e.g. the weight of the overburden, and the pore pressure.
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7.4.2. Anelastic strain recovery

This method is based on the anelastic behaviour (creep) occurring after unloading of a rock.
In addition to the instantaneous elastic strain that takes place when the stress is relieved,
an additional anelastic strain also develops over some time. For a core taken from an un-
derground formation, the period of time over which most of the anelastic strain develops is
typically 10–50 hours.

A core which is going to be used for ASR measurements should be instrumented as soon
as possible after retrieval, since most of the anelastic strain will develop during the first few
hours. It should be noted that the process of bringing the core out of the well takes several
hours, so that the earliest possible start of the measurements is typically 3–5 hours after
drilling induced stress relief. Once the sample is instrumented, it is vital that it is kept in a
constant temperature and saturated humidity atmosphere during the test.

The principle for determination of principal strain (and stress) directions is the same as
that presented in Section 7.4.1.

Concerning the estimation of stress magnitudes, constitutive models which link the
strains to stresses have to be established. Several methods based on viscoelasticity have
been presented in the literature Blanton (1983), Warpinski and Teufel (1989) and a gen-
eral three-dimensional theory by Matsuki and Takeuchi (1993). For an overview of these
methods, see e.g. Amadei and Stephansson (1997).

There are, however, still questions which need to be resolved before reliable results
from the ASR-technique can be expected. A study by Yassir et al. (1998) showed that for
stress ratios up to 1.5,1 the corresponding strain ratios were very similar, but for stress ra-
tios above 2, the corresponding strain ratios showed more scatter. This study was done
under carefully controlled laboratory conditions, using a synthetic sandstone (see also
Section 7.1.2) which was formed under stress and isotropically unloaded. Under these
conditions one will avoid the damage effects experienced during coring and core retrieval.
Especially under conditions where the shear stress approaches the shear strength of the
rock, one should expect this to affect the measured relaxation strains.

7.4.3. Acoustic techniques

Differential wave velocity analysis

Since acoustic wave velocities and attenuations are extremely sensitive to cracks (see
Chapters 5 and 6), the cracks will also contribute to an acoustic anisotropy. This anisotropy
is preserved after the core has entered the laboratory, and measurements of it may
serve as additional information to evaluate in situ principal stress directions (and possi-
bly also magnitudes). Engelder and Plumb (1984) demonstrated this effect for a num-
ber of rocks sampled at shallow depths. Experiments with reservoir sandstones show
a clear minimum of sound velocity in a direction which corresponds to the in situ

1 The stress ratio is here defined as the ratio between the largest and the smallest of the principal stresses.
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vertical, i.e. the expected major principal stress direction (see e.g. Holt et al., 1989;
Teufel, 1989).

This technique (Differential Wave Velocity Analysis; DWVA) is still not fully developed,
and improvements may be expected: it is reasonable to expect a relation between crack
density and stress magnitude (Ren and Hudson, 1985), and it is reasonable to expect that
reloading the sample to its previous stress state will reduce the crack-induced anisotropy.

Care should however be taken before a directional velocity variation is interpreted as
anisotropy. The variation may also be caused by inhomogeneities, since the wave paths
will be slightly different. One way to check that anisotropy is really the source of vari-
ation is to measure S-wave velocities in the assumed principal symmetry directions with
different polarizations, so that velocities of waves travelling exactly the same path but with
different polarizations are measured. Any difference by these velocities can not be due to
heterogeneity, and must therefore be caused by anisotropy.

Acoustic emission

In 1950 Kaiser made the experimental observation that when loading a sample, the sample
would start to produce acoustic emissions (AE) when the load exceeded the maximum
stress level which the sample had experienced previously. This stress history or stress
memory effect has been the basis for numerous attempts to use this phenomenon for de-
termination of in situ stresses. Its application is, however, not straightforward. It has been
shown (Holcomb, 1993) that for triaxial stress states, the maximum stress in a principal
direction can not be retrieved by uniaxial loading in that direction. The onset of acoustic
emission in the loading direction is dependent also on the stress applied in the two other
orthogonal principal directions.

Acoustic emissions are transient elastic waves generated from localized and sudden
changes of the stresses in a sample. In a porous material like a rock, such sudden changes
of local stresses can be the result of growth of microcracks and/or collapse of pores or
grains. This is the basis for the concept of the damage surface of materials, analogous to
a yield surface in the theory of plasticity. A damage surface thus defines the limit in stress
space where acoustic emissions are generated when passed (Holcomb, 1993). More recent
work has focused on using this damage surface concept as the basis for studying stress
memory effects.

It has been suggested that the rock will remember the critical stress state during coring
and that the in situ horizontal stress state can be determined by mapping the 3D damage
surface of a core (Kenter et al., 1998). This concept has been demonstrated experimentally
on outcrop and field sandstone cores, and it has been supported by analytical and discrete
particle modelling (Pestman et al., 2002).

7.5. Index tests

There is a number of test methods that can be applied to rocks without applying a confining
pressure system. This includes measurements of index properties which can be related in
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some way to strength or elastic parameters. We shall describe tests which may give infor-
mation about the tensile strength (Point load strength and Brazilian test) and a hardness
test which has been found to give results that correlate with compressive strength. More
recent test methods for correlation with rock mechanical properties based on indentation
and scratching will be presented, and finally, some tests which may be particularly useful
for studies of shales will be discussed.

Most of the tests discussed below are described in more detail in Brown (Ed.) (1981).

7.5.1. Tensile strength indicators

Direct tensile strength measurements. By gluing both ends of a cylindrical rock specimen
to metal front plates which are fixed to the platens of the load frame, direct measurements
of tensile strength can be obtained. The cement, of course, has to be more resistant to
tensile stress than the specimen itself.

Point load strength. The point load strength index Is is measured using spherically-
truncated, conical platens of a standard geometry (cone angle: 60° and radius of curvature:
5 mm at the tip) (see Fig. 7.14a). The specimen may be in the form of a core (axial/radial),
a cut block or an irregular lump. Hence, no special sample preparation is required. The
index Is is obtained as

Is = Fc

D2
e

(7.23)

where Fc is the load necessary to cause failure. De is “equivalent core diameter”, equal

to the thickness in a diametrical test or (4A/π)
1
2 in the case of axial, block or lump tests.

A is the minimum cross-sectional area of a plane through the platen contact points. Size
corrections can be obtained by multiplying on the right hand side of Eq. (7.23) with a factor
(De/50)0.45 (De is measured in mm).

Fig. 7.14. Simple sketches showing apparatus for a) point load strength test, and b) Brazilian test.
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The point load strength index may be used as an indirect measurement of the uniaxial
tensile strength T0:

Is = 0.80T0 (7.24)

The Brazilian test. This test is performed by applying a load with two platens diametri-
cally compressed on a rock cylinder, which is normally shorter than or equal in thickness
(L) to its diameter (D) (see Fig. 7.14b). Failure occurs by an extension fracture in or close
to the loaded diametrical plane.

A plane stress elastic analysis shows that the stresses close to the centre of the sample
are (Jaeger and Cook, 1979)

σh = − 2F

πDL
(7.25)

σv = 6F

πDL
(7.26)

The compressional stress is thus always about three times larger than the tensile stress,
and since the ratio between the compressive strength and the tensile strength is normally
larger than three, the sample will always fail in tension. The tensile strength (in MPa) is
thus given by Eq. (7.25)

T0 = 0.636
Fc

DL
(7.27)

The peak load Fc is given in N and D and L must be given in mm. The Brazilian test
tends to give results which are more reproducible than those obtained by point load strength
measurements.

7.5.2. Hardness measurements

Brinell hardness. The Brinell hardness number NBr follows from the ratio of applied load
F on a spherical indenter to the indentation depth D:

NBr = F

2πrD
≈ F

πr2
s

(7.28)

r is the radius of the sphere and rs is the radius of the indentation surface area. The test
is hence non-destructive. For metals and glasses there is a theoretical relationship between
NBr, the yield stress σyield and Young’s modulus E:

NBr =
(
a + b ln

E

σyield

)
σyield (7.29)

a and b are constants, so that if the yield strength increases in proportion with E, then NBr
will be a measure of σyield.

van der Vlis (1970) and later Geertsma (1985) studied the correlation between NBr,
dynamic elastic moduli and the compressive strength of rocks, and for sandstones in par-
ticular. Geertsma found a linear relationship between the Brinell hardness and the dynamic
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Young’s modulus for well consolidated sandstones:

Edyn = 77.25NBr (7.30)

He also presented the approximate result that the Brinell hardness equals the yield strength:

NBr ≈ σyield (7.31)

Other hardness tests. There is a number of other tests whereby material hardness can be
quantified. They have in common that they are either indentation tests (like the Brinell hard-
ness) or rebound hardness tests (like the Schmidt hammer, for further details, see (Brown
(Ed.), 1981)).

7.5.3. Indentation and scratch tests

Indentation tests. The potential access to more information about rock mechanical prop-
erties from drill cuttings has motivated work to perform indentation tests on cuttings-size
samples (Santarelli et al., 1998; Ringstad et al., 1998). These techniques are based on
casting the samples in rapidly curing material (polyester, resin) which can act as a sample
holder and also facilitate grinding and polishing of the sample surface. In these tests the en-
tire load-displacement curve is normally recorded, and the slope of the linear regime is used
to correlate with rock mechanical properties such as the uniaxial compressive strength.

Again, uncertainties related to sample size, material heterogeneity, fluid effects etc. need
to be considered.

Scratch test. Another technique for determination of mechanical properties is the Scratch
Test (Richard et al., 1998; Schei et al., 2000). The principle of this test method is to scratch
the rock surface with a cutter while monitoring the applied force. The cutting depth is
typically less than 1 mm. Testing of sandstone and carbonates was found to support a
simple force cutting model in the ductile mode

Ft = EA (7.32)

where Ft is the horizontal component of the cutting force averaged over a few cm of scratch
length, E is the intrinsic specific energy and A is the cross-sectional area of the cut.

A strong correlation between specific energy and the uniaxial compressive strength is
well established for several rock types. The possibility to derive information about rock
stiffness from scratch measurements has also been demonstrated (Schei et al., 2000). An
obvious advantage with this method is the potential of continuous measurements along a
core surface, providing continuous, high resolution data at low cost (Suarez-Rivera et al.,
2002).

7.5.4. Specific shale characterization tests

Some rocks, in particular shales or other clay rich materials, are sensitive to water. It is
thus essential that characteristic parameters that can be related to the water sensitivity are
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measured. Such parameters include the water content, the cation exchange capacity (CEC),
specific surface area and the mineralogy.

Water content is measured by weighing a sample before and after heat drying. The heat-
ing temperature should be kept lower than 105 °C to ensure that only free water is released.
Above this temperature, crystalline water will start to be removed.

CEC can be obtained from several different methods, and since the different methods
can yield quite different results, one should take care when comparing CEC-values from
different sources. A fairly rough and much used method is the so-called methylene blue test
(see API, 1968), where a given amount of rock material is transformed into a slurry with
de-ionized, distilled water. Strong sulphuric acid is then added to exchange all available
cations in the interlayers of clay minerals with H+ ions. After this, the slurry is diluted, and
a solution of methylene blue (C16H18N3SCl·3H2O) is added gradually. H+ ions are then
exchanged with NH+

4 , and the CEC is obtained from the amount of methylene blue required
to form a blue corona when a suspended drop of the slurry is placed on a filter paper.

Specific surface area is obtained by adsorption of gas or liquid molecules of known size
onto a surface of a known mass of the rock material (Gregg and Sing, 1967).

Specific surface area has also been used to correlate between wellsite measurements of
the dielectric constant and the presence of hydratable clays (Leung and Steiger, 1992).
A test kit for the dielectric constant measurement technique was developed, using a small
sample of cuttings.

The mineralogy of a rock may be determined from X-ray diffraction. Since the final
numbers result from interpretation of diffractograms, this is not a completely objective
method. Again, comparison of results from different sources should be done with great
care. Note also that only crystalline minerals will appear on the diffractogram. X-ray amor-
phous minerals (e.g. certain opal minerals) will not be detected.

Measuring the activity (the relative humidity) of a shale sample is also frequently used
as an indicator of whether the sample is well preserved and saturated or not. These
measurements are commonly performed under atmospheric conditions. However, under
atmospheric conditions the curved interface between the pore water and the air will im-
mediately reduce the measured activity below the true value (e.g. Carminati et al., 1997).
The amount of this reduction depends on e.g. the pore size distribution of the shale. The
smaller the pores, the greater the error.

As already discussed, it is important that care is taken in sampling, preservation and
handling of water sensitive rocks like shale. This is particularly important when studying
the response of these rocks to fluid contact. Tests to measure swelling and disintegration are
commonly used by the drilling mud industry for screening of mud types and mud additives.
It is critical that laboratory artifacts are avoided (e.g. due to capillary effects), as they may
completely dominate the results (see also Section 7.1.4).
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Chapter 8

Mechanical properties and in situ stresses from field data

Knowledge of the mechanical properties and the in situ stresses of the subsurface for-
mations is essential in connection with wellbore stability problems, fracturing operations,
subsidence problems and sand production evaluation.

In this chapter we will look at methods for estimating mechanical properties and in
situ stresses from field tests and field data. The methods can be grouped into three main
categories: measurements while drilling, wireline logging methods and well tests.

We start by recalling the mechanical parameters and in situ stresses of a formation:

Elastic parameters. For an isotropic medium, there are two independent elastic moduli.
However, these two parameters have a real and an imaginary part, that both will vary
with frequency and with stress level, such that even in the isotropic case the use of two
parameters is clearly a simplification.

Strength parameters. We have seen that the strength of a material is dependent on the
stress level, and that failure criteria that describe actual data normally have at least 2–3
adjustable parameters.

In situ stresses. The in situ stresses are given by the three principal stresses and three
parameters giving the orientation of the principal stresses. The stress level determines
whether a rock is critically loaded or not. Additionally, the in situ stresses influence both
the elastic parameters and the strength parameters.

8.1. Estimation of elastic parameters

The most important method for estimation of elastic parameters is acoustic logging, and in
particular acoustic wireline logs. Acoustic logging while drilling is now also available, but
is still less used.

Acoustic logging tools measure acoustic wave velocities which together with density in-
formation and the appropriate formulae discussed in Chapter 5 provide the dynamic elastic
parameters (Eqs. (5.20)–(5.24)). We repeat here the equations for dynamic Young’s modu-
lus (Edyn) and dynamic Poisson’s ratio (νdyn):

Edyn = ρv2
s (3v

2
p − 4v2

s )

(v2
p − v2

s )
(8.1)

νdyn = v2
p − 2v2

s

2(v2
p − v2

s )
(8.2)

Once the dynamic moduli are known, the problem is to relate them to the static parame-
ters, which is what is needed for most applications. This problem is a difficult one that has
not been fully resolved.
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The difference between the static Young’s modulus and the dynamic Young’s modulus
may be quite significant, in particular at low stress levels. The dynamic modulus may be
several times larger than the static modulus e.g. in a weak sandstone. The static–dynamic
transition is complicated by the fact that it is not a constant shift, but varies independently
with loading (Fjær, 1999). The main contribution to the difference is the strain amplitude,
which is low in dynamic measurements and large in static measurements. In a porous rock
both pore fluid and cracks can give further contribution to this difference. Empirically
based static–dynamic transition methods are thus of limited validity, and there is still also
a lack of theoretically based methods.

One step in the direction of a more fundamental approach was presented by Fjær (1999).
This approach was developed primarily for weak sandstone, utilizing a large number of
carefully designed laboratory tests (mostly on North Sea cores) with simultaneous static
and dynamic measurements. Further description of this quantitative model was given in
Section 5.6.

The rest of this section will be devoted to various types of acoustic measurements, pri-
marily from downhole measurements, but also from rig measurements. The principles of
acoustic wave propagation around boreholes were described in Section 5.8.

Indirect information which may be useful for evaluation of mechanical parameters can
be obtained from other logging tools, e.g. the gamma, density and neutron logs. These tools
can be used to obtain lithological information.

8.1.1. Acoustic wireline logs

The primary output from acoustic logging tools is the velocities and waveforms of different
waves, such as the compressional-, shear- and Stoneley waves. Note that acoustic logging
tools may be used to generate information about a number of other characteristics of the
formation, such as lithology identification, porosity estimates, gas detection, detection of
natural fractures, qualitative evaluation of permeability variations and creation of synthetic
seismograms for comparison with surface seismics.

Full waveform sonic tools

A principle sketch of a full waveform sonic tool is shown in Fig. 8.1. This consists of an
omnidirectional transmitter separated from an array of receivers.

The transmitter creates a pressure pulse in the borehole fluid. This pressure pulse gen-
erates compressional and shear waves in the formation, in addition to borehole waves like
the Stoneley wave. These tools will thus ideally provide compressional and shear velocities
of the formation in addition to the Stoneley wave velocity. However, in slow formations
(poorly consolidated) the shear wave velocity is slower than the fluid waves in the borehole.
Consequently, the shear velocity can not be measured directly.

From a mechanical properties point of view, one is most interested in the shear velocity
in slow formations, since low wave velocities indicate low strength and hence potential
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Fig. 8.1. Principle sketch of a full waveform sonic tool. Typical distance from transmitter to first receiver is 10 ft
(3 m), while the distance between each receiver is typically 0.5–1 ft (0.15–0.3 m).

stability problems. Direct measurement of both compressional and shear velocities also in
slow formations is possible using dipole or multipole tools.

Typical centre frequency of the transmitter used in full waveform sonic tools is 15 kHz.
However, to strongly excite the Stoneley mode, the source spectrum should include fre-
quencies below 5 kHz. This can be obtained by increasing the bandwidth of the source and
also by varying the excitation frequency of the source, depending on which waveform is
requested.

Multipole sonic tools

The basic concept of this tool is the dipole source transducer. A dipole transducer can in
principle be pictured as two closely spaced monopole transducers driven with opposite
phases. This piston-like effect creates an increase in pressure on one side of the borehole
and a decrease in pressure on the other side of the borehole. This force oriented normal to
the borehole wall induces a flexural motion of the borehole (see Fig. 5.20).

The dipole source operates at low frequencies, typically with a centre frequency of 1–
1.5 kHz. At low frequencies the flexural mode is very little affected by the borehole and
travels at the same speed as the shear wave. Dipole tools can thus provide a direct measure-
ment of the shear velocity even in slow formations. At higher frequencies, the propagation
velocity becomes smaller.

Dipole capabilities are often integrated in monopole tools, with the dipole transmitter
close to the monopole source, see Fig. 8.1. By including two dipole transducers oriented
perpendicular to each other and two receivers at each receiver station, both in-line and
cross-line measurements can be performed. Cross-dipole measurements hence facilitate an
evaluation of different types of anisotropy. It is a well known observation that the acoustic
velocity is faster along the rock bedding than normal to the bedding. This has commonly
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been observed when comparing P-wave velocities measured in vertical holes with mea-
surements in highly deviated or horizontal holes in the same formation.

Schlumberger’s Sonic Scanner tool is a combination of 3 monopole and 2 orthogonally
oriented dipole sources, and more than a hundred receivers. The dipole sources may sweep
through a frequency band from 300 Hz to 8 kHz. The tool enables a fairly detailed charac-
terization of the elastic wave velocities in the vicinity of the borehole, as it is sensitive to
axial and azimuthal as well as radial variations.

8.1.2. Acoustic logging while drilling

In recent years, tools for acoustic logging while drilling have also become available. The
tool configuration is similar to that shown in Fig. 8.1, with a transmitter separated a few
feet (typically 4–7 ft) from an array of receivers. The full waveforms are normally recorded
in a downhole memory for later evaluation, but transit times can be transmitted uphole for
real time use: lithology evaluation, porosity determination, pore pressure estimation and
correlation of drill bit position to seismic maps.

Real time access to good estimates of mechanical properties of the rock is obviously use-
ful also for borehole stability evaluation while drilling. By logging while and after drilling
one could possibly monitor changes in the rock response during the openhole period. This
may give an early warning of possible deterioration of rock integrity with time which
eventually results in borehole stability problems. Consistent differences between acoustic
velocities recorded while drilling and from wireline logging have been observed in shales
(e.g. Boonen et al., 1998). However, time-lapse studies investigating this for borehole sta-
bility evaluation have yet not been published.

8.1.3. Acoustic measurements on drill cuttings

Acoustic measurements on drill cuttings may represent a valuable source of information
which can supplement the logging techniques. Alternative techniques are available, both a
sonic pulse technique (Santarelli et al., 1998) and a continuous wave technique (Nes et al.,
1998). For further description, see also Section 7.3.12.

Drill cuttings represent a large source of information which is available without any ad-
ditional cost. If used on the rig, information will be available close to real time. There are,
however, a number of limitations with these techniques, related primarily to the quality
and representativity of the cuttings. How has stress unloading effects, drill bit effects and
effects of the drilling fluid etc. changed the response compared to that of the virgin for-
mation? Other uncertainties relate to possible length scale effects (typically mm-size for
cuttings while typically 30 cm for an acoustic log) and the accuracy in depth determination
of cuttings origin. A bias in sample selection may also be introduced, promoting measure-
ments on the more competent samples in the high-velocity range. The difference in test
conditions (atmospheric for cuttings measurements compared to downhole conditions for
logging tools) may also affect the result.
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Despite all these possible uncertainties, reasonable agreement between logged values
and values derived from cuttings measurements have been reported (Santarelli et al., 1998;
Nes et al., 1998), especially with respect to depth trends. Cuttings measurements thus
represent a promising but not yet fully explored alternative and/or supplement to other
measurements.

8.2. Estimation of strength parameters

There are no direct methods available for determination of the strength parameters in situ.
Hence most of the efforts made to predict strength parameters have been based on empirical
correlations, especially relations between acoustic velocities and strength parameters. This
section will discuss both this and other relations which are being used for estimation of
strength parameters.

8.2.1. Log data (wireline and MWD)

Log data are attractive for prediction of rock mechanical properties since logging is one of
the few downhole measurements available. As presented already, there is a direct relation
between acoustic velocities and dynamic elastic properties. However, rock strength data
can not be inferred directly from logs. The traditional approach has therefore been more or
less empirical, using both log derived acoustic velocities (especially the shear velocity) and
log derived porosity. An obvious disadvantage with such an approach is the need for fre-
quent calibration and checking of the validity of the empirical correlations when entering
a new field or area.

The model which was briefly discussed in Section 8.1 (Fjær, 1999) can also be used for
strength prediction (Raaen et al., 1996). This model also uses log data (acoustic velocities
and density), and was developed primarily for prediction of weak sandstone strength. The
fact that this model has a more theoretical basis makes it more robust, and it can thus
be applied in new wells without extensive calibration. This therefore represents a step in
the right direction. However, there is still no universally valid method available which
can predict the strength of different lithologies directly from logs, without any need of
calibration.

The methods for predicting rock strength offered by the service companies are all subject
to the limitations discussed above, being more or less empirical and requiring more or less
calibration.

8.2.2. Drill cuttings measurements

Different types of measurements on drill cuttings have been discussed previously, both
acoustic measurements (Section 7.3.12 and Section 8.1.3) and indentation measurements
(Section 7.5.3). To obtain strength values, correlations have to be established (Santarelli
et al., 1998; Ringstad et al., 1998). Given the previously discussed uncertainties of using



294 MECHANICAL PROPERTIES AND IN SITU STRESSES FROM FIELD DATA

drill cuttings (Section 8.1.3), these methods must at present be considered quite coarse.
However, they should be able to provide at least comparative evaluations, i.e. a “weak”
versus “strong” type of classification.

8.2.3. Empirical correlations

The lack of direct downhole strength measurements or other generally applicable theories
for relating rock strength to measurable quantities has motivated considerable efforts to
generate empirical correlations for rock strength prediction. Most of this has been based
on log-measured or log-derived properties, such as acoustic velocities or porosities. Some
examples of such work is Edlman et al. (1998), Farquhar et al. (1994), Mason (1987), Onyia
(1988). Empirical correlations have been generated very much dependent on the need or
the application. Production related problems deal with weak sandstones while stability
problems related to drilling deal with weak shales.

There are some general comments which should be made regarding empirical correla-
tions:

• The correlations are normally based on one specific type of rock or lithology. A cor-
relation developed in sandstone may not be valid in shale, i.e. empirically based
correlations are not universally applicable.

• Rock strength measurements may be very scarce for some lithologies, such as shales,
because shales are normally not cored and tested. Shale-specific correlations are
scarce (for exceptions, see Lashkaripour and Dusseault, 1993 and Horsrud, 2001).

• Lack of actual core material has promoted use of outcrop material which may not be
relevant for downhole sedimentary rocks (differences in sedimentation history, stress
history, stress environment, diagenesis etc.).

• Laboratory test procedures or data interpretation procedures may vary, yielding results
which are not fully compatible.

• Even if the correlation is based on real core material from one area, it may not be
applicable to other geographical areas. It is always recommended to check the validity
of correlations when entering new areas and calibrate them if necessary.

• The published correlations are generally biased towards fairly competent rocks, thus
reducing their accuracy with respect to weak rocks which is the primary concern in
all types of stability evaluations.

For these reasons, no specific correlations will be presented here. These comments
should also be kept in mind when considering or using empirical correlations for strength
prediction.

In general one will find that the rock strength increases when the rock is densified and
cemented, i.e. as depth, age and effective stresses increase. This is further reflected in
normal trends of reduced porosity and increased acoustic velocity.

Further discussion of mechanical properties of sedimentary rocks (sandstone, chalk and
shale) is given in Section 3.4, including some examples of empirical correlations.
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8.2.4. Drilling data

Intuitively, the response of the drill bit should reflect also the mechanical properties of
the rock, under true downhole conditions. Bit response is, however, also dependent on a
number of other parameters. Traditionally, the motivation for rock-bit interaction models
has been to improve bit selection and bit operation procedures. The process of cuttings
generation and cuttings removal is fairly complicated, and most ROP (rate of penetration)
models are therefore empirical or semi-empirical. Although ROP models are available for
several bit types, most of the modelling efforts have been directed towards roller cone bits.
A representative version of an ROP model is (Warren, 1987):

R =
(
aS2D3

nW 2
+ b

ND
+ cDρμ

Fm

)−1

(8.3)

where R is the rate of penetration, W is weight on bit, N is bit rotary speed, S is rock
strength, D is bit diameter, Fm is modified jet impact force, ρ is mud density, μ is plastic
viscosity and a, b, c are dimensionless constants.

Additional effects related to bit wear and chip hold down may also be included (e.g.
Hareland and Hoberock, 1993).

Thus one can also solve Eq. (8.3) for the rock strength when the rate of penetration and
the other parameters and functions are known (Hareland et al., 1996).

Determination of all the input parameters and model constants may not be trivial, and
calibration against results from tests under controlled conditions or against previous bit
runs in the same area may be required. Considerable uncertainty in quantitative predictions
should therefore be expected. It is also obvious that such models are not easy to use in a
predictive manner.

It is quite obvious that the drilling process is a response to the properties of the rock
and its state of stress. Information about the rock mechanical properties should therefore
be retrievable from drilling data, but continued efforts to understand and model the drilling
process are required. Combining all measurements while drilling, both drilling data and
log data, may eventually provide a real-time tool for follow-up of the drilling process. This
will be applicable both to borehole stability and drilling efficiency, and eventually the two
aspects may be combined into a fully integrated drilling optimization model.

8.3. Estimation of in situ stresses

This section will present available methods for estimating in situ stresses from field data.
Methods based on core measurements were discussed in Chapter 7 and will not be repeated
here. This section will thus focus on data from well logs and well tests. For a more detailed
description of all available stress measurement methods, see e.g. Amadei and Stephansson
(1997) and Haimson and Cornet (2003). Note that not all these methods are suitable for
petroleum applications.

The presentation given here is based on the common assumption of a vertical-horizontal
stress field, i.e. one principal stress is vertical and the two others are horizontal. This is
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valid in tectonically inactive areas or areas which have been relaxed from previous tec-
tonic activity. In active areas this assumption may not be valid, and the stress field can be
significantly distorted. See also Chapter 3.

8.3.1. The density log (overburden stress)

The density tools are active gamma ray tools that use the Compton scattering of gamma
rays to measure the electron density of the formation. By appropriate lithology corrections,
the electron density is converted to mass density with reasonable accuracy.

The density is useful for determining mechanical properties in two manners: first, the
density is needed to convert from acoustic velocities to dynamic elastic moduli (see Sec-
tion 8.1). Second, the density integrated over the vertical depth of the well is usually
considered to give a good estimate of the vertical stress, at least in areas of low tectonic
activity. In such areas, the vertical stress is also considered to be a principal stress. When
the density log is available, the problem of determining the full in situ stress field is then
reduced to determining the magnitude and orientation of the horizontal stresses.

However, the density log is rarely available in the first few hundred metres of a well.
Then it is necessary to make estimates of the density to obtain the total vertical stress. In
areas which have not been subjected to tectonic activity it is common to assume a density in
the range 1.8–2.0 g/cm3. This bulk density corresponds to a porosity in the range 50–38%
in a rock with a mineral density of 2.6 g/cm3.

Offshore Mid-Norway, bulk densities above 2 g/cm3 have been logged at very shallow
depths. One plausible explanation to this unusually high density is that this area has also
been exposed to ice loads. Thus the geological history should be taken into consideration
when making estimates in non-logged intervals. Geotechnical data from site surveys may
in some cases be available and provide additional information.

8.3.2. Borehole logs (horizontal stress directions)

Determination of horizontal stress directions is based on the possibility of failure at the
borehole wall which can be detected by borehole logging tools. To be detectable, the fail-
ures must occur in the period after drilling and prior to logging. In a vertical borehole
which penetrates layers of significantly different horizontal stresses (σH > σh), two dis-
tinct failure modes can be detected: compressive and tensile failure. The directions of these
two failure modes in an idealized situation are uniquely given by the directions of the two
principal horizontal stresses, as illustrated in Fig. 8.2. Compressive failure or shear failure
will be induced in the direction parallel with the smallest horizontal stress (σh) if the well
pressure is low enough to induce shear failure. This is commonly referred to as breakouts
in this context and will lead to an ovalization of the borehole. Tensile failure will occur
in the direction parallel with the largest horizontal stress (σH) if the well pressure is large
enough to induce fracturing. See also Chapter 4 for further discussion of stresses around
boreholes.
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Fig. 8.2. Illustration of directions for compressive and tensile failure around a vertical borehole. Since tensile
failure occurs at high well pressures and compressive failure at low pressures, these failure modes are not normally
observed at the same depth. A possible exception is if there has been large variations in the well pressure.

Note that in situations with large variations in equivalent circulating density (ECD) of
the drilling fluid it may be possible to observe both failure modes at the same depth.

Once a failure has occurred on the borehole wall, it is tempting to try to back-calculate
also stress magnitudes, especially the magnitude of the largest horizontal stress by using
elastic theory and appropriate failure criteria. However, a number of assumptions are re-
quired for such analyses, rendering the results uncertain. Such estimates can at best be
considered upper or lower bounds on the stress magnitudes (see also Section 8.3.4). The
large amount of information that can be acquired by new tools, such as the Sonic Scan-
ner (see Section 8.1.1) may eventually reduce some of the uncertainty, and allow for more
reliable estimation of the in situ stresses.

Caliper logs

The caliper log (four-arm) has commonly been used to estimate horizontal stress directions
from breakout orientations. This tool provides two diameters of the borehole cross-section.
To be able to identify stress induced borehole breakouts, a set of identification criteria has
to be implemented. We quote here the criteria published by Plumb and Hickman (1985):

1. The tool is rotating above and below a borehole breakout.

2. The rotation stops over the breakout zone.

3. The borehole elongation is clearly seen in the log. One pair of pads must show a
relatively sharp ascent and descent of the borehole diameter.

4. The smaller of the caliper readings is close to bit size, or if the smaller caliper reading
is greater than bit size it should exhibit less variation than the larger caliper.

5. The direction of elongation should not consistently coincide with the high side of the
borehole when the hole deviates from vertical.
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The last item in this list reflects the problem of differentiating between breakouts and
keyseats.1 This is a major problem, since it is not possible to distinguish between break-
outs and keyseats when using four-arm caliper data. Generally, elongations are regarded
as keyseats if their direction is within ±10°–15° of the hole azimuth. However, this can
categorize a large portion of the elongations as keyseats, even at deviations less than 6°
(Fejerskov and Bratli, 1998). This implies that either a large portion of the data points are
wrongly rejected, or much of the previous work on breakout analysis has to be rejected.

This problem with the caliper log is somewhat reduced as six-arm tools are becoming
industry standard. However, the best results are obtained with tools which can provide a
more complete image of the borehole.

Image logs

Image logs include both electrical (resistivity) and acoustical borehole imaging logs. The
electrical image log operates with a large number of electrodes in contact with the forma-
tion, usually distributed over several pads on independent arms (four or six). This shallow
electrical investigation is well suited for investigation of fine structures like bedding planes,
natural fractures and also drilling induced fractures.

The acoustical imaging tool (often referred to as borehole televiewer, BHTV) is based on
reflection of acoustic waves from the borehole wall, recording the travel time and amplitude
of the reflected pulses. The pulses are generated by a rapidly rotating piezo-electric crystal,
thus creating a helix-shape logging path with a short distance between each revolution. This
tool is best suited for detection of borehole breakouts, as drilling induced fractures do not
create significant changes in borehole radius or reflectivity.

Since these tools provide a full image of the borehole wall, it is possible to distinguish
between stress induced breakouts and keyseats. An example of an electrical borehole image
log is shown in Fig. 8.3. Examples of the use of image logs for determination of horizontal
stress directions and magnitudes is given by Brudy (1998).

If drilling induced fractures are found at an inclination with respect to the borehole axis,
this implies that none of the principal stresses are parallel with the borehole axis. This can
be the situation in an inclined borehole, or in a vertical borehole where the vertical stress
is not a principal stress, as for instance close to faults (Brudy et al., 1997).

8.3.3. Fracture tests (horizontal stress magnitudes)

The only fully reliable method for determination of the smallest horizontal stress (σh) is to
fracture the formation and record the pressure at which the fracture closes. This requires
that the fracture has penetrated far enough into the formation to feel only the resistance of
the in situ horizontal stress. In a vertical well this is achieved 2–3 wellbore diameters away
from the borehole. In a deviated wellbore, the fracture may have to travel farther away

1 A keyseat is an enlargement of the borehole in one preferred direction, normally created by the mechanical
action of the drillstring on the borehole wall.
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Fig. 8.3. A resistivity image of a 10 m borehole wall section recorded with 4 arms in a North Sea well. Dark
regions represent low resistivity. Intermittent dark traces on arm 1 and 3 indicate drilling induced fractures.
Notice that these drilling induced fractures are 180° apart at the borehole wall and are not interconnected around
the borehole like traces of natural fractures or bedding planes.

from the borehole, due to the twisting of the fracture and the principal stresses close to
a deviated borehole. Basic principles of the different phases of fracture initiation, growth
and closure will be discussed in Chapter 11.

Determination of the largest horizontal stress (σH) is not trivial, and there is no straight-
forward method available for this. In an idealized linear elastic situation, the largest hori-
zontal stress could be determined from a repeated fracture test. However, in practice, the
fracture initiation pressure can vary considerably, rendering such an approach highly un-
certain (see also Section 11.2). Normally, the fracture initiation pressure is lower than pre-
dicted from linear elastic theory. Investigation of Eq. (11.11) shows that if this is the case,
the largest horizontal stress is overestimated. This is probably the reason why field studies
utilizing such an approach consistently predict a strike-slip stress regime (σH > σv > σh).

This section will focus on fracturing methods used for determination of the smallest
horizontal stress.

Leak-off tests and extended leak-off tests

Leak-off tests (LOT) are performed during the drilling phase of a well, in the formation
immediately below each casing shoe. The purpose of this test is to determine the maximum
well pressure the new borehole section can sustain without fracturing and loss of drilling
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fluid. A traditional leak-off test is therefore not designed to determine the smallest hori-
zontal stress, but to obtain a design value for the mud density in the next borehole section
which is going to be drilled.

After a casing string has been cemented, the casing shoe is drilled out and a few me-
tres of new formation is penetrated. A leak-off test is then performed by pressurizing this
open-hole section. The principle of a leak-off test is shown in the first cycle in Fig. 8.4.
The pressure in the hole is increased by pumping at a constant volume rate, typically 50–
250 l/min. This yields a straight line of pressure versus volume (time), with the slope of
the line given by the compressibility of the system (primarily the drilling fluid). The point
where the pressure response starts to deviate from this straight line is defined as the leak-off
point. This is actually the point where a fracture is starting to initiate. Normally, a leak-
off test is stopped shortly after this, even if the pressure continues to increase above the
leak-off pressure.

The slope and the shape of the pressure versus volume line can be affected by a number
of operational aspects (equipment performance, cement channels, pump rate etc.). For a
discussion of how these factors may affect LOT-interpretation, see e.g. Postler (1997).

As discussed in Chapter 11, this leak-off point or fracture initiation point is, however, not
necessarily directly related to the smallest horizontal stress, and is therefore no estimate of
σh. It is also important to note that if the test is stopped shortly after the leak-off point, the
generated fracture is very short, and even if the shut-in phase is recorded (see Fig. 8.4), this
shut-in pressure may significantly overestimate the smallest horizontal stress. Examples
given by Raaen and Brudy (2001) and Raaen et al. (2006) demonstrate that using the leak-

Fig. 8.4. An example of a conventional leak-off test (first cycle) followed by three extended leak-off test cycles
at 9 5/8′′ casing shoe at 2550 m depth. The first cycle is shut in after 14 min of pumping at 75 l/min (1050 l
pumped). The following cycles are shut in after 4.8 min of pumping at 250 l/min (1200 l pumped). The vertical
lines indicate the shut-in point, after which the curves are a function of time, as indicated by the total shut-in
period of each curve.
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off pressure as an estimate of the smallest horizontal stress can cause significant errors. At
the very best, the smallest horizontal stress will be a lower bound to a large population of
leak-off pressures (Addis et al., 1998).

To make the leak-off test applicable also to stress determination, modifications have to
be made. This has lead to the so-called extended leak-off test (XLOT, ELOT) (e.g. Kunze
and Steiger, 1992). The main difference from the standard leak-off test is that pumping
continues well beyond the leak-off point and also beyond the breakdown pressure. To get
a reliable stress estimate, pumping should continue until stable fracture growth is obtained
(see third and fourth pump cycle of Fig. 8.4). After shut-in, the shut-in/decline phase should
be recorded. As illustrated by Fig. 8.4, it is recommended to pump several cycles to obtain
repeatable test results.

Since these casing shoe tests are normally performed in low-permeability formations like
shale, and with drilling mud in the hole, very little leak-off from the fracture is expected.
This implies that fracture closure may be slow in a shut-in/decline test, resulting in an
almost flat pressure versus time response. The pressure recorded as the closure pressure
is thus still an upper bound estimate of the smallest horizontal stress. Better estimates can
then be obtained by including a flowback phase in the test.

A schematic illustration of an extended leak-off test with flowback is given in Fig. 8.5.
This figure illustrates how one can maintain a record of the volumes during the different
phases of the test. This can give information about when and whether the fracture has
actually closed during the test.

The bold, solid line represents the pressure-volume response during pump-in. Vcin repre-
sents the volume change due to compression of the fluid volume in the well. Vfrac represents
the volume pumped into the fracture. This volume is spent creating fracture volume, but
also includes any volume lost to the formation. This volume may be used to check the

Fig. 8.5. A schematic illustration of an extended leak-off test with a pump-in phase (bold, solid line) and
shut-in/decline and flowback phase (broken line). Volumes during the different phases are indicated, and an
estimation of the smallest horizontal stress from the flowback phase is included.
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Fig. 8.6. Pressure versus volume for a two-cycle flowback test with mud. The first cycle (dotted line) included
a shut-in phase, while in the second cycle (full line) flowback was started immediately after pumping. The gray
horizontal line shows the stress level inferred. Courtesy of Statoil.

length of the fracture and whether this is sufficient to penetrate the near-well region and
into the virgin stress rock. When pumping stops and the well is shut-in, the pressure drops
from pshut to the final shut-in pressure (pfsip). This drop in pressure results from removal
of frictional losses, fluid loss to the formation and/or further growth of fracture volume.

The broken line from pfsip to pref represents the flowback phase. If the fracture has not
closed during the shut-in phase, monitoring the flowback phase can provide an estimate of
the smallest horizontal stress as indicated on the figure. This occurs when the slope of the
flowback curve changes, reflecting the large difference in compliance between the system
with an open fracture and with a closed fracture. The last linear slope of the flowback curve
should thus be close to the initial slope during pump-in, reflecting the compressibility of
the fluid in the borehole. This volume is denoted as Vcout. If the entire flowback curve
has the same slope as the initial pump-in phase, the fracture has closed during the shut-in
phase. Vreturn is thus the actual volume returned from the fracture, whilst Vlost is the volume
lost to the formation during the test.

A field example illustrating the principles outlined in Fig. 8.5 is shown in Fig. 8.6
(Raaen, 2006). Note that in the first cycle of this test (dotted line) no change in slope is seen
before formation breakdown. In the second cycle (full line), the slope change takes place at
a significantly lower pressure. Thus, the fracture reopening pressure is considerably lower
than the initial formation breakdown pressure.

The dashed lines show that the same closed-fracture slope is observed during pumping
and flowback in both cycles. In cycle 2, the initial open fracture period during flowback is
also well approximated by a straight line (dash-dot line).

In practice, it is convenient to perform the flowback with a fixed choke, which leads
to a time-varying flowback rate. Since the flow rate through a choke is approximately
proportional to the square root of the pressure drop, it is readily shown (Raaen and Brudy,
2001) that a plot of the square root of pressure versus time should give a straight line if
the system stiffness is constant. This is confirmed by Fig. 8.7, which shows a plot of data
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Fig. 8.7. Square root of pressure versus time for the second cycle of the test in Fig. 8.6. Courtesy of Statoil.

from cycle 2 of the test in Fig. 8.6. Both the initial open-fracture period and the closed
fracture period are approximated well by the dashed straight lines, and the intercept is in
accordance with that inferred from the pressure versus volume data.

For another field example, see Section 11.5, where also other alternatives for improving
the interpretation of fracture tests are included.

To improve the quality of an extended leak-off test, there are thus several recommenda-
tions which should be followed:

• Circulate mud to make sure that the mud column has uniform density and there is no
air in the system.

• Calibrate the surface reading of the mud pressure, or preferably use a downhole pres-
sure gauge.

• Check that the slope prior to leak-off is in reasonable agreement with the expected
fluid compliance. A slope which is significantly lower can indicate that there is a
leakage in the system or poor cement integrity. A direct measurement of the com-
pressibility is obtained by performing a casing test (i.e. pressurizing the closed casing
before drilling out the casing shoe).

• Make sure that the volume pumped into the fracture is large enough to create a fracture
of sufficient length (typically 0.5–1 m3). An estimate of the required volume can be
obtained with information about the fracture width, the fracture length and the fracture
height (length of the rathole). The fracture width can be estimated from Eq. (11.19).
The length of each fracture wing should be long enough to penetrate into virgin for-
mation, e.g. 10 wellbore diameters. Note that a longer fracture may be required in a
deviated well. The total volume required for a test is thus given by the fracture vol-
ume in addition to the volume required to compress the fluid in the borehole prior to
fracture initiation.

• Maintain a record of volumes pumped and bled back during flowback, and record the
volumes as a function of time during flowback if possible.
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The quality of the test should also be checked against possible operational problems such as
cement channels. If the fluid can leak to shallower formations, the test will not be relevant
for the formation below the casing shoe.

The reluctance to perform extended leak-off tests is partly based on the extra time re-
quired to run this test compared to a conventional leak-off test. However, this may be the
only possibility to obtain reliable stress data in the development of a field. Stress data which
can be crucial when designing deviated wells at a later stage.

When using water-based mud, the fractures tend to heal and eventually restore the orig-
inal leak-off pressure. When using oil-based mud, it is often claimed that healing does not
occur. However, no published work on this is known to the authors. Such a difference can at
least partly be attributed to differences in filtrate properties of the two mud systems. Water-
based mud normally has higher spurt loss and filtrate loss. This creates a filter cake within
the fracture which seals the fracture tip, thus requiring a higher pressure to propagate the
fracture (Onyia, 1991). This difference can be reduced by altering the filtrate properties of
the oil-based mud (Morita et al., 1996). Note that this argumentation rests on the ability of
the rock to accept filtrate, hence this can not explain similar differences between the two
mud systems in low-permeability rocks like shale.

In practice it is therefore often recommended not to perform extended leak-off tests with
oil-based mud if the margin between the leak-off pressure and the smallest horizontal stress
is required for a successful operation. This may be critical in wells with a narrow margin
between the lower and the upper mudweight limit.

When several wells have been drilled in a field, it is not uncommon to run formation
integrity tests (FIT) instead of leak-off tests. This test simply consists of increasing the
well pressure up to a pre-defined level which is considered sufficient for drilling of the next
section. Pumping is then stopped, and a constant pressure in the shut-in phase is observed.
Hence this test is normally stopped in the linear part, before leak-off is reached. An FIT
can therefore never be used for stress determination.

Mini-frac tests

As the name suggests, a mini-frac test is a fracture test where a relatively small volume
is injected (typically around 10 m3). Small in this sense relates to conventional fracture
stimulation jobs which commonly involve hundreds or even thousands of cubic metres.
A mini-frac test is normally run prior to a fracture stimulation job, in order to obtain values
for fracturing pressure, closure pressure, fluid loss parameters etc. which are then used in
the design of the fracturing treatment (e.g. Tan et al., 1990). This implies that mini-frac
tests are normally run in reservoir sections which require stimulation. Since the reservoir
section may already be completed, it is not uncommon to run mini-frac tests in cased and
perforated wells.

Again it is recommended to use a downhole pressure gauge to improve the accuracy.
A typical fluid used in a mini-frac test is 2% KCl brine. Gel may be added to reduce fluid
loss and to make the test more similar to the main treatment.
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Wireline tools

Wireline tools are also available for performing fracture tests in open holes (Kuhlman et al.,
1993; Thiercelin et al., 1996; Desroches and Kurkjian, 1999). The basic principle here is
to isolate a small section of the hole, typically 1 m, by inflating two rubber packers against
the formation. A relatively small volume (typically less than 400 l) of fluid is used during
pumping at rates in the range 1 l/min to 100 l/min. Due to the small volume, these tests
are often referred to as micro-frac tests. The pressure is measured with a downhole gauge.
As with other fracture tests, several cycles are usually performed.

When run in an open hole, good hole quality is essential, i.e. a smooth hole surface
and close to circular shape. Otherwise it will be problematic to obtain good sealing by the
packers. To provide sealing, the packer pressure should exceed the pressure in the isolated
interval. This implies that under certain conditions a fracture will be generated first behind
the packer. Referring to Eq. (11.6), this depends on the response of the pore pressure around
the borehole. In a formation which is permeable it will be possible to maintain a sealing
pressure differential. However, in low permeability formations, a fracture may be generated
first behind the packer (sleeve fracturing). An alternative procedure in this situation is to do
this deliberately and subsequently move the packers so that the generated fracture is within
the isolated zone and then proceed as in a standard test (Desroches and Kurkjian, 1999).

The azimuthal direction of the fracture and hence also the direction of the horizon-
tal stresses can also be estimated, provided the test is performed in a vertical well. The
method used to obtain the fracture direction varies somewhat with the type of tool, either
using an imaging tool after fracturing or back calculating from measurements of borehole
deformation during fracturing.

Such tools can of course also be used in cased and perforated holes. Problems with hole
quality, packer sealing and sleeve fracturing are then no longer of any concern. The use is
however then limited to producing zones in the reservoir.

Empirical relations

Breckels and van Eekelen (1982) developed empirical correlations for estimation of the
smallest horizontal stress (see also Section 3.1) as a function of depth. These relationships
were based on hydraulic fracture data from different regions around the world. The rela-
tionships for the US Gulf Coast are:

σh = 0.0053D1.145 + 0.46(pf − pfn) (D < 3500 m) (8.4)

σh = 0.0264D − 31.7 + 0.46(pf − pfn) (D > 3500 m) (8.5)

whereD is depth in metres, pf is the pore pressure in MPa, pfn is the normal pore pressure
and σh is the total smallest horizontal stress in MPa.

The last term in these relations reflect abnormal pore pressures. The predicted horizontal
stress will hence reflect changes in the pore pressure gradient.

Breckels and van Eekelen argue that these relationships can be used with a fair degree
of confidence also in other tectonically relaxed areas of the world such as the North Sea.
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Note that these relations were developed at zero or shallow water depths. These authors’
experience is that the relation for depths down to 3500 m gives fairly good estimates in
most parts of the North Sea (down to about 2500–3000 m), even at water depths up to
approximately 300 m. As the water depth increases, predictions at shallow formation depth
should be avoided. Thus these relations may provide reasonable estimates, but should only
be considered as a first estimate and should always be checked and/or calibrated against
proper test data from each field.

8.3.4. Other methods

We will finish this section by briefly mentioning some other methods which have not been
discussed previously (in this chapter or in Chapter 3).

Inversion of leak-off test data has been suggested for back calculating the horizontal
stresses (Aadnøy, 1990). This method uses data from a number of leak-off tests performed
in boreholes of different inclination and azimuth. Assuming the vertical stress and the
pore pressure are known, the magnitude and direction of the horizontal stresses are back
calculated from linear elastic theory.

Since the method is based on leak-off pressures, it suffers from the same basic weak-
nesses as the standard leak-off test, especially the large uncertainty of the leak-off pressure
in relation to the fracture breakdown pressure as defined by elastic theory.

Another source of uncertainty is the potential spatial variation in the horizontal stresses
in a field. When having to use test data from several wells which can also cover a wide
depth range, the tests may include compartments of significantly different stress regimes.
Further discussion of these uncertainties can be found in Gjønnes et al. (1998).

Rather than trying to give precise numbers for the stresses, one can try to constrain the
stresses (see e.g. Wiprut et al., 1997). This method uses detailed observations of borehole
failures (borehole breakouts, drilling-induced tensile fractures), primarily attempting to
constrain the magnitude and direction of the largest horizontal stress. Especially when
constraining the stress magnitude, it is essential to have information on both the smallest
horizontal stress and rock strength properties.

Drilling data have also been proposed as a potential source for constraining stresses,
especially the smallest horizontal stress (Hareland and Hoberock, 1993). The basis for this
method is drill bit penetration models of the kind discussed in Section 8.2.4. This is used
to predict rock strength which is further related to the ratio of vertical to horizontal stress
in an iterative process.

The stress data predicted from borehole tests and borehole information are point data in
a large rock mass. It is therefore often useful to put this into a large-scale framework of
in situ stresses (see also Chapter 3).
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Chapter 9

Stability during drilling

Borehole instabilities during drilling cause substantial problems in all areas of the world.
A borehole stability problem is an example of what drillers refer to as a “tight hole” or
“stuck pipe” incident. There are many possible reasons for being stuck, but in a majority
of the field cases reported, the fundamental reason is mechanical collapse of the borehole
(see e.g. Bol et al., 1994; Gazianol et al., 1995). Most instabilities of practical importance
occur in shale or mudstone; predominantly in the overburden, but sometimes also within
the reservoir. Often mechanical hole collapse is combined with a lack of hole cleaning
ability. It is a common opinion in the industry that such stability problems amount to typi-
cally 5–10% of drilling costs in exploration and production, incorporating loss of time and
sometimes also of equipment. These numbers imply a worldwide cost to the petroleum
industry of hundreds of million dollars per year.

Borehole stability problems have been encountered for as long as wells have been
drilled. Several new challenges have appeared in recent years, making the stability issue
more difficult to handle, but also more important to solve. For example, there has been
an increasing demand by the industry for more sophisticated well trajectories. Highly de-
viated, multilateral and horizontal wells are attractive, since a single production platform
then can drain a larger area, which can reduce the number of platforms required to produce
a given field. Stable drilling is however normally more difficult in deviated than in vertical
boreholes. Other situations where borehole stability problems may be expected are during
infill drilling in depleted reservoirs, when drilling in tectonically active areas, and in deep
and geologically complex surroundings. Deep water drilling is a special challenge. Due to
the high costs of drilling in such environments, additional time lost on borehole instability
has an extra high price.

As mentioned above, borehole stability is an operational problem primarily in shale
and mudstone. Problems often occur in shales that are rich in swelling clay minerals, and
are often associated with high pore pressure. Traditionally, the oil industry has looked at
borehole instability as being caused by clay swelling, which can be treated by chemical
additives (e.g. salt) to the drilling mud. The selection of mud weight has been governed
by the pore pressure and the fracture gradient profiles: In order to prevent influx of flu-
ids (in particular gas) it has been considered necessary to keep the mud weight above
the pore pressure gradient. In order to prevent loss of mud into fractures (“lost circula-
tion”), it has been found necessary to keep the mud weight below the fracture gradient.
We will show in this chapter how the minimum permitted mud weight may be estimated
from a rock mechanical perspective. We shall see how mud chemistry may affect the me-
chanical integrity of the formation near the well and hence the stability of the borehole.
We will also consider the maximum permitted mud weight, associated with mud loss to
new or existing fractures. This analysis leads to the “mud weight window”; i.e. the range
of permitted mud weights associated with stable drilling. This is key input to well de-
sign.



310 STABILITY DURING DRILLING

Stability evaluation of a well represents a classical rock mechanical problem: The pre-
diction of a rock’s response to mechanical loading. Some special circumstances make
borehole stability evaluation particularly problematic:

• The drill bit may be thousands of metres away and there are no methods available for
visual observation of what is happening (contrary to e.g. tunnel drilling).

• There may be large variations in the formation stresses, for instance when drilling
through a depleted reservoir and non-depleted shale layers in the same well, or when
drilling through faults. Unfortunately, in situ stresses and in particular their variations,
are not measured systematically.

• There are large variations in formation properties. Coring costs are high, and only
limited amounts of material are available for rock mechanics testing. Coring in layers
above the reservoir is scarce.

• Many mechanisms contribute to the onset of borehole instability: mud chemistry, re-
distribution of stresses, temperature changes etc.

• The operational condition of borehole instability does not necessarily coincide with
the rock mechanical definition of borehole failure.

This illustrates that the reality cannot be exactly described by any model, no matter how
complicated the model is. Based on some ideal assumptions, a stability analysis, however,
can give some guiding limits, which then have to be related to practical conditions.

9.1. Unstable boreholes: Symptoms, reasons and consequences

In this section, we will consider two main types of borehole instabilities; so-called “tight
hole” or “stuck pipe” incidents, which are time-consuming to solve and therefore expen-
sive; and “lost circulation” or “mud loss” problems, which are potentially dangerous, thus
representing a safety risk that has to be avoided. Fig. 9.1 illustrates in a schematic manner
different instability problems that might occur.

Fig. 9.1. Stability problems during drilling (after Bradley, 1979; with permission from ASME).
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9.1.1. Tight hole/stuck pipe

The main causes of tight hole/stuck pipe incidents are:

1. Hole collapse (rock mechanical failure).

2. Inappropriate hole cleaning.

3. Differential sticking.

4. Deviation from ideal trajectory.

Cause 1 Hole collapse means that the formation near the borehole fails mechanically,
most often by shear failure, but occasionally also by tensile failure. The results of such
failures can be divided into two main types:

• Increased borehole size due to brittle failure and caving of the wellbore wall. If the
cavings are not transported away, this represents a potential source of a stuck pipe
situation. This normally takes place in brittle rocks, but the borehole size may also
increase by erosion (hydraulic or mechanical) in a weak rock. In driller’s language,
“sloughing shale” is often used (although not very well defined) to describe frag-
ments or “spallings” generated from the borehole wall. Although often thought to
be of a chemical origin, this is first of all a mechanical problem, which to some
extent may be influenced by shale-fluid interactions (see further below). The case
of excessive hole enlargement is sometimes referred to as a “washout”. A washout
is primarily caused by erosion due to high mudflow intensity near the drill bit, or
it may be related to softening of the formation by mechanical failure. While a me-
chanical hole collapse leads to ovalization of the hole (by formation of a breakout;
see Chapter 4), this need not be the case with a washout.

• Reduced borehole diameter may occur in weak (plastic) shales, sandstones and salt.
Some chalk formations can also show such behaviour. This phenomenon requires
repeated reaming, or may even result in a lost drillpipe. The case of very soft (plas-
tic) shale is sometimes referred to as “gumbo shale” (gumbo is a Creolian fish soup
with rheology and appearance that may give associations to soft shale). Such shale
is often sticky, contains considerable amounts of swelling minerals (montmoril-
lonite), and may cause problems like bit balling and solids accumulation.

• It has traditionally been thought that large hole diameter reductions might be caused
by swelling clays. The potential chemical swelling of a shale in downhole stress
conditions is however very limited, as was pointed out by Santarelli and Carminati
(1995). Large hole deformation is thus a result of primarily plastic shale deforma-
tion. The effect of drilling fluid chemistry on borehole stability is explained in more
detail below.

Cause 2 Inappropriate hole cleaning means that drill cuttings, or in the case of a collapsing
hole, cavings (rock fragments produced by formation failure) cannot be fully removed
by the drilling fluid. Mechanisms 1 and 2 are therefore not independent, but often act
together. Hole cleaning is less problematic in sand than in shale formations, since the
drilling mud can more easily remove sand particles than shale cavings.
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Cause 3 Differential sticking is the only likely reason for stuck pipe in a permeable reser-
voir rock. When differentially stuck, the drilling tool is clamped against the borehole
wall as a result of a differential pressure between the well and the formation (Outmans,
1958). This differential pressure is caused by an overpressure in the borehole, and main-
tained by a mud-cake. Since shales have extremely low permeabilities, and mud-cakes
do not form on shales, this mechanism is not possible in shale zones.

Cause 4 Deviation from ideal trajectory may result in a stuck pipe situation. Such devi-
ations may be caused by non-ideal hole shape. In deviated wells the lower side of the
drilling tool may dig into the bottom of the hole and create what is known as a “key-
seat”. The tool may also be guided by washouts and breakouts. Furthermore, if the hole
trajectory has a too sharp bend (“dog leg”), the tool may be stuck. The problems de-
scribed here are typical for deviated holes. Hole collapse in general occurs more easily
in deviated holes as can be seen from the mechanical stability analysis in Chapter 4,
and discussed further below. Hole cleaning is also more difficult in deviated holes, in
particular at intermediate angles in the range 40°–60°.

The main consequences of tight hole/stuck pipe situations are loss of time during
drilling, since the remedial actions usually are reaming or sidetracking. Instabilities may
also cause considerable problems to later operations in the borehole. It may become dif-
ficult to run wireline logs, and in particular to interpret the logs, since log interpretation
is usually based on the assumption of a gauge hole with known size. Irregular borehole
shape also leads to large uncertainty in the required cement volume. Poor cementing of
the casing can lead to problems for perforation, sand control, production and stimulation.
Finally, instabilities may trigger new instabilities.

Good well design is the key to stable drilling. When a well is designed, mud weight
and composition, casing setting depths, and well trajectory (including deviation and az-
imuthal orientation) are selected. The well design serves many purposes: First of all, the
target reservoir needs to be penetrated in a way that assures optimum drainage during pro-
duction. Furthermore, the drilling speed must be satisfactory. A central part of well design
is however to assure safe and stable drilling. If an unexpected instability occurs during
drilling, then the mud is more or less the only adjustable factor. It is important to underline
that the solution to a borehole stability problem depends on the cause, which means there
is a strong need for diagnostic tools. If for example the reason for the instability is hole
collapse, then the standard solution is to increase the mud weight (as will be seen below).
If, however, differential sticking is the cause of the problem, the solution is usually to de-
crease the mud weight. Thus, if the diagnosis is wrong, the selected solution may have a
destabilizing effect on the borehole.

Some elements of a diagnostic analysis are shown in Table 9.1. The table shows how
field observations can be linked to the three major causes for stuck pipe. Note that it may
be difficult to distinguish hole collapse from hole cleaning problems.

9.1.2. Lost circulation

Lost circulation means that a significant amount of drilling fluid is lost into the formation.
This implies that a fracture has been created (see Chapter 11), or that mud is lost into an
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TABLE 9.1 Example of stuck pipe diagnostics; inspired by Kenter (1995) and Charlez and Onaisi (1998)

Hole
collapse

Inappropriate
hole cleaning

Differential
sticking

Drilling environment
Shale ∗ ∗ �
(Permeable) reservoir rock ÷ ∗ ∗
Observations during drilling
Rotating before stuck ∗ 0 ÷
Moving up/down before stuck ∗ 0 ÷
Rotating after stuck ÷ ÷ �
Circulating after stuck ÷ ÷ ∗
Excessive cuttings and cavings ∗ ÷ ÷
Observations after drilling
Non-gauge hole diameter from caliper ∗ ÷ �
Low density/high porosity/low acoustic wave velocities ∗ ÷ ÷

Symbols: ∗ likely cause of stuck pipe; 0 indifferent; ÷ unlikely; � can not be cause of stuck pipe.

existing fracture. This is an operational problem, partly because the mud is expensive, and
partly because there is a limit to the amount of mud available on the rig. The mud loss
may also lead to a temporary pressure drop in the well, since a part of the mud column is
disappearing into the formation. As a consequence, pore fluid may flow into the well from
permeable layers higher up. In the presence of gas, this may lead to a rapid increase in well
pressure (“kick”) and a high risk of a blowout. This is a potentially dangerous situation that
may result in loss of lives and equipment.

The main solution is to keep the mud weight sufficiently low that fluid loss does not
occur; i.e. below the limit for fracture initiation and growth in non-fractured formations,
and below the fracture reopening pressure in naturally fractured formations. If the margins
are small enough, then the equivalent circulating density (ECD) may be sufficient to exceed
the fracturing pressure. The ECD (or dynamic mud weight) equals the static mud weight
plus a term proportional to the pressure drop in the annulus.

This is an argument to keep the mud weight well below the critical limit. In some cases,
fractures may initiate, but the stress conditions may not permit fracture growth. We will
come back to this below, but we will keep in mind that in a previously unfractured for-
mation, fracture growth is necessary in order to lose significant amounts of drilling fluid.
In cases when hole cleaning is not done properly, for instance in relation to hole collapse,
pack-off during backreaming may lead to lost circulation. This shows the need for good di-
agnostics: an apparent loss problem may have been initiated by hole collapse and enhanced
by insufficient cleaning.

Mud loss prevention additives (lost circulation material; LCM) is commonly used to
heal fractures created during loss situations. This treatment has a better effect in permeable
rocks than in low-permeability rocks like shale, because leak-off from a fracture in shale
is very slow. The requirement not to induce fluid loss situations sets an upper limit to the
mud density, with an associated strong impact on the entire well design.
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Particles may also be used in a preventive manner, by including a specific concentration
of particles (e.g. graphite and calcium carbonate) in the drilling fluid while drilling. The
purpose is to arrest drilling-induced fractures at an early stage, before significant losses
occur. The particles are supposed to bridge off the fracture opening and reduce fluid loss
to the fracture, to the extent that the fracture pressure drops and fracture growth stops.
Used successfully (Aston et al., 2004; Davison et al., 2004), the fracture pressure can
be increased relative to drilling with a mud without particles. Such an approach may ex-
tend drilling in depleting reservoirs, by maintaining a positive mud weight window. Other
potential applications include deep water drilling, where the window between the pore
pressure and the fracture gradient is often initially low, and drilling into cooled reservoir
sections (due to cold water injection), where cooling has reduced the fracture pressure
significantly.

9.2. Rock mechanics analysis of borehole stability during drilling

Formations at a given depth in the Earth are exposed to vertical and (generally aniso-
tropic) horizontal compressive stresses, as well as a pore pressure (Chapter 3). When a
hole is drilled, the surrounding rock must carry the load that previously was carried by the
removed rock. Chapter 4 presents the theoretical basis of stresses around boreholes. In a
rock that behaves linearly elastic, this leads to a stress concentration near the well as shown
in Fig. 9.2. If the rock is sufficiently weak, this stress concentration can lead to failure of
the borehole.

In drilling of a deep well, such as in petroleum fields, the well is filled with mud. The
mud serves two main purposes: One is to prevent flow of pore fluid into the well and hole
instabilities. The other purpose of the mud is to transport drill cuttings from the hole to the
surface. The mud density ρw controls the pressure in the well:

pw = ρwgD (9.1)

g is the acceleration due to gravity, andD is the vertical depth. In oil well drilling language,
one usually refers to mud weight (in density units) and gradients of stress or pressure (also
measured in equivalent density units) instead of pressures. We shall however perform the
theoretical analysis of borehole stability using the actual stresses and pressures, and then
in the next section translate to oilfield language. Circulation of the mud implies that the
effective (dynamic) mud pressure in the well is higher than the static pressure expressed
by Eq. (9.1). As mentioned above, the dynamic well pressure is often referred to as an
equivalent circulating density (ECD). The difference may be in the order of 5–10%. Under
normal drilling operations, the pressure will vary between the static and the dynamic values
(see Sections 9.7.4 and 9.6).

The mud will carry part of the stress concentration. We shall now use rock mechanics
to analyse how the mud weight controls the mechanical stability of the borehole, building
mainly on the theory outlined in Chapter 4.

To begin with, we assume linearly elastic rock behaviour and look at the deformation of
the hole resulting from drill-out. Eq. (4.47) tells us that a vertical borehole will contract
proportionally to the difference between the total horizontal stress and the well pressure,
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Fig. 9.2. Stresses around a vertical borehole with an impermeable wall (elastic formation; isotropic horizontal far
field stresses). The upper part corresponds to the case when the tangential stress is the maximum principal stress
at the borehole wall. In the lower part, the axial is the maximum principal stress.

and inversely proportional to the shear modulus of the formation:

�Rw

Rw
= |σh − pw|

2Gfr
(9.2)

This equation produces a relatively small change in borehole radius: With a shear mod-
ulus Gfr of 1 GPa (representative of very soft shale), a difference of 5 MPa between
horizontal stress and well pressure leads to a 0.5 mm shrinkage of a 10 cm radius borehole.
This is practically insignificant for the stability of the hole, since such small displacements
will not lead to a tight hole. An operational problem would only occur if the shear modulus
of the formation becomes orders of magnitude lower. For shale at depth this means that the
shale will have to be taken beyond the elasticity limit, and into a state of brittle failure or
plastic deformation. For analyzing borehole stability, it is therefore more fruitful to focus
on criteria for borehole failure.

As was seen in Chapter 4, there are two basic types of borehole failure (illustrated in
Fig. 9.1): Shear (or compressive) failure, and tensile failure. In the case of linear elasticity,
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the maximum deviatoric stress occurs at the borehole wall, so this is where shear failure
will occur. We will use this criterion for borehole collapse, which means that borehole
failure is regarded as perfectly brittle (that is; a complete loss of load-bearing capacity once
failure occurs). The shear failures most critical to the stability of a borehole are failures
where either the tangential (hoop) stress or the axial stress along the borehole axis is the
maximum, and the radial stress (= well pressure) is the minimum (these are referred to as
cases a and b in Table 4.1). For the vertical hole, we can write the solutions for critical well
pressure in a borehole with impermeable wall conditions as follows (see Eqs. (4.124) and
(4.125)):

p
(a)
w,min = 3σ ′

H − σ ′
h − C0

tan2 β + 1
+ pfo (9.3)

p
(b)
w,min = σ ′

v + 2|νfr|(σ ′
H − σ ′

h)− C0

tan2 β
+ pfo (9.4)

In shale, where the permeability is very low (nanoDarcy or so), an impermeable borehole
wall corresponds to the situation during or shortly after drilling, when no pore pressure
penetration occurs. An impermeable wall may also be an appropriate boundary condition
in a permeable formation, when a perfect mud cake is formed at the borehole wall. A mud
cake in a traditional meaning can not be established on shale, although in case of a non-
wetting drilling fluid or a fluid that contains molecular species (e.g. polymers) that block
the shale surface, the impermeable wall approach may be valid also after initial drill-out.

We see from Eqs. (9.3) and (9.4) that the limiting well pressure may be larger or smaller
than the in situ pore pressure pfo, depending on in situ stresses, and on the strength para-
meters of the rock. Only one of the conditions (a) or (b) represents a valid solution to the
hole stability problem, so when the limiting well pressure has been calculated, one needs to
check that the borehole wall stresses are in agreement with the assumed conditions. These
types of borehole failure result in the formation of a breakout (e.g. as shown in Figs. 4.15
and 9.4). As discussed in the preceding situation, this may cause a stuck pipe situation. The
reason is then obviously that the mud weight is too low.

The lower permitted value of the mud weight is limited not only by the criterion for
shear failure, but also by the condition for radial tensile failure (see Fig. 9.3), i.e.

σ ′
r = −T0 �⇒ prad.tension

w,min = pf − T0 (9.5)

Since the tensile strength of shale is low, this means that if the borehole pressure is lower
than the pore pressure (underbalanced drilling), there is a risk of tensile failure. This failure
mode leads to blade-shaped cavings and may cause a tight hole. Since the new free surface
generated will be exposed to exactly the same effect, this is a process that is not self-
stabilizing. Being in underbalance is also risky from the point of view of pressure control,
since kicks may occur from permeable layers. In pure shale there is however no risk of fluid
influx to the well, since the shale permeability is extremely low (typically nanoDarcy; see
Chapter 3). All in all, the risks of generating borehole instabilities by being in underbalance
have to be weighted against the possible benefits of higher drilling rate and less formation
damage by mud filtrate influx.

In practice, the lower mud weight limit is associated with the maximum of the critical
well pressures calculated from shear and tensile failure criteria in Eqs. (9.3)–(9.5) above.
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Fig. 9.3. Zone of tensile radial stress caused by underbalanced drilling.

Fig. 9.4. Illustration of compressive failure direction around a vertical borehole with unequal horizontal stresses.

If the well pressure has to be in overbalance (by regulations, or to reduce the risk of kicks),
then the minimum permitted mud weight is only controlled by hole collapse if the collapse
limit is above the pore pressure gradient.

Although shear failure may also occur if the well pressure is high (e.g. case c in
Table 4.1), this situation is not thought to give rise to significant drilling problems. In ad-
dition, the limit for this shear failure mode is normally very close to the limit for hydraulic
fracturing by tensile failure (see Fig. 4.13). For the case of an impermeable borehole wall
fracture initiation is given by:

pfrac
w,max = 3σh − σH − pfo + T0 (9.6)

provided the minimum horizontal stress is the minimum principal rock stress. In case the
vertical stress is the minimum, then a fracture is initiated if σ ′

v = −T0.
It should be noted that in order for a hydraulic fracture to create a drilling problem (i.e.

for significant mud loss to occur), the fracture needs not only to be initiated, but also to
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propagate beyond the near well region. A hydraulic fracture will propagate if the pressure
in the fracture exceeds the minimum principal stress, plus an additional term depending on
the conditions for fracture growth at the tip, leakage from the fracture to the formation etc.
Often mud loss into pre-existing fractures may be a problem. This will occur if the well
pressure is high enough to permit reopening of such a fracture. In practice, therefore, the
well pressure should not exceed the fracture closure pressure (minimum principal (usually
horizontal) stress), plus an additional contribution �pexp to be quantified on the basis of
operational experience; i.e.

p
fracprop
w,max > σ3 +�pexp (9.7)

The shear failures described by cases d–f in Table 4.1 all imply that the well pressure
is higher than the axial stress along the borehole. For a vertical well, this means that the
well pressure exceeds the vertical stress, which is not a common practical situation. In
horizontal or deviated wells, such a high well pressure would always exceed the fracturing
limit. In borehole stability analysis, these cases are therefore not considered.

The stability of boreholes drilled along horizontal principal stress directions can easily
be analysed using the same mathematical framework as above. One has to remember that
the far field stresses controlling the tangential stress (and hence the shear failure criterion
(a) at the borehole wall) are the stresses acting in the plane perpendicular to the borehole, so
that the term (3σ ′

H − σ ′
h) in Eqs. (9.3) and (9.4) in general has to be replaced by (3σ ′

max⊥ −
σ ′

min⊥)where σ ′
max⊥ and σ ′

min⊥ are the maximum and minimum effective principal stresses,
respectively, in the plane perpendicular to the borehole axis:

p
(a)
w,min = 3σ ′

max⊥ − σ ′
min⊥ − C0

tan2 β + 1
+ pfo (9.8)

p
(b)
w,min = σ ′‖ + 2|νfr|(σ ′

max⊥ − σ ′
min⊥)− C0

tan2 β
+ pfo (9.9)

σ ′‖ is the principal stress parallel to the direction of the hole.
Similarly, for fracture initiation in Eq. (9.6), the term (3σ ′

h − σ ′
H) is in general written

(3σ ′
min⊥ − σ ′

max⊥). This is analogous to what is done in Chapter 10 and in Chapter 11, to
be used for calculation of critical drawdown and fracture initiation pressures.

In summary, the lower mud weight limit in the case of a linearly elastic formation un-
dergoing perfectly brittle failure is found from Eqs. (9.1), (9.3), (9.4) and (9.6) and the
possible additional requirement of overbalanced drilling. The upper limit is estimated us-
ing Eq. (9.7), and a conservative limit is obtained by assuming �pexp = 0. By further
inspection of Eqs. (9.3) and (9.4), one finds that the risk of borehole instability with re-
spect to mechanical hole collapse becomes high (high critical well pressure) if

• The formation strength is low. This is as one intuitively would expect.

• The failure angle is low. This is usually the case in shale, where β often is 50°–55°,
compared to 60° or more in sandstones (see Chapter 3).

• The pore pressure is high. This is often the case in shales above the reservoir (see also
Chapter 3), as well as in some reservoir sections prior to depletion.
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These results are all in good agreement with operational experience, indicating the va-
lidity of a rock mechanics approach to handle borehole stability.

Furthermore, from Eqs. (9.3), (9.4) and the discussion above we see that the lower mud
weight limit increases with (3σ ′

max⊥ − σ ′
min⊥). Thus, borehole collapse is triggered by a

high stress level and high stress anisotropy perpendicular to the well. A high stress level
will reduce the risk of mud losses, however; high stress anisotropy may facilitate fracture
initiation.

Given an elastic and isotropic rock, the most unfavourable direction for a borehole with
respect to initiation of hole instability will be parallel to the intermediate principal stress.
The most favourable direction for a borehole will normally be along the largest principal
stress direction. This illustrates the importance of knowing in situ stresses and principal
stress directions. A brief remark is added here: Zheng (1998) found that if one is able to
handle the initial formation of the instability, then a hole drilled along the intermediate
stress may in fact be beneficial, since the breakout geometry may give a better post-failure
stability.

When a deviated borehole is drilled along a general inclination (relative to vertical)
and at a general azimuthal direction in the horizontal plane, the stability analysis has to
account for shear stresses at the borehole wall; since the tangential and axial stresses are
not principal stresses in general. The principal stresses and their orientations have to be
computed first, and then inserted into the failure criteria. The equations for a generally
deviated well are given in Section 4.3. These calculations are most conveniently carried
out as iterative loops in a computer program, due to the complexity of the equations. The
results depend on the stress regime, and it is difficult to generalize.

Fig. 9.5 illustrates a case with a normal in situ stress situation (the vertical stress is
the major principal stress), showing the required minimum mud weight to prevent hole

Fig. 9.5. Illustration of stability analysis for a deviated wellbore at 1500 m depth, with vertical stress 30 MPa,
isotropic horizontal stresses 25 MPa, and pore pressure 15.5 MPa. The unconfined strength is set to 10 MPa, the
friction angle is 30°, the Biot coefficient 1, and Poisson’s ratio 0.25. Also included is a case with anisotropic hor-
izontal stresses, where all parameters are kept the same as above, except the maximum horizontal stress 28 MPa.
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collapse as a function of hole deviation. The maximum permitted mud weight may con-
servatively be taken as the minimum horizontal stress, in this case 25 MPa corresponding
to a mud density of 1.70 g/cm3. For isotropic horizontal stresses, the stable range is nar-
rowed continuously as the inclination increases towards horizontal, in particular from 30°
until 60°. If the horizontal stresses are anisotropic, the stability of a vertical hole becomes
significantly reduced.

The critical mud weight for a deviated well depends both on inclination and azimuthal
direction. For a horizontal well parallel to the minimum horizontal stress, the collapse limit
is improved when compared to the case with horizontal stress isotropy, because the stress
anisotropy perpendicular to the hole is reduced.

9.3. Time-delayed borehole failure

9.3.1. Establishment of pore pressure equilibrium

In the field, it is often observed that initial drilling may be stable, but that tight hole/stuck
pipe situations occur during tripping or logging runs, typically several days after drill-out.
The model we presented in Section 9.2 above does not account for time-dependent bore-
hole stability. One limitation of the analysis above was the assumption of an impermeable
borehole wall. As pointed out, this is only true if a perfect mud cake is established, or if the
rock is impermeable. Shale has a very low (nanoDarcy) but still finite permeability, which
means that impermeable wall conditions are valid only during drilling. After drilling, the
pore pressure close to the borehole wall will gradually approach the well pressure. Eventu-
ally, if the formation is exposed to the mud pressure for sufficiently long time, steady state
pore pressure equilibrium is reached.

The stress field under permeable wall conditions is given in Chapter 4. Applying Mohr–
Coulomb’s failure criterion to a piece of rock at the borehole wall, the minimum permitted
well pressure (analogous to Eqs. (9.3) and (9.4) above) for a vertical borehole is given by
one of the two cases (a) and (b) (see Eqs. (4.120) and (4.121)):

p
(a)
w,min = 3σ ′

H − σ ′
h − C0

2 − α 1−2νfr
1−νfr

+ pfo (9.10)

p
(b)
w,min = σ ′

v + 2|νfr|(σ ′
H − σ ′

h)− C0

1 − α 1−2νfr
1−νfr

+ pfo (9.11)

When the hole is drilled along one of the horizontal principal stress directions, one has to
replace the principal stresses with the appropriate ones, as was done in Eqs. (9.8) and (9.9)
above.

The time τD it takes to reach pore pressure equilibrium after a hole is drilled in unbal-
anced conditions is based on consolidation theory (Section 1.9), which states that:

τD ≈ l2D

CD
(9.12)
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Fig. 9.6. Illustration of how the Mohr circle representing the borehole stress field moves from time t = 0 (drillout)
to time t → ∞ (pore pressure equilibrium), creating a more unstable situation with respect to shear failure (hole
collapse).

Here lD is a characteristic length and CD is the diffusion coefficient defined in
Eq. (1.242). CD is proportional to the permeability. Taking lD ∼ borehole radius ∼10 cm
and the shale permeability ∼1 nanoDarcy, we find that the characteristic time typically is
5–10 days. This corresponds to the time period after which instabilities occur in practice.

If the well is kept in overbalance, the pore pressure near the borehole wall will increase,
resulting in reduced hole stability with time. This is illustrated in Fig. 9.6, which shows the
displacement of the Mohr circle in the direction of the shear failure criterion from short
time (t = 0) to long time (t = ∞). The reason is that the effective confinement (minimum
effective principle stress) approaches zero as pore pressure equilibrium is established. For
the case described for a vertical well in Fig. 9.5 above, the minimum permitted well pres-
sure increases with time to 26 MPa (corresponding to mud density 1.77 g/cm3), which
means that the horizontal stress is exceeded, and stable drilling no longer is permitted. On
the other hand, if the well is drilled in underbalance, the pore pressure will decrease and
stability with respect to hole collapse will improve with time.

Two practical implications can be drawn from the above: The likelihood of stability
problems (at least during overbalanced drilling) will be reduced the sooner one is able to
leave a well section behind by setting casing. Furthermore, maintaining an impermeable
boundary condition is a way to stabilize the hole over time. Solutions to this challenge are
being sought in terms of oil-based or polymer-containing drilling fluids (see Section 9.4).

9.3.2. Temperature effects

Consolidation (or establishment of pore pressure equilibrium) as described in the preceding
section, is not the only possible explanation of time delayed borehole failures. The drilling
fluid is usually (at t = 0) colder than the formation to be drilled, since it has surface
temperature when circulation starts. The fluid and formation temperatures will gradually
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adjust, depending on the circulation rate. After a stop in the circulation, the formation near
the well will gradually heat up. Maury and Sauzay (1987) found that this could explain
delayed failure. Shortly after drilling the borehole is stable. However, as the temperature
increases, the tangential and axial stresses at the borehole wall will both increase by the
same amount.

The thermoelastic stresses induced at an impermeable borehole wall are given by
Eqs. (4.69)–(4.71). If the borehole fluid is colder than the formation, the tangential and
axial stresses are reduced proportionally to the temperature difference between formation
and borehole fluid. This acts as a strengthening of the borehole with respect to collapse.
Deliberate cooling of the mud can therefore be a practical approach to mitigate stabil-
ity problems. This was applied with success in the field (Guenot and Santarelli, 1989;
Maury and Guenot, 1995). The thermal effect is proportional to rock stiffness, which means
that it is more significant in hard than soft rocks. It is also proportional to the thermal ex-
pansion coefficient.

There is not a lot of data on thermal expansion on sedimentary rocks, but typically αT
is around 10−5 K−1 (see Appendix A). This gives a typical thermal stress contribution
of a few MPa, which reduces the lower mud weight limit by 5–10% compared to a situ-
ation with no thermal effect. However, since cooling reduces the tangential stress, it not
only reduces the risk of shear failure, but it also promotes fracturing, and may hence be a
destabilizing factor with respect to lost circulation problems. The extent of the cold zone
is however limited, and this may limit the growth of the fracture.

Cooling of a low permeability rock like shale will also influence the pore pressure, due to
a larger thermal expansion coefficient for the fluid than for the solid parts of the rock. Thus,
cooling reduces the pore pressure, which in general improves stability. Rock properties
(strength, stiffness) may be altered as a result of temperature changes: Normally strength
and stiffness will increase with decreasing temperature. Finally, mud properties are also
temperature dependent: Cooling the mud will lead to a slight mud density increase due
to thermal contraction, again resulting in improvement of stability with respect to hole
collapse conditions.

Note that if one drills into a reservoir that is cooled by waterflooding, the in situ stresses
may have been altered in a way that makes mud loss and fracturing more likely than un-
der initial normal temperature conditions. Field evidence for this phenomenon is given by
Hettema et al. (2004).

9.3.3. Creep

When discussing time dependent borehole stability, it is obvious that creep may cause a
borehole to collapse with time. Since creep tests are complicated and time-consuming,
there are very few reliable tests of this kind in the literature. It is however general knowl-
edge that a material that is brought above its yield point, may creep to failure. Translating
to the borehole situation, this means that if the mud weight is kept marginally above the
lower limit for long enough time, the borehole may collapse as a result of creep. The risk
of high (accelerating) creep rates increases with increasing temperature. Although truly
constant stress conditions over time never occur during drilling, the intrinsic time depen-
dent properties of the formation may still have an influence on stability. In practice, this is
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difficult to distinguish from other time dependent effects, like consolidation, thermal and
chemical effects.

9.4. Interaction between shale and drilling fluid

In the previous section, three sources of time dependent borehole stability were considered:
Consolidation, mud cooling, and creep. One more mechanism will be discussed in this
section, namely chemical interaction between the drilling fluid and the formation. This is
however not just a source of time delayed hole collapse, but may be used to improve shale
stability, in particular in cases where instabilities occur in shales with high contents of
swelling clay minerals.

It is often observed that oil-based mud gives better stability than water-based mud. To
start out, let us consider the (somewhat academic) example of drilling with pure oil (or
another fluid that is completely non-wetting to the shale). The capillary pressure for oil (or
other non-wetting fluid) in contact with a water-wet shale is:

pcp = 2γ

r
(9.13)

Here γ is the surface tension; γoil–water = 50 · 10−3 N/m. r is the pore size, which in
shale typically is 10 nm. From that we find the capillary entry pressure for pure oil to enter
a water-saturated shale to be ∼10 MPa. Thus, an overbalance of 10 MPa is required for
oil (or another non-wetting fluid with similar surface tension) to penetrate into intact shale.
This means that for lower mud overbalance, the borehole wall will remain impermeable,
and the t = 0 stability will prevail.

Oil-based muds usually give better hole stability than water-based muds, but the latter
are preferred for environmental reasons. Oil-based muds are however not pure oils. They
contain a water phase, and the chemistry of the water phase has an influence on the hole
stability. Various mud additives have been introduced in water-based systems to help main-
tain impermeable borehole wall conditions over time (see Section 9.3.1):

• Sodium silicate (van Oort et al., 1996).

• Long-chained molecules (glycol; polymers etc.) that are thought to build molecular
filter cakes on shale surface (see e.g. Twynam et al. (1994) and Reid et al. (1995)).

The operational experience with such systems is too limited to draw any firm conclusion
at this stage.

We shall now discuss chemical mechanisms that may lead to interaction between shale
and drilling fluid. Let us first consider osmosis. The basis for osmosis is the existence of a
semi-permeable membrane that permits water molecules to pass but prevents ions to enter
the shale. The membrane may be thought of in two different ways:

1. Oil-based mud may act as a semi-permeable membrane. Ions associated with salts
are prevented to move between the water phase of the mud and the formation.

2. The shale is often regarded as a semi-permeable membrane when contacted by water-
based mud. Because the clay minerals have surface charge, the movement of ions is
thought to be hampered, giving rise to membrane properties.
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The osmotic potential �Π (from e.g. Marine and Fritz, 1981) is:

�Π = RT

Vw
ln
aw,df

aw,sh
(9.14)

Here R is the molar gas constant (8.31 J/(mol K)), and Vw is the molar volume of water
(0.018 l/mol). aw,df is the chemical activity of water in the drilling fluid, and aw,sh is the
chemical activity of pore water in the shale. The activity denotes the effective concentration
of water in a solution, so that aw = 1 for fresh water, while aw < 1 for salt water. For
ideal solutions, activity is directly given by the salt concentration. For non-ideal solutions
with approximately 0.1 M salt concentration, the difference between activity and water
concentration may be 10–50%, depending on type of ion (Mahan, 1975).

Mody and Hale (1993) implemented osmotic theory into a rock mechanics model for
borehole stability. They added the osmotic potential through a stress term equivalent to the
poroelastic contribution seen in Eqs. (4.58)–(4.60):

σr = pw (9.15)

σθ = 2σh − pw + α 1 − 2νfr

1 − νfr
�Π (9.16)

σz = σv + α 1 − 2νfr

1 − νfr
�Π (9.17)

Adding salt to the drilling fluid so that aw,df < aw,sh sets up an osmotic potential
�Π < 0, which will tend to drive water out of the shale and hence acts as an effective
pore pressure reduction. This has an instantaneous stabilizing effect on the borehole.

It is well established that ions do move through shale (e.g. Ballard et al., 1994). This
means that the osmotic membrane is leaky, which is handled by introducing a membrane
efficiency σ < 1. The membrane efficiency reduces the osmotic potential:

�Π = σ RT
Vw

ln
aw,df

aw,sh
(9.18)

The membrane efficiency depends on ionic diffusivity, and will hence in general de-
pend both on clay type and on the type of ions present in the drilling fluid (for more
elaborate analysis, see Marine and Fritz, 1981; Bailey et al., 1991; Sherwood, 1994;
Heidug and Wong, 1996; Lomba et al., 2000a, 2000b; Sherwood and Craster, 2000). Exper-
iments (Chenevert, 1970; van Oort et al., 1996; Ewy and Stankovich, 2002; Schackelford
et al., 2003; and others) seem to indicate that for shales σ is in the range 0.05–0.30. The
osmotic potential may however still be several MPa, which means that reducing drilling
fluid activity by adding salt may improve borehole stability significantly, at least during
the initial phase. The effect will however, due to membrane leakiness, decay with time af-
ter drillout. In case of very low activity drilling fluid, one may expect damage as a result of
reduced tangential and/or axial stresses at the borehole wall.

There is also experimental evidence that ionic exchange may occur within the shale
when it is exposed to brine (Steiger, 1982; Denis et al., 1991; Horsrud et al., 1998). In par-
ticular, exposure of smectite-rich shale to KCl causes significant shrinkage (Fig. 9.7), even
when the potassium concentration is so small that osmotic swelling would be expected.
The rate of exchange depends on the ion concentration, whereas the maximum shrinkage



BOREHOLE STABILITY ANALYSIS FOR WELL DESIGN 325

Fig. 9.7. Effect of KCl brine exposure on the deformation of a shale sample under effective confining stress of
5 MPa, and at 80 °C (from Horsrud et al., 1998).

depends on the amount of available sites in the shale; i.e. on the diffusing ion type, and
on the amount of swelling clay minerals and their exchange capacity. Physically, shrink-
age happens because the potassium ion fits more easily into the clay mineral crystal lattice
than the sodium ion, which is the dominant native ion in shales. The chemically induced
shrinkage strain can be looked at in analogy with the thermal cooling effect. This means
that it may be modelled similarly; see Eqs. (4.69)–(4.71):

σr = pw (9.19)

σθ = 2σh − pw − Efr

1 − νfr
εch (9.20)

σz = σv − Efr

1 − νfr
εch (9.21)

Ionic exchange affects shale properties as well. Apparently, KCl exposure enhances plas-
ticity, which is beneficial for borehole stability. The shrinkage effect leads to improved
stability with respect to the lower mud weight limit, but if the chemical strain is high, ten-
sile or shear failure may be induced. To what extent this may trigger instabilities is not
yet known. There are indications from the literature that ionic exchange effects may also
be important for other ions than potassium, and that the type of anion also plays a role
(Carminati et al., 1999; Sønstebø and Holt, 2001).

9.5. Borehole stability analysis for well design: Incorporating effects
of nonlinear elasticity, plasticity and rock anisotropy

In practical situations, boreholes are often found to be more stable than predicted by sim-
ple linearly elastic theory and perfectly brittle failure mechanics analysis, as used in the
previous sections. There may be a number of reasons for this, which we will discuss fur-
ther below. Let us however have in mind that a fundamental challenge in borehole stability
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analysis is to define failure in practical terms. The driller is only concerned with stability
problems that interfere with the drilling operation. Rock fragments breaking loose from
the borehole wall, or a minor reduction in the wellbore diameter due to plastic flow, is not
necessarily equivalent to drilling problems. Guenot (1990) pointed out the need for a new
“failure criterion” which can account for these practical aspects.

Such a criterion has to bridge field experience with fundamental rock mechanics knowl-
edge. The industry learns from previous failures, and may use their experience in future
drilling operations. The approach may be purely empirical, but in order to have predictive
power, it must at some stage line up with rock mechanics analysis. What we can do, with
rock mechanics as our main tool, is to refine the theory to deal in a better way with the
shortcomings identified in the field.

As said above, initiation of failure is not necessarily going to lead to a borehole stabil-
ity problem. However; the brittle failure theory that we have used, predicts instability as
soon as the Mohr–Coulomb criterion is violated at the borehole wall. The calculations of
minimum well pressure (minimum mud weight) thus implicitly assume that the rock loses
its entire load bearing capacity once the Mohr–Coulomb limit is reached. The estimated
minimum mud weight is therefore likely to be too low. A simple way to try to compensate
for this is to increase the rock strength with a “fudge factor” > 1 which is calibrated on
basis of field experience, and then use the analytical approach that was presented in the
preceding sections.

Alternatively, which is of course more satisfactory from the theoretical viewpoint, the
rock mechanics models may be improved to describe the constitutive behaviour of the
rock in a more correct manner. One obvious modification is to account for the post-failure
behaviour of the rock. Strong rocks tend to be more brittle, with little ability to deform
and carry load after the peak stress has been passed. The brittleness tends to decrease with
increasing confining pressure. Weaker rocks are normally more ductile, i.e. they have larger
ability to deform and carry load beyond their elastic limit. The brittle-ductile transition
depends on the stress level. Reaching peak stress is of course more critical if the rock
is brittle. If the rock is ductile, then the failure limit may be exceeded without dramatic
operational consequences.

To take care of the factors discussed above, models incorporating plasticity and/or non-
linear elasticity must be applied. This represents no fundamental problem, but makes the
calculations more cumbersome, especially for deviated holes. When plasticity effects are
taken into consideration, this gives rise to a so-called plastic zone near the borehole wall
(as outlined in Chapter 4). This is a weakened zone, but shields the rock beyond and to
some extent improves stability. The stability limit is set either as an upper limit to the plas-
tic deformation, or to the extent of the plastic zone. This gives results that are numerically
more realistic for the actual well failure situation than the simple elastic model. Such a
failure criterion has however to be specified on the basis of experience; be it from field
operations, or controlled hollow cylinder failure tests performed in the laboratory.

Santarelli and Brown (1987) incorporated a pressure-dependent elastic modulus into the
analytical model for borehole failure. Triaxial testing shows that the elastic modulus tends
to increase with the confining pressure (see also Chapter 4). With this model, much of the
discrepancy between a linear elastic model and results from hollow cylinder tests could be
accounted for. It can also explain why failure can occur at some distance behind the wall,
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and not at the wellbore wall surface where the stress concentration should be maximum
according to constant-modulus theory.

We have based our borehole stability analysis on the Mohr–Coulomb criterion for shear
failure. This has many advantages, including the fact that analytical calculations are fa-
cilitated. The Mohr–Coulomb criterion does however not account for the experimentally
observed effect of the intermediate principal stress on rock strength. The stress state in the
vicinity of the borehole wall is true triaxial, and this can be accounted for by using failure
criteria that depend on the intermediate principal stress, like the Drucker–Prager criterion;
see Chapter 2), or the Mogi–Coulomb approach (Al-Ajmi and Zimmerman, 2006).

When more complex material models are used, more extensive rock characterization
is also required. This is often difficult due to lack of core material. In addition, the rock
properties can change significantly over short distances. One should therefore in each case
consider whether using more complex models is worthwhile. This should not prevent the
use of such models for studying phenomenological problems and for sensitivity analyses.

One aspect of borehole stability not considered in the analysis presented so far is the
role of rock anisotropy. Shale is normally anisotropic due to textural alignment of clay
minerals (Chapter 3), and therefore exhibits anisotropic strength, stiffness, and permeabil-
ity. Combining the weak plane model for rock strength (Section 2.9) with the borehole
failure criterion, one may incorporate the effect of strength anisotropy in the modelling of
hole collapse.

Fig. 9.8 shows an example of such a calculation, using the same input parameters as
in the isotropic stress case displayed in Fig. 9.5, except that the shale strength and friction
angle both are reduced in the horizontal plane. The result is a significantly reduced stability
with respect to collapse for inclinations above 30°. For this particular case, stable drilling
becomes impossible with further increase in hole angle, since the mud weight correspond-

Fig. 9.8. Illustration of stability analysis for a deviated wellbore at 1500 m depth. All input parameters are as in
Fig. 9.5, with isotropic horizontal stresses 25 MPa. The figure shows the effect of horizontal weak planes, with
reduced strength (C0/2) and reduced friction angle (ϕ/2).
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Fig. 9.9. Schematic borehole stability analysis.

ing to the collapse limit rapidly exceeds the fracture gradient (given by the minimum in
situ stress). By adding plasticity, the stability is significantly improved. One should how-
ever be aware that buckling of bedded shale when drilling along or near the symmetry
plane (Økland and Cook, 1998) may be an additional cause of instability not caught by the
analysis presented here.

Fig. 9.9 sketches the procedure of complete borehole stability analysis. The input data
required are rock properties, earth stresses and pore pressure, plus the planned hole trajec-
tory. For a simple analysis, only parameters listed in the first row of boxes are required. For
a more advanced level of sophistication, chemical, thermal, plastic, anisotropic and time
dependent features are added. In most cases the effects are simply added by superimposing
poroelastic, thermoelastic and osmotic contributions to the borehole stresses. This may be
satisfactory for most purposes, but implies that coupling between chemical and thermal
processes are neglected.

The result of the analysis is the mud weight window; i.e. the minimum well pressure
permitted to prevent hole collapse (or fluid influx) and the maximum well pressure per-
mitted to prevent loss of fluid to the formation by flow into existing or induced fractures.
When these limits are known, the well may be designed.

Well design is of course more than a question of borehole stability. The purpose of the
well is to reach a certain target to ensure optimum drainage of a reservoir or reservoir zone.
The suggested hole trajectory required to reach the target then has to be evaluated in order
to see if it is drillable, and then the drilling process has to be optimized to reduce costs by
drilling fast, and by using as few casing strings as possible. At large depths, this is crucial:
The number of casing strings has to be kept low, since the casing diameter decreases for
each new string.

Fig. 9.10 illustrates the role of wellbore stability analysis in well design. Because it is
not possible to drill the entire section shown with one mud weight, a casing has to be set
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Fig. 9.10. Example of a stability chart for a well from the Norwegian Continental Shelf. The full lines are,
from left to right, the estimated pore pressure gradient (p), the minimum horizontal stress gradient (h) and the
overburden stress gradient (v), respectively. The dotted lines are the estimated collapse gradient (c) and fracturing
gradient (f), while the dashed line is the planned mud weight gradient (m). Casing shoes are indicated by the black
triangles. Observe how the mud weight is increased below each shoe. Further note that for this particular well,
the collapse gradient is larger than the pore pressure gradient for only a limited interval. This may be different in
other wells! The airgap is 18 m and the water depth is 370 m. Courtesy of Statoil.

to seal off the upper part of the section before continuing with an increased mud weight in
the lower part. This illustrates the two main tools available to drill stable boreholes: The
mud weight and the casing program.

9.6. Use of pressure gradients

9.6.1. Introduction

So far we have largely used pressure in our stability calculations. However, since this has to
be related to a mud weight or mud density, it is customary to convert the different pressures
at a given depth to a density value. This is often referred to as an equivalent mud weight
or a pressure gradient. Note that the term gradient is not entirely correct, since it is not the
slope of the pressure curve at a given depth, but rather a secant value from surface to the
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given depth, i.e.

ρ = p

gD
(9.22)

where p is the pressure at depth D, g is the acceleration of gravity and ρ is the equivalent
mud weight or pressure gradient. Common units for ρ is g/cm3 or SG (specific gravity
relative to water).

In SI-units we have

ρ(SG) = p (MPa)

0.00981D (m)
(9.23)

Any relevant stress or pressure parameter, e.g. pore pressure, horizontal stress, overburden
stress and fracture pressure may be represented as a gradient, as exemplified in Fig. 9.10.

9.6.2. Depth reference and depth corrections

The use of Eq. (9.22) introduces the need of a depth reference level, i.e. a surface reference
level. Since the well pressure gradient is related to the mud column, it is natural to use the
same depth when calculating the other pressure gradients. The surface reference level will
then obviously be the drill floor or rotary table (RT), i.e. the top of the mud column. When
drilling an onshore well it is then quite clear that D is essentially measured from the earth
surface. When drilling an offshore well, D is however made up of several depth elements:

D = Dformation +Dwater +Dairgap (9.24)

where Dairgap is the air gap or the height from the sea to the drill floor, Dwater is the water
depth andDformation is the formation depth (from the sea floor to the depth of investigation).

When comparing gradients from different wells in a field it is therefore essential to keep
track of the reference depth. In the exploration phase the variation in Dairgap is normally
small (typically less than 5 m), as these wells are normally drilled from semisubmersible
rigs with Dairgap typically ranging from 23 to 28 m.
Dairgap in production wells depends on how the field is developed. If a fixed platform

is installed, Dairgap may be significantly larger. Thus there is a need to be able to convert
from one drill floor level to another. The pressure at the same depth underground must be
the same, so that

ρ1gD1 = ρ2gD2 (9.25)

where the subscripts represent different reference levels. This yields

ρ2 = ρ1
D1

D2
(9.26)

To avoid keeping track of different rig floor elevations, it is convenient to use a more
general reference level for the different pressure gradients, e.g. the mean sea level (MSL).
This is a convenient approach when collecting and comparing data from different drilling
rigs, data that will be the basis of a model that is going to be used for planning of production
drilling from a platform.
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Having established the different pressure gradients used as input for a stability analysis,
one must always refer back to the same reference level as the mud column (the rotary
table). When planning a specific well one must therefore remember to convert back to a
depth that includes the air gap (Dairgap) of that specific well.

9.7. Beyond simple stability analysis

9.7.1. Field cases: The borehole stability problem in complex geology

In this paragraph we will present a few field cases from the literature, which illustrate how
rock mechanics analysis can be applied to borehole stability problems.

Case 1: Drilling-induced lateral shifts along pre-existing fractures (Meillon St. Faust
Field, France)

The Meillon St. Faust is a gas field, located in the southwest of France. For a more de-
tailed description, the reader is referred to Maury and Zurdo (1996). Severe casing failures
occurred in a fault zone above the reservoir during early gas production. These failures
could be interpreted by migration of gas or water from abnormally pressured zones at
depth through damaged cement and into uphole faults or bedding joints. This increased
pore pressure led to reduced effective normal stress on the faults, which triggered shear
displacement and thus casing collapse.

It is likely that pressure increase in pre-existing fractured rock mass may also cause
stuck pipe situations during drilling by a similar mechanism (Santarelli et al., 1992). If the
well is drilled with too high overbalance (like in high pressure cycles during surge-swab;
see further below), and the mud does not create an efficient cake towards the fracture, then
pressure may build up in the fractures, and the normal effective stress decreases, leading
to shear displacements that may reach a few cm. There are cases where tight hole occurred
with no indication of cavings, and where the problem could not be solved by mud weight
increase. Other symptoms of this failure mode is that tight hole problems occur at the same
depth, together with problems to run in and pull out of hole, abnormal localized torques,
deviation of trajectories, and possible drillstring failures. The remedies to solve problems
of this kind are to keep the mud weight low (but still above the collapse criterion for the
intact rock), and to increase the sealing capacity of the mud. In the field case reported here,
this was done by adding asphalt-type products associated with inert colloidal particles.

Case 2: Drilling in a complex geological setting with high tectonic stresses (Cusiana
Field, Colombia)

The Cusiana field is located in the foothills of the Andes Mountains in Colombia. Major
borehole stability problems (amounting to several millions of dollars per well) have been
encountered (a brief summary was published by Last et al. (1996); see also Willson et al.
(1999)). They report hole enlargement as the cause of the majority of problems, resulting
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in large amounts of cavings, hole cleaning and stuck pipe, poor cementing and necessary
side-trackings. The most difficult formation was an alternating sand-shale sequence, where
mud losses and tight hole occurred in the sandy and hole enlargements in the shaly units. It
was found that increasing the mud weight to limit hole enlargements did not work, because
it led to significant mud losses.

A borehole stability task force established by the operator acquired a large amount of
data. Stress measurements were done, downhole borehole images and 4-arm caliper data
were collected, shale core tests were performed in addition to characterization and moni-
toring of cavings at surface and MWD surveys. An important result was the determination
of the in situ stress state, which proved the maximum principal stress to be (sub-) horizontal
and much larger than the vertical stress, and the minimum principal stress to be horizontal
(parallel to the mountains) and much smaller than the vertical stress. In addition, the sand-
shale sequence mentioned above turned out to be fractured throughout the entire field. It
was concluded that borehole mechanical instabilities occurred as a result of shear failure
in weak fractured siltstones and shales, and that lost circulation occurred when the mud
pressure exceeded the minimum (horizontal) stress. Further, mud invasion contributed to
weakening of the fractured rock (by the same mechanism as explained in the preceding
paragraph). An important consequence of these mechanisms was that the permitted mud
weight window was shrinking to zero, since the minimum mud weight in the shale sections
exceeded the lost circulation threshold in the sands. The challenge was then not to find a
way to drill a stable hole, but rather to find a way to drill a hole that is inherently unstable.

Compromises were made by using mud weights that were too high for the sands and too
low for the shales, and then try to manage the instabilities by efficient drilling practices.
This included improvement of mud sealing capacity and optimization of hole cleaning,
and having lost circulation pills available in case of loss in the sands. The bit was permit-
ted to seek its own trajectory where possible, and drilling was performed as smooth and
fast (minimizing reaming, back-reaming and vibrations, increasing bit life) as possible. In
addition, hole conditions (including caving rates) were carefully monitored.

Case 3: The Heidrun Field, Norwegian Sea

The Heidrun field offshore Mid-Norway experienced persistent hole stability problems in
Tertiary shale formations. A high KCl content drilling fluid was used, in order to handle
possible reactive clay formations above the reservoir. The majority of the wells are ex-
tended reach wells with inclination angles in the range 55°–70°. The problems manifested
themselves mainly as cavings, pack-offs and lost circulation, and were handled by increas-
ing the mud weight. This did however in several cases not reduce the caving production
problem. The details of this case are reported by Stjern et al. (2000).

The operator expected the drilling problems to occur mainly in a low-density and high
porosity zone. Extensive data collection was performed, including logging (6-arm caliper,
sonic and density, temperature), shale coring and laboratory testing, and sampling and
measurements of sonic velocities on cuttings. In addition, the stress field was evaluated
using extended leak-off tests.

As a result of the systematic data collection, it was found that the problem zone was
not the originally assumed low-density zone, but rather a normal density but fractured
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zone. This led to the conclusion, like in the preceding cases, that the mud density could be
reduced. At the same time, the salt concentration in the mud was reduced, which apparently
also improved stability. It was also concluded that hole cleaning had to be optimized by
using low viscosity mud and provide close to turbulent flow. The authors point out that the
borehole stability study performed has given a cost reduction of close to 2.5 million dollars
per well in pure saving on flat time during drilling.

9.7.2. Drilling in depleted reservoirs

A particularly difficult situation is infill drilling in depleted reservoirs, where the pore
pressure may still be the initial one in shale zones, or in the cap rock right above. This is due
to the very low permeability of shales, which means that the time required to establish pore
pressure equilibrium in a shale zone of tens of metre thickness may be several years, and
easily may exceed reservoir lifetime. In the permeable reservoir zones, the reduced pore
pressure is established almost instantaneously (except for possible undepleted pockets).
Thus, the high pore pressure in the shale requires that the mud weight is kept above the
initial collapse limit to avoid shale instabilities. In neighbouring reservoir sand zones, this
mud weight may be too high, since the reduced pore pressure also has caused reduced
horizontal stresses (reduced fracture gradient, see Chapter 12). Thus, drilling with initial
mud weight may lead to mud losses. Normally one does not know while drilling which
zones are depleted and which zones are at original pore pressure: This requires a coupling
to reservoir management and reservoir monitoring by e.g. time-lapse (4D) seismics.

9.7.3. Drilling below deep water

When drilling below deep water, the water depth contributes to reducing both the hole col-
lapse and the fracturing gradients. The well pressure is given by Eq. (9.1), where the total
depth includes water depth from the top of the mud column (neglecting the air gap). This
means that the critical mud density ρw,crit for hole collapse as well as for fracturing will be
given by the corresponding critical mud densities in absence of water (ρ0

w,crit) and by the
water depth (Dwater) and the depth measured from the sea-floor (Dformation) as follows:

ρw,crit = ρ0
w,critDformation + ρwaterDwater

Dformation +Dwater
(9.27)

As can be seen from this equation and from Fig. 9.11, a main effect of the water is to
shrink the mud weight window at shallow depth within the formation. At the sea floor
(Dformation = 0) there is no mud weight window, since both the upper and lower limits are
given by the water density (effective stresses are = 0). At shallow depth below the sea-
floor, the effect of water depth still dominates, so that both the upper and lower mud weight
limits are lower than they would have been if drilling took place onshore, or in shallow
water. The consequences of instability in deep water are however much more severe.

A potential solution to the drilling problems is so-called dual gradient or dual density
drilling. The basic idea is to use only seawater above the seafloor, and the heavier mud
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Fig. 9.11. Illustration of the effect of water depth on the mud weight window. Note the narrow window near the
sea-floor in case of deep water.

from the seafloor and down into the formations. This is achieved by using a separate mud
lift system to take care of the return mud and cuttings from the borehole.

In some areas, a special drilling problem known as shallow water flow (Alberty et
al., 1997; Furlow, 1998) has occurred, with high resulting costs. This problem occurs in
uncemented and overpressured sands, so the main cause of the sand collapse is an underbal-
anced situation. This problem is as such more related to sand production (see Chapter 10).

9.7.4. Surge and swab effects

When the drill string is pulled out or run into the hole, this will cause cyclic loading of
the rock near the borehole. The string acts as a piston in the hole because the mud cannot
flow without restriction, and hence the well pressure changes. How large this effect will
be, depends on the tripping speed and the mud viscosity. Bourgoyne et al. (1986) have
presented equations needed to calculate this effect.

The effects of cyclic loading on boreholes in shale have not been studied in detail. One
may foresee the following effects:

1. The failure stress is directly exceeded on a low pressure cycle. The duration and
magnitude of the low pressure cycle will influence the severity of the failure. This
could apply both to pressure cycles causing failure in underbalance or shear failure
in overbalance.

2. Even when the well pressure oscillates within the failure limits, the delayed pore
pressure response could lead to an increased failure tendency from cycle to cycle.
Although initially within its failure limits, the borehole may fail due to pore pressure
increase near the borehole wall.

3. Stress cycling may also lead to rock fatigue, depending on the amplitude and the
number of cycles.
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9.7.5. Hole cleaning

As mentioned in Section 9.1, hole cleaning and borehole stability problems may often be
difficult to distinguish from each other. Hole cleaning problems may be caused by borehole
instabilities, leading to production of noticeable amounts of cavings. Formation fragments
(both cuttings and cavings) will tend to accumulate in hole enlargements, because of re-
duced flow rate in such places. These fragments may fall or migrate back into the hole,
especially when pumps are stopped. This will cause restrictions in the mud flow and may
also stick the drill string if the fragments are large enough. The depth where the string gets
stuck may thus be in gauge sections below the unstable zone, and not at the depth of fail-
ure. We have seen above that although increasing the mud weight appears to be the most
obvious solution, this may in practice not always be recommendable.

High rheology mud (high viscosity; high yield point (YP)) together with high annular
velocities (AV) has in general been accepted as the correct philosophy for cleaning of near-
vertical wells. Cleaning high angle wells is, however, not straightforward, and the same
philosophy does not readily apply to this situation. Shaw and Sutherland (1988) report
the use of low-viscosity sweeps (using sea-water) together with frequent wiper trips of
varying length as an appropriate approach in deviated wells. Seawater goes into turbulence
at lower velocity than normal mud, thus picking up cuttings at lower annular velocity. This
also minimizes hole washouts in weaker formations. In large diameter holes, larger drill
pipe has been used, allowing higher flow rate with the same injection pressure. Of course,
a problem here may be that low mud weight is detrimental to borehole stability.

Both experimental studies and field experience indicate (e.g. Sewell and Billingsley,
2002) that hole cleaning problems are most severe around intermediate inclination angles
(40°–60°). It is important to minimize caving production due to borehole instability. If that
problem can be overcome, hole cleaning can be satisfactorily obtained by using appropri-
ate operational procedures. Essentials here are: mud rheology, casing programme, string
rotation, flow rate and general drilling practices. Use of low/high viscosity pills should
be considered with respect to the effect on the equivalent circulation density (ECD), the
effects on surge/swab pressures, and eventually the effect on borehole stability.

9.7.6. Amount and quality of input data

There is an increasing number of reported examples of practical application of stability
predictions to field cases. In addition to those reported above (Section 9.7.1), some ap-
propriate references are Maury and Sauzay (1987), Fuh et al. (1988), McLean and Addis
(1990), Fleming et al. (1990) and Woodland (1990). Almost all examples show that in prac-
tical use, it is difficult to acquire the data needed to perform an analysis with sophisticated
models. This is probably the reason why most analyses are still based on linear elastic the-
ory. The user should however be aware of the limitations given by the elastic analysis and
be able to evaluate the importance of these in relation to the rock type, its strain character-
istics etc. Given the limitations of the model and the available data, one possible approach
is to calibrate the model with field results.

The input data required for borehole stability analysis are shown in Fig. 9.9. These
include earth stresses, pore pressure, and rock properties. When a well is drilled in an un-
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explored area, there is virtually no information available that may permit estimation of the
required parameters. From regional geological knowledge, seismic data, and experienced
trends of variation in rock parameters and stresses with depth, it may still be possible to es-
tablish a first guess of the stability limits. When a few wells are drilled, additional sources
of information also become available, and one may try to design a field scale mechanical
earth model. Clearly, the more data are collected; the better will be the quality of the stabil-
ity prediction. Data collection is however time consuming and expensive, and the possible
gain is often not considered during field planning. Ideally, cores should be taken, and the
failure envelope determined experimentally. For shales, this requires tedious tests, like the
CU triaxial tests described in Chapter 7. Furthermore, extended leak off tests (Chapters 8
and 11) should be performed so that the horizontal stress field (including orientation) is
known. Finally, pore pressure needs to be estimated, which is very difficult in shale sec-
tions. One has to rely on identification of abnormal pressures by studying deviations from
expected trends in MWD or log data. The accuracy of the existing pore pressure prediction
procedures may be questioned. High pore pressures ahead of the bit may in principle be
identified from seismic or sonic while drilling measurements. This is however currently
emerging technology.

If less than required data are available, borehole stability analysis needs to be based on
educated parameter guessing. For this purpose, systematic analysis of available core and
log data may be used to establish correlations between mechanical properties and more
easily measurable index properties. For instance; shale strength shows good correlation to
porosity, to sonic wave velocities, and to hardness by indentation (Horsrud, 2001; see also
Chapter 3). To obtain these parameters, one may use drill cuttings or caving fragments
for more rapid—possibly rig-site—measurements (Santarelli et al., 1998; Nes et al., 1998)
and estimation of shale strength. Held together with drilling parameters and pressure while
drilling (PWD) measurements, and fed into an appropriate model, better estimates of the
mud weight limits for borehole stability may be obtained in quasi-real time.
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Chapter 10

Solids production

When hydrocarbons are produced from a reservoir, solid particles sometimes follow the
reservoir fluid into the well. This unintended byproduct of the hydrocarbon production is
called solids production.

The amount of solids produced can vary from a few grams per cubic metre of reservoir
fluid, which usually represents a minor problem, to catastrophic amounts possibly leading
to complete filling of the borehole. It is estimated that seventy percent of the world’s hy-
drocarbon reserves are contained in reservoirs where solids production is likely to become
a problem at some point in time. The problem is most pronounced in sand reservoirs, hence
sand production has attracted most attention. However, it may also be a problem in chalk
and coal reservoirs.

There is a large variation in the way solids production has been handled—from not con-
sidering it as a problem at all, to not accepting anything but insignificant amounts of solids.
The latter attitude has been spurred by the observation that sand production may result in
serious accidents. However, methods to control solids production involves additional costs
and usually results in reduced production, so that in later years a more relaxed tolerance for
solids production is sometimes considered. When dealing with heavy oil, solids production
is even deliberately provoked in some cases.

We shall here first take a look at some operational aspects related to solids production.
Mechanisms that may cause sand production are then described, followed by discussions
on how to predict sand production. Chalk production is discussed more briefly—which
reflects that the public literature is rather limited on this subject.

10.1. Operational aspects of solids production

10.1.1. Consequences of solids production

Solids production causes a series of problems to the petroleum production. The main types
of problems are:

1. Erosion of the production equipment. This is primarily a safety problem, as well as an
economical one. It is also a typical sand production problem, due to the abrasiveness
of the quartz grains. The erosion caused by a given amount of sand depends strongly
on the velocity of the fluid in the pipeline; typically the amount of eroded material
is proportional to (velocity)n, where n is a number between 2 and 3 (Haugen et al.,
1995). Consequently, the amount of acceptable sand production is much smaller for
a gas well—where the fluid velocity is high—than for an oil well.
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2. Instability of the production cavities and the wellbore itself, which may in extreme
cases result in a complete filling of the borehole (“sand up”) so that the well has to
be abandoned.

3. The necessity to handle large amounts of polluted solids at the rig.

On the other hand, solids production sometimes has the positive effect that it enhances
the productivity of the well (Geilikman et al., 1994). In a production technique known as
CHOPS (Cold Heavy Oil Production with Sand) solids production is actually encouraged,
since the heavy oil is otherwise very hard to produce (Geilikman and Dusseault, 1997;
Dusseault and El-Sayed, 2000).

10.1.2. Well completion and solids control

After a well has been drilled, it is prepared for hydrocarbon production. This process is
called completion. Completion methods which do not involve specific equipment to prevent
or reduce the consequences of solids production are called natural (or barefoot) comple-
tions. Instead, the potential for solids production is carefully evaluated prior to completion,
and care is taken to stay within the limits of solids free production. Natural completion is
cheap and attractive since it does not impair the productivity of the well. However, the
required restrictions on the production in order to avoid solids may prevent economical
production. The use of special equipment in order to prevent solids from being released
from the formation, or to prevent produced solids from following the hydrocarbon flow to
the surface, is called active solids control.

Well completion can be done in many different ways. We shall here restrict our attention
to the most common ones.

The hole may be left open, without casing and cement, which allows the hydrocarbons
to flow freely into the well through the wellbore wall. The inflow area is equal to the
circumference of the borehole times the length of the open hole section within the reservoir.
This simple completion technique requires that the formation is relatively strong and stable.
If not, some support for the borehole wall can be obtained by placing gravel in the hole
(gravel packing). The hydrocarbons are then produced through the gravel, which may also
act as a filter for produced solids. Screens, which are finely meshed metal nets placed in the
open hole, may alternatively be used as filters. The use of screens or gravel packs increases
the completion costs and reduces the productivity of the well. Clogging of these filters
may also be a problem. Other methods for solids control include chemical consolidation—
where the formation is strengthened by a resin injected into the rock.

In weak formations, casing is usually set and cemented to the formation in order to
stabilize the borehole. The casing is then perforated in the reservoir zones, so that the
hydrocarbons can flow into the well (Fig. 10.1). Each perforation is created by a charge
fired through the casing into the formation. This typically generates a cylindrical hole, 1–
2 cm in diameter and 20–50 cm long. The size and shape of the perforations may however
vary considerably with the type of charge used, the formation properties, and the well
pressure relative to the pore pressure in the formation at the time the perforation is created.

It is normally recommended to perforate in underbalance (that is, the well pressure is
lower than the pore pressure—typically a few MPa) in order to clean up the perforations
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Fig. 10.1. Principle sketch of perforations through the casing and the cement.

and to avoid too large reduction of the near-well permeability. Too large underbalance
during the perforation operation may however result in a rapid growth of the perforation
cavities. The inflow area for a perforated zone is equal to the surface area (circumference
times length) of each perforation, times the number of perforations, which is usually in the
order of 10–40 per metre. Gravel packs may also be used in cased and perforated holes, as
filters for produced solids.

A third alternative for well completion is to generate a fracture from the well into the for-
mation, and to fill the fracture with proppants. This technique, called frac packing, creates
a highly permeable slit in the formation, through which the hydrocarbons can be produced.
The technique is particularly useful in low permeability formations, as the effective inflow
area can become very large. It is also used in weak formations, as the large inflow area
allows for production with smaller pressure gradients and correspondingly lower risk for
sand production. Frac packing is extensively used in some regions (like the Gulf of Mex-
ico), while the use is limited in other regions, partly due to the costs involved, and partly
due to the risk and uncertainty involved in the fracturing operation.

10.2. Sand

Observations of sand production can be classified in three types:

1. Transient sand production, where a burst of sand is followed by a continuous produc-
tion of sand with declining rate under constant conditions. Transient sand production
is frequently observed right after a perforation job, after a change in the production
conditions (usually a reduction in the well pressure), and after water breakthrough.

2. Continuous sand production, where sand is continuously produced at a relatively
constant rate.

3. Catastrophic sand production, where sand is produced at such a high rate that the
well is choked.
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Continuous sand production, even only a few grams per m3, may add up to amounts in
the order of hundreds of kilos per metre of the well after several years of production. The
removal of such amounts of sand obviously changes the size and shape of the producing
cavities. For instance, perforations that are initially formed more or less as separate, cylin-
drical holes (Fig. 10.1), may eventually merge and form larger cavities behind the casing.

10.2.1. Necessary and sufficient conditions for sand production

It is generally accepted that sand production can not occur from intact rock, even if it is
poorly consolidated, since a flowing fluid does not normally provide sufficient force to
pull sand grains out of an intact rock. This is illustrated by a model example in the next
section. Sand production may thus occur only if the rock in the vicinity of the producing
cavity is unconsolidated, or has been damaged. Such damage may be caused by the stress
concentrations that occur around open holes in a stressed rock, as described in Chapter 4.
Onset of sand production is therefore closely related to stress induced damage of the rock.
Criteria for failure of the rock around production cavities are discussed in Section 10.2.3.

Although unconsolidated or damaged rock is a necessary condition for sand production,
it is not necessarily a sufficient condition. Post failure stabilization of a production cavity
may occur after some initial sand production, due to for instance a change in the cavity
shape or increased permeability in the damaged region. It has also been shown that dam-
aged rock may sometimes form stable sand arches that allow for sand free production at
significantly higher drawdowns than the rock failure conditions indicate. Criteria describ-
ing the stability of sand arches are described in Section 10.2.4. When the conditions exceed
the stability limit for the sand arches, sand will definitively be produced into the well.

Monitoring of sand production is usually based on measurements or observations at
the surface. However, the produced sand will only reach the surface if the well flow is
sufficiently strong to carry the sand grains all the way up through the well. Thus, sand
transport in the well is also a significant part of the sand production problem, however that
part will only be discussed briefly here (Section 10.2.6).

Prevention of sand production problems is most effective if it is done or planned during
well completion. Thus it is essential to be able to predict possible sanding problems before
the well completion starts. To an increasing extent, this also involves prediction of the rate
of produced sand in the cases where sand free production is unachievable or economically
unfavourable. A model describing sand rate is described in Section 10.2.5, while sand
prediction is discussed in Section 10.2.7.

10.2.2. Forces on a sand grain

Consider a sand grain of diameter dg squeezed in between its neighbouring grains at the
wall of a cylindrical cavity, as illustrated schematically in Fig. 10.2. The force Fr that
is needed to remove the grain can be estimated as the sum of the shear forces needed to
induce shear failure in the four contact planes at the side of the grain, (given by for instance
the Mohr–Coulomb criterion) plus the force needed to induce tensile failure in the contact
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Fig. 10.2. Sand grain at the wall of a cylindrical cavity.

plane behind the grain (given by the tensile failure criterion). On average, this is given as

Fr = π
(
dg

2

)2[
4S0 + μ(2σ ′

z + 2σ ′
θ )+ T0

]
(10.1)

where T0 and S0 are the tensile strength and the cohesion, respectively, μ is the coefficient
of internal friction (see Sections 2.2 and 2.3), and σ ′

z and σ ′
θ are the effective axial and

tangential stresses, respectively, at the cavity wall.
The hydrodynamic forces pulling on the grain are caused by the fluid flowing through

the rock. An estimate of the forces can be obtained as follows: The force F acting on a
volume element of the rock due to a fluid flowing through it is F = −A�pf, where A is
the cross-sectional area through which the fluid is flowing, �x is the length of the volume
element, and �pf is the pore pressure drop over �x. From Darcy’s law (Eq. (1.229)) we
derive that F = −A�pf = (ηf/k)Q�x. An expression for the permeability k of a porous
rock is given by the Kozeny–Carman equation (Carman, 1956; see also Dullien, 1992; an
alternative version of this equation is given in Eq. (12.63)):

k = 1

180

φ3

(1 − φ)2 d
2
g (10.2)

The number N of grains in this volume element is roughly given as the volume of solid
material in the element which is (1 −φ)A�x, divided by the volume of one grain which is
(1/6)πd3

g . From these considerations we may deduce that the average hydrodynamic force
Fh acting on one grain within the volume element is

Fh = F

N
= 30πηf

1 − φ
φ3

Q

A
dg (10.3)

(As the grain we are considering is placed at the surface of the rock, we might alternatively
consider the hydrodynamic forces acting on a free particle. The result, as shown by Charlez
(1997), is somewhat different, however the following conclusion is the same. See also
Vardoulakis, 2004.)

Fig. 10.3 compares the forces on a grain in a very weak rock (S0 = 1 MPa). It is assumed
that the grain is only attached by cohesional forces (which is probably the case for some
of the grains). The figure shows that the hydrodynamic forces Fh increase with the fluid
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Fig. 10.3. Hydrodynamic force Fh acting on a sand grain, compared to the forces Fr needed to remove the grain.
Estimated from Eqs. (10.1) and (10.3); T0 = 0, μ = 0.5, S0 = 1 MPa, σ ′

r = σ ′
θ = 0, ηf = 1 cP, φ = 0.2. Solid

lines: dg = 100 µm, dashed lines: dg = 10 µm.

fluxQ/A, however for the typical range shown here, they remain for the most part several
orders of magnitude smaller than the force Fr needed to pull the grain away. Thus, the
hydrodynamic forces are not able to destroy a competent rock and induce failure on their
own. The major role for the hydrodynamic forces is to remove grains from unconsolidated
or damaged rock, and to transport loose material into the well.

10.2.3. Critical drawdown for cylindrical cavities

As the fluid flow is normally not able to destroy the rock and induce sand production, a nec-
essary condition for sand production is that the rock is unconsolidated or has been damaged
by some other mechanism. Such damage is usually caused by the effective stresses in the
vicinity of the producing cavity. These depend on several factors, in particular the far-field
in situ stresses, the pore pressure, and the geometry of the producing cavity. Since the stress
field around a cavity is not homogeneous, the effective stresses in the vicinity of the cavity
may also depend on the rock properties.

We shall in this paragraph take a look at the criteria for sand failure around a producing
opening, caused by the in situ stresses. We shall restrict our attention to cylindrical holes—
which may be seen as representative for a perforation or an open hole (that is, a well with
no casing), and to (semi-)spherical holes—which may represent a perforation after some
sand has been produced. A semispherical hole may also represent the tip of a cylindrical
perforation.
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When working with production, it is often convenient to use drawdown rather than well
pressure to describe the pressure conditions in the well. Drawdown pd is defined as the
difference between the pore pressure pfo far from the well and the well pressure pw, that is

pd = pfo − pw (10.4)

When the well pressure has been reduced so much that the well starts to produce sand, we
have reached the critical drawdown pc

d for sand production in the well. Some expressions
for the critical drawdown are derived and discussed in this paragraph.

Shear failure

The condition for shear failure at the wall of a cylindrical hole can be derived from ex-
pressions for the stresses at the cavity wall combined with a failure criterion, as shown in
Chapter 4.

Consider first the simple case where the stress (σ ′
h) is isotropic. During production, the

pore pressure at the cavity wall is pf(Rc) = pw, the smallest principal stress is σr(Rc) =
pw, and the largest principal stress is (see Eq. (4.118))

σθ (Rc) = 2σh − pw − 1 − 2νfr

1 − νfr
α
(
pfo − pf(Rc)

)
(10.5)

Failure according to the Mohr–Coulomb failure criterion, Eq. (2.22), requires that

σθ (Rc)− pf(Rc) = C0 − (
σr(Rc)− pf(Rc)

)
tan2 β (10.6)

Solution of these equations in terms of pw gives us the lower well pressure limit (pw,min)

where failure is initiated.
Critical drawdown pc

d for the cavity is defined as

pc
d = pfo − pw,min (10.7)

Assuming that the rock is sufficiently soft so that the Biot constant α ≈ 1, the solution of
Eqs. (10.5) and (10.6) can be expressed as:

pc
d = (1 − νfr)(C0 − 2σ ′

h) (10.8)

Here we have introduced σ ′
h = σh − pfo as the effective stress far from the well. Note that

Eq. (10.8) is essentially the same as Eq. (4.120), only that the failure condition is expressed
in terms of pc

d rather than pw,min.
Fig. 10.4 illustrates the shear failure criterion Eq. (10.8) graphically. Although it is based

on a very simplified model, the picture is qualitatively in agreement with observations. It
shows that a minimum formation strength is required in order to prevent failure of the rock
during production. It also shows that the critical drawdown depends on the effective stress
far from the well, in such a way that pc

d is reduced when the reservoir is depleted, that is
when pfo is reduced. This implies that the probability for sand production increases as the
reservoir is being produced under constant drawdown.

Consider next a situation where the principal in situ stresses are all different. The stabil-
ity of the producing cavity (whether it is an open hole or a perforation) now depends on
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Fig. 10.4. Characteristic relationship between critical drawdown pc
d and uniaxial compressive strength C0 for a

cylindrical cavity.

the orientation of the cavity relative to the in situ stresses. The stresses at the cavity wall
for a non-flow situation can be obtained from Eqs. (4.76)–(4.88), while Eq. (4.59) tells us
to subtract (pfo −pw)((1 − 2νfr)/(1 − νfr))α from the tangential stress in order to account
for the pore pressure gradient. Introducing these expressions into a failure criterion, for
instance the Mohr–Coulomb criterion (2.22), assuming that α ≈ 1, and following the same
procedure as described in Chapter 4, we obtain the critical drawdown for any orientation
of the cavity.

In general, the result can not be expressed on an explicit form. However, if the cavity is
parallel to one of the principal in situ stress directions, the result may be written as:

pc
d = (1 − νfr)(C0 − 2σ ′

is) (10.9)

The effective in situ stress σ ′
is is given by

2σ ′
is = 3σ ′

max⊥ − σ ′
min⊥ (10.10)

where σ ′
max⊥ and σ ′

min⊥ are the maximum and minimum effective principal stresses, re-
spectively, in the plane perpendicular to the cavity axis (see also Section 9.2).

For completeness, we should also consider the possibility that the axial stress is the
largest principal stress at the critical point on the cavity wall (ref. Case b in Table 4.1).
This gives the criterion

pc
d = 1 − νfr

νfr
(C0 − σ ′

is,b) (10.11)

where

σ ′
is,b = σ ′‖ + 2νfr(σ

′
max⊥ − σ ′

min⊥) (10.12)

and σ ′‖ is the principal stress parallel to the cavity axis (see Section 9.2). The criterion
that gives the lowest critical drawdown, either Eq. (10.9) or Eq. (10.11), is the relevant
one to use at any time. Note however that criterion (10.11) is unlikely to be the relevant
one except for rather special stress conditions, and that this criterion has no relevance if
νfr � 0 (except for the situation that C0 < σ

′
is,b, in which case the cavity is unstable at zero

drawdown).



SAND 349

As a rule of thumb, we can say that stress anisotropy in the plane normal to the cavity
axis reduces the critical drawdown. Consider as an example a vertical well in a formation
where σv > σH > σh. For a cavity parallel to σH (inclination i = 90°, azimuth a = 0) we
have according to Eq. (10.9)

pc
d = (1 − νfr)(C0 − 3σ ′

v + σ ′
h) (10.13)

while for a cavity parallel to σh (i = 90°, a = 90°) we have

pc
d = (1 − νfr)(C0 − 3σ ′

v + σ ′
H) (10.14)

We see that pc
d is largest for the cavity parallel to σh, which has the smallest stress

anisotropy in the plane normal to the cavity axis. Thus, from a vertical well it is preferable
to orient the perforations parallel to σh in order to obtain the largest critical drawdown.
Furthermore, Eqs. (10.9) and (10.10) tell us that from a horizontal well parallel to σh it
is preferable to perforate vertically, provided that σv > σH. The examples are plotted in
Fig. 10.5.

A complicating factor considering the stability of perforations is that the presence of the
well itself disturbs the stress field at the perforation. Note in particular that the perfora-
tions we identified as the most preferable ones in order to obtain largest critical drawdown
for the vertical well (Fig. 10.5) are positioned in the parts of the borehole wall where we
may expect to find breakouts around the well, if the conditions for such failure have been
fulfilled at some stage (see Section 4.5.3). If we have reasons to believe that such break-
outs have been formed, the perforations should preferably be placed outside the breakout
sectors.

In addition, the presence of other nearby cavities may affect the stress field to some
extent and reduce the stability of a perforation. A minimum distance between perforations
is therefore recommended.

In Chapter 4 it was shown that plastic deformation of the rock tends to stabilize a hole,
so that it can take larger loads than the purely elastic solutions predict. To see how this
affects the critical drawdown, we assume that the material behaves according to a linear
elastic/perfectly plastic model as described in Chapter 4, and that failure occurs when the
plastic strain λ reaches a critical limit λc. Although this model is obviously a simplification
of the true rock behaviour, it captures fairly well the characteristics of soft rocks. Based on

Fig. 10.5. Examples of preferred orientation for perforations, in a formation where σv > σH > σh. Perforations
with highest critical drawdown are drawn as solid lines, perforations with lowest critical drawdown are dotted.
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expression (4.162) for λ, and the assumption that λc is so small that we can ignore higher
order terms, we find that the criterion for failure in an isotropic stress situation becomes

pc
d = 1

2
(C0 − 2σ ′

h)+ λc!c (10.15)

where

!c = 4C0(λ+G)
2C0

λ+G
G

− C0−2σ ′
h

ln Re
Rw

≈ 2G (10.16)

Note that Eq. (10.15) does not become exactly equal to Eq. (10.8) when λc = 0. This is
because Eq. (10.8) is based on the Mohr–Coulomb criterion, while Eq. (10.15) is based on
the Tresca criterion.

We may combine the results obtained above into a generalized equation for critical draw-
down

pc
d = A1(C0 − 2σ ′

is)+ A2 (10.17)

where A1 is a non-dimensional parameter depending on the Poisson’s ratio and the failure
criterion, while A2 is a parameter with the dimension of stress, depending on the plasticity
of the rock. In practice A1 and A2 may be empirical constants. It has been shown (van den
Hoek et al., 2000a, 2000b, 2000c) that A2 also depends on the size of the cavity. Due to
the increasing difficulty in rotating sand grains at the cavity wall for larger grain diameter-
to-cavity diameter ratios, the smaller cavities can take larger plastic strains before failing,
and therefore A2 is larger for the smaller cavities.

An alternative approach is to apply strength data from thick-walled cylinder tests (TWC)
rather than the unconfined compressive strength (C0) in the critical drawdown criterion.
The philosophy of this approach is that nonlinear elasticity and plasticity are implicitly
included in the TWC results (Veeken et al., 1991). The critical drawdown can still be
computed from Eq. (10.17), with the modification that

C0 + A2

A1
→ sCTWC (10.18)

where CTWC is the collapse pressure of the thick-walled cylinder. By introducing
Eq. (10.18) into Eq. (10.17) we obtain an expression for the critical drawdown of a cylin-
drical cavity, in terms of thick-walled cylinder strength:

pc
d = A1(sCTWC − 2σ ′

is) (10.19)

The constant s accounts for the effects of size and the ratio between the outer and inner
diameter of the thick-walled cylinder, as the TWC tests conducted in the laboratory do
not exactly match the field conditions on these points. Willson et al. (2002) proposed to
use s = 3.1 when CTWC is derived from tests on standard 1 1

2
′′

outer diameter, 1
2
′′

inner
diameter, 3′′ long TWC samples.

Although perforations are most conveniently made as cylindrical holes, this is not the
most stable shape for a producing cavity. In Chapter 4, the stresses at the wall of a spherical
cavity were given. From these results, in combination with the Mohr–Coulomb failure
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Fig. 10.6. Critical drawdown versus rock strength, for cylindrical and spherical cavities.

criterion, we find that the critical drawdown for a semi-spherical cavity in an isotropic
stress field is

pc
d = 1 − νfr

1 + νfr
(2C0 − 3σ ′

h) (10.20)

This expression corresponds to Eq. (10.8) for a cylindrical cavity. Both expressions are
illustrated graphically in Fig. 10.6. We see that the spherical cavity is more stable than
the cylindrical cavity, which tells us that the cylindrical shape typically created by the
perforation charge need not be the most stable one. Thus it is possible for a cavity that
starts to produce sand at a given drawdown, to obtain a more stable shape and eventually
stop producing sand at this drawdown level. This is one possible explanation for a typi-
cal observation of transient sand production, where sand production is initiated when the
drawdown is increased, and subsequently stops when the drawdown has been kept constant
for a while.

Tensile failure

Another possible failure mode is tensile failure. At the cavity wall, the radial stress and
the pore pressure are both equal to the well pressure, which implies that the effective ra-
dial stress is zero at the cavity wall. If the pore pressure gradient is larger than the radial
stress gradient at the cavity wall, the effective radial stress will become negative, and the
condition for tensile failure may be fulfilled at some point inside the wall. Thus, a mini-
mum criterion for tensile failure to occur is that the pore pressure gradient is larger than
the radial stress gradient at the cavity wall, that is

∂pf

∂r

∣∣∣∣
r=Rc

>
∂σr

∂r

∣∣∣∣
r=Rc

(10.21)

If the tensile strength is larger than zero, this criterion may not be sufficient for tensile
failure to occur.

The normalized drawdown pressure gradient (Morita et al., 1989a, 1989b), is defined as

gpn = Rc
∂pf

∂r

∣∣∣∣
r=Rc

(10.22)
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where Rc is the radius of the cavity. The critical drawdown pressure gradient gcpn, is
the largest possible normalized drawdown pressure gradient without sand failure, thus
Eq. (10.21) expresses that

gcpn = Rc
∂σr

∂r

∣∣∣∣
r=Rc

(10.23)

Again we consider the simple case of a cylindrical cavity in a formation where the stress
is isotropic. The radial stress is given by Eq. (4.55). Taking the derivative with respect to r
we find that the critical drawdown pressure gradient is given as

gcpn = 2

[
σh − pw − (pfo − pw)α

1 − 2νfr

2(1 − νfr)

]
(10.24)

By combining Eqs. (4.62) and (10.22) we may find an expression for gpn during stable
production. The results shows that it is highly unlikely that gpn will reach the critical limit
(10.23).

Van den Hoek et al. (2000a) concluded—based on modelling accounting for strain lo-
calization and grain rotations—that tensile failure may only occur in small holes like
perforations, not in open holes. The reason for this is that shear failure will always pre-
cede tensile failure for a large cavity like an open hole. Due to the size effect, a small
cavity like a perforation has a much higher threshold for shear failure, hence tensile fail-
ure may occur first, however even for small cavities it will only just precede shear failure.
Van den Hoek et al. (2000a) found support for their conclusion in laboratory experiments
showing no correlation between the (non-)occurrence of sand production and the flow rate
(which controls the pore pressure gradient).

However, in a transient period when pw is reduced, the pore pressure gradient at the
cavity wall can be much larger. During start-up of the production the well pressure is
lowered, and the pore pressure gradient at the cavity wall will be significantly larger for
a period until stable conditions are established. Thus there may be a critical rate for well
pressure reduction in order to prevent sand production in the start-up period (Santarelli,
1994).

To find an expression for the critical well pressure reduction rate, we need to consider
the pore pressure distribution around the cavity, which is given by the pressure diffusion
equation

∂pf

∂t
= CD∇2pf (10.25)

CD is the diffusion constant (see Eq. (1.241)). The boundary conditions are given by pw
and pfo. A complete solution of this equation is somewhat complicated. However, for the
situation where the fluid pressure at the cavity wall is changed abruptly from pfo to pw at
time t = 0, a rough approximation for the transient time range 0 < t < R2

c/CD is given
by

pf(r, t) ≈ pw + (pfo − pw)(1 − e−x), t � 0 (10.26)

where

x = r − Rc√
πCDt

(10.27)
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Consider a situation where the well pressure is reduced from pw = pfo to the production
level ppr at a constant rate ro = −dpw/dt over a time to = (pfo − ppr)/ro. The pore
pressure gradient at the cavity wall at time to (which is the time when the gradient is
largest) is then given as

gpn(to)

Rc
=
[
∂pf

∂r

]
r=Rc
t=to

=
∫ to

0

∂

∂r

[
dpf

dpw

]
dpw

dt
dt ≈ 2

pfo − ppr√
πCDto

(10.28)

Remembering that failure occurs if gpn > g
c
pn, we find that tensile failure may be triggered

during start-up of the production if the well pressure is reduced so quickly that

to <
4R2

c

πCD

[
pfo − ppr

gcpn

]2

≈ 4R2
cηf

πk(Kfr + 4
3Gfr)

[
pfo − ppr

gcpn

]2

(10.29)

Here we have introduced the approximate expression (1.246) for the diffusion con-
stant CD. Note that the critical value for to is proportional to the inverse of the permeability,
hence the lower the permeability is, the longer the start-up period should be in order to
avoid stability problems. The critical value for to is also proportional to R2

c , hence this
problem is more of a concern for open holes than for perforations.

We now have two criteria, one related to drawdown (Eqs. (10.8)–(10.15)) and one re-
lated to the pore pressure gradient which limit the range for sand free production. The
conditions are illustrated graphically in Fig. 10.7. This figure is an elementary version of a
sand production stability diagram (Morita et al., 1989a, 1989b).

In addition to the failure mechanisms discussed above, a different mechanism has been
observed in laboratory tests on sandstones with porosity above 20 per cent. This mecha-
nism involves the formation of a slitlike failure zone that grows from the tip of the initial
shear failure zone (Fig. 10.8). The growth of such a failure zone may be explained as fol-
lows: At the tip of the slit the material fails in compression (see Chapter 2). If the material
is contractant, which may be the case for high porosity rocks, the failed material takes up

Fig. 10.7. Stability diagram for production cavities.
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Fig. 10.8. CT scan showing a slitlike failure zone grown from a cylindrical perforation in a sand production test.
Courtesy of SINTEF Petroleum Research.

less space than it did before failure. The failed material is therefore only loosely attached
and may easily be washed away by the flowing fluid. When the failed material is washed
away, the condition for such failure is maintained at the tip of the slit. The slit may there-
fore grow rapidly, resulting in significant sand production. The formation of such slitlike
failure zones has been associated with compaction bands, which are zones of localized
compactive failure (Haimson and Kovacich, 2003). The importance of this mechanism in
field situations is however still unclear.

The formation of a stable, yet continuously growing “wormhole”, may take place under
special conditions, for instance at the interface between soft sand and a shale layer (van
den Hoek et al., 2000c). This mechanism implies improved productivity and reduced sand
production, however it can only take place in the presence of a stronger, supporting rock.

10.2.4. Stability and collapse of sand arches

Observations have shown that it is possible to maintain stable sand arches while producing
from unconsolidated sand (Hall and Harrisberger, 1970; Bratli and Risnes, 1981). Sand
arches may be formed when damaged rock or loose sand is pushed towards a small opening
like the perforated holes in the casing. Highly damaged rock which is still able to form a
stable structure around a cavity—possibly assisted by capillary forces—also represents a
sand arch.

Eventually, even the sand arches may fail, however. Sand production in the form of
collapse of thin inner shells around cavities in wet, unconsolidated sand was observed by
Bratli and Risnes (1981). They concluded that the sand production was initiated when
the criterion for tensile failure, Eq. (10.21), was fulfilled at the cavity wall. We shall here
outline the derivation of Bratli and Risnes for a spherical cavity. The model they studied is
shown schematically in Fig. 10.9.

Although the partial saturation gives the sand a finite cohesion (see Section 2.6.2) the
material surrounding the cavity can be considered to be in a plastified state. The radial
stress gradient can be derived from one of the equations of equilibrium in spherical coor-
dinates (Eq. (4.167)) giving

∂σr

∂r
= 2

σθ − σr
r

(10.30)
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Fig. 10.9. Schematic illustration of a spherical production cavity.

We further assume that the yield criterion is defined by the Mohr–Coulomb criterion, which
implies that the radial and tangential stresses are related by (Eq. (2.22)):

σθ − pf = C0 + (σr − pf) tan2 β (10.31)

At the cavity wall, pf = pw = σr , thus according to Eq. (10.31)

σθ − σr = C0 (10.32)

Combining Eqs. (10.30) and (10.32), we have at the cavity wall

∂σr

∂r

∣∣∣∣
r=Rc

= 2
C0

Rc
(10.33)

By introducing Eq. (10.33) into Eq. (10.23) we find that the critical pressure gradient gcpn
at which tensile failure will occur is given as

gcpn = 2C0 (10.34)

This is essentially the Bratli and Risnes’ (1981) stability criterion.
The corresponding criterion for a cylindrical cavity is (Risnes et al., 1982)

gcpn = C0 (10.35)

which again shows that spherical cavities are more stable than cylindrical ones.
Eq. (10.34) is often expressed in terms of drawdown rather than flow rate. This is a valid

approach in a situation with stable production, as drawdown and pore pressure gradient are
then closely related. By combining Eq. (4.178) with Eqs. (10.22) and (10.4), we find that
Eq. (10.34) can be expressed as

pc
d = 2C0 = 4S0 cosϕ

1 − sinϕ
(10.36)

This is the critical drawdown for tensile failure of a spherical sand arch under stable pro-
duction. The right part of Eq. (10.36) is derived from the relation between cohesion, friction
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angle and unconfined strength (Eq. (2.21)), and has been included since this form of the
criterion is frequently used.

Note the line of arguments used in the derivation of Eq. (10.34) (and Eq. (10.36)): First,
the material near the cavity is assumed to be in a plastified state due to shear failure. Next,
sand production is provoked by tensile failure of the plastified material at the cavity wall.

Thus, Eq. (10.36) describes the stability limit for a spherical sand arch, formed by plas-
tified rock. Beyond this limit, sand will be produced. Note that Eq. (10.20), which predicts
a lower critical drawdown than Eq. (10.36), only describes the onset of shear failure for
a spherical cavity surrounded by intact rock. Beyond that limit, sand may be produced
from a cavity of this shape, since rock failure is a necessary, but not necessarily sufficient
requirement for sand production.

For a gas producing cavity, the pore pressure distribution is somewhat different since
gas is a highly compressible fluid. This affects the pore pressure gradient at the cavity wall,
and hence it also affects the critical drawdown. Weingarten and Perkins (1995) derived a
generalized version of Eq. (10.36) which includes the effect of fluid compressibility. The
generalized equation can only be expressed on implicit form:

1

m+ 1

[
pc

d − pfo

(
1 −

(
pfo

pfo − pc
d

)m)]
= 2C0 (10.37)

The exponent m specifies the relation between the fluid density and the fluid pressure:

ρf = γpmf (10.38)

where the gas density coefficient γ is a constant. For an incompressible fluid, which we
here can assume for water or oil, m = 0 and Eq. (10.37) reduces to Eq. (10.36). For an
ideal gas, m = 1 and Eq. (10.37) becomes

pc
d = 2C0 + pfo −

√
4C2

0 + p2
fo (10.39)

We notice that fluid compressibility reduces the critical drawdown.
The expressions above are based on the assumption that the fluid flow is following

Darcy’s law (Eq. (1.229)). This assumption do not hold for flow into high rate gas wells,
due to the high flow rates. Ong et al. (2000) derived an expression corresponding to
Eqs. (10.36) and (10.37) for non-Darcy flow. The somewhat complicated expression is
shown in Appendix D.4.1. It is found that non-Darcy flow reduces pc

d significantly, hence
it can be overly optimistic to neglect the influence of this effect in high rate gas wells.

Note that the in situ stresses do not appear at all in the stability criteria for sand arches
(Eqs. (10.34) and following). This is due to the plastified state of the material, which re-
laxes the stresses near the cavity wall. Although the in situ stresses are still important for
inducing plastification, they obviously play a less important role for the onset of sand pro-
duction according to these criteria than shear failure criteria like Eq. (10.17) indicate. For
wells in HPHT reservoirs, this difference could be significant, as the conventional models
based on shear failure alone tend to be overly conservative in their estimates of the onset
of sanding under such conditions (Vaziri et al., 2002).
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The impact of water

The sand in a hydrocarbon reservoir will normally be partly water saturated and waterwet-
ting, while the remaining pore space is filled with hydrocarbons. This implies that the sand
will have an additional cohesion due to capillary forces, as described in Chapter 2. Thus,
even unconsolidated sand reservoirs may have sufficient strength to build stable arches and
resist the drag forces of the flowing fluid.

Water breakthrough into a well changes the water saturation of the rock near the well.
This tends to reduce the capillary forces and thereby also the strength of the partially
water-saturated reservoir sand. Consequently, the conditions for sand failure may become
fulfilled. This may explain the common observation that sand production accompanies wa-
ter breakthrough (Morita et al., 1989b).

It has been claimed, however (Skjærstein et al., 1997), that sand production following
water breakthrough is typically a temporary problem, and that the well may even produce
sand free at a larger drawdown some time after water breakthrough than it did before. Pos-
sible explanations of such observations could be that the water breakthrough only releases
loose sand that has been trapped in the cavities by capillary forces, or that the cavities may
obtain a more stable shape after the production of some sand.

Other observations (Willson et al., 2002) indicate that sand production increases with
water cut up to about 50%, and declines towards the initial (no water) level when the water
cut approaches 100%.

10.2.5. Rate of produced sand

Even when the conditions for sand production are fulfilled, the sand may be produced at
such a low rate that it is still acceptable from an operational point of view. It is therefore of
interest to be able to predict not only the conditions for onset of sand production, but also
the rate of sand production given that it occurs.

Based on a qualitative analysis, Morita (1994) stated that the rate of sand production
depends on three factors: (1) how much the well pressure is reduced below the critical
sand production pressure, (2) fluid flow rate and viscosity, and (3) cementation.

Since then, various numerical models have been developed for the prediction of sand
production rate. The topic is still under development, however. We shall here present a
simplified, analytical model (Fjær et al., 2004) for continuous sand production, based on
a numerical model by Papamichos et al. (2001). The model is describing sand production
from the rock around a cavity that has been brought beyond the onset of sand production.

Consider a volume element of the rock in the vicinity of the cavity. If sand is being pro-
duced from this element, the porosity increases. Mathematically this relation is described
as

∂msand

∂t
= ρs

∂φ

∂t
(10.40)

Here msand represents the (cumulative) mass of the sand being produced per unit volume
of rock, and ρs is the density of the sand grains.
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We now assume that the erosion is driven by the flowing fluid in such a way that the rate
of produced sand ∂msand/∂t is proportional to the hydrodynamic forces (Eq. (10.3)) acting
on the grains. This implies that the rate of produced sand is proportional to ηf(1−φ)φ−3qfl,
where qfl = Q/A is the fluid flux. We may also assume that a minimum force is required
in order to uphold the erosion process, hence no sand is produced if the fluid flux is lower
than some critical limit qcr

fl . Thus, we have established a general equation for sand erosion:

∂msand

∂t
= λsandηf

1 − φ
φ3

(qfl − qcr
fl ) (10.41)

The sand production coefficient λsand has the dimension of s/m3. The combination of
Eqs. (10.40) and (10.41) gives us a differential equation for the porosity of the eroding
rock. The solution is a little complicated, so we settle here for the approximate solution

φ ≈ φo
[

1 + 4
λsandηf

ρsφ4
o

(qfl − qcr
fl )(t − to)

] 1
4

(10.42)

given the boundary condition that φ = φo (initial porosity) at time t = to. (Note that
this approximation does not obey the restriction φ � 1 for sufficiently large values of
t − to, however the process will be truncated before this becomes a problem, as will be
seen below.)

Next, we need to identify the volume of the rock that is in a state where it will produce
sand. Considering a cylindrical cavity, we assume that the rock can be described by a
simple linear elastic/perfectly plastic model as described in Sections 4.6.1 and 10.2.3. The
plastic strain at a point r from the cavity centre can be expressed as (Eq. (4.162)):

λp ∝
(
Rp

r

)2

− 1 (10.43)

The radius Rp of the plastic zone is given by Eq. (4.136), and can be expressed as

Rp ∝ Rc e
pd
C0 (10.44)

using Eq. (10.4).
Sand is produced if a part of the rock has been deformed beyond its critical plastic strain

limit λc (see Section 10.2.3). This is the case for a zone of the rock inside a critical radius
Rcr. The situation is illustrated in Fig. 10.10.

Onset of sand production occurs when pd = pc
d. At this point, we also have Rcr = Rc.

We may deduce from Eq. (10.43) that Rcr ∝ Rp, hence we find

Rcr = Rc e
pd−pc

d
C0 ≈ Rc

(
1 + pd − pc

d

C0

)
(10.45)

The approximation is valid if the drawdown exceeds the critical value by a relatively small
amount, such that pd − pc

d � C0. The volume of the sand producing zone, Vsp, can now
be expressed as

Vsp = πL(R2
cr − R2

c ) ≈ 2πLR2
c
pd − pc

d

C0
(10.46)

where L is the length of the cavity.
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Fig. 10.10. Schematic illustration of the plastified zone and the sand producing zone around a cavity.

The erosional process that gradually increases the porosity of the sand producing zone
will also reduce its ability to carry load. We shall here account for this erosional-mechanical
coupling by simply assuming that the load carrying ability of the zone remains constant
until the porosity has reached a critical value φcr. At that point, the zone collapses and the
remaining solids in the zone are produced in one burst.

The time �tcr, from the erosional process starts until φ = φcr and the zone collapses,
can be found from Eq. (10.42) and may be written as:

�tcr = τs
(
Q

Aqcr
fl

− 1

)−1

(10.47)

The inflow areaA = 2πLRc is the surface area of the cavity, andQ = Aqfl is the fluid flow
rate for the cavity. The characteristic time constant τs for the erosion process is defined as

τs = ρs(φ
4
cr − φ4

o)

4λsandηfq
cr
fl

(10.48)

The collapse of the sand producing zone implies that the radius of the cavity increases,
from Rc to (1 + a)Rc, where a can be found from Eq. (10.45):

a = Rcr

Rc
− 1 ≈ pd − pc

d

C0
(10.49)

The stresses around the cavity are now redistributed, and the situation is the same as it was
at t = to (Fig. 10.10), except that the radii have been scaled:

Rc → (1 + a)Rc; Rcr → (1 + a)Rcr; Rp → (1 + a)Rp (10.50)

Thus, the erosion process starts on a new cycle.
The predictions of this model in terms of continuous erosion (Eqs. (10.40) and (10.42))

and the repeated collapses of the sand producing zone (Eqs. (10.46) and (10.47)), are illus-
trated in Fig. 10.11. It is seen that the predicted sand production is a cyclic process, where
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Fig. 10.11. Predicted cumulative sand production from a perforation. Parameter values: Q = 3.77 l/min,
(pd − pc

d)/C0 = 0.04, λsand = 200 s/m3, φo = 0.2, φcr = 0.3, ρs = 2.65 g/cm3, Rc = 5 mm, L = 0.5 m,
ηf = 1 cP, qcr

fl = 0.001 m/s. The dashed line is an approximate average, with slope given by Eq. (10.51).

a period of relatively low sand production due to erosion is followed by a burst of sand
caused by the collapse of the sand producing zone.

The average sand production rate Ṁsand can be estimated as the amount of sand in the
sand producing zone (=Vspρs(1 − φo)), divided by the time �tcr between each collapse.
From Eqs. (10.46) and (10.47) we find that the average sand production rate is given as

Ṁsand = Msand
2

τs

pd − pc
d

C0

(
Q

Aqcr
fl

− 1

)
(10.51)

where

Msand = πLR2
cρs(1 − φo) (10.52)

is the cumulative amount of sand produced from the cavity, plus the amount of sand initially
removed to create the cavity.
Ṁsand has the dimension of kg/s and corresponds to the slope of the dashed curve shown

in Fig. 10.11. This simplified model reproduces several of the features of sand production
observed in laboratory tests (Papamichos et al., 2001):

• Sand is typically produced in bursts—only on a longer time scale the sand production
appears as continuous.

• The average sand production rate increases with increasing flow rate.

• The average sand production rate increases with increasing drawdown, above the crit-
ical drawdown limit.

We also notice that the model largely confirms the predictions of Morita (1994) (listed
at the beginning of this section) as Ṁsand explicitly depends on (1) pd − pc

d, (2) Q and ηf
(through τs), and (3) C0.
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Note that the sand production rate changes with time, since Rc increases as the cavity
wall is eroded away. We may estimate the long term development of Ṁsand by establishing
an expression for the development of Rc.

We assume that the drawdown pd is kept constant. Note that the surface area A =
2πLRc also increases with time. On the other hand, Q which is proportional to A/Rc
(see Eqs. (4.61) and (4.62)) is approximately constant as pd remains constant. By taking
the change in Rc during one erosion cycle—which is�Rc = aRc—and divide by the time
�tcr between each collapse, we find that the average rate of change for Rc can be expressed
as

dRc

dt
= �Rc

�tcr
= aRc

τs

(
Q

Aqcr
fl

− 1

)
= a

τs

[
(b + 1)Rco − Rc

]
(10.53)

where Rco is the cavity radius at the onset of sand production, and the dimensionless para-
meter b is defined as

b = Q

Aoq
cr
fl

− 1 (10.54)

Ao = 2πLRco is the surface area of the cavity at the onset of sand production. b is a
constant as long asQ is constant, while a will change with time if pc

d changes—for instance
as a result of depletion.

Integration of Eq. (10.53) gives us an expression for Rc as a function of time

Rc = Rco
[
1 + b(1 − e−ta/τs)

]
(10.55)

where

ta =
∫ t

0
a(t) dt (10.56)

Introducing expression (10.55) into Eq. (10.51), we find that the sand rate as a function of
time can be expressed as:

Ṁsand = Mo
sand

2ab

τs

[
1 + b(1 − e−ta/τs)

]
e−ta/τs (10.57)

where

Mo
sand = Msand(t = 0) = πLR2

coρs(1 − φo) (10.58)

The time development of the sand rate Ṁsand is illustrated in Fig. 10.12. It is here as-
sumed that a is constant, so that ta = at . Depending on the time scale and the amount of
sand produced, the model predicts that sand production will appear either as a time lim-
ited event (transient sand production), as a stable process with a relatively constant sand
production rate (continuous sand production), or as an accelerating process reaching dis-
astrous proportions (catastrophic sand production). Note that a—which depends on the
drawdown—affects the time scale, while b—which depends on the flow rate—affects the
total amount of sand produced.

The cumulative amount of sand produced up to a given point in time can be found by
integration of Eq. (10.57). The total amount of sand (MT

sand) produced during one event—
i.e. the cumulative amount of sand produced from time t = 0 to some time t 
 τs/a where
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Fig. 10.12. Predicted sand rate as given by Eq. (10.57), for different values of a and b. It is assumed that a does
not change with time.

the sand rate is practically zero—is found to be

MT
sand = Mo

sandb[b + 2] = Mo
sand

[(
Q

Aoq
cr
fl

)2

− 1

]
(10.59)

Hence the total amount of produced sand depends only on the flow rate. Remember
however that pd > p

c
d is still a necessary requirement for sand to be produced at all. Note

in particular that pc
d may increase with time as a result of changing shape of the cavity,

or some other form of post failure stabilization. This slows down the erosion process and
reduces the sand production rate. If pc

d becomes equal to pd at some point in time, the sand
production stops.

There is no known procedure for independent measurement of τs (or of λsand and φcr)
and it is not clear to what extent these parameters depend on for instance cementation. For
practical applications the model therefore needs calibration, either from field observations
or from sand production tests in the laboratory.

10.2.6. Sand transport

Sand production in the reservoir zone does not necessarily imply that the sand ultimately
appears at the surface. For this to happen, the fluid flow must be strong enough to wash
the sand up the entire well. Otherwise, the sand will remain in the well, and possibly be
washed out at a later time if the flow rate is increased. This effect complicates the analyses
of sand production in a well: no sand at the surface does not necessarily imply that no
sand is being produced from the reservoir. Similarly, if sand appears at the surface, it may
be difficult to tell whether this sand has just been produced from the reservoir under the
current conditions, or was produced earlier under different conditions.

Sand transport by a flowing fluid is a rather complex problem to describe in general (see
for instance Gerhart et al. (1992), for an introduction to fluid mechanics), and we shall here
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only take a brief look at some basic effects. Consider a spherical grain with diameter dg
and density ρs. Gravity and buoyancy produces a net, downward pointing force Fg on this
particle

Fg = π

6
d3

g (ρs − ρf)g (10.60)

where g is the acceleration of gravity. In a stationary fluid, this force causes the grain to
sink. As the grain is moving in the fluid, the motion is counteracted by the viscous drag
force Fd, which is given as

Fd = π

8
d2

gρfU
2Cdr (10.61)

where U is the velocity of the grain and Cdr is the dimensionless drag coefficient. The drag
coefficient is a (rather complicated) function of the so-called Reynolds number, defined as

Re ≡ dgρf(U/ηf) (10.62)

where ηf is the fluid viscosity. For values of Re < 105 (typically, for a non-smooth sphere),
we may use the approximate expression

Cdr ≈ (24/Re)
√

1 + 0.2Re + 0.0003Re2 (10.63)

For values of Re > 105, Cdr drops to about 0.1.
Eventually, the velocity of the grain will reach a value Ut (called the terminal settling

velocity) where Fd = Fg so that no net force is acting on it, and the velocity will remain
constant. By equating Eqs. (10.60) and (10.61) we find that the terminal settling velocity
is given as

Ut = 2

√
dgg(ρs − ρf)

3ρfCdr
(10.64)

The fluid’s ability to move the sand is closely linked to the ratio of the velocity of the
fluid to the terminal settling velocity. As an approximation, we may say that the terminal
settling velocity indicates the flow velocity required to move the sand grain along with the
flowing fluid. If the terminal settling velocity is low the grains are easily carried away by
the fluid, while a high terminal settling velocity requires a higher flow velocity to move the
grains.

For sufficiently small grains, Re < 1 and the drag coefficient can be approximated by
Cdr ≈ 24/Re. This gives

Ut ≈ d2
gg

18ηf
(ρs − ρf) (10.65)

This expression is often referred to as Stokes’ law. The general relation between terminal
settling velocity, grain diameter and fluid viscosity—based on Eqs. (10.64) and (10.63)—is
illustrated graphically in Fig. 10.13.

These considerations tell us that larger grains have a much higher terminal settling ve-
locity than smaller grains, and hence the larger grains are more likely to be trapped in the
well. It also shows that low viscosity fluids require a much higher flow velocity to be able



364 SOLIDS PRODUCTION

Fig. 10.13. Terminal settling velocity as a function of grain diameter, derived from Eqs. (10.64) and (10.63), for
four different values of the fluid viscosity.

to carry the same amount of sand as compared to high viscosity fluids. As the flow ve-
locity may vary along the well, the conditions for sand transport may also vary. Note that
sand may be trapped at the lower end of the production zone, due to the low fluid velocity
down there. Also note that sand that has been trapped in the well while the fluid veloc-
ity was relatively low, may be mobilized and washed to the surface if the fluid velocity is
increased.

These results clearly show that there is not necessarily a one-to-one relationship between
the amount of sand observed at the surface, and the sand production in the reservoir. This
effect obviously makes it difficult to evaluate the validity of sand prediction, and compli-
cates sand management. It also illustrates the need for reliable downhole sand detectors.

10.2.7. Sand prediction

Prediction of possible sand production is an important part of the development phase for
a sandstone reservoir. Accurate predictions for where and under which conditions sand
production will occur assist in the design of an optimal development plan and completion
strategy for the wells in the reservoir.

Reliable sand prediction requires good, relevant models for sand production, as well as
a complete set of input data for the models. It is a general opinion that the models for sand
production available today are able to predict the onset of sanding with reasonable accu-
racy, while models for predicting the amount of produced sand are still under development.

The relatively simple analytical models for onset of sand production described in Sec-
tion 10.2.3 show that two groups of data are required for sand prediction: rock properties
(primarily strength) and formation conditions (in situ stresses and pore pressure). A com-
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plete foot-by-foot coverage of such data is rarely available however, and simpler tools for
sand prediction are therefore frequently used.

The simplest possible tool is a criterion stating that sand control is not needed below a
certain depth. This critical depth is established from field experience, and varies from one
region to another. The criterion may have a physical bearing in that rock strength usually
increases with depth. Other tools relate the critical drawdown directly to the sonic transit
time (compressional, shear, or both), which can be argued for as there is some correlation
between the sonic transit time and rock strength (see Section 8.2.3).

Models based on expressions like Eq. (10.17) may be used once a suitable calibration has
been established for the actual formation, and some estimate of C0 (alternatively CTWC;
cf. Eq. (10.18)) is available.

Some companies use finite element modelling assuming linear elastic behaviour to ob-
tain a better description of the stress state around the cavities. The predictions from such
modelling may be calibrated with strength data from TWC tests on material from the actual
formation. This technique is based on the philosophy that nonlinear elasticity and plastic-
ity are implicitly included in the TWC results, and that linear elasticity may therefore be
assumed for the finite element modelling of the stress state around the perforation.

Even more advanced numerical models are based on elasto-plastic modelling, like the
highly recognized sand prediction model of Morita (Morita et al., 1989a, 1989b). The
kinematic hardening model describing the rock (see Raaen, 1998) is quite extensive in this
case, and requires several core tests for calibration.

For prediction of sand volume, additional parameters are needed, and the challenge to
obtain relevant data is even larger. The model described in Section 10.2.5 requires for
instance the sand production coefficient λsand, a parameter that so far can only be derived
from sand production tests (Papamichos et al., 2001). Also the flow rate per cavity (Q) is
seen to be of large importance for the rate of sand production, hence rock permeability and
fluid viscosity are implicitly involved and need to be evaluated.

The choice of parameters is somewhat different among other models for prediction of
sand volume, like the semi-empirical model of Willson et al. (2002), and the coupled nu-
merical model of Chin and Ramos (2002) which links the amount of produced sand directly
to the plastic deformation of the rock. The basic elements of the models appears to be the
same, however.

10.3. Chalk

Solids production can be a serious problem also in chalk reservoirs. The mechanisms
causing chalk production have however not been as well described as those causing sand
production. Prediction and control of chalk production can therefore be more problematic.

In some cases chalk is produced slowly at a relatively constant rate. Massive chalk pro-
duction sometimes occur as sudden, rather unexpected events. In such situations large
amounts of chalk enter into the well, occasionally enough to kill the well. Although the
mechanisms causing these events are not fully understood, it is known that sudden changes
in the well conditions, like quick closure or opening of the fluid flow, may trigger such
instabilities.
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We may expect that the mechanisms believed to cause sand production also could cause
chalk production under corresponding conditions. A couple of effects related to the nature
of chalk versus that of sandstone make the situation somewhat different however. First, the
matrix permeability in chalk is usually quite low, typically of the order 1 milliDarcy. This
may imply that the conditions for tensile failure are more likely to be fulfilled for chalk.
However, reservoir chalks are usually extensively fractured. This enhances the effective
permeability while at the same time it implies that the fluid pressure distribution may be
rather complicated on a small scale. It may therefore be questioned whether expressions
like Eqs. (10.24) and (10.29) are valid for chalks. Second, the collapse pressure for high
porosity chalks is quite low so that this type of failure has to be considered in addition to
shear failure and tensile failure. Collapse of the rock surrounding a producing cavity may
have a devastating effect on the productivity of the cavity, even if it does not result in solids
production.

When a rock collapses, the pore volume is largely reduced (see Section 2.4). This in-
duces an abrupt increase in pore pressure which takes some time to dissipate in a low
permeable material as chalk. The result may be a significant pore pressure build-up lead-
ing to tensile effective mean stress and liquefaction conditions. This process may explain
observed chalk production in the field and in laboratory tests where the chalk is seen to
flow like toothpaste (Raaen and Renlie, 1990; Andersen, 1995; Kristiansen and Meling,
1996).

Papamichos (1998) points out that chalk has a relatively low cohesion, often provided
primarily by capillary forces that exist only when the water saturation is low. Collapse,
with subsequent liquefaction and extensive chalk production may thus be induced by wa-
ter flooding. A numerical model describing this effect was also presented by Papamichos
(1998).
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Chapter 11

Mechanics of hydraulic fracturing

Hydraulic fracturing in rocks takes place when the fluid pressure within the rock exceeds
the smallest principal stress plus the tensile strength of the rock. This results in tensile
failure or splitting of the rock. A hydraulic fracture may be initiated by natural, geological
processes in the earth whereby the fluid pressure increases and/or the smallest principal
stress decreases. Artificial or man-made hydraulic fractures in petroleum activities are
normally initiated by increasing the fluid pressure in the borehole to the point where the
smallest principal stress at the borehole becomes tensile. Continued pumping at an elevated
pressure causes the formation to split and the fracture will grow in the direction of least
resistance. Some distance away from the borehole the fracture will always propagate in the
direction normal to the smallest principal stress in that specific formation.

As the least principal stress often is in a horizontal direction, the resulting fractures will
be vertical. If we consider a vertical open hole, the picture will be as indicated in Fig. 11.1.
As the figure shows, two symmetric fracture wings develop perpendicularly to the least
principal stress.

Hydraulic fracturing has been used commercially as a stimulation technique in the petro-
leum industry since the early fifties. Such fracturing jobs are designed to stimulate produc-
tion from reservoirs with low permeability. This often involves pumping large amounts of
fluid and solids (proppants), thus creating long fractures filled with proppants. A massive
hydraulic fracturing (MHF) job may exceed one thousand cubic metres of fluid and one
million kilograms of proppant. The fracture thus creates a high-permeability flow channel
towards the wellbore which has a large drainage area towards the low-permeability forma-
tion. If the fracture was not filled with solid material, it would close when the fluid pressure
drops.

Unintentional fracturing may occur during drilling operations, often referred to as lost
circulation, see also Section 9.1.2. This is a potentially hazardous situation, since the hy-
draulic support of the fluid column in the wellbore is reduced. The wellbore pressure may
drop below the pore pressure in the formation and if the formation is permeable, formation

Fig. 11.1. Vertical fracture around a vertical well.
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fluids may start to flow into the wellbore in an uncontrolled manner. In the worst case, a
blowout can be the result.

Today, hydraulic fracturing has several applications, such as:

• “Frac and pack” operations in weak sandstone reservoirs. These are relatively short
and wide proppant-filled fractures, designed to penetrate near-well damaged zones
and thus reduce the pressure drop close to the borehole and hence also the sanding
potential of the well.

• Fractures can be created also during water injection in reservoirs. Injectivity may be
reduced with time due to partial plugging of the formation around the injector to
the point where the injection rates can only be maintained if the injection pressure
is raised above the fracture pressure. Fracturing during injection can occur also at
constant injection pressure. This occurs during water injection when the water is con-
sistently colder than the formation. Cooling causes the formation to shrink, thus the
stresses are reduced below the initial fracturing pressure.

• Massive hydraulic fracturing jobs are normally preceded by a fracture test with a small
injection volume (mini-frac) to determine the smallest stress in the formation and thus
the required treating pressure and other design parameters of the fracturing job.

• In drilling operations, leak-off tests are performed to determine the fracture gradient
of the formation below a casing shoe and thus the maximum allowable well pressure
to prevent lost circulation. If a sufficiently large volume is pumped, this will create a
small fracture around the borehole.

• An extended leak-off test is essentially a standard leak-off test where pumping contin-
ues long enough to ensure that a fracture is created. By monitoring the shut-in phase
and the flowback phase, the smallest principal stress can be estimated.

• Hydraulic fracturing can be used for subsurface deposition of waste. In the petroleum
industry, reinjection of contaminated drill cuttings is one example. In this application
it is important to have a permeable formation at or somewhere above the injection
point which can act as a recipient and pressure reducer. If this condition is not present,
the pressure will remain high due to very slow leak-off and the fracture created during
injection may eventually penetrate all the way to the surface.

This chapter will discuss basic processes related to hydraulic fracturing, while hydraulic
fracturing applied as a technique for stress determination is discussed further in Chapter 8.
Some aspects of hydraulic fracturing related to borehole stability (lost circulation) is treated
in Chapter 9. Details concerning design, operation and interpretation of hydraulic fractur-
ing for stimulation has been treated extensively in the literature and will not be discussed
further here. The reference list includes some key references also in this field.

11.1. Conditions for tensile failure

From a macroscopic point of view, fracturing is related to tensile failure. Generally, when
considering a test specimen of solid material, tensile failure will occur when the traction
exceeds the tensile strength T0. Following the usual convention that stresses are positive in
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Fig. 11.2. Hydraulic fracturing of a porous and permeable rock.

compression, this condition reads:

σ < −T0 (11.1)

For porous materials the total stress should be replaced by the effective stress, and the
condition will then be:

σ − pf < −T0 (11.2)

where pf is the pressure in the pores. Note that the relevant effective stress coefficient here
is equal to 1, because fracturing is a state of failure for the rock (see Section 1.6.3 and
2.6.1). This will be used throughout this chapter for all fracturing conditions.

For porous materials it is however worthwhile to consider the condition above more in
detail. Assume that we have a plug of porous and permeable material in a triaxial cell as
sketched in Fig. 11.2. The plug is subjected to an external stress σ . The pore pressure pf
can be varied. A confining pressure may be applied, but this will however not affect the
argumentation.

Consider first that the grains are cemented to each other and that the plug is glued to
the pistons. Along the dashed lines the bonds are however broken, thus forming a closed
fracture. The force tending to close this fracture will obviously be given by the difference
between the applied pressure σ and the pore pressure pf in the fracture. The condition for
opening of the fracture will thus be:

σ − pf < 0 (11.3)

This condition can of course be reached either by increasing the internal pressure pf
or by reducing the external stress σ . In a short plug like the one indicated in Fig. 11.2
the internal pressure pf will be constant throughout. But if we consider a long plug with
much smaller permeability, the same way of reasoning makes it clear that the pressure pf
in Eq. (11.3) is the pressure in the fracture, not the average pressure in the plug.

Another way of reasoning to obtain the same result is to assume that the two sides of
the fracture are covered by an impermeable film, and that a fluid of pressure pf is injected
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between the films. The condition for opening of the fracture will be given by Eq. (11.3) as
before. The internal pore pressure in the sample does not play any role as long as it remains
below σ and pf.

Next we may introduce bonding between the grains that were forming the fracture. The
force needed to split the two halves apart will by definition be given by the tensile strength
T0 and the condition for fracturing will again be like Eq. (11.2):

σ − pf < −T0 (11.4)

pf is the pressure in the fracture or in the pores where the fracture is formed.
In conclusion to this discussion we may say that Eq. (11.4) represents the general cri-

terion for tensile splitting of the material, while Eq. (11.3) represents the criterion for
reopening of existing fractures.

11.2. Fracture initiation and formation breakdown

The basics of borehole failure (in shear and tension) was discussed in Section 4.5, with
which we assume that the reader is familiar.

To illustrate the concepts of fracture initiation and formation breakdown let us consider
the following idealized situation: A vertical borehole penetrates a stress field with isotropic
horizontal stresses, i.e. σv > σH = σh. The rock is assumed isotropic and homogeneous,
obeying Hooke’s law of linear elastic behaviour. We for now further assume an imperme-
able borehole wall, implying that the pore pressure in the formation remains constant and
unaffected by the wellbore pressure. As the well pressure pw is increased, the tangential
stress σθ will be reduced correspondingly (Eq. (4.111)), see Fig. 11.3.

The condition for initiation of a hydraulic fracture is thus reached when

σθ − pf = −T0 (11.5)

or

pfrac
w,max = 2σh − pf + T0 (11.6)

The pressure response in the borehole will then be as illustrated in Fig. 11.4.

Fig. 11.3. Stress distribution around an open, vertical hole in an impermeable formation at high well pressure.
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Fig. 11.4. Idealized borehole pressure response during hydraulic fracturing of a vertical wellbore. Two pressure
cycles are included.

The first linear part represents the elastic deformation of the system in and around the
borehole, primarily compression of the fluid in the borehole. The peak represents the frac-
ture initiation condition, i.e. the creation of a vertical fracture on the borehole wall. The
well pressure drops instantaneously at this point. This implies a situation of unstable frac-
ture growth, whereby the volume of the fracture is growing at a higher rate than the rate
of fluid injection. Continued pumping will eventually result in stable fracture growth, rep-
resented by the constant well pressure level. In this idealized case the point of fracture
initiation and formation breakdown are thus identical.

The second curve in Fig. 11.4 shows the response which would occur if a second pres-
sure cycle was run. Then the only resistance to fracture initiation and formation breakdown
would be the stress concentration around the borehole. The tensile strength is now zero,
since the fracture already exists. The difference between the first and the second peak
would thus ideally be a direct measure of the tensile strength of the formation. In practice,
however, the presence of the fracture may make the effective stress concentration smaller
in the repeat cycle than in the first, meaning that the difference is not only related to the
tensile strength.

If the borehole is assumed to be fully permeable, and the pressurization rate was slow
enough to ensure steady-state conditions during pumping, the tangential stress at the bore-
hole wall is given by Eq. (4.59)

σθ = 2σh − pw − (pfo − pw)
1 − 2νfr

1 − νfr
α (11.7)

Inserting this expression for the tangential stress into Eq. (11.5) together with the fact
that the pore pressure near the borehole and the well pressure now are equal, the fracture
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initiation pressure becomes (Eq. (4.122))

pfrac
w,max = 2σh − α 1−2νfr

1−νfr
pfo + T0

2 − α 1−2νfr
1−νfr

(11.8)

If we assume α = 1, the expression can be simplified to

pfrac
w,max = 2(1 − νfr)σh − (1 − 2νfr)pfo + (1 − νfr)T0 (11.9)

Eq. (11.6) represents the upper limit for the fracture initiation pressure and Eq. (11.8)
the lower limit for the fracture initiation pressure. The upper limit is often referred to
as the “fast” pressurization limit, and the lower limit as the “slow” pressurization limit
(Detournay and Carbonell, 1997). In a real situation the fracture initiation pressure will
usually be somewhere between these two limits, depending on several factors:

• There may be cracks and flaws at the borehole wall, so that the effective tensile
strength of the rock is essentially zero, even if the tensile strength of the intact forma-
tion may be significant.

• There may be some time-dependent transfer of pressure between the wellbore and the
formation. This will depend on the permeability of the formation, the ability of the
fracture fluid to build a filter cake prior to fracture initiation and also the pump rate.

Considering the effect of pump rate on pore pressure evolution alone, this effect is only
significant for very low rock permeabilities and/or if a low-permeability filter cake is es-
tablished. Detournay and Cheng (1992) showed that for a fluid like water, the permeability
of the rock would have to be lower than 1 µDarcy before any effects of rate would be expe-
rienced. Above this value the rock could be assumed fully permeable, and the lower limit
of fracture initiation would apply (Eq. (11.8)).

In a real situation, the time-pressure curves may be quite different from that shown
in Fig. 11.4. Fig. 11.5 illustrates more general curves. The curve to the left has a distinct
breakdown or initiation pressure, whereas the curve to the right does not. Sometimes a leak-
off point (defined in the figures, see also Section 8.3.3) is clearly visible before breakdown,
while in other cases there is less difference. The exact reasons for these different features
are not known, but some probable causes may be listed randomly: filter cake efficiency,
plastification, stress dependent elastic properties, temperature effects, leakage behind the
casing shoe, etc. Note that the leak-off point is usually interpreted as the deviation from a
straight line. Hence it is difficult to give this point a clear physical meaning, as it may be
affected by all the phenomena listed above.

Let us assume that cracks or fractures exist at the borehole wall such that the inherent
tensile strength of the rock is broken. We further assume that the tangential stress is trans-
mitted across the fracture, but that the well pressure can penetrate into the fracture without
progressing further into the formation. This would require a sealing mud cake around the
fracture. Such a scenario is possible when repressurizing a previously fractured borehole
in a sandstone. Referring to Eq. (11.6) this would give

pw = σh (11.10)
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This would hence imply a fracture initiation pressure equal to the smallest horizontal stress.
This situation is however not automatically detectable in the pressure-volume response,
especially if the fractures are small, because there is still resistance to fracture growth
at the tip. It is not until this fracture tip resistance is overcome and the fracture starts to
grow that a deviation from linearity in the pressure-volume response can be observed.
Deviation is most likely to be observed at a lower pressure in a shale than in a sandstone,
as the discussion below explains. This difference between shale and sandstone is however
independent of whether fractures already exist or not.

It has been observed experimentally that a fracture initiated on a borehole wall can grow
significantly (several cm) before it becomes unstable (Morita et al., 1996). This is explained
by an internal filter cake in the fracture which protects the fracture tip from the pressure in
the rest of the fracture. This implies that a certain overpressure in the fracture is required
before the pressure at the tip is large enough to cause breakdown and unstable growth of
the fracture. This behaviour is only possible in a permeable rock like a sandstone, and
can thus explain why there is apparently less difference between fracture initiation and
breakdown in a sandstone than a shale. For this type of behaviour, the slope of the curve
will remain almost constant also after fracture initiation, until fluid is actually beginning
to flow into the fracture. Another factor which can contribute to this apparent difference
between sandstone and shale is the much larger permeability of a sandstone. In a sandstone
a filter cake is built which helps seal the wellbore wall, and there will be much less effect
of borehole pressurization on the pore pressure near the borehole.

In some cases a distinct breakdown pressure is not observed (see right hand curve in
Fig. 11.5). In that case the fracture growth is stable throughout.

If the horizontal stresses are different, then the stress distribution is modified. The basic
formulae have been presented in Chapter 4 and will not be repeated here. If we assume
σh to be the smallest principal stress and σH the intermediate principal stress, then the

Fig. 11.5. Realistic borehole pressure response during hydraulic fracturing of a vertical wellbore. The example
to the left has a distinct breakdown pressure, while this is not the case in the example to the right.
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fracture initiation pressure for the impermeable or fast pressurization case in a vertical
well is given as

pfrac
w,max = 3σh − σH − pf + T0 (11.11)

Note that this expression can be obtained from Eq. (11.6) by simply substituting 2σh by
(3σh −σH). Similarly, the same substitution can be made in Eq. (11.8) to get the expression
for the lower limit of fracture initiation pressure. Since σH by definition is larger than σh,
this also implies that in this case of anisotropic horizontal stresses the fracture initiation
pressure is lower than if the horizontal stresses are equal.

Consider Eq. (11.9) with ν = 0.5 and a negligible tensile strength. This yields

pfrac
w,max = σh (11.12)

Thus the fracture will initiate at a pressure which is equal to the pressure required to propa-
gate the fracture (neglecting any other effects on the fracture propagation pressure). In this
case there will hence be no stress concentration effect around the borehole on the fracture
initiation pressure.

If we again consider the same equation (Eq. (11.9)), but now with the substitution which
reflects anisotropic horizontal stresses, the result is

pfrac
w,max = 3σh − σH

2
(11.13)

or

pfrac
w,max = σh + σh − σH

2
(11.14)

This simply shows that in this special case the fracture will initiate at a pressure which
is in fact lower than the smallest principal stress in the formation (σh). Thus the fracture
initiation pressure is lower than the propagation pressure, and an increase in the borehole
pressure would be required to make the fracture propagate. Similar effects can be observed
in deviated boreholes, also in formations with isotropic horizontal stresses, since the stress
anisotropy then is induced by the difference between the vertical stress and the horizontal
stress.

Again it should be emphasized that the above expressions are based on idealized con-
ditions. The real fracture initiation pressure will depend on stress conditions, borehole
direction and inclination, rock properties (e.g. tensile strength, permeability), borehole
fluid properties and operational procedures.

11.3. Fracture orientation, growth and confinement

So far we have only considered a vertical hole for which a vertical fracture normal to the
smallest horizontal stress will always be the result when σv > σH > σh. For deviated and
horizontal holes the situation is much more complicated and thus difficult to generalize.

For illustration let us consider a horizontal hole in a stress field where σv > σH > σh. In
this situation it is obvious that the fracture initiation pressure depends also on the azimuthal



FRACTURE ORIENTATION, GROWTH AND CONFINEMENT 377

direction of the borehole. Consider two situations:

1. Borehole parallel with σH: pfrac
w,max = 3σh − σv − pf + T0 (11.15)

2. Borehole parallel with σh: pfrac
w,max = 3σH − σv − pf + T0 (11.16)

Obviously, the fracture initiation pressure is larger in case 2 than in case 1. The direction
of the fracture relative to the borehole will also be different in the two cases. In case 1
the smallest in situ stress is normal to the borehole, and the fracture will be parallel with
the borehole (Fig. 11.6 left). In case 2 the fracture will hence be normal to the borehole
(Fig. 11.6 right).

In cases where the borehole is not aligned with any of the principal stress directions the
situation is further complicated. This will always be the situation in a deviated borehole
in a vertical/horizontal stress field. The fracture will start to grow in the direction of least
resistance and with some type of nonplanar characteristics. This direction may, however,
not coincide with the direction of the smallest principal stress in situ. Hence the fracture
may start to grow in one direction, and then twist to eventually align itself normal to the
smallest in situ principal stress.

In the normal stress regime assumed above, a fracture will always tend to initiate along
the wellbore at the high and low side of the wellbore, even in deviated wellbores drilled
at an angle to the horizontal stresses. Abass et al. (1992) showed experimentally that even
in a horizontal hole along the smallest horizontal stress both a transverse fracture and a
fracture along the wellbore was created, forming a T-shaped fracture. The longitudinal
fracture would however disappear, resulting in propagation of only the transverse fracture.
At intermediate angles, Abass et al. (1992) also found that multiple fractures could form at
the wellbore.

In perforated wells the orientation and density of the perforations may complicate this
picture further, resulting in both multiple fractures and nonplanar geometries. Recommen-
dations for perforation design to obtain successful hydraulic treatments have been given by

Fig. 11.6. Illustration of different fracture directions, parallel to the borehole (left) and normal to the borehole
(right).
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Fig. 11.7. Well configuration effects on fracture growth: Casing shoe (a); Perforations (b); Gravity (c).

e.g. El Rabaa (1989) and Abass et al. (1992). A theoretical study for prediction of fracture
initiation (pressure, orientation) both in open and perforated holes has been presented by
Hossain et al. (2000).

When one of the horizontal stresses is smallest, the generated fracture will always end
up as a vertical fracture. One can of course also imagine the special situation where the
vertical stress is smallest, and the generated fracture should then be horizontal. This may
be the case in areas of extensive tectonic activity or in areas which have been uplifted
without release of the horizontal stresses. As long as the rock is reasonably homogeneous
and isotropic, a fracture will propagate normal to the least principal stress, whatever that
direction may be. In areas of tectonic activity the principal stresses may be tilted from the
vertical/horizontal direction. Then a fracture will also end up as tilted.

A fracture expanding from a point source in an isotropic rock in a homogeneous stress
field will expand equally in all directions in the fracture plane, thus forming a circular or
“penny-shaped” fracture. When a fracture is initiated in a well, the geometry may be modi-
fied by the well configuration, as indicated in Fig. 11.7. There is a tendency for the fractures
to grow upwards as sketched in Fig. 11.7c, as the gravitational stresses are reduced in this
direction.

Although the overburden stress normally increases monotonously with depth, the hor-
izontal stresses may depend also on lithology or type of formation. An investigation by
Warpinski et al. (1985) showed that in shale layers the horizontal stresses could approach
lithostatic stress conditions, while sandstones showed significantly lower values of hori-
zontal stress. It should however be noted that lithological differences may occur simply
because of the way a test is performed (see Section 11.5).

This contrast in horizontal stresses is important when considering confinement of frac-
tures in layered formations. Differences in elastic properties and strength may also affect
the propagation of a fracture from one layer to another, but contrasts in in situ stresses are
more efficient.

Fracturing of a sandstone layer with over- and underlying shale formations can be il-
lustrated as in Fig. 11.8. The difference in least horizontal principal stresses is indicated
in part (a) of the figure. This difference may be large enough to prevent the fracture from
propagating into the shale layers. This will result in a fracture with elliptical wings, as
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Fig. 11.8. Confinement of a fracture between layers of higher stress.

illustrated in part (b). To extend such a fracture, the walls must be forced outwards, in-
creasing the width of the fracture (c). As the fracture is confined at the top and bottom, this
will result in a more curved fracture wall, and a higher pressure in the fracture is needed to
achieve this. It is a characteristic feature of this type of fracture that the fracture propaga-
tion pressure will increase with fracture length. The pressure required to extend the fracture
can thus conceptually be divided in three parts:

1. Pressure required to keep the fracture open towards the minimum stress.

2. Pressure required to flow fluid through the fracture.

3. Pressure required to overcome the resistance at the fracture tip and thus create new
fracture volume.

or

pe = p(σh)+ p(flow)+ p(tip) (11.17)

The first term thus represents both the minimum in situ stress and the additional pressure
required to maintain a fracture aperture. For small, narrow fractures with a low viscosity
fluid, the extension pressure will remain reasonably constant. For larger fractures using
viscous fluids (or fluids with proppant), especially the fluid resistance will increase and
thus also the pressure required to propagate the fracture.

For extension of fractures of circular shape, the extension pressure will remain rela-
tively constant. On the other hand, for larger fracturing jobs, the fracture may also become
confined in the vertical direction as illustrated in Fig. 11.8, and the extension pressure in-
creases with fracture growth. The first term of Eq. (11.17) will then start to increase, since
the fracture walls are bent outwards and the aperture thus increases. Eventually the exten-
sion pressure becomes larger than the horizontal stress in the confining layers. Then the
fracture will start to penetrate into these high stress regions. Contrasts in in situ stresses
thus represent barriers to fracture propagation, but not in an absolute sense. In the case of
alternate layers of shale and sand, a fracture induced in one layer may break through to an-
other sand formation and extend there. This will result in a complicated fracture geometry.

A still more complicated geometry will result if hydraulic fractures are introduced in
naturally fractured reservoirs (Warpinski and Teufel, 1987). This will result in combina-
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Fig. 11.9. Log–log plot of net fracturing pressure versus time.

tions of opening of existing fractures linked with hydraulically induced fractures, and the
resulting fracture pattern will be extremely difficult to predict.

It is quite obvious that the minimum in situ stress is an important design parameter for
fracture stimulation jobs. Equally important is the understanding of the pressure response
during fracturing. A comprehensive discussion of fracturing pressures has been given by
Nolte (1988a, 1988b). For confined fractures it can be shown that there will be a power law
relation between net fracturing pressure (pe) and time when the injection rate is constant.
The exponent will however be small, between 1/8 and 1/4. In a log–log plot of the net
fracturing pressure versus time, the extension of such a fracture will plot as a straight line.
This is illustrated in Fig. 11.9 (left) as the first part of the curve. The second part of the
curve corresponds to extension of a fracture that grows in all directions, also in height. This
type of behaviour could however also be caused by increased fluid loss to the formation.
This pressure level may therefore be regarded as the maximum pressure capacity of the
formation. The third part of the curve would correspond to fracture extension into a low
stress zone, leading to a kind of runaway condition.

In Fig. 11.9 (right) the pressure curve indicates pressure increase above the normal frac-
ture extension pressure. This is often observed in actual fracturing jobs when proppants
are pumped into the fracture. An increasing pressure of approximately unit slope is char-
acteristic of restricted flow into the fracture wings caused by proppant bridging. The effect
could also be caused by excessive fluid viscosity. If one of the wings subsequently becomes
blocked, this will result in a doubling of the log–log slope.

11.4. Fracture size and shape

Modelling of fracture geometry (width, length, height) has been a topic of investigation
for several decades, again primarily in the interest of hydraulic fracturing as a stimulation
technique. Again the reader is referred to other published material for details on this topic
(for a starting point, see e.g. Valkó and Economides (1995) and Gidley et al. (1989)).
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Fig. 11.10. Illustration of fracture shapes for the PKN and KGD models.

In this section we will only briefly describe some basic principles of fracture geometry
modelling and some analytical expressions which can be used to get estimates of fracture
geometry. The motivation is that when performing stress tests in open boreholes it is also
necessary to know approximately what volume to pump (see Sections 11.5 and 8.3).

Classical analytical modelling of two-dimensional fractures starts with the solution of a
line crack in an infinite elastic plane. Note that already at this point there is a potentially
serious deficiency in the model, as fracturing is a failure process which requires that the
material is already outside the elastic regime. Combining this with fluid mechanics for flow
in the fracture and possibly also leak-off to the formation, the principle of mass balance
can be used to derive analytical expressions for fracture length, width and internal fracture
pressure.

The classical models for fracture geometry in two dimensions are the so-called PKN
(Perkins–Kern–Nordgren) and KGD (Kristianovitch–Geertsma–de Klerk) models. Both
these models assume plane strain conditions: the KGD-model assumes strain to be confined
to the horizontal plane, while the PKN-model assumes vertical plane strain. A schematic
illustration of the two models is given in Fig. 11.10. Further assumptions in common for
the two models are:

• The fracture height is constant and independent of the fracture length.

• The net pressure at the fracture tip is zero (again, this assumption is clearly a simpli-
fication, since a net pressure is required to overcome the tip resistance and make the
fracture propagate).

The applicability of the two models has been a matter of extensive discussion. It is
however generally accepted that the PKN-model is most appropriate for length/height ra-
tios much larger than one, while the KGD-model is most appropriate for small length to
height ratios (less than one). This implies that the PKN-model is more used in conven-
tional hydraulic fracture modelling where the fracture is long compared to the fracture
height. However, for open hole stress tests the fracture is normally short compared to the
height, and hence the KGD-model should give a better approximation.
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The maximum width of the fracture (wm) is for both models at the borehole, and for the
KGD-model this is given as

wm = 2(1 − ν)Lpe

G
= 4(1 − ν2)Lpe

E
= 4Lpe

E′ (11.18)

where pe is the net fracture pressure (pressure in the fracture minus the smallest in situ
stress), L is the fracture half length (see Fig. 11.10), ν is Poisson’s ratio andG is the shear
modulus. E is Young’s modulus, and E′ is the plane strain modulus defined in Eq. (1.109).

Since the net fracture pressure is normally at most a few MPa, while E′ is in the GPa
range, it is immediately clear from Eq. (11.18) that fracture width is much smaller than
fracture length. The net pressure depends on the flow resistance in the fracture (including
that caused by leak-off to the surrounding formations) and therefore on viscosity and injec-
tion rate. It further depends on the mechanical breakdown processes at the fracture tip. See
e.g. Valkó and Economides (1995) for a comprehensive overview of various approaches to
model this, analytically and numerically. See also Detournay (2004) for a discussion of the
relative importance of fluid (viscous) and fracture tip (mechanical) processes.

The equation for the maximum width in the PKN-model is found by simply substituting
L with H/2.

An average fracture width can be found by assuming an elliptical shape of the fracture.
This gives

w̄ = π(1 − ν)Lpe

2G
= π(1 − ν2)Lpe

E
= πLpe

E′ (11.19)

Eq. (11.19) above may hence be used to design the volume required for stress testing in
an open hole below a casing shoe. This principle is explained further in Section 8.3.3.

11.5. Fracture closure

The fracture closure phase is of interest because it provides an opportunity to get an esti-
mate of the smallest principal in situ stress (σ3). If the fracture has penetrated beyond the
influence zone of the wellbore and into virgin formation, it is clear from the discussion in
Section 11.1 that the fracture will close when the fluid pressure in the fracture equals the
stress acting normal to the fracture (σ3). In most cases it is assumed that this closure stress
equals the smallest horizontal stress in the formation (σh).

However, as we shall see in the next two sections, interpretation of the minimum in
situ stress from fracture closure is not straightforward. This uncertainty in interpretation of
the closure pressure is due to the fact that fracture closure is not instantaneous. Fracture
closure is gradual, from the moment of first physical contact between the two fracture faces,
until there is no further deformation of the fracture faces. Tests with downhole tiltmeters
(Warpinski et al., 1998) have indeed shown that the fracture closure process is characterized
by smoothly decreasing deformation, without evidence of well-defined fracture closure.
The minimum in situ stress is of course passed at some point on the pressure decline curve,
but it is not obvious that this point can be accurately determined by recording the pressure
in the wellbore.
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Fig. 11.11. Illustration of well pressure versus volume during a flowback test. After Raaen et al. (2001). An open
fracture is indicated to represent the first linear part and a closed fracture to represent the final linear part.

This can be illustrated further by considering the pressure versus volume during a flow-
back test in Fig. 11.11. The first linear part represents the stiffness of the open fracture.
Then there is a gradual transition towards the final linear part, representing the stiffness of
the borehole system, i.e. after fracture closure. This transition period is significant, span-
ning more than 50 bar. Following the argumentation of Raaen et al. (2001), mechanical
closure is associated with the pressure where the system stiffness starts to deviate from the
first linear part. This change in system stiffness must be a result of reduced fracture size,
i.e. the pressure is equal to or less than the smallest principal stress in some part of the
fracture. The transition period thus represents further fracture closure, and eventually there
is no hydraulic communication between the fracture and the wellbore.

As mechanical closure is considered to represent the in situ stress, the interpretation of
the smallest principal stress would be in the upper part of this range. However, there is
still considerable uncertainty related to picking of an exact value for the smallest principal
stress, as the discussion in the next two sections will demonstrate.

11.5.1. Estimation of σ3 from shut-in/decline tests

When the pumps are stopped and the fracture is shut-in, the pressure required for fracture
opening and the pressure required for fluid flow in the fracture immediately drop to zero
(Eq. (11.17)). This implies that the pressure in the fracture is equal to the smallest principal
stress plus whatever additional pressure is left in the fracture. If the viscosity of the fracture
fluid is low (e.g. water) and the fracture is small and unpropped, the additional pressure in
the fracture may be small. This implies that under these conditions the pressure measured
immediately after shut-in is a reasonable approximation to the smallest in situ principal
stress (σ3). This is commonly referred to as the instantaneous shut-in pressure (ISIP).
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Fig. 11.12. Illustration of well pressure response after shut-in.

This situation is illustrated in Fig. 11.12. Shown in this figure is also the stress where
the surplus pressure has bled off and the fracture is actually closing. This is denoted as the
closure pressure (pc) and is always the best estimate of σ3.

However, the instantaneous shut-in pressure may be significantly higher than the closure
pressure. This depends on several factors such as fluid viscosity, leak-off into the formation
and pump rates. The best estimate of σ3 is then obtained by waiting until the fracture
closes. The instantaneous shut-in pressure is thus always an upper bound for the σ3 value,
but the difference between the shut-in pressure and the σ3 value may be significant, and
this difference will vary from one test to another. The instantaneous shut-in pressure may
in some cases be difficult to identify on the decline curve, for instance if the rock has very
low permeability, and bleed-off from the fracture to obtain closure thus is extremely slow.
Then it may also be impractical to wait for fracture closure.

Accurate identification of the closure pressure may not be easy, since fracture closure
happens gradually rather than instantly. When physical contact between the two fracture
faces is established, the fluid in the fracture may still be free to flow. The two fracture faces
may also have been distorted relative to each other. For the ideal case of instant closure,
there should be a distinct change in the response, indicating the start of rapid pressure drop.
This is caused by the drastic increase of the system stiffness as the fracture closes. The real
response will depend on the nature of the fracture fluid, the permeability of the rock and
the stiffness of the system.

To assist in the interpretation of fracture pressure response, a number of different plotting
methods can be used (square root of time, log time, log pressure vs log time etc.). This
originates from the similarity to pressure transient analysis in reservoir engineering. An
example plotting decline pressure versus square root of shut-in time is shown in Fig. 11.13.

The curve approaches a linear trend as long as the fracture remains open. When the
fracture closes, the pressure curve will depart from this linear trend. The change may be in
either direction depending on fracture and formation properties. If the change is dominated
by the increase in system stiffness, then the slope increases. However, the slope may also
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Fig. 11.13. Pressure decline as a function of square root of time.

decrease. This can occur if the fracture pinches off near the wellbore and the leak-off rate
to the formation decreases. This implies that the closure pressure may be difficult to detect
in certain cases.

A number of more or less elaborate methods have been proposed for interpretation of
shut-in/decline data. See e.g. Guo et al. (1993) for an overview of some methods and Nolte
(1989) for an in-depth treatment. Raaen et al. (2001) proposed a method applicable for tests
with mud, where a pressure drop across a tight mud cake may dominate leak-off signature.

In formations with very low permeability (e.g. shales), these classical methods for testing
and interpretation may not be applicable. Leak-off from the fracture will then be too slow
to close the fracture. This implies that the ISIP is poorly defined and/or the time to reach
closure is too long. A pressure decrease may still be observed after shut-in, but this can
also be a result of fracture extension due to energy stored in the fracture. To obtain more
precise estimates of the smallest principal stress, both in shales and more permeable rocks,
a pump-in/flowback test is recommended.

11.5.2. Estimation of σ3 from flowback tests

In a pump-in/flowback test a volume of fluid is injected at fracturing rates. The well is then
allowed to flow back until closure has been detected. A plot of pressure versus time will
show an inflection point at the closure pressure. This is the upper inflection point shown
in Fig. 11.14. The physical reason for this change is the increase in system stiffness as the
fracture closes.

An alternative interpretation was presented by Shlyapobersky et al. (1988), utilizing the
lower inflection point (see Fig. 11.14). This is based on the assumption that mechanical
closure occurs when the fracture storage equals zero.

Plahn et al. (1997) suggest to use the intersection point between two straight lines drawn
through the upper and lower inflection points as illustrated in Fig. 11.14. They support
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Fig. 11.14. Well pressure response during flowback.

this procedure with numerical modelling of the flowback and rebound process, using both
KGD (Khristianovitch–Geertsma–de Klerk) and PKN (Perkins–Kern–Nordgren) fracture
models (Gidley et al., 1989). If the flowback test is idealized to an impermeable rock and
inviscid fluid, the closure pressure corresponds to the intersection of two uniquely defined
lines. In a more realistic case (viscous fluid), a unique point which corresponds to the
closure pressure can not be found. However, they find that the intersection point is always
closer to the closure pressure than either of the two inflection points.

More recently, an alternative approach was presented by Raaen et al. (2001, 2006). In
this approach the flowed back volume is measured, and the change of system stiffness as
the fracture closures is directly observed. See Section 8.3.3 for further discussion and a
field example.

With reference to Fig. 11.14, it is evident that both the methods of Plahn et al. (1997) and
Raaen et al. (2001) provide estimates of the closure pressure which are closer in numerical
value to the upper inflection point.

It has traditionally been assumed that it is necessary to have a constant flowback rate in
an appropriate range to be able to get a distinct and interpretable response. However, the
data and interpretations provided by Raaen et al. are based on constant choke setting during
flowback, and they also provide detailed recommendations for the design of such a job.

The pump-in/flowback test may be further extended to include recording of the pressure
after the flowback phase. This phase is sometimes characterized by pressure build-up or
rebound, which may be an indication of near-borehole fracture pinch-off.

When withdrawing fluid from the fracture during flowback, the fracture will tend to close
near the wellbore, isolating the remaining part of the fracture which is still open (Plahn
et al., 1997), especially if flowback is rapid. After flowback, the fracture will continue
to produce back to the wellbore, thus creating this pressure rebound effect. The appear-
ance of a rebound effect has been used to confirm the existence of a fracture (Desroches
and Kurkjian, 1999). It has also been proposed to use the maximum pressure during the
rebound phase as an estimate of the closure stress, especially in impermeable or very
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low-permeability formations (Desroches and Kurkjian, 1999). Note, however, that this ex-
perience is based on testing with very small volumes, in packer isolated zones. Such an
approach may not be applicable to testing where the entire hole volume is active.

11.6. Thermal effects on hydraulic fracturing

Thermal effects on hydraulic fracturing were briefly mentioned in the introduction to this
chapter. Thermally induced fracturing is normally observed during water injection, espe-
cially when there is a large temperature difference between the (cold) injection water and
the (hot) reservoir. Typical response is a sudden increase in injectivity after a significant
period of stable injection (see e.g. Wright et al., 1991). This reflects that the reservoir rock
has been gradually cooled during injection of the cold water. The reservoir rock shrinks
due to cooling, and eventually the smallest in situ stress is reduced to a level below the
bottom hole injection pressure. This results in the creation of a fracture which provides
a much larger contact area with the formation and hence a dramatic increase in injectiv-
ity. The length of the fracture is limited by the extent of the cooled zone. This process is
normally referred to as thermally induced fracturing (TIF).

In the early days of cold water injection this was an unexpected and in some cases
unwanted effect. Today, however, this effect is taken into consideration in the planning
process and is used actively. This possibility has to be designed for with respect to well
placement, pump capacities, fluid displacement pattern etc.

This process differs from conventional hydraulic fracturing jobs in several ways, pri-
marily with respect to the viscosity of the fluid and the time scale of the process. Simul-
taneously, the fracturing pressure is also affected by changes in the pore pressure in the
reservoir. Modelling injectivity is therefore a relatively complex matter which should also
include a number of other factors (damage due to particles in the water, reservoir hetero-
geneities, variation in fluid properties, well interaction etc.). Ideally the modelling of this
process requires a fully coupled fracture and reservoir simulation model (e.g. Clifford,
1989). Simplified models have however also been introduced, such as the partially de-
coupled model of Settari and Warren (1994) and the analytical approach of Detienne et al.
(1998).

For further details on injectivity modelling the reader is referred to the above and other
references. Here we shall restrict ourselves to a brief look at the purely mechanical aspect
of this problem.

Perkins and Gonzalez (1984) gave analytical expressions for the stress change resulting
from a cylindrical cooled zone of arbitrary height. In the limit of small diameter to height
ratio (d/h→ 0), they found

�σr(�T ) = �σθ(�T ) = E

2(1 − ν)αT (Tcool − To) (11.20)

where To represents the initial temperature of the formation, and Tcool is the temperature
of the cooled region.
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For the opposite limiting case (d/h → ∞) which is applicable to the situation after
some time when the cooled region has grown considerably into the reservoir, the result is

�σr(�T ) = �σθ(�T ) = E

1 − ν αT (Tcool − To) (11.21)

Note that for this case the stress change is a factor 2 larger. For typical sandstone val-
ues (E = 5 GPa, ν = 0.3, αT = 1.5 · 10−5/°C) Eq. (11.21) gives a stress change of
0.1 MPa/°C.

Perkins and Gonzalez (1985) considered thermal fracturing, where the presence of the
fracture leads to a non-circular temperature distribution. They modelled this as an elliptical
cooled zone, and, based on numerical modelling, gave approximate analytical expressions
for the stress change in cooled regions as a function of height and ellipticity.

As seen above, the stresses reduce considerably as a result of cooling, thereby facilitating
fracture growth. In addition, depending on the aspect ratio of the ellipse, the stress field
orientation may be altered: The reduction in the initially major horizontal stress will be
larger than in the initially minor horizontal stress. Perkins and Gonzalez suggested that
the directions of the principal stresses may flip, leading to possible generation of fractures
orthogonal to the initial ones.

A pore pressure change also influences the reservoir stresses (see the discussion of the
reservoir stress path in Section 12.2.3). From the correspondence between thermoelasticity
and poroelasticity (see Section 1.6.6)

�pf ↔ �T (11.22)

(1 − 2ν)α ↔ EαT (11.23)

the general expressions of Perkins and Gonzalez (1985) may also be used for a homoge-
neous pressure change within an elliptical region.

Using Eqs. (11.22) and (11.23), and the numbers above, we see that for 5 °C cooling of
the rock, the thermally induced stress reduction is compensated by approximately 1 MPa
increase in the cooled zone pressure. This implies that for certain cases (low thermal ex-
pansion coefficient, low elastic stiffness) the pore pressure induced stress may dominate
over the thermally induced stress (Eltvik et al., 1992).

During injection of a hot or cold fluid, heat transport is primarily by convection. In
addition, thermal conduction to/from over- and underlying formations, and to a smaller
extent, thermal conduction in the direction of fluid movement, contributes.

If thermal conduction can be neglected, a sharp temperature front results. Inside the
front, the temperature is that of the injection fluid, while outside it is the original reservoir
temperature. The position of the front can be estimated from energy balance considerations.
For a radially symmetric injection pattern one finds

Rcool

Rflood
=
√

φρwCw

(1 − φ)ρsCs + φρwCw
(11.24)

where Rcool is the radius of the cooled zone, and Rflood is the radius of the flooded zone.
ρw and Cw are the density and specific heat capacity of the injection fluid, and ρs and Cs
apply for the rock matrix. Inserting typical numbers, one finds that thermal front moves at
30–50% of the speed of the fluid front.
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Thermal conduction smoothens the temperature front, more strongly for thin beds. For
some simple models taking thermal conduction into account, see Lauwerier (1955), Marx
and Langenheim (1959) and Platenkamp (1985).
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Chapter 12

Reservoir geomechanics

The probably best-known examples of rock mechanical effects on reservoir scale behaviour
are reservoir compaction and associated surface subsidence. Operational problems related
to subsidence are environmental concerns, like risk of flooding in land operations, or plat-
form safety concerns in offshore production. A majority of compaction-induced problems
are associated with casing collapse within or adjacent to the compacting reservoir. It is on
the other hand well established that compaction may be a prominent drive mechanism in
relatively soft oil reservoirs.

Pore pressure depletion leads to changes in Earth stresses—not only in effective stress,
but also in the total stresses. These stress changes control not only compaction and sub-
sidence, but may also lead to changes in the fluid flow performance of the reservoir.
Permeability may change, and the directions of preferred flow may be altered. In some
cases, the stress changes within and near the reservoir triggers seismicity during reservoir
depletion. This dynamic nature of petroleum reservoirs also affects the stability of wells to
be drilled and produced during the lifetime of the reservoir. Last but not least, geomechan-
ical alteration of the reservoir and its surroundings may be observed in time-lapse (4D)
seismic surveys. Reservoir geomechanics is thus becoming an increasingly important part
of reservoir management.

12.1. Compaction and subsidence

When oil or gas is produced from a reservoir in the underground, the fluid pressure will
generally decline. Reduced pore pressure in the reservoir rock will increase the effective
stress and thereby cause the rock itself to shrink, and thus the reservoir will compact. Reser-
voir compaction may then in turn cause subsidence at the surface as sketched in Fig. 12.1.

Fig. 12.1. Compaction and subsidence.
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Most oil and gas reservoirs will experience only a small degree of compaction, and the
corresponding subsidence at the surface will be negligible. In order to see a considerable
degree of subsidence, one or several of the following conditions must be present:

• The reservoir pressure drop must be significant. Pressure maintenance by e.g. water
flooding is likely to counteract compaction.

• The reservoir rock must be highly compressible. Compaction is more likely to be
important in soft rocks.

• The reservoir must have a considerable thickness. However, the whole depleted zone
must be considered. An adjacent aquifer will contribute to compaction, and so may
part of the overburden if drained to the reservoir.

• In order for subsidence to occur, the reservoir compaction must be significant, and in
addition, not shielded by the overburden rock. The degree of shielding depends on the
depth and the geometry of the reservoir, and on the contrast in mechanical properties
between the reservoir and its surroundings.

Considering the conditions above, we would expect only a few reservoirs to cause severe
subsidence problems. This is also the case, but the often severe consequences of subsidence
makes it necessary for the industry to predict possible subsidence and compaction upfront,
so that platforms and casings are designed properly, and in order to decide on an appropri-
ate scheme for infill drilling, placement of injector wells, well completion strategy etc.

The first report on ground subsidence is from the Goose Creek field in Texas, and is
dated back in the late 1910s. Later in the 1920s the Bolivar oil field in Venezuela showed
the same behaviour. A well-known case is the Wilmington field in Long Beach, California,
where subsidence of almost 9 metres was detected. More recent examples are the Ekofisk
and Valhall reservoirs in the Norwegian sector of the North Sea, and the Groningen gas
field onshore and offshore the Netherlands.

In the following, we will present an overview of how we can model compaction and
subsidence. The models presented here are largely analytical, which means that several
simplifying assumptions need to be made. A key assumption is to consider the reservoir as
a homogeneous medium. In reality, the geology is complex, and we are dealing with the
behaviour of a composite and inhomogeneous medium. The modelling needs to account
for that: The reservoir needs to be divided into compartments with different properties and
maybe also different depletion schemes. This requires numerical modelling, and a detailed
knowledge of the geology and associated rock properties. Often, however, simple models
like those presented below may be sufficient to give an idea of the possible severity of
compaction and subsidence in a given field case. Based on a simple analysis, one may then
decide whether a further and more refined analysis is necessary.

12.2. Modelling of reservoir compaction

12.2.1. Uniaxial reservoir compaction

In this section we will calculate reservoir compaction in a simple basic case. We assume
linear poroelasticity, and consider a homogeneous reservoir consisting of isotropic rock.
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The deformation of the reservoir can then be expressed by Hooke’s law from Eqs. (1.102)–
(1.104) in terms of changes in effective Earth stresses, using the initial stress state (i.e. start
of production) as reference for the strains:

Efrεh = �σ ′
h − νfr(�σ

′
H +�σ ′

v) (12.1)

EfrεH = �σ ′
H − νfr(�σ

′
h +�σ ′

v) (12.2)

Efrεv = �σ ′
v − νfr(�σ

′
H +�σ ′

h) (12.3)

The change in reservoir thickness, �h, is given by the vertical strain εv and the reservoir
thickness h, i.e.

�h = −εvh (12.4)

Compaction of the reservoir thus corresponds to a negative �h.
In order to compute the compaction, we need to know how the stresses evolve. We

shall here make the most common approach used within the industry, and then in a later
paragraph discuss possible refinements.

Two assumptions are made: First, since the lateral extent of a reservoir normally is much
larger than its thickness, it is reasonable as a first assumption to neglect the lateral strain:

εh = εH = 0 (12.5)

Thus, the reservoir is assumed to compact only vertically, and we refer to this as uniaxial
compaction. This is the same deformation mode as in an oedometer orKo test as described
in Section 7.3.8.

In order to maintain uniaxial vertical compaction during depletion, the effective hori-
zontal stresses have to increase. Inserting Eq. (12.5) into Eqs. (12.1)–(12.2) we find

�σ ′
h = �σ ′

H = νfr

1 − νfr
�σ ′

v (12.6)

Secondly, we assume that the total vertical stress acting on the reservoir remains constant
during production, which means that the full weight of the overburden is sensed by the
reservoir at all times as the pore pressure is reduced (�σv = 0). Thus, stress arching
(or shielding of stress by the overburden) is neglected. This gives

�σ ′
v = �σv − α�pf = −α�pf (12.7)

We can then insert for all three principal stress changes in Eq. (12.3), and arrive at the
following compaction formula:

�h

h
= 1

Efr

(1 + νfr)(1 − 2νfr)

1 − νfr
α�pf (12.8)

The compaction resulting from a certain pore pressure depletion can now be estimated from
Eq. (12.8), provided the elastic properties (Efr and νfr), the poroelastic coefficient (α), and
the reservoir thickness (h) are known.

We may define a compaction coefficient or uniaxial compressibility Cm as

�h

h
= Cmα�pf (12.9)
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The uniaxial compressibility relates to different frame moduli of the rock, and is equal to
the inverse of the uniaxial compaction modulus:

Cm = 1

Efr

(1 + νfr)(1 − 2νfr)

1 − νfr
= 1

3Kfr

1 + νfr

1 − νfr
= 1

Hfr
= 1

λfr + 2Gfr
(12.10)

Note that the uniaxial compaction modulus corresponds to the plane wave modulus (see
Section 1.3). Since the modulus in Eq. (12.10) is a framework modulus, it means that the
P-wave modulus must be measured in dry conditions (or corrected to, through the Biot–
Gassmann equation, Eq. (1.155)). Furthermore, because dynamic moduli are often larger
than static moduli (see Section 5.6), a direct estimate of compaction from sonic data is
likely to provide a minimum estimate of the true compaction.

In applying the compaction formula, Eq. (12.10), a main problem is to obtain reasonable
values for the parameters involved. Normally, the pressure distribution will not be uniform,
nor will the mechanical properties. If, for instance, we are interested in the compaction in
the centre of the reservoir, we have to look for typical values in that area. Averages for the
total reservoir may in that case give misleading results.

12.2.2. The depleting sphere

As another basic example we will consider a depleting sphere, with radius Ro, in which the
pore pressure is reduced uniformly. This may also be seen as a limiting (although somewhat
unrealistic) case of a depleting reservoir.

To compute the deformation and stresses we need the equilibrium equation for spheri-
cally symmetrical displacement in spherical coordinates, as discussed in Section 4.7.

The general solution of the displacement equation (Eq. (4.171)), is

u(r) = C1r + C2

r2
(12.11)

where the integration constants must be determined by boundary conditions.
The radial displacement should vanish at infinity, and remain finite at r = 0, and both

the radial displacement and the radial stress must be continuous at r = R0, the border
between the depleted region and the surroundings.

The result is that the radial stress change is constant within the depleted region, and
given by

�σr = 2

3

1 − 2νfr

1 − νfr
α�pf = 4

3
η�pf (12.12)

where η is the poroelastic stress coefficient defined in Eq. (4.54).
The volumetric strain in the depleted region is

εvol = − α�pf

λfr + 2Gfr
= −Cmα�pf (12.13)

Observe that depletion leads to a decrease in the total stress, but an increase in the effective
stress and hence a positive (compressive) strain.
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Eq. (12.13) may at first glance be slightly surprising, one might be inclined to expect
α/Kfr instead of αCm. The reason why this is not so, is the stress concentration which
develops around the sphere, which shields it partly from the external stress and makes it
appear stiffer than it otherwise would.

12.2.3. Reservoir stress path

During uniaxial reservoir compaction (described in Section 12.2.1), the vertical stress
remains constant, while the horizontal stresses change according to Eq. (12.6) during de-
pletion. In general, the stress evolution during depletion (the reservoir stress path) may be
defined by the stress path coefficients, as introduced by Hettema et al. (2000):

γv = �σv

�pf
(12.14)

γH = �σH

�pf
(12.15)

γh = �σh

�pf
(12.16)

The coefficient γv is called the arching coefficient, and is zero when the vertical stress
remains constant as the pore pressure is changed. The coefficients γh and γH describe the
change in the horizontal stress field. Assuming full rotational symmetry in the horizontal
plane, γh = γH. Remember that for a depleting reservoir the pressure drop is negative,
so that positive values of the stress path coefficients imply reductions in total vertical and
horizontal stresses.

Stress path coefficients may also be similarly defined in terms of the effective stresses.
It is straightforward to show that the relation between the stress path coefficients γ ′ for
effective stresses and the coefficients defined above is

γ ′ = γ − α (12.17)

Since γ < α in practice, the γ ′ values will be negative. This simply implies that effective
stresses increase as a result of depletion, or decrease as a result of inflation.

One may also define another stress path coefficient κ as the ratio between effective
horizontal and vertical stress changes:

κ = �σ ′
h

�σ ′
v

(12.18)

This leads to the following relation between γh, γv and κ:

κ = 1 − γh
α

1 − γv
α

= α − γh

α − γv
= γ ′

h

γ ′
v

(12.19)

For uniaxial compaction (no arching) as in Section 12.2.1, the stress path coefficients are:

κ = νfr

1 − νfr
(12.20)
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γh = γH = α 1 − 2νfr

1 − νfr
(12.21)

γv = 0 (12.22)

This has more or less been the default assumption within the petroleum industry for
decades. It was through the analysis of compaction and subsidence in the Ekofisk field
(Teufel et al., 1991) that the relevance of the stress path concept was conceived. In that
case, stress measurements during reservoir depletion showed that the effective horizontal
stress increase was much lower than expected from laboratory data (being close to 0.2 in
the field, while a value of approximately 0.5 was measured on cores). This has had pro-
found impact on the entire Ekofisk field development, and has led to increased focus on the
reservoir stress path for many other fields.

From Hooke’s law (Eqs. (12.1)–(12.3)) and Eqs. (12.4), (12.14) and (12.16) elastic reser-
voir compaction can now be calculated for a general stress path. The result is:

�h

h
= α
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[(
1 − γv

α

)
− 2νfr

(
1 − γh

α

)]
�pf = − 1

Efr
[γ ′

v − 2νfrγ
′
h]�pf (12.23)

The values of γv and γh depend on the geometry of the depleting reservoir zone, but also on
the elastic contrast between the reservoir and its surroundings: For example, if the reser-
voir is soft, stress will be concentrated in the stiffer surroundings and shielded from the
depleting zone.

The horizontal stress path coefficient γh depends on the boundary conditions at the sides
of the reservoir. In Section 12.2.1 we assumed uniaxial compaction based on the argument
that horizontal strain is negligible because the lateral extent of the reservoir is normally
much larger than its thickness. This underlines the importance of the geometry of the de-
pleting reservoir zone.

As an example of the effect of geometry, consider the analytical solution for the stress
field within a depleting sphere, as given in Eq. (12.12). This shows that for a spherical reser-
voir embedded in an elastic medium with properties identical to those of the surroundings,
the horizontal and vertical stress path coefficients are equal (in contrast to Eqs. (12.21) and
(12.22) above):

γh = γv = 2

3
α

1 − 2νfr

1 − νfr
= 4

3
η (12.24)

The ellipsoidal reservoir

Rudnicki (1999) modelled the stress path coefficients analytically for a more general case.
Building on the theory of Eshelby (1957) (see also Chapter 6), the reservoir is considered
as an ellipsoidal poroelastic inclusion embedded in an infinite solid medium. “Infinite”
here means that the influence of the free surface is neglected, which limits the validity of
the results to reservoirs at depths greater than their lateral extents. The depleting part of the
reservoir is oriented with the short principal axis in the vertical direction. In the derivation,
the strain occurring in a depleting stress-free reservoir is calculated first. Then, the stresses
required to restore the original reservoir shape are calculated, and finally these stresses
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are added to the initial in situ stresses. Rudnicki’s model also permits contrast in elastic
properties between the reservoir and its surroundings.

The resulting coefficients depend, as expected, on the thickness to diameter ratio (also
called aspect ratio) e, and on the elastic contrast between the reservoir and its surroundings.
If we assume that all elastic moduli are the same within the reservoir and in the surrounding
rock, the coefficients can be calculated using the following expressions:

γh = α 1 − 2νfr
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[
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2
√
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√
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(12.26)

Fig. 12.2 shows γh and γv as functions of the aspect ratio. For flat reservoirs (small e),
these expressions can be approximated (as shown previously by Segall and Fitzgerald,
1998):

γh = α 1 − 2νfr

1 − νfr

(
1 − π

4
e

)
(12.27)

γv = α 1 − 2νfr

1 − νfr

π

2
e (12.28)

In the limit e → 0, the stress path coefficients are identical to the expressions found
above (Eqs. (12.21) and (12.22)) for uniaxial compaction. The horizontal stress path coef-
ficient decreases as the shape of the depleting zone is changed from infinitely flat towards
spherical (e → 1), whereas the vertical (arching) coefficient increases with increasing as-
pect ratio. In the limit e → 1 (spherical inclusion), the arching coefficients become equal,
in agreement with Eq. (12.24).

Fig. 12.2. Normalized stress path coefficients versus the aspect ratio of the depleting reservoir zone, calculated
from Rudnicki’s model for the case of no elastic contrast. The stress path coefficients have been normalized by
dividing with γh for uniaxial strain conditions, see Eq. (12.21). The dashed lines show the linearization from
Eqs. (12.27) and (12.28).
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Note that from Eqs. (12.25) and (12.26) it follows that

γv + 2γh = 2α
1 − 2νfr

1 − νfr
(12.29)

Thus, for an ellipsoidal reservoir, when the surroundings have the same elastic properties
as the reservoir, the sum γv + 2γh is independent of the aspect ratio e.

The volumetric compaction of the reservoir can be expressed in terms of the stress path
coefficients, by introducing the definitions into Hooke’s law. The result is

εvol = −
(
α − γv + 2γh

3

)
�pf

Kfr
= γ̄ ′
Kfr
�pf (12.30)

where γ̄ ′ = (γ ′
v + 2γ ′

h)/3.
For an ellipsoidal reservoir with no contrast to the elastic properties of the surroundings,

this means (combining Eqs. (12.10) and (12.29)) that the volumetric deformation of the
depleting reservoir is always given by the uniaxial compaction modulus, i.e.

εvol = −αCm�pf (12.31)

This is a direct consequence of stress arching. It also implies that the pore compressibility
is independent of the stress path (but it is different from the basic definition in Eq. (1.178)),
see Section 12.4.1.

If we compare the vertical compaction of the reservoir calculated from Eq. (12.23) with
the simple case of uniaxial compaction (e = 0, Eq. (12.8)), we find that the compaction
is maximum for uniaxial deformation. The physical explanation of this is that arching (for
e > 0) will redistribute the stresses such that the reservoir is partly shielded from the
overburden stress. When the reservoir approaches spherical shape (e = 1), the compaction
drops to 1/3 of the uniaxial compaction case. This also follows directly from the volumetric
strain being independent of the reservoir shape, see Eq. (12.31).

Elastic contrast

The effect of elastic contrast between the reservoir and the surroundings can be studied
using the full equations in Rudnicki’s article (1999), or based on finite element (FEM)
simulations (Morita et al., 1989; Mulders, 2003). In all cases it is found that arching is
promoted if the stiffness of the depleting reservoir is significantly lower than of the sur-
rounding rock.

Morita et al. (1989) argued from FEM simulations with a disk shaped reservoir that if the
ratio between the shear modulus of the reservoir and the overburden rock is between 0.2
and 1.5, and if the aspect ratio of the reservoir is less than 0.05, the resulting compaction
is essentially uniaxial.

Similar conclusions can be drawn from Rudnicki’s model, which shows an increase both
in γv and also to some extent in γh compared to the elastically matched case (Holt et al.,
2004). For a finite aspect ratio, both stress path coefficients approach 1 in the limit of infi-
nite elastic contrast. On the other hand, a stiff reservoir in soft surroundings will have lower
stress path coefficients, approaching zero in the case of infinite contrast. Note that the value
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of γv + 2γh which controls volumetric compaction (see Eq. (12.30)) and also pore com-
pressibility (see Section 12.4.1 below) does not remain constant for all aspect ratios, and
decreases with increasing ratio between the stiffness of the reservoir and the surroundings.

Non-ellipsoidal reservoirs

Mulders (2003) compared numerical FEM simulations of stress path coefficients for a disk
shaped reservoir with those calculated by Rudnicki’s model. The assumption of ellipsoidal
geometry by Rudnicki causes the stress path coefficients to be homogeneous over the entire
depleted zone.

For a disk shaped reservoir, Mulders found that the stress path coefficients near the
centre of the reservoir agree with the analytical approach. However, γv increases and γh
decreases towards the edge of the reservoir. From FEM simulations one may inspect the
effect of reservoir depth and tilt with respect to the vertical. In particular, tilt is found to
enhance arching.

Thermoelastic effects may be added to this model (Rudnicki, 1999; Segall and Fitzger-
ald, 1998). This has relevance for recovery of hydrocarbon reserves by injection of cold
water or hot steam.

12.2.4. Beyond simple elastic theory

So far we have considered the reservoir (and its surroundings) to behave linearly elastic.
A reservoir may however develop plastic deformation during production, and eventually
reach a state where faults are generated, or where pre-existing faults are triggered. Faulting
may also occur outside the reservoir, in particular near the edges, where the stress con-
centration resulting from stress arching in the surrounding rock is particularly large (see
Section 12.3.2).

For a reservoir rock being intact (non-fractured and in an elastic state) before produc-
tion starts, non-elastic processes may occur during depletion, if the stress path brings the
rock past yield and in the direction of its failure surface. Failure processes may take place
from the grain scale to the scale of large heterogeneities, and the compaction behaviour
gradually becomes plastic. Laboratory experiments, where synthetic sandstone was formed
under stress (Holt et al., 2000) showed that after an initial phase with largely elastic defor-
mation, permanent (plastic) deformation gradually takes over as the material compacts. In
uniaxial strain conditions, this led to approximately a doubling of the compaction rate, and
it also led to enhanced lateral stress development (corresponding to a reduction of the γh
coefficient) after onset of plasticity.

Plastic behaviour also implies that if water or gas is injected to raise the pore pressure
and counteract compaction, one may not expect to recover the compaction that has occurred
(Santarelli et al., 1998). Depending on the stress path, and on the constitutive behaviour of
the reservoir rock, one may also reach a stress state that permits development of localized
deformation bands, or activation of existing faults.

Fig. 12.3 illustrates schematically how the stress paths will evolve towards the failure
surface in the case of a perfectly linear elastic material. One sees that arching directs the
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Fig. 12.3. Influence of arching on the reservoir stress path. The full arrow shows the stress path in the absence of
arching, while the dashed arrow indicates how arching may redirect the stress path.

path more in direction of the end cap, while lack of arching apparently may lead towards a
shear failure (faulting) situation.

The development of plasticity after the rock reaches its yield point may however redirect
the stress path, as shown in Fig. 12.4. These examples are taken from laboratory tests with
a high porosity sandstone. They show that, depending on the initial stress state, a uniaxial
compaction path may lead to various scenarios: In one case (curve a; low initial shear
stress), the stress path turns parallel to the shear failure limit and eventually reaches failure
near the end cap, while in the other case (curve b; high initial shear stress), strain softening
occurs after the rock has reached the failure surface.

An initially faulted and fractured reservoir in a tectonically active environment may be
assumed to be in a continuous failure state (Addis, 1997). Then, a failure criterion (such as
Mohr–Coulomb) should apply at all stages during depletion. In a normally faulted stress
regime, where the vertical stress is the largest principal stress, this gives (see Eq. (2.22)):

�σ ′
v = �σ ′

h tan2 β (12.32)

The stress path coefficient κ is thus

κ = 1

tan2 β
= 1 − sinϕ

1 + sinϕ
(12.33)

where β is the failure angle and ϕ is the angle of internal friction (see Section 2.3.1).
Provided the total vertical stress remains constant (no arching), it follows from Eq. (12.19)
that

γh = �σh

�pf
= 1 − 1

tan2 β
= 2 sinϕ

1 + sinϕ
(12.34)

It is assumed that the appropriate effective stress constant is equal to 1, since this situation
describes rock failure (Eq. (2.49)).
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Fig. 12.4. Stress paths (thin solid lines) followed by a 29% porosity sandstone under uniaxial compaction, starting
from the state σ1 = σ3 = 30 MPa (path a), and from the state σ1 = 31 MPa, σ3 = 2 MPa (path b). The dash-dot
line shows the theoretical stress path corresponding to path a, assuming the rock is linearly elastic. The failure
envelope (thick line) is estimated on the basis of several other tests. Courtesy of SINTEF Petroleum Research.

12.2.5. Time delayed reservoir compaction

It is observed in several field cases that compaction and/or subsidence occurs with some
delay with respect to change in pore pressure (Hettema et al., 2002). Time dependent defor-
mation (Section 1.9) is normally due to consolidation; i.e. establishment of pore pressure
equilibrium, or it is associated with creep.

In a homogeneous high-permeability reservoir, pore pressure equilibration is a reason-
ably rapid process, taking place within hours or days. Longer time constants must be
associated with very low permeability rock, such as shale, which may be present as lenses
or layers within the reservoir section. For instance, it would take about 100 years to reach
pore pressure equilibrium within a 10 m thick shale layer with 1 nanoDarcy permeability.
Thus, shales continue to compact as their pore pressure approaches equilibrium with that
of the reservoir rock.

Reservoir depletion occurs over a time scale of 50 years or so, which means that the
deformation rate is considerably faster than during natural compaction on a geological
time scale. Most geomaterials are viscoelastic (they creep), which means that increased
loading rate will cause increased stiffness at a given stress level (see Fig. 12.5) (de Waal
and Smits, 1988) (see also Section 1.9.2). A slow initial transient compaction followed
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Fig. 12.5. Effect of change in loading rate.

by an increased compaction rate is then expected, in accord with field observations. This
model however also predicts that reservoir rocks would be more compliant than laboratory
cores, because the loading rate (test duration: hours or days) employed in the laboratory is
much higher than in the field. This appears to be in disagreement with most observations.

Delayed compaction and subsidence may also originate from the drainage pattern of
the reservoir: If the pore pressure is reduced only within a zone of limited lateral extent,
then stress arching is enhanced (as seen in Section 12.2.3), and compaction is reduced
accordingly, compared to what it would be if the entire reservoir was drained uniformly.
As the drainage radius increases, stress arching is reduced, and compaction accelerates and
eventually reaches the level it would have for uniform drainage.

A transition from elastic to plastic behaviour may also be interpreted as a time-delayed
compaction, because the compaction rate would increase with increasing pore pressure
depletion. This is however not a time delayed compaction effect as such (although plastic
strain often involves creep).

Above we have listed mechanisms that may lead to time-delayed compaction and hence
time-delayed subsidence with respect to pore pressure depletion. In addition, subsidence
may be delayed with respect to compaction. In order to see this in field data, separate
compaction and subsidence measurements are required. Such data are usually not available.
Time-delayed stress alteration and creep in the cap rock may contribute to time-delayed
subsidence (Christensen et al., 1988).

12.3. From compaction to subsidence

12.3.1. Geertsma’s nucleus of strain model

To get a more precise picture of the subsidence, we shall take a look at how the deforma-
tion of the compacting reservoir propagates through the overburden. A simple approach is
the so-called nucleus of strain model, presented by Geertsma (1973a, 1973b). The idea is
to calculate the subsidence resulting from the compaction of a small sphere, and then to
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calculate the total subsidence by adding the influence of many such spheres, assuming that
superposition is allowable.

Geertsma’s model is limited to the case where there is no contrast in elastic properties
between the reservoir and the surroundings.

Considering the region outside the depleting sphere (of radius R0), and denoting the
radial displacement at the surface of the depleting sphere by u0, the radial displacement at
a distance r from the centre of the sphere is (see Eq. (12.11))

u(r) = u0
R2

0

r2
(12.35)

u0 may be related to the volume change of the depleted region by (remember the sign
convention, displacements point in the opposite direction of the coordinate axes, see e.g.
Fig. 4.1)

�V = −4πR2
0u0 (12.36)

Combined with Eq. (12.31) and the definition of volumetric strain, Eq. (1.76), this gives

u0 = −CmV α�pf

4πR2
0

(12.37)

and hence

u(r) = −Cm

4π
V α�pf

1

r2
(12.38)

which describes the displacement field outside a depleting sphere in an infinite medium.
Note that the magnitude of the displacement field is governed by the product V�pf. This

means that we get the same displacement field outside R0 for a sphere of half the volume if
pf is doubled. This is similar to gravitation theory, in which we get the same gravitational
field outside the Earth if we assume all the mass to be situated at the centre of the Earth.

This principle is, as we shall see, important for the Geertsma theory.

The effect of the free surface

Eq. (12.38) has one major shortcoming—it does not take the surface properly into account.
At the surface, the vertical stress must be zero. This problem was solved by Geertsma,
who used known solutions from thermoelasticity (Mindlin and Cheng, 1950a, 1950b; Sen,
1951) to arrive at the corrected expression:

�u = Cm

4π

( �R1

R3
1

+ (3 − 4ν)
�R2

R3
2

− 6z(z+D) �R2

R5
2

+ 2ẑ

R3
2

[
(3 − 4ν)(z+D)− z])V α�pf (12.39)

The geometry and the symbols are defined in Fig. 12.6. The first term is recognized
as that developed in Eq. (12.38), while the remaining terms are correction terms ensuring
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Fig. 12.6. Geometry for the Geertsma solution. ẑ is the unit vector in the z-direction. −�u indicates the direc-
tion of particle movement for subsidence. (Remember that due to the sign convention, the positive direction for
displacement is opposite of the coordinate axes.)

zero vertical stress at z = 0. It is a straightforward, but admittedly tedious job to compute
the strain components from Eq. (12.39), and to insert them into Hooke’s law to show that
σz = 0 at z = 0.

It is easy vector algebra (observe from Fig. 12.6 that �R2 + 2Dẑ = �R1) to show that at
the surface, �u points in the �R1 direction, and that the displacement is given by

�u = Cm(1 − ν)
π

V α�pf

�R1

R3
1

(12.40)

where R1 is the distance from the nucleus to the surface point we are considering.
Thus, the presence of the free surface enhances the displacement by typically a factor

three!

The size of the subsidence bowl

From Eq. (12.40) we may compute the volume of the subsidence bowl,�Vsubs by integrat-
ing the vertical deformation over the entire surface.

�Vsubs = −
∫ ∞

0
2πρ uz(ρ) dρ = 2Cm(1 − ν)V α�pf (12.41)

where ρ is the horizontal distance, i.e. R2
1 = ρ2 +D2, and we have used the integral

∫ ∞

0

x

(x2 + a2)n
dx = a2(1−n)

2n− 2
(12.42)
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Eq. (12.41) shows that the volume of the subsidence bowl is related to the volume re-
duction of the compacting reservoir (�Vcomp) by

�Vsubs = 2(1 − ν)�Vcomp (12.43)

As an example, for ν = 0.25, the volume of the subsidence bowl is 50% larger than the
volumetric reservoir compaction.

Since the subsidence for an arbitrary shaped reservoir is found by integrating the result
from many nuclei, it is clear that this ratio is generally valid (within the assumptions of the
model, i.e. elastic deformation and no contrast between the reservoir and the surroundings).

Subsidence above a disk shaped reservoir

Given Eq. (12.40) it is in principle straightforward to compute the subsidence for an arbi-
trarily shaped reservoir by numerical methods. This is however of limited interest, since
the method is based on constant elastic properties. When one turns to numerical modelling,
one should also include a more realistic model of the surrounding formations including the
layers below the reservoir.

There exist, however, analytical solutions for a disk-shaped reservoir which give a gen-
eral insight into the subsidence problem, which is useful even though the method is not
suited for precise calculations.

We shall first consider the vertical displacement along the centre line through a disk-
shaped reservoir. From Eq. (12.39) we extract the vertical component of the displacement,
and integrate over the reservoir. In our calculations, we use a set of strain nuclei situated at
z = D, and multiply by the reservoir height h to get the final result. The integrals involved
are similar to Eq. (12.42), and the final result is

uz = −1

2
Cmhα�pf

(
3 − 4ν + D − z

|D − z| − D − z√
R2 + (D − z)2

− (D + z)(3 − 4ν)√
R2 + (D + z)2 + 2R2z

(R2 + (D + z)2)3/2
)

(12.44)

The surface subsidence at the centre is found by letting z = 0, and is thus

uz = w = 2Cmhα�pf(1 − ν)
(

1 − D√
D2 + R2

)
(12.45)

An important question to resolve is how much error we introduce by assuming the com-
paction to be localized at z = D. We remember from the discussion following Eq. (12.38)
that for a sphere, we may assume all compaction to take place at the centre, and still get
the correct answer outside the reservoir. Thus, if we modelled a reservoir consisting of a
distribution of spheres, we would get correct answer. Now, since a disk can not be fully ap-
proximated by spheres, we expect some deviation, but it might seem reasonable to expect
that it will be small.
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Fig. 12.7. Comparison of the vertical displacement at the centre of a disk-shaped reservoir. The approximate
solution Eq. (12.44) is shown as the dashed line, the exact solution is the solid line.

To address this question, we may divide Eq. (12.45) by h, and integrate from D − h/2
to D + h/2, which gives the exact subsidence for a reservoir of thickness h:

uz = w = 2Cmα�pf(1 − ν)
(
h−

√(
D + h

2

)2

+ R2 +
√(
D − h

2

)2

+ R2

)
(12.46)

By inserting numbers, one will see that difference between the two calculations is only a
couple of percent even when h/D ∼ 1/2.

Eq. (12.44) may be integrated to give the exact result for a reservoir of a finite thickness.
The result is shown in Fig. 12.7 where the exact result is compared with the approximate
result, for reservoir properties given in Table 12.1 (page 409), but for a large reservoir
thickness of h = 1000 m. Again it is seen that outside the reservoir, the Geertsma solution
is very close to the exact result.

Geertsma (1973a) also gave solutions for off-centre positions. He showed that the dis-
placements and stresses can be expressed in terms of integrals of Bessel functions, which
in turn can be expressed via elliptic integrals. He also included tables of numerical values
of the necessary integrals. These tables are of less relevance today, since modern mathe-
matical program systems include functions to compute the elliptic integrals and hence the
tables can be quickly reproduced.

We have included an overview of Geertsma’s main formulas in the formula appendix,
on page 470.

Some example results

The Geertsma solutions are useful for getting an overview of what happens during com-
paction and subsidence. From Eq. (12.44) one may compute the vertical displacement at
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Fig. 12.8. Vertical displacement as a function of depth at the centre of a disk-shaped reservoir with radius equal
to the reservoir depth (full line) and radius equal to 3 times the reservoir depth (dashed line). The compaction has
been normalized to 1.

Fig. 12.9. Ratio of subsidence S to compaction C as a function of R/D according to the Geertsma model,
Eq. (12.44).

the centre of a disk-shaped reservoir. Fig. 12.8 shows two examples, for two different reser-
voir size to depth ratios R/D. The full line applies to a reservoir with radius equal to the
depth. One observes that the reservoir top subsides while the reservoir bottom rises. This
results in a subsidence that is smaller than the reservoir compaction.

On the other hand, for the case shown by the dashed line, which applies to a wide reser-
voir with radius three times the depth, both the reservoir top and bottom subside, and the
Geertsma model predicts a subsidence which is larger than the reservoir compaction.

Fig. 12.9 shows the ratio of subsidence to reservoir compaction as a function of reservoir
radius scaled by the reservoir depth. For very wide reservoirs, the ratio approaches 1.5.
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Fig. 12.10. Displacement field around a circular reservoir with radius equal to the reservoir depth. The gray
rectangle indicates the position of the reservoir. The centre line of the reservoir is to the left.

Fig. 12.11. Displacement field around a reservoir with radius equal to 3 times the reservoir depth. The gray
rectangle indicates the position of the reservoir. The centre line of the reservoir is to the left.

Figs. 12.10 and 12.11 show the displacement field around depleting reservoirs with ra-
dius equal to the depth and three times the depth, respectively.

One observes that at the central parts of the reservoir, the displacement is essentially
vertical, in accordance with the assumption of uniaxial compaction. However, at the outer
radius, the dominant displacement is horizontal. It is clear that the assumption of uniax-
ial vertical compaction is a simplification relative to the predictions of the purely elastic
Geertsma model, which is of course again a simplification of the true behaviour.

Fig. 12.12 shows contour plots of the vertical and radial displacement for the parameters
given in Table 12.1, which corresponds to a reservoir with radius equal to the depth.
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TABLE 12.1 Reservoir properties used in the examples shown in Figs. 12.12–12.14

Reservoir depth D 2000 m
Reservoir radius R 2000 m
Shear modulus G 2 GPa
Poisson’s ratio ν 0.25
Reservoir height h 100 m
Depletion �pf 10 MPa
Density ρ 2200 kg/m3

Estimated compaction, assuming uniaxial deformation Cmh�pf 0.17 m
Reservoir strain �h/h 0.17%
Subsidence at r = 0 From Eq. (12.45) 0.07 m

Fig. 12.12. Contour plot of the vertical and radial displacement around a depleting disk-shaped reservoir, with
parameters given in Table 12.1. The contours for uz run from −11 cm to 5 cm, in steps of 1 cm, while those for
ur run from −5 cm to −1 cm. Negative contours including 0 are in white, positive contours in black.

Fig. 12.13 shows contour plots of the change in vertical and radial stresses for a deplet-
ing disk-shaped reservoir. The calculations have been made for the parameters given in
Table 12.1.

Fig. 12.14 shows a plot of q/p′ normalized to the value before depletion for the case in
Figs. 12.12 and 12.13. The plot is only valid outside the reservoir. We see that outside the
perimeter of the reservoir, we have a region where there is a significant increase in q/p′.

12.3.2. Stress alteration in the overburden

Geertsma’s model, as presented in the preceding paragraph, tells us that the stress state
will change within the rock masses surrounding a depleting reservoir. Since reservoir com-
paction leads to surface subsidence, and since the vertical displacement at the surface is
usually smaller than at the top of the reservoir (see Figs. 12.7 and 12.8), the overburden
above the central part of the reservoir will deform with an extensional vertical strain. Thus,
the vertical stress is reduced in this region, as illustrated in Fig. 12.13.
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Fig. 12.13. Contour plot of the change in the vertical and radial stress around a depleting disk-shaped reservoir,
with parameters given in Table 12.1. The contours run from −0.25 MPa to 0.25 MPa in steps of 0.05 MPa.
Negative contours including 0 are in white, positive contours in black. The plot is not valid inside the reservoir,
and is expected to be inaccurate close to the reservoir edges.

Fig. 12.14. Contour plot of shear stress divided by mean effective stress q/p′, normalized to the situation before
depletion. The contours run from 0.8 to 1.8 in steps of 0.1. Contours from 0.8 to 1.0 are in white, contours from
1.1 are in black. The plot is not valid inside the reservoir, and is expected to be inaccurate close to the reservoir
edges.

At the same time, the horizontal stress is increased. This is an expression of stress arch-
ing, occurring unless the reservoir has infinite lateral extent (e = 0). Near the edge of the
reservoir, the opposite trend is evident from the figure: The vertical stress increases, while
the horizontal stress decreases. Furthermore (not shown in the figure), a difference between
the radial and tangential stress component arises in the overburden outside the depleting
region.

We may extend the definition of the stress path coefficients introduced in Section 12.2.3
beyond the reservoir by considering the stress changes outside the reservoir while main-
taining that the pore pressure change pf in Eqs. (12.14)–(12.16) shall be interpreted as
the pore pressure change in the depleting reservoir zone. The vertical stress is continuous
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across the boundary between top or bottom of the reservoir and the surroundings. Thus,
the vertical stress path coefficient is also continuous across the boundary. The horizontal
stress may on the other hand be discontinuous at the horizontal boundaries.

Segall and Fitzgerald (1998) found that the horizontal stress will increase above and
below a depleting ellipsoidal inclusion with low aspect ratio e (having elastic proper-
ties identical to those of the surroundings) according to the following equation (valid for
small e):

�σ exterior
h = −α�pf

1 − 2νfr

1 − νfr

π

4
e (12.47)

At the edge of the depleting zone, the horizontal stress is the same outside and inside,
while the vertical stress is increasing by ∼α(−�pf). This increase can be large, and may
eventually lead to faulting or fault reactivation.

Note that in the rock surrounding the reservoir (usually shale), the permeability is very
low. There is hence limited possibility for fluid flow, so that the pore pressure response is
that of an undrained case. The pore pressure change depends on the constitutive behaviour
of the shale, and is controlled by the Skempton coefficients (see Section 1.6.5). Because
the volume change outside the reservoir is small, the pore pressure change will also be
small. The effective stress changes are therefore close to the changes in the total stresses.

The stress evolution around a depleting zone can be calculated from the analytical model
of Geertsma (1973b), as outlined in the preceding paragraph. Figs. 12.15a and b show the
resulting stress path coefficients along a vertical line through the centre of the depleting
zone for depleting reservoir radius equal to 1000 m (a) and 500 m (b). The reservoir is
disk shaped and centred at 3000 m depth. The two plots illustrate that the arching effect
decreases as the extent of the depleting zone increases. Furthermore, one sees that γv +
2γh ≈ 0 (constant mean stress; hence no volumetric strain, and pure shear loading), and
that the region influenced by the depleting zone extends more than 1000 m above and
below the depleting reservoir. The vertical extent increases with increasing radius of the
depleting zone.

Fig. 12.15c shows a similar plot of the stress path coefficients for the case defined by the
parameters in Table 12.1. In this case, the reservoir is more shallow (centred at 2000 m),
and the aspect ratio is relatively low (0.05). This leads to low values of the arching coef-
ficients, but the vertical extent of arching is large enough to cause influence by the free
surface: We see that there is horizontal compression at the surface, and that the mean stress
is no longer constant.

Fig. 12.16 shows the vertical and horizontal stress path coefficients as functions of the
depleting zone radius for various depths above a reservoir at 2000 m depth, and with prop-
erties as given by Table 12.1 (except the radius which is varied in the plot).

This analytical model is, as pointed out several times above, limited to an assumption of
homogeneous elastic properties, i.e. no elastic contrast between reservoir and surrounding
rocks. The reservoir is disk shaped, and there is no tilt. In a real case, one should apply nu-
merical techniques, such as the Finite Element Method (FEM) to obtain realistic answers.
Adding elastic contrast by making the surroundings much stiffer than the reservoir rock
promotes further arching. This leaves the rock above and below the reservoir in a state of
shear loading as well as volumetric expansion. If the reservoir also is tilted, the arching
effect can be very large.
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Fig. 12.15. a) Vertical and horizontal stress path coefficients, γv (full lines) and γh (dashed lines), versus depth
for a depleting reservoir centred at 3000 m depth, thickness 200 m, and with Young’s modulus 12 GPa and
Poisson’s ratio 0.20. Calculations are performed with Geertsma’s model, so the reservoir properties are the same
as the surrounding rock properties. Depleting zone radius 1000 m. b) As for a), except depleting zone radius
500 m. c) Vertical and horizontal stress path coefficient versus depth for a depleting reservoir described by the
parameters in Table 12.1. The curve for γh is not valid within the reservoir.
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Fig. 12.16. Vertical (upper) and horizontal (lower) stress path coefficients vs. depleting zone radius above a
depleting reservoir described by the parameters in Table 12.1. The curves correspond to depths 500, 1000, 1500,
1800 and 1950 m. (The length of the dashes increases with depth.)

In this section we have addressed stress paths associated with depleting reservoirs. The
analysis is general and thus relevant also for other cases of fluid withdrawal from under-
ground strata. As long as the rocks behave elastically, one may also use the same formalism
when an isolated layer within the Earth fluid is pressurized by fluid injection, except that
the stress path coefficients then will change sign because�pf is positive. However, as com-
mented in Section 12.2.4 above, any plasticity will make the response to inflation different
from that of depletion.

Non-elastic effects may also be of significance in the rocks surrounding the reservoir.
The strong stress concentration near the edges of a depleting reservoir may trigger pre-
existing faults and be a source of seismicity. It may also lead to faulting by itself. This
mechanism is illustrated by physical modelling through the so-called trap-door experiment
(Papamichos et al., 2001; based on an original experiment by Terzaghi, 1936).

A container with a transparent front plate is filled with sand. At the bottom of the con-
tainer is a trap door, which is lowered to mimic the compaction of a reservoir. Initially,
selected flat layers of black painted sand were inserted for each 10 mm, in order to vi-
sualize the displacement pattern during lowering of the trap door. Examples of observed
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Fig. 12.17. Observed shear banding in a trap door experiment by (Papamichos et al., 2001). The trap door at
the bottom of the model is moved downwards, and the two figures represent snapshots of the overburden sand
deformation at different times during the experiment. With permission from Elsevier.

patterns are shown in Fig. 12.17. Shear bands are seen to originate from the flanks of the
“reservoir”. When the reservoir is shallow, i.e. trap door depth/width is smaller than one,
the shear bands immediately reach the surface and compaction is directly transferred to
subsidence. For deep reservoirs, the shear bands meet each other before they reach the
surface. Additional shear band formation eventually leads to surface subsidence also in
this case, with a time delay with respect to reservoir compaction. The subsidence bowl
observed in these experiments is concentrated directly above the reservoir.

12.4. Geomechanical effects on reservoir performance

So far, we have focused on the purely mechanical aspects of reservoir geomechanics. Hav-
ing the problems associated with subsidence and compaction in mind, it appears as if the
geomechanical influence on the economy of the petroleum industry is largely negative.
However, compaction may also act as a drive mechanism for petroleum production, just
like water is expelled by squeezing a sponge. In addition, the stress changes associated with
pore pressure depletion will also affect porosity, permeability and permeability anisotropy,
which will have further effects on recovery.

12.4.1. Compaction drive

The basic definition of pore volume compressibility was discussed in Section 1.6.4. There
Eq. (1.178) gives the pore volume compressibility with respect to pore pressure provided
the stresses are constant. However, it was seen in Section 12.2.3 above, that the stresses
change during reservoir depletion. Hence, the expression in Eq. (1.178) does not apply
directly to a depleting reservoir.
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To find the appropriate pore volume compressibility, we must take into account how σp
in Eq. (1.176) depends on the pore pressure pf.

From the basic definitions of the stress path parameters, Eqs. (12.14)–(12.16) we have
(assuming γh = γH)

�σp = 1

3
(γv + 2γh)�pf = γ̄ �pf (12.48)

where γ̄ = (γv + 2γh)/3.
Entering this expression into Eq. (1.176) we find the pore volume compressibility Cγpp

for a given stress path as

C
γ
pp = 1

Vp

�Vp

�pf
= 1 − γ̄

φ

(
1

Kfr
− 1

Ks

)
− 1

Ks
(12.49)

From the discussion leading to Eq. (12.29), it is clear that for an ellipsoidal reservoir we
have

γ̄ = 2

3

1 − 2νfr

1 − νfr
α (12.50)

independent of the ellipticity, as long as there is no elastic contrast between the reservoir
and its surroundings. Thus, in this case, which includes the uniaxial compaction case, we
have (Zimmerman, 2000b):

C
γ
pp = 1 + νfr

3(1 − νfr)

α

φ

1

Kfr
+
[

2(1 − 2νfr)α

3(1 − νfr)φ
− 1

]
1

Ks
(12.51)

If we may assume Kfr � Ks the equation simplifies to

C
γ
pp = 1 + νfr

3(1 − νfr)φKfr
= Cm

φ
(12.52)

which is a frequently used approximation.
As a result of a pore pressure decrease the produced fluid volume (at reservoir condi-

tions) is:

�Vprod = −Vp(Cf + Cγpp)�pf (12.53)

The compressibility of the pore fluid is denoted by Cf, and is the inverse of the bulk mod-
ulus (Cf = 1/Kf).

This illustrates that in particular for a soft rock which has low stiffness and therefore high
pore compressibility, production will be enhanced by compaction of the pores. This is what
we call compaction drive. In case of high stiffness (low compressibility), the production
drive will be dominated by the pore fluid compressibility.

As an example, if the pore fluid is oil with bulk modulus of 1 GPa, and the rock is soft
with bulk modulus ∼1 GPa, porosity ∼25%, and Poisson’s ratio ∼0.30, the compaction
term in Eq. (12.53) contributes about 2.5 times as much as the fluid compressibility to the
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production. On the other hand, if the rock is stiff with bulk modulus ∼10 GPa, porosity
∼10%, and Poisson’s ratio ∼0.20, the contribution from compaction is only about half of
that of the fluid.

Gas has negligible compressibility above the bubble point, when it is dissolved in the
pore liquid. Below the bubble point Cgas ≈ 1/pf, and in that case gas drive will completely
dominate.

12.4.2. Stress effects on porosity

In this section, we will describe how porosity, based on the linear poroelastic theory,
changes with stress and pore pressure. One objective is to evaluate porosity changes during
depletion of a reservoir. Another objective is to be able to correct core based porosity data
to in situ conditions.

Porosity change during depletion

Porosity change associated with a stress change can be expressed in terms of pore and bulk
strains as shown in Eq. (1.179):

�φ

φ
= �Vp

Vp
− �Vtot

Vtot
= Cγpp�pf + εvol (12.54)

Inserting εvol from Eq. (12.30) and Cγpp from Eq. (12.49) we then find
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φ
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)
(1 − γ̄ )�pf (12.55)

The latter part of the equation above simply states the effective stress principle for porosity
(cf. Eq. (1.180)).

For an ellipsoidal reservoir (including the uniaxial compaction case) we may replace γ̄
from Eq. (12.50):

�φ

φ
= 1 + νfr

3(1 − νfr)
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1

φ
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α�pf
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+
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(12.56)

In the limit Kfr � Ks the expression simplifies to

�φ = (1 − φ) 1 + νfr

3(1 − νfr)Kfr
�pf (12.57)

The maximum �pf is typically a few tens of MPa, while Kfr is in the GPa range. Hence,
for most practical examples, porosity reduction as a result of depletion is small—typically
less than one per cent unit. In reality, porosity change would also be heterogeneous, partly
because of rock heterogeneity, and partly because of localized deformation.
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Overburden correction of laboratory measured porosity

In order to estimate hydrocarbon reserves as accurately as possible, a reliable estimate of
the in situ porosity is required. Cores represent a source for direct measurement of porosity.
In principle, the core should be reloaded to the in situ stress state in a true triaxial setup,
with pore pressure (and temperature) control. The test would have to be performed on a
core which is properly oriented with respect to the Earth stresses. If both pore volume
change (from the volume of expelled fluid from the core) and bulk volumetric strain is
measured, then Eq. (12.54) above directly gives the porosity change as the core is reloaded.
Such tests are too complicated to be performed on a routine basis at an acceptable price;
thus, simplified procedures are required (Teeuw, 1971; Nieto et al., 1994; Holt et al., 2003).

Core measurements of porosity are usually done in drained loading experiments, where
the external stress is increased hydrostatically and the pore pressure kept at atmospheric
level. Since porosity change is associated with change in pore and bulk volumes, it is,
as long as the core behaves linearly elastic, responding to the mean stress: The confining
pressure applied to the core should therefore be raised to the mean effective in situ stress.
It was shown in Section 1.6.4 that porosity is a function of an effective stress that does not
depend on the Biot coefficient, i.e.

φ = φ(σ̄ − pf) (12.58)

The core should thus be loaded to a confining pressure equal to:

σ̄ ′ = σh + σH + σv

3
− pf (12.59)

The porosity change as shown by Eq. (12.54) depends on the change in the bulk volume
and the pore volume. Usually, however, one does not measure both pore and bulk volume
changes.

Since the pore and bulk volume changes in a drained experiment are related through the
Biot coefficient (see Eq. (1.171)) as follows

�Vp

Vp
= α

φ

�Vtot

Vtot
(12.60)

one may estimate porosity changes from pore or bulk strain measurements alone by making
an appropriate guess for the Biot coefficient α:
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(12.61)

or
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− 1
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(12.62)

Often Biot’s α is set to 1 in these equations. The error introduced by doing so is larger
in the case when only bulk strain is measured than when pore strain is recorded. One may
improve the reliability of the estimated porosity change by inserting a realistic value for α,
for instance by calculating the bulk frame modulus from the data and assuming a solid
grain bulk modulus based on knowledge of the mineralogy.
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Fig. 12.18. Porosity reduction for a field sandstone core as a result of mean effective stress increase, using 3 dif-
ferent stress paths, isotropic (full line), uniaxial compaction (dashed line), proportional loading (dotted line). The
resulting porosity is practically stress path independent (after Holt et al., 2003, with permission form SPWLA).
The porosity reduction at in situ conditions is read at the mean in situ effective stress (which was close to 25 MPa).

The basis for the analysis above was linear poroelasticity. When a core is retrieved from
the Earth, microcracks have developed as a result of stress release, and the subsequent
core reloading is highly nonlinear, often with large strains (see Chapter 7). The underlying
assumptions can therefore be discussed. Using physical model simulations (cementing syn-
thetic rocks under stress) and discrete particle simulations, plus experiments with natural
field sandstone cores, Holt et al. (2003) demonstrated that the porosity reduction during
reloading was largely stress path insensitive; i.e. the use of an isotropic stress may still be
valid in overburden correction. This is shown in Fig. 12.18. Cases where this is not likely to
be valid are for instance in high porosity rocks, where core damage may cause a permanent
porosity reduction as a result of coring and subsequent reloading in the laboratory (Holt et
al., 2000).

12.4.3. Stress effects on permeability

The rate of production from a reservoir as a result of a certain amount of depletion is largely
controlled by reservoir rock permeability. Likewise, the ability of an injected fluid (water,
gas) to displace hydrocarbons is also linked to permeability. Because of the heterogeneous
distribution of rocks within a reservoir, and because of fractures and faults, permeability
may vary considerably over the reservoir volume. This variability, resulting in barriers,
flow channels and compartments of rock bodies within the reservoir, controls how fluid
is drained from the reservoir during depletion and during enhanced recovery operations.
Furthermore, permeability anisotropy implies that there will be preferred flow directions
in situ, even within homogeneous layers.

We know from the preceding sections of this chapter that stresses are changing during
production. The question we address here is how Earth stress changes may affect perme-
ability and permeability anisotropy, and thereby reservoir drainage.



GEOMECHANICAL EFFECTS ON RESERVOIR PERFORMANCE 419

Flood directionality in the field

An extensive study of well test data was performed by Heffer and Dowokpor (1990) and
Heffer et al. (1994). They showed (as can be seen in Fig. 12.19) that the preferred horizontal
flow direction, seen from well tests in a majority of fractured as well as non-fractured
reservoirs, is parallel to the maximum in situ horizontal stress. This implies that stress
anisotropy leads to permeability anisotropy. The relevance of this to reservoir engineering
can be illustrated by considering water injection from a vertical well: If the producing
well is placed in the direction of maximum permeability, early water-breakthrough and
low recovery would be the result. The injector must hence be placed with respect to the
producer by careful consideration of the in situ stress field. Thus; identification of principal
in situ stress directions may be of importance for the reservoir drainage strategy.

Permeability changes under isotropic stress conditions

Experimentally one finds that permeability is reduced with increasing isotropic stress. The
relative reduction of permeability is generally larger in low permeability and low porosity
rocks, where permeability is mainly due to cracks or narrow pores which are easily closed
by an applied stress, than in high permeability and high porosity rocks. As an example,
data on sandstones (Yale, 1984; Kilmer et al., 1987; Holt, 1990; Schutjens et al., 2004)
show that for milliDarcy or lower permeabilities, a confining pressure increase of 30 MPa
may cause a permeability decrease of 50% or more. For porosities above 15–20% and
permeabilities above 1 milliDarcy, the permeability reduction caused by a similar stress
increase is usually of the order 20% or less.

From a microscopic viewpoint, permeability is controlled by the following parameters:

• porosity (φ),

• pore size/grain size (and size distribution),

• pore shape/grain shape,

• tortuosity (T ).

The Kozeny–Carman equation (see e.g. Dullien, 1992) is based on a simple network
model, where the pores are considered as pipes:

k = d2
g

κ0T 2

φ3

(1 − φ)2 (12.63)

Here dg is the grain diameter (assuming spherical grains), and κ0 is a modifying factor
introduced to account for realistic pore shapes. When stress is increased, as long as the
rock remains elastic, the main factor changing in the equation above is the porosity. This
is illustrated in Fig. 12.20, where measured permeability change during hydrostatic load-
ing of a sandstone core (24% porosity) from 4 to 35 MPa is compared to permeability
change predicted from the Eq. (12.63) above, using strain recordings during the test to
calculate porosity changes according to the theory presented in the preceding section. In
this case a convincing agreement was obtained. Flornes (2005) found from hydrostatic
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Fig. 12.19. Preferred flow directions with respect to in situ stress directions in 80 petroleum reservoirs world
wide (top), in the subset of non-fractured reservoirs (middle) and in naturally fractured reservoirs (bottom). From
Heffer et al. (1994). With kind permission of Springer Science and Business Media.
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Fig. 12.20. Permeability variation with confining pressure during drained hydrostatic loading of a 24% poros-
ity outcrop sandstone. Inserted is the variation of the factor φ3/(1 − φ)2 in the Kozeny–Carman equation
(Eq. (12.63)), derived from measurements of volumetric strain during the test (dashed line).

laboratory experiments on several high porosity sandstones (in overall agreement with a
permeability–porosity relationship such as the Kozeny–Carman equation) a permeability
change proportional to porosity change:

�k

k
= −χ �φ

φ
(12.64)

The value of the proportionality factor χ was found to be between 4 and 10 for the different
rocks studied, with an average near 7.

In low permeability rocks, the flow is more controlled by thin aspect ratio pores and
cracks. In this case, the stress sensitivity is much larger than expected from the porosity
based Kozeny–Carman model. This is primarily due to crack closure. Ganghi (1978) has
derived a simple model for stress dependent fracture permeability:

k = k0

[
1 −

(
σ

σ0

)m]3

(12.65)

Here σ0 is a constant relating to the stiffness of the fracture, whereas m is an exponent
(0 < m < 1) that describes the asperity distribution within the fracture. k0 is the perme-
ability at zero stress. Note that σ is the stress acting normal to the fracture plane. Fig. 12.21
shows the rapid decline of permeability according to this model. In case of shear stress ap-
plied to the fracture, the permeability may increase slightly during initial shearing if the
fracture dilates. If asperities are torn off and gouge produced within the fracture, significant
permeability reductions (2 or more orders of magnitude) have been observed (Makurat and
Gutierrez, 1996).

Pore pressure reduction is the main driving force of petroleum production. The stress
effect on permeability is a combined effect of increasing external stresses and decreas-
ing pore pressure. One may anticipate that permeability is functionally dependent on an
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Fig. 12.21. Predicted permeability drop of a fracture with increasing normal stress on the fracture, as derived
from Ganghi’s (1978) model, Eq. (12.65), with m = 0.25.

effective stress

σ ′ = σ − αkpf (12.66)

This effective stress is not the same as the effective stress governing the elastic be-
haviour. The coefficient αk is a poroelastic coefficient for permeability. Experiments with
Berea sandstone (Zoback and Byerlee, 1975) gave αk-values between 2 and 4, which of
course is very different from the conventional assumption (αk = 1). Flornes (2005) found
values close to 1 for high porosity sandstones. This is in agreement with the observa-
tion that permeability change under hydrostatic loading is primarily controlled by porosity
change: The effective stress for porosity is equal to the net stress (confining minus pore
pressure). However, if the solid phase is heterogeneous (as pointed out by Berryman, 1992),
the effective stress coefficient for permeability may deviate significantly from αk = 1.
Zoback and Byerlee (1975) argued that if soft clay is coating the pore walls, the pore pres-
sure will have larger influence on the permeability than the external stress. Further work is
required in order to reach a better understanding of the effective stress law for permeability.

Permeability changes under anisotropic stress conditions

Reservoir stresses and stress changes during production are anisotropic. One would there-
fore also expect permeability and permeability changes to be anisotropic (cf. the field
observation by Heffer et al., referred previously). There are few tests published in the liter-
ature where permeability anisotropy has been directly measured by monitoring both prin-
cipal components of the permeability tensor in the same test. Morita et al. (1984) showed,
using Berea sandstone, that permeability perpendicular to the direction of maximum stress
would decrease whereas permeability along this direction would remain constant during
the main part of a triaxial test. Close to failure, the rock became dilatant, and both perme-
abilities showed slight increases.
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Fig. 12.22. Axial permeability (full line) and axial stress (dotted line) vs. axial strain during a triaxial test with
a 24% porosity sandstone at 40 MPa confining pressure. Inserted (dashed line) is the variation of the factor
φ3/(1 − φ)2 in the Kozeny–Carman equation (Eq. (12.63)), derived from measurements of volumetric strain
during the test (dashed line).

Khan and Teufel (2000) performed experiments where permeability along the core axis
was measured in comparative triaxial compression and extension tests performed on a low
(12%) porosity and low (0.1 milliDarcy) permeability sandstone, applying different stress
paths. They conclude that for decreasing stress path coefficient κ (increasing γh), the per-
meability anisotropy is increasing. The permeability was always higher in the direction
along the maximum principal stress. Whereas in hydrostatic tests, the permeability evolu-
tion was essentially isotropic, the ratio between the maximum and minimum permeability
was close to 3 when κ = 0 (uniaxial load increase). The permeability along the maximum
principal stress was seen (like in the tests of Morita et al.) to increase towards the end of
the applied loading as a result of dilatancy.

There is evidence from borehole measurements in highly fractured and faulted crys-
talline rocks that indicate that the permeability of critically stressed faults can be much
higher than that of faults being far from failure (Barton et al., 1995).

On the other hand, there are several observations in the literature that permeability drops
during rock yielding and failure (Holt, 1990; Bruno, 1994; Sarda et al., 1998). This is most
often seen in high porosity and high permeability materials, and at relatively high confining
pressures. Fig. 12.22 shows an example, where a triaxial test was performed with the same
(24% porosity) sandstone used for isotropic loading as shown in Fig. 12.20 at a confining
pressure of 40 MPa. Again the permeability evolution correlates extremely well with the
porosity change as determined from the volumetric strain, but only until strain localization
takes place near rock failure. Then the measured permeability starts to drop at a much
higher rate than before, while the core is actually dilating. This is probably explained by
the formation of a shear band and associated crushing of grains, creating a barrier to fluid
flow. A most dramatic example is the observation by Holcomb and Olsson (2003), who
detected a permeability drop of 3–4 orders of magnitude when a Castlegate sandstone core
at very high confinement was strained axially by 10% in a triaxial test. They interpreted
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the permeability drop by the formation and propagation of a horizontal compaction band
containing crushed grains.

Boutéca et al. (2000) and Schutjens et al. (2004) both summarize the behaviour of per-
meability in stress space by distinguishing between an elastic or near-elastic regime, where
permeability changes are small, and probably related mainly to porosity change. Then, as
shear stress is increased, inelastic deformation takes over gradually, and the rock eventually
fails. The permeability may then be enhanced or reduced, depending on the stress path, on
the porosity and initial permeability of the rock, and on its constitutive behaviour.

12.4.4. Geomechanics in reservoir simulation

The evolution of reservoir geomechanics calls for an implementation of geomechanical
concepts into reservoir simulation. There are two fundamentally different ways of per-
forming this:

Weakly coupled technique

A conventional reservoir simulator is used to calculate the pore pressure distribution within
the reservoir. Such a model needs as input within each cell (105–106 cells in a total simula-
tion): rock properties (porosity, the 3 components kx , ky and kz of the permeability tensor
plus pore compressibility), fluid properties (saturation of oil, gas and water, viscosities and
densities for the 3 fluid components), and combined rock-fluid parameters (relative perme-
abilities, capillary pressure curve). In addition, well information must be included. Usually
the permeability and mechanical properties are thought to be constant over the lifetime of
the reservoir.

A large-scale geomechanical (usually finite element) model is then used to calculate the
stress changes and mechanical compaction and subsidence as a result of the pore pres-
sure reductions found by the reservoir simulation. Permeability and pore compressibility
changes can be calculated if their stress sensitivities are known, and these data can be fed
back to the reservoir simulator, which is then updated, etc. One problem here is that a
geomechanical model needs to account for the overburden, plus the rock to the sides and
underneath the reservoir. This in practice usually limits the reservoir to be represented by
104–105 elements, i.e. on a much coarser grid than in the reservoir simulation above.

Fully coupled simulation

The coupling between stresses and fluid flow goes back to Biot’s poroelastic theory in Sec-
tion 1.6. The idea is to use a single set of coupled governing equations that contain both the
mechanical and the fluid flow aspects. The benefit is that a fully coupled approach is likely
to be more correct. The problem is that such a simulator is computationally more compli-
cated and hence more time-consuming. One should also have in mind that the existing Biot
theory might need modification to account correctly for multi-phase fluid saturation and
flow.
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More detailed descriptions of such models and their development can be found in e.g.
Lewis and Schrefler (1998), Osorio et al. (1998), Koutsabeloulis et al. (1994), Gutierrez
and Lewis (1998), Settari and Walters (1999), and Stone et al. (2001).

12.4.5. Seismic reservoir monitoring

Seismic reservoir monitoring (time-lapse, or “4D”-seismics) has become a powerful tool
to monitor reservoir performance. Results of repeated seismic surveys are compared, and
differences over time indicate the presence of dynamic processes in the subsurface. Such
alterations may be observed as changes in two-way travel time or as a change in a reflectiv-
ity of a certain reflector (e.g. at bottom and/or top of the reservoir). Travel time is associated
with seismic wave velocities (vp, vs), whereas seismic reflectivity (see Section 5.7) is re-
lated to contrast in acoustic impedance (ρvp, ρvs).

The most important sources of observable time lapse effects associated with producing
reservoirs are:

• Fluid substitution; i.e. hydrocarbons have been replaced by water due to drainage, or
replaced by an injected fluid.

• Changes in temperature as a result of a cold (water) or hot (steam) injection front.

• Changes in pore pressure and reservoir stresses.

Fluid substitution

The P-wave velocity of a fluid-saturated isotropic rock is given by the Biot theory. The
result in the low frequency limit, Eq. (5.39), can be written as

vp =

√√√√√Hfr + Kf
φ

α2

1+ Kf
φKs

(α−φ)
ρdry + ρfφ

(12.67)

Pore fluid characteristics affect velocity and hence travel time through the fluid bulk
modulus Kf and the fluid density ρf. If oil is replaced by water, both the plane wave mod-
ulus in the numerator and the density in the denominator increase. The net effect is not
obvious and depend on the other rock parameters involved, such as the plane wave mod-
ulus Hfr of the dry frame and the porosity. Typically, brine has a bulk modulus (Kf) of
2.5 GPa, while Kf for live oil is near 0.5 GPa. The densities are approximately 1.0 and
0.6 g/cm3, respectively. In general, the fluid substitution effect will be more prominent in
high than in low porosity rock, because a high porosity rock has a low Hfr, making the
fluid contribution to the plane wave modulus more significant. In such a case, the P-wave
velocity of the reservoir layer will increase if oil is replaced by water (see Fig. 5.2).

The effect of fluid substitution on the reflection coefficient (Eq. (5.82)) is larger and
more consistent, because the acoustic impedance depends on the product of the modulus
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and the density, which both are increased as a result of water replacing oil:

Zp = ρvp =
√√√√(

Hfr + Kf

φ

α2

1 + Kf
φKs
(α − φ)

)
(ρdry + ρfφ) (12.68)

Again the effect of fluid substitution is larger in high-porosity than in low-porosity reservoir
rocks.

Changes in temperature

The first published example of successful seismic reservoir monitoring was done in con-
nection with a steam injection operation (Nur et al., 1984). In this case, the high tempera-
ture of the injection fluid compared to the reservoir rock strongly promoted the observed
contrast. Also, when cold water is injected into a reservoir, thermal effects will influence
the observed response.

The effects of a temperature change are two-fold: It affects rock and fluid properties, and
it leads to thermal stresses, which may alter the state of stress underground and thereby, the
velocities. These effects may be large: Water-injection often results in thermally induced
fracturing which is beneficial for the EOR operation. Clearly, such changes will lead to
prominent changes in seismic behaviour. In most rocks, velocities are found in laboratory
investigations to decrease with increasing temperature; typically 5–10% when the rock is
heated from room temperature to around 100 °C. Because oil is more temperature sensitive
than brine, the effect is expected to be larger in oil than water saturated regions.

Changes in pore pressure and reservoir stresses

When a reservoir is depleted, the effective stresses are increased, as outlined in Sec-
tion 12.2.3 above. One would expect this to cause an increase in wave velocities in the
reservoir zone, since velocities in most rocks are found from laboratory experiments to
increase with increasing effective stress.

There is however a number of indications from 4D field data (The Leading Edge, 2005)
that this effect is much smaller than anticipated. One probable reason for this is that reser-
voir rock in situ is less stress sensitive than it appears from core measurements, because
cores have been altered as a result of the coring process (Section 7.1.2). Stress release
leads to existence of microcracks in the unloaded cores. These cracks are closing during
reloading, but crack closure is unlikely to be complete and hence perfect re-establishment
of in situ behaviour can not be expected.

Intuitively, one would anticipate that a well-cemented rock in the Earth is relatively
stress insensitive. In situ stress dependence is then mainly associated with pre-existing or
evolving cracks or fractures within the reservoir. If the rock is poorly cemented so that
a number of grain contacts are not welded, stress-dependence occurs as a result of the
nonlinear (Hertzian) behaviour of these grain contacts. Also, a soft reservoir rock under-
going large depletion may compact with large porosity reduction, causing wave velocities
to increase.
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One should also remember that pore pressure itself affects the properties of the saturat-
ing fluid independent of stress changes. The bulk modulus of oil is reduced typically with
0.01 GPa per MPa pore pressure reduction, while the bulk modulus for brine is reduced
slightly less, depending on temperature. This effect counteracts the increase in P-wave
velocity caused by effective stress increase. For a stress insensitive frame, the velocity
reduction with reducing pore pressure is in the range 0.1–0.3% per MPa, being more sig-
nificant for soft rock than for hard rock, and more significant for high than for low gas to
oil ratios (GOR).

As was also seen in Section 12.2.3, the stress evolution as a result of pore pressure
change is anisotropic, and may cause non-elastic behaviour of the reservoir rock and
even fault activation/initiation. This would clearly affect wave velocities, leading to stress-
induced anisotropy. If the pore pressure is increased (e.g. as a result of water-injection), the
effective stress is decreasing anisotropically, and non-elastic behaviour may occur for rela-
tively modest pore pressure changes: Initiation of microcracking by tensile bond breakages
may happen and lead to velocity reduction, in accord with field observations (Landrø et al.,
2005).

We saw in Section 12.3 that stress changes and strains associated with depletion also
occur in the rock surrounding the reservoir. For the overburden above the centre of the
reservoir the vertical stress is reduced and the horizontal stress increased by stress arching
as a result of reservoir depletion. This may lead to a reduction of wave velocity for a
vertically propagating seismic wave, increasing its two-way travel time, and altering the
reflectivity associated with top of the reservoir. The influence zone of stress alteration is
thick—in Fig. 12.15 close to 1000 m above the reservoir—which magnifies the effect on
two way travel time compared to that caused by a similar velocity change in the reservoir.
There is significant field evidence that depletion-induced stress changes in the overburden
cause observable 4D effects (Hatchell and Bourne, 2005). Field data from Valhall (Barkved
and Kristiansen, 2005) demonstrate increased S-wave splitting associated with the stress
concentration above the edges of the reservoir. Thus, seismic observations of stress-arching
can be used to identify depleting reservoir zones and to distinguish between sealing and
non-sealing faults.

Reservoir monitoring can also be done in a passive mode, by detecting seismicity origi-
nating from within the reservoir or in the cap rock immediately above or near the reservoir
edge (Maxwell et al., 1998; Kristiansen et al., 2000). This type of monitoring is aimed at
interpreting the compaction and subsidence mechanisms and does not directly give infor-
mation about fluid movements. Another technique is to monitor surface deformation with
a very high resolution using precision laser levelling. The result is inverted mathematically
(e.g. using Geertsma model described above) to find reservoir deformation, and relate it to
mechanisms responsible for the deformations seen (e.g. thermal recovery, waste or massive
fluid injection) (Dusseault and Rothenburg, 2002).

12.5. Well problems and reservoir geomechanics

There is evidence from field operations world wide that the stability of boreholes drilled or
wells being produced are affected by stress changes described in the previous paragraphs.
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For example, as was pointed out in Chapter 9, stable drilling of infill wells may become
difficult as the producing reservoir zones are depleted. This is related to the strong decrease
of horizontal stress (and hence fracture pressure) in permeable layers, at the same time
as the pore pressure (and hence the collapse pressure) remains unchanged in ultra low
permeability shale layers within or just above the top of the reservoir. The mud weight
window eventually closes at a critical amount of pore pressure reduction.

Sand failure is also affected by the changing stress field during depletion, as was dis-
cussed in Chapter 10. Onset of shear failure in the perforation cavities or in an open
producing hole is controlled by the rock strength and by the far field effective stress
(Eq. (10.8)). The increase in far field effective stress caused by pore pressure reduction
enhances the risk of sand production. Pressure maintenance by water injection may re-
sult in reduction of formation strength and therefore also lead to increased risk of particle
production as the reservoir is being produced.

12.5.1. Casing damage

A most significant well problem associated with a compacting reservoir is casing damage.
Several examples have been documented in the literature, such as from the Ekofisk Field
and the Valhall Field, North Sea, and from the Belridge Field and the Wilmington Field,
California (Schwall et al., 1996; Kristiansen et al., 2000; Fredrich et al., 1998; Dusseault et
al., 2001). Casing damage becomes an operational problem when the casing is deformed
or bent (by creation of dog-legs) so much that it prevents workovers and recompletions
(Cernocky and Scholibo, 1995). This necessitates costly drilling of a side-track well.

The main mechanisms responsible for casing damage are compressional, shear, tensile
and bending deformations (Veeken et al., 1994; Cernocky and Scholibo, 1995; Fredrich et
al., 1998; Dusseault et al., 2001). The mechanisms are illustrated in Fig. 12.23.

In a compacting zone, the casing strain in a vertical well is assumed to be equal to the
formation strain. This is based on an assumption of no axial slip, and uniform reservoir
compaction. If the well is deviated, the casing strain equals the component of formation
strain along the well direction. Thus, a deviated well is preferable to a vertical well in order
to reduce compressive casing damage. The risk of casing buckling is highest in unsupported
intervals, for instance near sand producing perforations where the pressure drawdown is
also most severe, wherever the cement gives poor support, or at connections. Based on
analytical and numerical modelling, Cernocky and Scholibo (1995) found that 0.5–0.75%
casing strain may be thought of as an upper limit for an unsupported 10 ft section. Bruno
(2002) argued that casing compaction of 1% or less is unlikely to impair casing integrity.

Deformation of the casing cross-section due to non-uniform lateral loading is referred
to as “crushing” (Cernocky and Scholibo, 1995). This is mainly a problem in reservoir
zones with large depletion, and where the formation is very soft. In their finite element
simulations, Cernocky and Scholibo) chose a “crushing limit” (i.e. the maximum tolerable
decrease of the inner diameter) of 0.3′′ (7.5 mm), based on field experience. They found
that a low diameter : thickness ratio of the casing (say 10 or thereabout) is a key to reduce
crushing risk in highly compactive sands. If a large diameter : thickness ratio is used (say
20 or so), the crushing risk is much higher for a horizontal or deviated well than for a
vertical one. For a low diameter : thickness ratio, the well angle plays a minor role.
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Fig. 12.23. Casing damage scenarios (after Veeken et al., 1994).

Casing damage by shear is caused by high shear stresses within the rock (Dusseault
et al., 2001). Most often casing shear occurs near lithology interfaces (shale-sand) in the
overburden, along faults, or at the top of production and injection intervals inside the reser-
voir. In the overburden, shear damage to the casing most likely takes place near the flanks
of the reservoir, where the vertical stress is increased and the horizontal stress decreased
as a result of depletion, leading to possible fault reactivation. An example was given in
Section 9.7.1 (Maury and Zurdo, 1996). Casing shear may also occur in the crestal region
above the reservoir, where the vertical stress is reduced and the horizontal stress increased
as a result of stress arching.

The decrease in vertical stress above a depleting reservoir also may lead to tensional
casing damage. As for compaction strain, tensile strain is also transferred directly to
the casing. Several cases of tensile casing damages were observed in the Belridge field
(Fredrich et al., 1998). Thermal expansion due to steam injection may also be a cause of
tensile casing failures.

Casing bending may occur at locations of non-uniform compaction, such as in a deviated
well near the top or bottom of a depleting reservoir zone.

Mitigation of casing failure first of all requires a good picture of the stress and strain
evolution within and outside the reservoir, and in particular to locate possibly reactivated
faults and sites of massive particle production. Hence, geomechanical simulations are nec-
essary. These may be used to select well positions and well angles that reduce the risk of
casing damage as much as possible. Dusseault et al. (2001) recommends in particular to
increase the compliance of the wellbore–casing system (increased casing diameter, use of
highly ductile cement) as a remedy against casing shear damage, while casing strength ap-
pears to be of minor importance. Kristiansen et al. (2000) found that events located from
microseismic monitoring in the Valhall Field, North Sea, were spatially correlated with
locations of casing collapse. They used this information to achieve optimum casing design
in the highest risk areas.
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12.5.2. Reservoir geomechanics as a tool to optimize drilling and production
strategies

This section has demonstrated that well problems associated with drilling and production
are strongly linked to the geomechanical response of the reservoir. Drilling instabilities,
sand production and casing damage are triggered by depletion. This calls for a geomechani-
cal analysis predicting stress changes and strain evolution within and outside the reservoir,
based on different production scenarios. Such analyses will provide information like at
what time and where infill wells have to be drilled in order to minimize stability problems,
and where casing damage mitigation is required.

Stress arching in general reduces reservoir compaction and associated well problems
within the reservoir. On the other hand, the stress changes within and around the reser-
voir become more pronounced, which leads to more well failures in the overburden. Stress
arching may however to some extent be controlled by the order in which reservoir compart-
ments are produced, by pressure maintenance, or by thermal stresses generated as a result
of fluid injection. This opens up possibilities to use geomechanics actively—and through
4D and microseismic monitoring—interactively, as a part of reservoir management.
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Appendix A

Rock properties

The following tables are included in this appendix:

• Table A.1—Static mechanical properties for some common rock types and materials.

• Table A.2—Static mechanical properties for some specific rocks.

• Table A.3—Density, elastic moduli and sound velocities for some common materials.

• Table A.4—Sound velocities for some common rock types.

• Table A.5—Thermal properties for some rocks and materials.

The data are compiled from the sources given in the list below. Elastic moduli are from
tests under unconfined or near unconfined (low confining pressure) conditions.

Note: For most rocks, material properties such as elastic moduli, strength parameters
and sound velocities vary from rock sample to rock sample, in addition to being depen-
dent on measurement conditions (stress, temperature, saturation). Also, material properties
are often anisotropic. We have therefore chosen to indicate expected intervals (Tables A.1
and A.4) for the properties. In Tables A.2, A.3 and A.5, when some specific materials are
referred to, the values are taken from a specific experiment and need not be representative
for other experiments with the same type of rock.

There may also be slight variations in the numbers given by different sources.
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Source Used in table

Bourbié, T., Coussy, O., Zinsner, B. (1987). Acoustics of Porous Media. IFP Publications.
Editions Technip, Paris, France

A3, A4

Carmichael, R.S. (1982). Handbook of Physical Properties of Rocks (vols. II & III). CRC
Press, Boca Raton, Florida

A1, A2, A3,
A4

Deere, D.U., Miller, R.P. (1966). “Engineering classification and index properties for intact
rock”. Report No. AFWL-TR-65-116, Air Force Weapons Laboratory, Kirtland Air Force
Base, New Mexico.

A1, A2

Gercek, H. (2007). “Poisson’s ratio values for rocks”. Int. J. Rock Mech. Min. Sci. 44, 1–13. A1
Green, S.J., Griffin, R.M., Pratt, H.R. (1973). “Stress–strain and failure properties of a porous

shale”. SPE 4242. In: 6th Conf. Drilling and Rock Mechanics.
A2

Head, K.H. (1984). Soil Laboratory Testing. Vols. I–III. ELE Intl., London. A1
SINTEF Petroleum Research. “Various inhouse tests”. Trondheim. A1, A2, A4
Lide, D.R., Frederikse, H.P.R. (Eds.) (1997). Handbook of Chemistry and Physics, 78th ed.,

CRC Press, Boca Raton, Florida.
A3, A5

MacGillivray, D.A., Dusseault, M.B. (1998). “Thermal conduction and expansion of
saturated quartz-illitic and smectitic shales as a function of stress, temperature, and
bedding, anisotropy”. Int. J. Rock Mech. & Min. Sci. 35 (4–5). Paper No. 35.

A5

Mavko, G., Mukerji, T., Dvorkin, J. (1998). The Rock Physics Handbook. Cambridge
University Press, Cambridge.

A2, A3

Morita, N., Whitfill, D.L., Massie, I., Knudsen, T.W. (1987). “Realistic and production
prediction: Numerical approach”. SPE Production Eng. 4 (1), 15–24.

A2

Nur, A.M., Wang, Z. (1989). Seismic and Acoustic Velocities in Reservoir Rocks, Geophysics
Reprint Series. Soc. Expl. Geophysicists, Tulsa, Oklahoma (and references therein).

A3, A4

Somerton, W.H. (1992). Thermal Properties and Temperature-Related Behavior of
Rock/Fluid Systems. Elsevier, Amsterdam.

A5

TerraTek (2001). “Properties of Pierre shale”. Personal communication. A2
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TABLE A.1 Static mechanical properties for some common rock types and materials

Material Density ρ

103 (kg/m3)

Young’s modulus
E (GPa)

Poisson’s ratio
ν

Unconf. compr.
strength C0 (MPa)

Tensile strength
T0 (MPa)

Unconsolidated
sands

1.5–1.7 0.01–0.1 ∼0.45

Sandstone 2.0–2.65 0.1–30 0–0.45 1–250
Clay 1.9–2.1 0.06–0.15 ∼0.40 0.2–0.5
Shale 2.3–2.8 0.4–70 0–0.30 2–250
High porosity
chalk

1.4–1.7 0.5–5 0.05–0.35 4–15

Low porosity
chalk

1.7–2.0 5–30 0.05–0.30 10–40

Basalt 2.7–2.9 50–100 0.2–0.3 200–350 10–15
Granite 2.6–2.8 5–85 0.1–0.34 50–350 5–15
Dolomite 2.4–3.2 10–100 0–0.5 40–350
Limestone 1.4–2.9 2–100 0–0.3 5–250
Gneiss 2.7–3.1 40–100 0.1–0.3 50–250
Marble 2.7–3.2 5–90 0–0.3 50–250
Ice 0.9 8 0.35
Steel 7.9 200 0.28 220–900∗ 350–1200

∗Yield strength.
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TABLE A.2 Static mechanical properties for some specific rocks

Material Density ρ

103 (kg/m3)

Young’s modulus
E (GPa)

Poisson’s ratio
ν

Unconf. compr.
strength C0 (MPa)

Tensile strength
T0 (MPa)

Red
Wildmoor⊥

1.9–2.0 1.8 14 0.4–0.7

sandstone‖ 1.9–2.0 1.3 7 0.4–0.7
Weak reservoir
sandstone
(North Sea)

1.9 0.4 0.45 1

Berea sandstone 2.18 20 0.38 74
St. Peter
sandstone

2.34 4–10 0.05–0.10 37

Weak shale
(North Sea)

2.35 1 6

Pierre shale I 2.37–2.39 0.77–1.12 0.35–0.37 7.5–13.9
Shale (El Paso) 2.47 26 0.10 115
Bedford
limestone

2.21 29 0.29 51 1.6

Solenhofen
limestone

2.62 64 0.29 245 4.0

Hackensack
siltstone

2.59 26 0.22 123 3.0

Nevada Tuff 1.61 5.0 0.21 24 1.4
Rock salt
(Diamond
crystal)

2.16 5 >0.5 21 0.8

Schist⊥ 2.81 21 0.31 55 0.6
(Luther Falls)‖ 2.82 58 0.18 83 5.2

⊥Loaded perpendicular to bedding.
‖Loaded parallel to bedding.
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TABLE A.3 Density, elastic moduli and sound velocities for some common materials

Material Density ρ

103 (kg/m3)

Bulk modulus
K (GPa)

Shear modulus
G (GPa)

P-wave velocity
vp (km/s)

S-wave velocity
vs (km/s)

Calcite 2.71 74.0 27.5 6.39 3.18
Quartz (α) 2.65 37.5 41.0 5.90 3.94
Muscovite
(mica)

2.79 52–62 31–41 5.78–6.46 3.33–3.84

Biotite 3.05–3.12 41–60 12–42 4.35–6.8 2.00–3.70
Feldspar
(average)

2.63 76 26 4.68 2.39

Pyrite 4.93 147.5 132.5 8.10 5.18
Dolomite 2.87 76–95 45–52 6.93–7.34 3.96–4.23
Barite 4.50 53 22 4.29 2.22
Olivine 3.32 130 80 8.54 5.04
Steel 7.9 198–205 57–80 5.9–6.3 2.7–3.2
Aluminium 2.7 77–98 23–26 6.3–7.0 2.9–3.1
Water (fresh) 1.00 2.25 1.50
Ice 0.9 1.3–1.7
Crude oil (room
temp.)

0.7–1.1 1.2–2.8 1.3–1.7

Air
(atmospheric
press.)

0.14 · 10−3 0.15 · 10−3 0.33

Plexiglass 1.2 2.55 1.28
Ethanol 0.79 0.89 1.06
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TABLE A.4 Sound velocities for some common rock types

Material Density ρ

103 (kg/m3)

P-wave velocity
vp (km/s)

S-wave velocity
vs (km/s)

Conditions

Sand, dry, loose 1.5–1.7 0.3–1.0 0.05–0.4 dry, from surface to ≈50 m depth
Sand, dry 1.6–1.7 1.0–1.7 0.4–0.9 dry, loaded from ≈1 to ≈50 MPa
Sand, wet, loose 1.8–2.2 1.5–2.0 0.05–0.4 saturated, from surface to ≈50 m

depth
Sandstone,
competent

2.0–2.65 1.8–4.5 1.0–3.0 dry, various porosities

Berea sandstone 2.2 3.8–4.0 2.3–2.4 brine saturated, confined
Sandstone,
weak

1.7–2.0 1.0–2.0 0.6–1.2 dry, various porosities

Red Wildmoor
sst.

2.0 1.7–2.0 1.1–1.3 dry, confined

Clay 1.9–2.1 1.5–1.6 0.1–0.3 saturated, from surface to ≈50 m
depth

London Clay,
deep

2.0 1.7–1.8 0.8–1.1 saturated

Shale 2.3–2.8 1.6–4.5 0.7–3.0 saturated, various porosities
Weak shale,
North Sea

1.8–2.3 2.4–2.6 1.2–1.3 saturated, unconfined

Chalk, high
porosity

1.4–1.7 1.8–2.6 1.0–1.5 saturated, field and lab. data

Chalk, low
porosity

1.7–2.4 2.6–5.0 1.5–3.5 saturated, field and lab. data

Limestone 2.4–2.7 3.5–6.0 2.0–3.5 various
Basalt 2.5–2.9 3.5–5.5 1.7–3.4 dry & saturated; stress 0–100 MPa
Granite 2.6–2.7 5.5–6.5 3.0–3.5 dry; stress 0–100 MPa
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TABLE A.5 Thermal properties for some rocks and materials

Material Linear thermal
exp. coeff.
106 (K−1)

Conditions Thermal
conductivity
W m−1 K−1

Conditions Heat
capacity
J kg−1 K−1

Conditions

Berea sst. 13 100–200 °C 2.34 20 °C, dry
Bandera sst. 20 100–200 °C 1.70 20 °C, dry
Boise sst. 17 100–200 °C 1.47 20 °C, dry
Sandstone 824–1000 25 °C, dry
Pierre shale 1.30–1.70 35–75 °C, 1–24 MPa

saturated
Mancos shale 13–20 20–75 °C 1.50–2.25 35–80 °C, 1–24 MPa

saturated0–7 MPa
Queenston shale 11–13 20–75 °C 1.74–1.95 35–90 °C, 1–24 MPa

saturated0–3.5 MPa
Quartz ⊥ c∗ 18 20–100 °C

‖ c 10 20–100 °C 13 0 °C 735 0 °C
Calcite ⊥ c 24 20–100 °C

‖ c −5 20–100 °C
Aluminium 23.1 25 °C 200 27 °C 900 25 °C
Water 70∗∗ 20 °C 0.6 20 °C 4182 20 °C

∗Relative to crystallographic axis.
∗∗Computed from volumetric expansion.
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Appendix B

SI metric conversion factors

To convert from To Multiply by

atm MPa 0.101325∗
bar MPa 0.1∗
bbl m3 0.1589873
cp Pa s 1.0 · 10−3∗
Darcy µm2 0.9869233
dyne/cm2 Pa 0.1∗
ft m 0.3048∗
in. m 2.54 · 10−2∗
lbf N 4.44822
lbm kg 0.4535924
lbm/USgal g/cm3 0.1198264
psi kPa 6.894757
psi/ft kPa/m 22.62059

∗Conversion factor is exact.

To convert from degrees Fahrenheit to degrees Celsius:

Tc = Tf − 32

1.8
(B.1)

where Tf is given in ◦F and Tc is given in °C.
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Appendix C

Mathematical background

C.1. Introduction

When using the first edition of this book as a basis for a course in Petroleum Related Rock
Mechanics, we have repeatedly had the request for a refreshment of some mathematical
background material, in particular linear algebra. This appendix is an attempt to respond
to these requests.

This appendix is not a full tutorial, and we do not attempt to provide full mathematical
rigour in the presentation. Still, we hope that this appendix may be useful for readers that
need a repetition of some central mathematical methods. We also hope that this appendix
may make it easier to read some of the literature in the field.

C.2. Matrices

A matrix is a rectangular array of numbers or other mathematical objects. The elements of
a matrix are normally referred to by two indices. The first index refers to the rows and the
second to the columns.

An example of a 3 × 3 matrix is thus

a =
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
(C.1)

C.2.1. The transpose of a matrix

The transpose of a matrix is the matrix found by interchanging the rows and columns of a
matrix. The transpose of a is often denoted by aT. The transpose of the matrix in Eq. (C.1)
is

aT =
(
a11 a21 a31
a12 a22 a32
a13 a23 a33

)
(C.2)

C.2.2. Symmetric matrix

A symmetric matrix is equal to its transpose, i.e. it is left unchanged when reflected about
the diagonal:

a = aT (C.3)
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In component notation this may be written as

aij = aji (C.4)

C.2.3. Diagonal matrix

A diagonal matrix is a square matrix in which only the diagonal elements are nonzero.
Sometimes the following notation is used:

diag(a, b, c) =
(
a 0 0
0 b 0
0 0 c

)
(C.5)

C.2.4. Matrix addition

Two matrices of the same size are added by adding corresponding elements. As an example,
for two 2 × 2 matrices we have

a + b =
(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
(C.6)

C.2.5. Multiplication by a scalar

A matrix is multiplied by a scalar by multiplying all elements with the scalar. For example

ka = k
(
a11 a12
a21 a22

)
=
(
ka11 ka12
ka21 ka22

)
(C.7)

C.2.6. Matrix multiplication

The product of an n× l matrix a and an l×m matrix b is a matrix in which the ij element
is given by ∑

k

aikbkj (C.8)

Thus, for two 2 × 2 matrices we get

ab =
(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
(C.9)

Matrix multiplication is non-commutative, i.e. in general we have

ab �= ba (C.10)
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Matrix multiplication is associative, i.e.

a(bc) = (ab)c = abc (C.11)

Matrix multiplication is distributive, i.e.

a(b + c) = ab + ac (C.12)

C.2.7. The identity matrix

A square matrix with all diagonal elements equal to 1 and all other elements equal to 0 is
called the identity matrix, and is often denoted by I.

We see that we must have

aI = Ia = a (C.13)

Note that on component form the identity matrix can be written using the Kronecker δ (see
page 460):

Iij = δij (C.14)

C.2.8. The inverse matrix

A square matrix (n × n matrix) a is said to be non-singular if an inverse matrix, denoted
by a−1 exists. The inverse matrix is defined by the following relations

aa−1 = a−1a = I (C.15)

The inverse of a 2 × 2 matrix is

a−1 = 1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)
(C.16)

and that of a 3 × 3 matrix is

a−1 = 1

|a|

(
a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22
a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23
a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

)
(C.17)

where the determinant |a| of the matrix is defined by Eq. (C.21) below.

C.2.9. The trace of a matrix

The trace of a square matrix is defined as the sum of the diagonal elements of the matrix.
On component form we thus may write

tr(a) =
∑
i

aii (C.18)
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The trace of a matrix product is independent of the order of the factors

tr(ab) = tr(ba) (C.19)

Sometimes the trace of a matrix is denoted by Sp(a), from the German word Spur.

C.2.10. Determinants

The determinant is another characteristic number associated with a square matrix a, and is
denoted by |a| or det(a). We shall not discuss determinants in general here, but note that
for a 2 × 2 matrix the determinant is given by∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 (C.20)

and for a 3 × 3 matrix by(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
= a11a22a33 + a21a32a13 + a31a12a23

−a11a32a23 − a21a12a33 − a31a22a13
(C.21)

The determinant of the product of two matrices is equal to the product of the determi-
nants, i.e.

|ab| = |a||b| (C.22)

From this equation and Eq. (C.15) it follows that

|a−1| = 1

|a| (C.23)

since |I| = 1.
It is clear from Eqs. (C.20) and (C.21) that

|aT| = |a| (C.24)

for 2 × 2 and 3 × 3 matrices. This relation is valid in general.
From Eq. (C.17) we see that the 3 × 3 matrix is singular (the inverse does not exist) if

the determinant is zero. This is also a generally valid property.

C.2.11. Systems of linear equations

Matrices form an efficient way of writing a system of linear equations. For instance, we
may write the system

a11x1 + a12x2 = b1 (C.25)

a21x1 + a22x2 = b2 (C.26)

as

ax = b (C.27)
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where a is the 2 × 2 matrix

a =
(
a11 a12
a21 a22

)
(C.28)

while x and b are the column vectors (or 2 × 1 matrices)

x =
(
x1
x2

)
, b =

(
b1
b2

)
(C.29)

Assuming a to have an inverse, the solution of Eq. (C.27) may be written as

x = a−1b (C.30)

Homogeneous systems

If all bi are zero, we have a homogeneous system:

ax = 0 (C.31)

Then the formal solution (C.30) assuming a to be invertible only allows the trivial solution
x = 0, which is normally not useful.

To get non-trivial solutions for a homogeneous system, the matrix a must thus be singu-
lar, i.e. its determinant must be zero:

|a| = 0 (C.32)

C.2.12. Eigenvalues and eigenvectors

The equation

ax = λx (C.33)

where a is an n× n matrix, x is a column vector (or n× 1 matrix) and λ is a scalar (i.e. a
number, in general complex), is called the eigenvalue equation for the matrix a. The values
of λ for which Eq. (C.33) has non-trivial solutions for x are called the eigenvalues of the
matrix.

We see from Eq. (C.32) that we may find the eigenvalues by solving the determinant
equation

|a − λI| = 0 (C.34)

Eq. (C.34) is used to determine the principal stresses and strains in Eqs. (1.31) and (1.81).
An n × n matrix has n eigenvalues λi , some or all of which may coincide. If we insert

an eigenvalue, e.g. λ1 into (C.33), we get the equation

ax = λ1x (C.35)
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which has a non-trivial solution for x. The solution is called the eigenvector corresponding
to λ1. There are n eigenvectors for an n×nmatrix. The eigenvectors are (or can be chosen
to be) linearly independent (orthogonal). Eqs. (1.32)–(1.34) are an example of the use of
Eq. (C.35).

It can be shown that the eigenvalues of a symmetric matrix with real elements are real.

C.2.13. Similarity transforms and orthogonal transforms

If we have a non-singular matrix S, the transform

SaS−1 (C.36)

is called a similarity transform of a.
We see that since

|SaS−1 − λI| = |SaS−1 − SλIS−1| = |S||a − λI||S−1| = |a − λI| (C.37)

the eigenvalues are unchanged by a similarity transform. It can also be shown that the trace
and the determinant of the matrix are left unchanged by the similarity transform. (We leave
this to the reader as a simple exercise, use Eqs. (C.19) and (C.22).)

A matrix O which fulfils

O−1 = OT (C.38)

is called an orthogonal matrix.
It follows from I = OOT that

δik =
∑
j

Oij (OT)jk =
∑
j

OijOkj (C.39)

which shows that the row vectors of O (i.e. the vectors formed by the rows of O) are
orthogonal, and that their length is 1. From I = OTO one may show that the same applies
to the column vectors (the vectors formed by the columns of O).

It is clear that an orthogonal transform, defined by

OaOT (C.40)

is a subset of the similarity transforms, and thus preserves the trace, the determinant and
the eigenvalues.

Any symmetric matrix with real elements can be diagonalized, i.e. transformed to a
diagonal matrix, by an orthogonal transformation.



VECTORS AND COORDINATE TRANSFORMS 451

From I = OOT and Eq. (C.24) it follows that |O| = ±1. We will see below that a
rotation of the coordinate system corresponds to an orthogonal transform. A matrix with
|O| = 1 corresponds to a proper rotation, which preserves the “handedness” of the coordi-
nate system. If |O| = −1 a reflection is involved, indicating that the transform is taking a
right-handed coordinate system into a left-handed, or vice versa.

C.3. Vectors and coordinate transforms

A vector is a geometric object, independent of the coordinate system we use. We can
visualize a vector as an arrow with a given direction and length, which makes the previous
statement obvious.

Let us assume that we have a vector in some coordinate system xyz, and want to express
it in some other coordinate system x′y′z′ rotated relative to the first one. This may be
written as a matrix equation(

v′
x

v′
y

v′
z

)
=
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
vx
vy
vz

)
(C.41)

Since both the starting coordinate system and the final coordinate system are orthogonal,
and the length of a vector is the same in both systems, we may infer some conditions on the
transformation matrix a. One will see that the column vectors must all have length unity,
and they are orthogonal. The same applies to the row vectors.

The matrix a is thus an orthogonal matrix. The conditions imposed reduce the number
of independent elements in a to 3, which means that it takes 3 parameters to specify an
arbitrary rotation in space.

To transform from the new coordinate system back to the old, we must use the inverse
matrix. Since the matrix is orthogonal, we have(

vx
vy
vz

)
=
(
a11 a21 a31
a12 a22 a32
a13 a23 a33

)(
v′
x

v′
y

v′
z

)
(C.42)

It is now easy to find the coordinate axes of the new system in terms of the old. We see
that for the x-direction, we have(

a11
a12
a13

)
=
(
a11 a21 a31
a12 a22 a32
a13 a23 a33

)( 1
0
0

)
(C.43)

Thus, we see that we can identify the elements of the orthogonal transformation matrix with
the direction cosines used e.g. in Section 1.1.5 on page 8 and Section 4.3.1 on page 146:

lx′x = a11 (C.44)

lx′y = a12 (C.45)

lx′z = a13 (C.46)
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In general, we get (
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
=
(
lx′x lx′y lx′z
ly′x ly′y ly′z
lz′x lz′y lz′z

)
(C.47)

C.4. Tensors and coordinate transforms

Like vectors, tensors are geometric objects that have a meaning independent of coordinate
systems. Unlike vectors, we do not have an intuitive picture of what the tensor object is.

One possible picture is to view a second order tensor as a machine that accepts one
vector as input, and returns an other. For example, the stress tensor may be seen as an
object that given a unit vector in space computes the force per unit area in that direction.

Let us denote a second order tensor by T, and the vectors it relate by f and r. We thus
have

f = Tr (C.48)

If we now transform the coordinate system according to the orthogonal matrix a, we
have

f′ = af = a(Tr) = aT(aTa)r = (aTaT)r′ (C.49)

which shows that the second order tensor transforms according to

T′ = aTaT (C.50)

which is an orthogonal transform.
If we write this equation on component form, we find

T ′
ij =

∑
l

∑
k

ailTlk(a
T)kj =

∑
l

∑
k

ailajkTlk (C.51)

This last equation allows us to give one possible definition of a tensor:
A tensor is an object that transforms as a vector in each of its indices.
Without further discussion, we state that higher order tensors transform according to the

same rule. For example, the 4th order stiffness tensor transforms according to

C′
ijkl =

∑
r

∑
s

∑
t

∑
u

airajsaktaluCrstu (C.52)

C.5. Eigenvalues, eigenvectors and diagonalization

We have seen that a real symmetric matrix has real eigenvalues, and that any real symmetric
matrix can be diagonalized by an orthogonal transformation. We have further seen that
an orthogonal transformation of a second order tensor may be seen as a rotation of the
coordinate system.
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We have also observed that an orthogonal transformation does not change the eigenval-
ues of a matrix. Since it is easy to see that the eigenvalues of a diagonal matrix are the
diagonal elements themselves, it is clear that there is a connection between the eigenvalues
and the diagonalization process: By diagonalizing a matrix, we get the eigenvalues as the
diagonal elements.

To make the picture complete, we now need to clarify the connection between the eigen-
vectors and the orthogonal transformation matrix.

By diagonalizing a second order tensor, we change to a new coordinate system in which
it is diagonal. The eigenvectors give the directions of the new coordinate axes referred
to the initial coordinate system. The length of the eigenvectors is not specified by the
eigenvalue equation (multiplying x by a number obviously does not invalidate Eq. (C.33)).
However, by scaling the eigenvector to unit length, we see that its components can be
identified with the direction cosines. If we write

v1 =
(
v1x
v1y
v1z

)
(C.53)

for the normalized eigenvector associated with the first eigenvalue, and similarly for the
other eigenvectors, we may use Eq. (C.47) to write down the orthogonal transformation
matrix as

a =
(
v1x v1y v1z
v2x v2y v2z
v3x v3y v3z

)
(C.54)

C.6. Rotation of the coordinate system: The Euler angles

We discussed above that to specify an arbitrary rotation of the coordinate system in space,
3 parameters are required.

There are many ways to specify a rotation of the coordinate system, one option is the di-
rection cosines used for instance in Section 1.1.5 on page 8 and Section 4.3.1 on page 146.
We saw from Eq. (C.47) on page 452 how the direction cosines, specifying the orienta-
tion of the new coordinate axes, constitute the elements of the orthogonal transformation
matrix. Since there are 9 direction cosines, they are obviously not independent.

A convenient choice if we want 3 independent parameters are the Euler angles φ, θ
and β, which one will often see in the literature.

One must be aware that there are several conventions for the definition of the Euler
angles. Here we shall use the one adopted by Rose (1957), which defines the angles in the
following way

• a rotation φ about the original z-axis,

• a rotation θ about the new y-axis,

• a rotation β about the new z-axis.
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It will be seen that φ and θ specify the direction of the new z-axis in conventional spherical
coordinates, while β specifies the rotation of the x–y axes relative to the starting position
resulting from the rotations given by φ and θ .

The same final rotation may be obtained by the following rotations about the initial axes:

• a rotation β about the original z-axis,

• a rotation θ about the original y-axis,

• a rotation φ about the original z-axis.

To build the rotation matrix for a full Euler rotation, we thus need the matrices for
rotations about the y-axis and the z-axis. These are

Ry(θ) =
( cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

)
(C.55)

Rz(φ) =
( cosφ sinφ 0

−sinφ cosφ 0
0 0 1

)
(C.56)

Rz(β) is found by exchanging φ with β in Rz(φ).
The signs have been chosen such that multiplying these matrices with a vector in the old

system, one finds the coordinates of that vector in the rotated system. To find the direc-
tion of the axes of the new system expressed in the old system, one must use the inverse
matrices, which are the same as the transposed matrices since the matrices are orthogonal.

By using the matrices in sequence, it is now simple to find the rotation matrix corre-
sponding to a rotation specified by the three Euler angles. The result is

R(φ, θ, β) = Rz(β)Ry(θ)Rz(φ)

=
(

cos θ cosφ cosβ − sinφ sinβ cos θ sinφ cosβ + cosφ sinβ −cosβ sin θ
−cos θ cosφ sinβ − sinφ cosβ −cos θ sinφ sinβ + cosφ cosβ sinβ sin θ

sin θ cosφ sin θ sinφ cos θ

)

(C.57)

If β = 0 this equation reduces to

R(φ, θ, 0) =
( cos θ cosφ cos θ sinφ −sin θ

−sinφ cosφ 0
sin θ cosφ sin θ sinφ cos θ

)
(C.58)

which should be compared to Eq. (4.76).

C.7. Examples

In this section we give a couple of examples of the use of the formalism discussed in this
appendix.
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C.7.1. Rotation of the stress tensor

Let us now use Eq. (C.50) and the Euler matrices to derive the expression for the stress
tensor in a coordinate system that is rotated an angle θ around the z-axis:

Rz(θ)

(
σx τxy τxz
τxy σy τyz
τxz τyz σz

) (
Rz(θ)

)T (C.59)

which written in full is( cos θ sin θ 0
−sin θ cos θ 0

0 0 1

)(
σx τxy τxz
τxy σy τyz
τxz τyz σz

)( cos θ −sin θ 0
sin θ cos θ 0

0 0 1

)
(C.60)

By performing the matrix multiplications, we end up with⎛
⎜⎜⎜⎝

σx cos2 θ + σy sin2 θ

+ 2τxy sin θ cos θ
(σy − σx) sin θ cos θ

+ τxy(cos2 θ − sin2 θ)
τxz cos θ + τyz sin θ

(σy − σx) sin θ cos θ
+ τxy(cos2 θ − sin2 θ)

σx sin2 θ + σy cos2 θ

− 2τxy sin θ cos θ
τyz cos θ − τxz sin θ

τxz cos θ + τyz sin θ τyz cos θ − τxz sin θ σz

⎞
⎟⎟⎟⎠
(C.61)

This is exactly the operation needed to switch from Cartesian coordinates to cylindrical
coordinates, thus Eq. (C.61) is equivalent to Eqs. (4.1)–(4.6).

C.7.2. Inversion of an axis

Let us see how the strain tensor changes as we invert the z-axis, as used on page 39. We
must calculate ( 1 0 0

0 1 0
0 0 −1

)(
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

)( 1 0 0
0 1 0
0 0 −1

)
(C.62)

which gives the following result:(
ε11 ε12 −ε13
ε12 ε22 −ε23

−ε13 −ε23 ε33

)
(C.63)

C.8. Matrix invariants

Let us investigate how the expression
∑
i

∑
j BijBji transforms under an orthogonal trans-

formation. We find∑
i

∑
j

B ′
ijB

′
ji =

∑
i

∑
j

(∑
l

∑
m

ailajmBlm

)(∑
r

∑
s

ajraisBrs

)
(C.64)
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Now, from the relation (see Eq. (C.39))∑
i

ailais = δls (C.65)

we derive ∑
i

∑
j

B ′
ijB

′
ji =

∑
l

∑
s

∑
r

∑
m

δlsδrmBlmBrs =
∑
s

∑
r

BsrBrs (C.66)

This tells us that
∑
i

∑
j BijBji is invariant under an orthogonal transformation.

By similar calculations, it is easy to show that∑
k

Bkk (C.67)

∑
i

∑
j

BijBji (C.68)

∑
i

∑
j

∑
k

BijBjkBki (C.69)

∑
i

∑
j

∑
k

∑
l

BijBjkBklBli (C.70)

are invariants of linear, quadratic, cubic and quartic degree. It is obvious how 5th and higher
order invariants are constructed in the same way. It should however be noted that only the
first three invariants are truly independent, the higher invariants may be expressed as a sum
of combinations of the three first.

In rock mechanics, these invariants are not used directly, except for the first. The standard
rock mechanical invariants are defined by writing the third degree equation resulting from
Eq. (1.31) as

σ 3 − I1σ 2 − I2σ − I3 = 0 (C.71)

Since the solution of the equation are the principal stresses, it is obvious that the coeffi-
cients are invariants. (Beware that sometimes Eq. (C.71) is written with a +-sign in front
of the I2-term, leading to the opposite sign for I2.)

By expanding Eq. (1.31), and comparing with Eq. (C.71), the expressions (1.39) to (1.41)
follow. The relations between the rock mechanical invariants and those derived in this
section are ∑

k

σkk = I1 (C.72)

∑
i

∑
j

σij σji = I 2
1 + 2I2 (C.73)

∑
i

∑
j

∑
k

σij σjkσki = I 3
1 + 3I2I1 + 3I3 (C.74)
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C.9. Some trigonometric formulas

In computations with stresses and strains, trigonometric formulas are used extensively.
Here we repeat some of the basic formulas:

cos2 θ + sin2 θ = 1 (C.75)

cos(α ± β) = cosα cosβ ∓ sinα sinβ (C.76)

sin(α ± β) = sinα cosβ ± sinβ cosα (C.77)

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ (C.78)

sin 2θ = 2 sin θ cos θ (C.79)

From the above equations we derive

cos2 θ = 1

2
+ 1

2
cos 2θ (C.80)

sin2 θ = 1

2
− 1

2
cos 2θ (C.81)

which are useful e.g. when deriving Eq. (1.19) from Eq. (1.18).
From tan θ = sin θ/cos θ and the above we find

tan 2θ = 2 tan θ

1 − tan2 θ
(C.82)

tan2 θ = 1 − cos2 θ

cos2 θ
= sin2 θ

1 − sin2 θ
(C.83)

cos2 θ = 1

1 + tan2 θ
(C.84)

sin2 θ = tan2 θ

1 + tan2 θ
(C.85)

The last two equations are useful for example when deriving Eqs. (1.23) and (1.24) from
Eqs. (1.19) and (1.22).

C.10. The Voigt notation spelled out

Since the stress and strain tensors are symmetrical, they may be mapped into 6 component
vectors. Similarly, because of the symmetries of the stiffness and compliance tensors, they
may be mapped into symmetric 6 × 6 matrices.

One way to do this is to use the Voigt notation (Voigt, 1910). This method is the com-
monly adopted, in spite of the fact that it has some theoretical short-comings. (See e.g.
Helbig, 1994, 1995.)

The Voigt mapping for the stiffness tensor was introduced on page 39, in this section we
treat it in more detail.
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The Voigt notation is the mapping in which pairs of indices are mapped into a single
index according to

11 → 1 (C.86)

22 → 2 (C.87)

33 → 3 (C.88)

23 → 4 (C.89)

31 → 5 (C.90)

12 → 6 (C.91)

For the stress tensor and the stiffness tensor, the mapping is direct, whereas for the strain
and the compliance tensors, some numerical constants are necessary, as shown below.

C.10.1. The Voigt mapping for the stress tensor

⎛
⎜⎜⎜⎜⎜⎝

σ1
σ2
σ3
σ4
σ5
σ6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎠ (C.92)

C.10.2. The Voigt mapping for the strain tensor

⎛
⎜⎜⎜⎜⎜⎝

ε1
ε2
ε3
ε4
ε5
ε6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎞
⎟⎟⎟⎟⎟⎠ (C.93)

Note the factor 2 for the shear strains.

C.10.3. The Voigt mapping for the stiffness tensor

C =

⎛
⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112
C1122 C2222 C2233 C2223 C1322 C1222
C1133 C2233 C3333 C2333 C1333 C1233
C1123 C2223 C2333 C2323 C1323 C1223
C1113 C1322 C1333 C1323 C1313 C1213
C1112 C1222 C1233 C1223 C1213 C1212

⎞
⎟⎟⎟⎟⎟⎠ (C.94)
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C.10.4. The Voigt mapping for the compliance tensor

S =

⎛
⎜⎜⎜⎜⎜⎝

S1111 S1122 S1133 2S1123 2S1113 2S1112
S1122 S2222 S2233 2S2223 2S1322 2S1222
S1133 S2233 S3333 2S2333 2S1333 2S1233
2S1123 2S2223 2S2333 4S2323 4S1323 4S1223
2S1113 2S1322 2S1333 4S1323 4S1313 4S1213
2S1112 2S1222 2S1233 4S1223 4S1213 4S1212

⎞
⎟⎟⎟⎟⎟⎠ (C.95)

Note the numerical factors 2 and 4.

C.11. The Einstein summing convention and other notation
conventions

In this book we have attempted to use as explicit notation as possible, to minimize the risk
for confusion.

There exist, however, a number of notation conventions that are so widely used that they
are not always defined in books and papers that use them. Such conventions make equations
more compact (and actually easier to read when one is accustomed to them), and include
the Einstein summing convention and operator and comma notation for partial derivatives.

If one tries to read a work using these conventions without being familiar with them,
many equations may appear quite confusing. To make it easier for the reader to understand
such papers, we include a short overview of these notation conventions here.

C.11.1. The Einstein summing convention

The Einstein summing convention states that when an index is repeated in certain expres-
sions, a summation is implied. For example, if we assume that the index runs from 1 to 3,
we have

aii
def=

3∑
i=1

aii = a11 + a22 + a33 (C.96)

and

aij bjk
def=

3∑
j=1

aij bjk = ai1b1k + ai2b2k + ai3b3k (C.97)

The expression may be a single quantity with multiple indices, or a product. A summa-
tion over i is thus not implied in a sum like the following

ai = bi + ci (C.98)
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C.11.2. Kronecker’s delta

A symbol that one will often encounter, both in conjunction with the summing convention
and otherwise, is Kronecker’s δ. It is defined by

δij
def=

{
1 if i = j
0 if i �= j (C.99)

It is easy to see that ∑
i

δii = δ11 + δ22 + δ33 = 3 (C.100)

C.11.3. Comma notation for partial derivatives

A partial derivative is sometimes denoted by a subscript preceded by a comma, i.e. (f is a
scalar)

f,j
def= ∂f

∂xj
(C.101)

A second order derivative is indicated in a similar way (gi is here component i of a vector)

gi,jk
def= ∂2gi

∂xj ∂xk
(C.102)

In this notation, the volumetric strain (see Eq. (1.76)) will be written as (we here also use
the summing convention)

εvol = ui,i (C.103)

and the equation of equilibrium (Eq. (1.17)) as

σji,j + ρXi = 0 (C.104)

Sometimes, differentiation with respect to time is shown in a similar way, e.g.

ui,tt
def= ∂2ui

∂t2
(C.105)

An example of a central reference using this notation is Detournay and Cheng (1993).

C.11.4. Operator notation for partial derivatives

Sometimes, an operator notation is used for partial derivatives:

∂if
def= ∂xi f

def= ∂f

∂xi
(C.106)
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The volumetric strain becomes

εvol = ∂iui (C.107)

and the equation of equilibrium is

∂jσji + ρXi = 0 (C.108)
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Appendix D

Some relevant formulas

In this appendix we give a few formulas which may be useful, but which are not essential
for the main text.

D.1. Elasticity

D.1.1. Stress invariants

Invariants of stress deviation (remember J1 = s1 + s2 + s3 = 0)

J2 = 1

2

∑
i,j

sij sji = 1

2

∑
i,j

σij σji − 1

6

∑
k

σ 2
kk (D.1)

= 1

3
I 2

1 + I2 (D.2)

= −(sxsy + sysz + szsx)+ s2
xy + s2

yz + s2
xz (D.3)

= 1

2

(
s2
x + s2

y + s2
z + 2s2

yz + 2s2
xz + 2s2

xy

)
(D.4)

= 1

2

(
s2

1 + s2
2 + s2

3

)
(D.5)

= 1

2

[
(σ1 − σ̄ )2 + (σ2 − σ̄ )2 + (σ3 − σ̄ )2] (D.6)

= 1

6

[
(σy − σz)2 + (σz − σx)2 + (σx − σy)2

]+ τ 2
yz + τ 2

xz + τ 2
xy (D.7)

= 1

6

[
(σ2 − σ3)

2 + (σ3 − σ1)
2 + (σ1 − σ2)

2] (D.8)

= 1

3

(
σ 2

1 + σ 2
2 + σ 2

3 − σ2σ3 − σ3σ1 − σ1σ2
)

(D.9)

J3 = 1

3

∑
i,j,k

sij sjkski (D.10)

= 1

3

(∑
i,j,k

σij σjkσki −
∑
i,j,k

σij σjiσkk + 2

9

∑
k

σ 3
kk

)
(D.11)

= I3 + 1

3
I2I1 + 2

27
I 3

1 (D.12)

= I3 + 1

3
J2I1 − 1

27
I 3

1 (D.13)

= sxsysz + 2sxysyzsxz − sxs2
yz − sys2

xz − szs2
xy (D.14)
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= 1

27

[
54τxyτyzτxz (D.15)

+ 9τ 2
xy(σx + σy − 2σz)− 9τ 2

yz(2σx − σy − σz) (D.16)

+ 9τ 2
xz(σx − 2σy + σz) (D.17)

+ (σx + σy − 2σz)(2σx − σy − σz)(σx − 2σy + σz)
]

(D.18)

= 1

3

(
s3

1 + s3
2 + s3

3

)
(D.19)

= s1s2s3 (D.20)

= (σ1 − σ̄ )(σ2 − σ̄ )(σ3 − σ̄ ) (D.21)

= 1

27
(σ1 + σ2 − 2σ3)(2σ1 − σ2 − σ3)(σ1 − 2σ2 + σ3) (D.22)

D.1.2. Strain in spherical coordinates

εr = ∂ur

∂r
(D.23)

εθ = ur

r
+ 1

r

∂uθ

∂θ
(D.24)

εφ = 1

r sin θ

∂uφ

∂φ
+ uθ

r
cot θ + ur

r
(D.25)

Γrθ = 1

2r

∂ur

∂θ
+ 1

2

∂uθ

∂r
− uθ

2r
(D.26)

Γθφ = 1

2r

(
∂uφ

∂θ
− uφ cot θ

)
+ 1

2r sin θ

∂uθ

∂φ
(D.27)

Γφr = 1

2

(
1

r sin θ

∂ur

∂φ
+ ∂uφ

∂r
− uφ

r

)
(D.28)

D.1.3. Isotropic linear elastic stiffness tensor

Cijkl = λδij δkl +G(δikδjl + δilδjk) (D.29)

D.1.4. Isotropic linear poro-thermo-elastic stress strain law

Solved for stresses

σx = (λfr + 2Gfr)εx + λfrεy + λfrεz + αT (3λfr + 2Gfr)(T − T0)+ αpf (D.30)

= λfrεvol + 2Gfrεx + αT (3λfr + 2Gfr)(T − T0)+ αpf (D.31)

σy = λfrεx + (λ+ 2Gfr)εy + λfrεz + αT (3λfr + 2Gfr)(T − T0)+ αpf (D.32)

= λfrεvol + 2Gfrεy + αT (3λfr + 2Gfr)(T − T0)+ αpf (D.33)
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σz = λfrεx + λfrεy + (λfr + 2Gfr)εz + αT (3λfr + 2Gfr)(T − T0)+ αpf (D.34)

= λfrεvol + 2Gfrεz + αT (3λfr + 2Gfr)(T − T0)+ αpf (D.35)

τyz = 2GfrΓyz (D.36)

τxz = 2GfrΓxz (D.37)

τxy = 2GfrΓxy (D.38)

Solved for strains

Efrεx = σx − νfr(σy + σz)− EfrαT (T − T0)− (1 − 2νfr)αpf (D.39)

Efrεy = σy − νfr(σx + σz)− EfrαT (T − T0)− (1 − 2νfr)αpf (D.40)

Efrεz = σz − νfr(σx + σy)− EfrαT (T − T0)− (1 − 2νfr)αpf (D.41)

Various forms on compact notation

σij = λfrεvolδij + 2Gfrεij + 3αT Kfr(T − T0)δij + αpfδij (D.42)

= 3Kfrνfr

1 + νfr
εvolδij + 3Kfr

1 − 2νfr

1 + νfr
εij + 3αT Kfr(T − T0)δij + αpfδij (D.43)

= Efrνfr

(1 + νfr)(1 − 2νfr)
εvolδij + Efr

1 + νfr
εij + Efr

1 − 2νfr
αT (T − T0)δij

+ αpfδij (D.44)

= 2
Gfrνfr

1 − 2νfr
εvolδij + 2Gfrεij + 2Gfr

1 + νfr

1 − 2νfr
αT (T − T0)δij + αpfδij (D.45)

2Gfrεij = σij − 3
νfr

1 − νfr
σ̄ δij − 2GfrαT (T − T0)δij − 1 − 2νfr

1 + νfr
αpfδij (D.46)

D.1.5. The force balance equation

The basic force balance equation is∑
j

∂σji

∂xj
+ ρfi = 0 (D.47)

Assuming homogeneous, isotropic poro-thermo-elasticity, and neglecting body forces, the
equation may be written in terms of the displacements as

1

1 − 2νfr

∑
k

∂2uk

∂xj ∂xk
+
∑
i

∂2uj

∂x2
i

+ α

Gfr

∂pf

∂xj
+ 2

1 + νfr

1 − 2νfr
αT
∂T

∂xj
= 0 (D.48)

On coordinate independent form this is

1

1 − 2νfr
∇(∇ · �u)+ ∇2 �u+ α

Gfr
∇pf + 2

1 + νfr

1 − 2νfr
αT∇T = 0 (D.49)

or, alternatively

∇(∇ · �u)− 1 − 2νfr

2(1 − νfr)
∇ × ∇ × �u+ 1 − 2νfr

2(1 − νfr)

α

Gfr
∇pf + 1 + νfr

1 − νfr
αT∇T = 0

(D.50)
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D.2. Elastic wave propagation in rocks

D.2.1. Correction for non-laminar flow

The function F(κ) introduced in Section 5.3.1 is defined as

F(κ) = 1

4

κT (κ)

1 − 2
jκ T (κ)

(D.51)

where

T (κ) = ber′(κ)+ j bei′(κ)
ber(κ)+ j bei(κ)

(D.52)

ber and bei are so-called Kelvin functions, defined by

ber(κ)+ j bei(κ) = J0(j
√

jκ) (D.53)

where J0 is the zeroth order Bessel function of the first kind.

D.2.2. Reflection, transmission and conversion coefficients at non-normal incidence

The coefficients for reflection, transmission and conversion for an incoming P-wave are
given as solutions of the equation (Aki and Richards, 1980; see also Berkhout, 1987):

M̄ �X = �B (D.54)

where

�X =
⎛
⎜⎝
rpp
tpp
rsp
tsp

⎞
⎟⎠ (D.55)

�B =

⎛
⎜⎜⎝

−(1 − 2 sin2 θrs)

2( vs1
vp1
)2 sin θi cos θi

−sin θrs
ρ2vp2 cos θi

⎞
⎟⎟⎠ (D.56)

M̄ =

⎛
⎜⎜⎜⎝

1 − 2 sin2 θrs −(1 − 2 sin2 θts) −2 sin θrs cos θrs −2 sin θts cos θts

2( vs1
vp1
)2 sin θi cos θi 2( vs2

vp2
)2 sin θt cos θt 1 − 2 sin2 θrs −(1 − 2 sin2 θts)

sin θrs −ρ1vs1
ρ2vs2

sin θts cos θrs
ρ1vs1
ρ2vs2

cos θts

ρ2vp2 cos θi ρ1vp1 cos θt −ρ2vp2 sin θi ρ1vp1 sin θt

⎞
⎟⎟⎟⎠

(D.57)

The incoming P-wave is entering through medium 1. The amplitude of the reflected
P-wave is rpp, the amplitude of the transmitted P-wave is tpp, the amplitude of the reflected
& converted wave is rsp, and the amplitude of the transmitted & converted wave is tsp. The
other parameters are defined in Section 5.7.
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Fig. D.1. The three modes of loading for a crack tip.

D.3. Rock models

D.3.1. Stresses at a crack tip

A crack tip may experience three types of loading, commonly denoted Mode I (opening),
Mode II (in-plane shear) and Mode III (out-of-plane shear), respectively. The three loading
modes are illustrated in Fig. D.1.

For an elliptical crack, the stresses at the crack tip can be expressed as

σij = KM√
2πr

f
(M)
ij (θ) (D.58)

where M = I, II or III, and KM represents the stress intensity factor of mode M . KM de-
pends on the farfield stress and the crack length (as shown in Eq. (6.64) for KI).

The functions f (M)ij (θ) define the angular dependence of the stress at the crack tip for
Mode M . The angle θ , the distance r and the coordinate axes are defined in Fig. 6.10.
Axis 3 is the out-of-plane axis. The non-zero components of f (M)ij (θ) are:

• Mode I

f
(I)
11 (θ) = cos

θ

2

[
1 − sin

θ

2
sin

3θ

2

]
(D.59)

f
(I)
22 (θ) = cos

θ

2

[
1 + sin

θ

2
sin

3θ

2

]
(D.60)

f
(I)
12 (θ) = cos

θ

2
sin
θ

2
cos

3θ

2
(D.61)

For plane strain conditions f (I)33 (θ) = ν(f
(I)
11 (θ) + f (I)22 (θ)), while for plane stress

conditions f (I)33 (θ) = 0. (ν is the Poisson ratio.)

• Mode II

f
(II)
11 (θ) = −sin

θ

2

[
2 + cos

θ

2
cos

3θ

2

]
(D.62)

f
(II)
22 (θ) = sin

θ

2
cos
θ

2
cos

3θ

2
(D.63)

f
(II)
12 (θ) = cos

θ

2

[
1 − sin

θ

2
sin

3θ

2

]
(D.64)
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For plane strain conditions f (II)33 (θ) = ν(f
(II)
11 (θ) + f (II)22 (θ)), while for plane stress

conditions f (II)33 (θ) = 0.

• Mode III

f
(III)
13 (θ) = −sin

θ

2
(D.65)

f
(III)
23 (θ) = cos

θ

2
(D.66)

For a more comprehensive description, see for instance Anderson (2005).

D.3.2. Self-consistent model for composite media

Berryman (1980) introduced self consistency into the dynamic theory of Kuster and Toksöz
(1974), and derived the following set of implicit equations for the effective moduli:

N∑
i=1

ci(Ki −K∗)P ∗i = 0 (D.67)

N∑
i=1

ci(Gi −G∗)Q∗i = 0 (D.68)

N∑
i=1

ci(ρi − ρ∗) = 0 (D.69)

ci is the volumetric concentration of component i in the material, ρ∗ is the total density,
and the coefficients P ∗i andQ∗i are given as follows:

For spherical inclusions

P ∗i = 3K∗ + 4G∗

3Ki + 4G∗ (D.70)

Q∗i = G∗ + F ∗

Gi + F ∗ (D.71)

where

F ∗ = G∗(9K∗ + 8G∗)
6(K∗ + 2G∗)

(D.72)

For penny-shaped inclusions (resembling for instance flat cracks)

P ∗i = 3K∗ + 4Gi
3Ki + 4Gi + 3πγβ∗ (D.73)

Q∗i = 1

5

[
1 + 8G∗

4Gi + πγ (G∗ + 2β∗)
+ 2

3Ki + 2Gi + 2G∗

3Ki + 4Gi + 3πγβ∗

]
(D.74)
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where

β∗ = G∗(3K∗ +G∗)
3K∗ + 4G∗ (D.75)

While the solution for ρ∗ is trivial, explicit solutions for K∗ and G∗ are not known, how-
ever solutions can be found by numerical iteration.

These solutions approach the linear solutions given in Section 6.4.1 for low concentra-
tions of inclusions. Berryman also showed that if the material contains non-solid inclu-
sions, the effective shear modulus vanish at a critical concentration of that inclusion. The
critical concentration depends on the shape of the inclusions.

D.4. Solids production

D.4.1. Critical drawdown for turbulent flow

The critical drawdown for a semispherical sand arch in a non-Darcy flow regime is given
on implicit form as (Ong et al., 2000):

S1 + 3S2

m+ 1
(qa)

− m
m+1 = 4 sinϕ

1 − sinϕ
(D.76)

where

S1 = 2(
√

1 + hs(qb − qa)− 1)

hs(1 − Rc
Re
)

(D.77)

S2 = (
√

1 + hs(qb − qa)− 1)2

hs(1 − (Rc
Re
)3)

(D.78)

hs = 4k2βγ (1 − (Rc
Re
)3)

3Rc(m+ 1)(ηf(1 − Rc
Re
))2

(
S0

tanϕ

)m+1

(D.79)

qa =
(
(pfo − pc

d) tanϕ

S0

)m+1

(D.80)

qb =
(
pfo tanϕ

S0

)m+1

(D.81)

and Re is the radius of the drainage area. Eq. (D.76) is derived from the assumption that
the fluid flow follows the Forchheimer equation (Forchheimer, 1901):

−∇pf = ηfQ

kA
+ βρf

(
Q

A

)2

(D.82)

where the non-Darcy flow coefficient β is a constant of dimension m−1. For β = 0
Eq. (D.82) is reduced to the Darcy equation (Eq. (1.229)), and Eq. (D.76) is reduced to
Eq. (10.37).
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D.5. Subsidence

Geertsma’s formulas for the deformation and stress fields outside a disk-shaped reservoir.

ur = CmRh�pf

2

[
I1
(|z−D|)+ (3 − 4ν)I1(z+D)− 2zI2(z+D)] (D.83)

uz = CmRh�pf

2

[
z−D
|z−D| I3

(|z−D|)− (3 − 4ν)I3(z+D)− 2zI4(z+D)
]

(D.84)

σr = GCmRh�pf

{[
I4
(|z−D|)+ 3I4(z+D)− 2zI6(z+D)]

− 1

r

[
I1
(|z−D|)+ (3 − 4ν)I1(z+D)− 2zI2(z+D)]} (D.85)

σθ = GCmRh�pf

{
4νI4(z+D)

+ 1

r

[
I1
(|z−D|)+ (3 − 4ν)I1(z+D)− 2zI2(z+D)]} (D.86)

σz = GCmRh�pf
[−I4

(|z−D|)+ I4(z+D)+ 2zI6(z+D)] (D.87)

τrz = GCmRh�pf

[
− z−D

|z−D| I2
(|z−D|)− I2(z+D)+ zI7(z+D)

]
(D.88)

where

I1(q) = 2

π
√
mrR

[(
1 − m

2

)
K(m)− E(m)

]
(D.89)

I2(q) = q
√
m

2π(rR)3/2

[
1 − m

2

1 −mE(m)−K(m)
]

(D.90)

I3(q) = −q
√
mK(m)

2π
√
rRR

+ (
U(r − R)− U(R − r))Λ0(β|m)

2R
+ 1

R
U(R − r) (D.91)

I4(q) = m3/2(R2 − r2 − q2)E(m)

8π(rR)3/2R(1 −m) +
√
mK(m)

2π
√
rRR

(D.92)

I6(q) = qm3/2

8πR(1 −m)(rR)3/2

×
{

3E(m)+mR
2 − r2 − q2

rR

[
1 − m

2

1 −mE(m)−
1

4
K(m)

]}
(D.93)

I7(q) = − 1

q
I2(q)+ q2m3/2

8π(1 −m)(rR)5/2

×
[

1 −m+m2

1 −m E(m)−
(

1 − 1

2
m

)
K(m)

]
(D.94)

Λ0(β|m) = 2

π

[
E(m)F(β|1 −m)+K(m)E(β|1 −m)−K(m)F(β|1 −m)]
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TABLE D.1 Some values for the Geertsma integrals Ii (q)

r , q, R I1 I2 I3 I4 I6 I7

0.2, 0.4, 1.2 0.0595689 0.0461035 0.565282 0.598431 0.477736 −0.0544387
0.4, 0.4, 1 0.162188 0.197103 0.592418 0.818683 1.15435 −0.0445251

m = 4Rr

q2 + (r + R)2
sinβ = q√

q2 + (R − r)2
F(α|m) and E(α|m) are elliptic integrals of the first and second kind of parameter m,
respectively. K(m) = F(π2 |m) and E(m) = E(π2 |m) are complete elliptic integrals of the
first and second kind. U is the unit step function, U(x � 0) = 1, U(x < 0) = 0. Λ0(β|m)
is called Heuman’s lambda function. Λ0(

π
2 |m) = 1.

When working with elliptic integrals, it is important to be aware that there exist many
different conventions for the definitions of the arguments, even for the order of the argu-
ments. In the convention used here, the integrals are given by

F(α|m) =
∫ α

0

1√
1 +m sin2 θ

dθ (D.95)

and

E(α|m) =
∫ α

0

√
1 +m sin2 θ dθ (D.96)

The elliptic integrals are available in modern integrated mathematics computer pro-
grams, like Maple or Mathematica and others. Given the availability of such a program,
it is an easy and quick task to code and study the consequences of Geertsma’s equations.

In Table D.1 we give some numerical values for the integrals, to make it easy to check
an implementation. Full tables of the integrals are found in Geertsma (1973).

D.6. Vector operators in cylindrical coordinates

The gradient of a scalar

∇f = ∂f

∂r
�er + 1

r

∂f

∂θ
�eθ + ∂f

∂z
�ez (D.97)

The Laplacian of a scalar

∇2f = 1

r

∂f

∂r
+ ∂2f

∂r2
+ 1

r2

∂2f

∂θ2
+ ∂2f

∂z2
(D.98)

= 1

r

∂

∂r
r
∂f

∂r
+ 1

r2

∂2f

∂θ2
+ ∂2f

∂z2
(D.99)
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The divergence of a vector

∇ · �u = ur

r
+ ∂ur

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
(D.100)

= 1

r

∂

∂r
(rur)+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
(D.101)

The Laplacian of a vector

(∇2 �u)
r

= ∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2
+ 1

r2

∂2ur

∂θ2
− 2

r2

∂uθ

∂θ
+ ∂2ur

∂z2
(D.102)

(∇2 �u)
θ

= ∂2uθ

∂r2
+ 1

r

∂uθ

∂r
− uθ

r2
+ 1

r2

∂2uθ

∂θ2
+ 2

r2

∂ur

∂θ
+ ∂2uθ

∂z2
(D.103)

(∇2 �u)
z

= ∂2uz

∂r2
+ 1

r

∂uz

∂r
+ 1

r2

∂2uz

∂θ2
+ ∂2uz

∂z2
(D.104)

The curl of a vector

(∇ × �u)r = 1

r

∂uz

∂θ
− ∂uθ

∂z
(D.105)

(∇ × �u)θ = ∂ur

∂z
− ∂uz

∂r
(D.106)

(∇ × �u)z = uθ

r
+ ∂uθ

∂r
− 1

r

∂ur

∂θ
(D.107)

= 1

r

∂(ruθ )

∂r
− 1

r

∂ur

∂θ
(D.108)

The gradient of the divergence of a vector

(∇(∇ · �u))
r

= −ur
r2

+ 1

r

∂ur

∂r
+ ∂2ur

∂r2
− 1

r2

∂uθ

∂θ
+ 1

r

∂2uθ

∂r∂θ
+ ∂2uz

∂r∂z
(D.109)

= ∂

∂r

1

r

∂

∂r
(rur)− 1

r2

∂uθ

∂θ
+ 1

r

∂2uθ

∂r∂θ
+ ∂2uz

∂r∂z
(D.110)

(∇(∇ · �u))
θ

= 1

r2

∂ur

∂θ
+ 1

r

∂2ur

∂r∂θ
+ 1

r2

∂2uθ

∂θ2
+ 1

r

∂2uz

∂θ∂z
(D.111)

(∇(∇ · �u))
z

= 1

r

∂ur

∂z
+ ∂2ur

∂r∂z
+ 1

r

∂2uθ

∂θ∂z
+ ∂2uz

∂z2
(D.112)

The curl of the curl of vector

(∇ × ∇ × �u)r = 1

r2

∂uθ

∂θ
+ 1

r

∂2uθ

∂r∂θ
− 1

r2

∂2ur

∂θ2
− ∂2ur

∂z2
+ ∂2uz

∂r∂z
(D.113)

(∇ × ∇ × �u)θ = uθ

r2
− 1

r

∂uθ

∂r
− ∂2uθ

∂r2
− 1

r2

∂ur

∂θ
+ 1

r

∂2ur

∂r∂θ
(D.114)

+ 1

r

∂2uz

∂θ∂z
− ∂2uθ

∂z2
(D.115)
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(∇ × ∇ × �u)z = 1

r

∂ur

∂z
+ ∂2ur

∂r∂z
− 1

r

∂uz

∂r
− ∂2uz

∂r2
(D.116)

− 1

r2

∂2uz

∂θ2
+ 1

r

∂2uθ

∂θ∂z
(D.117)
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Appendix E

List of symbols

This is a list of most of the symbols used in this book. General mathematical symbols,
some basic symbols such as x, r , etc., and a few symbols used only where they are defined
are not included.

The order is alphabetical, in the order symbols, script letters, Greek letters and Latin let-
ters. Capital letters precede lowercase letters. Where applicable, the list shows the number
of the first equation where a symbol is used.

Symbol First use Description

def= Define something
∼ Roughly equal to, coarser than ≈
A (2.9) Attraction
J2 (1.72) Second deviatoric invariant of strain
J3 (1.73) Third deviatoric invariant of strain
�Π (9.14) Osmotic potential
Γij (1.62) Shear strain, i �= j
Σ (1.250) Creep parameter
Ψ (2.74) Angle of dilatancy

α (5.43) Acoustic attenuation
α (1.168) Biot’s poroelastic parameter
αSF (5.48) Acoustic attenuation, solid friction
αT (1.116) Coefficient of linear thermal expansion
αT,V Coefficient of volumetric thermal expansion
αTh (5.67) Thomsen’s alpha
αscatt. (5.49) Acoustic attenuation, scattering
β (2.10) Failure angle
β (D.79) Non-Darcy flow coefficient
βTh (5.68) Thomsen’s beta
βw (2.80) Failure angle, weak plane
δ (5.46) Acoustic loss tangent
δTh (5.66) Thomsen’s delta
ε (1.202) Strain matrix
ε

p
1 (2.67) First principal plastic strain

ε
p
2 Second principal plastic strain

ε
p
3 (2.68) Third principal plastic strain

εF (6.68) Fracture strain
εH (12.2) Horizontal strain
ηL (2.36) Lade criterion parameter
εTh (5.64) Thomsen’s epsilon
εa (1.116) Axial strain

(continued on next page)
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Symbol First use Description

εh (12.1) Horizontal strain
εi (1.60) Normal strain in the i-direction, one-index form
εij (1.74) Strain, general form

εe
ij

(2.60) Elastic strain, general form

ε
p
ij

(2.60) Plastic strain, general form

ε
p
i

(4.152) Plastic strain in the i-direction
εv (12.3) Vertical strain
εvol (1.71) Volumetric strain
ε

p
vol (2.70) Volumetric plastic strain
εvol,f (1.128) Volumetric strain of fluid
εvol,s (1.128) Volumetric strain of solid
εxo (5.33) Strain amplitude
φ (1.129) Porosity
ϕ (2.8) Angle of internal friction
ϕw (2.80) Angle of internal friction, weak plane
γ̄ (12.48) Mean stress path parameter
γ (6.37) Crack aspect ratio
γ (2.19) Angle describing the slope of the failure line

in the principal stress plot
γ (10.38) Gas density coefficient
γ (12.17) Stress path parameter
γ (9.13) Surface tension
γ̄ ′ (12.30) Mean effective stress path parameter
γ ′ (12.17) Effective stress path parameter
γ ′

h (12.19) Effective stress path parameter, horizontal
γH (12.15) Stress path parameter
γTh (5.65) Thomsen’s gamma
γh (12.16) Stress path parameter
γ ′

v (12.19) Effective stress path parameter, vertical
γv (12.14) Stress path parameter
η (4.53) The poroelastic stress coefficient
κ (1.248) Creep parameter
κ (2.75) Hardening parameter
κ (12.18) Stress path parameter
λ (1.93) Lamé parameter (elastic modulus)
λ (2.62) Plastic strain parameter
λfr (1.191) Lamé parameter, frame)
λp (4.152) Plasticity parameter
λsand (10.41) Sand production coefficient
λw (5.7) Wavelength
μ (1.228) Coefficient of internal friction
ν (1.92) Poisson’s ratio
νdyn (8.2) Dynamic Poisson’s ratio
ηf (1.229) Dynamic viscosity
νfr (3.4) Drained Poisson’s ratio
νs (6.18) Poisson’s ratio, solid material
ηw Dynamic viscosity of water
θi (5.84) Angle of incidence

(continued on next page)
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Symbol First use Description

θr Angle of reflection
θrs (5.86) Angle of “reflected” s-wave
θt (5.84) Angle of refracted p-wave
θts (5.87) Angle of “refracted” s-wave
ϑ (1.51) The Lode angle
ρ (1.13) Density
ρdry (12.67) Density of dry rock
ρf (5.27) Density, fluid
ρg (5.74) Density of gas
ρs (5.27) Density, solid material
ρw (5.92) Density of borehole fluid
ρw (5.74) Density of water
σ̄ (1.38) Mean stress
σ (9.18) Membrane efficiency
σ (1.3) Normal stress
σ (1.202) Stress matrix
σ ′ (2.2) Effective stress
σi (1.5) Normal stress in i-direction, i = x, y, z, r, θ, φ
σ ′
i

(3.9) Effective normal stress in i-direction,
i = x, y, z, r, θ, φ

σij (1.118) Stress in ij -direction

σ ′
ij

(1.170) Effective stress in ij -direction

σ̄ ′ (2.28) Mean effective stress
σ ′

1 (2.1) Major effective principal stress
σ ′

2 (2.1) Intermediate effective principal stress

σ ′
3 (2.1) Minor effective principal stress

σ ′
v (3.3) Effective vertical stress

σθ i (7.15) Hollow cylinder inner tang. stress
σθ,max (4.105) Tangential stress, max
σθ,min (4.106) Tangential stress, min
σ1 (1.23) Major principal stress
σ2 (1.24) Intermediate principal stress
σ3 (1.36) Minor principal stress
σH (3.14) Major horizontal principal stress
σ ′

H (9.3) Effective major horizontal principal stress
σa (1.117) Axial stress
σ ′

h (3.3) Effective minor horizontal principal stress
σh (3.8) Minor horizontal principal stress
σ ′

max⊥ (9.8) Effective maximum stress normal to borehole
σ ′

min⊥ (9.8) Effective minimum stress normal to borehole
σ o
i

(4.77) Farfield stress in the i-direction
σo (4.174) Hydrostatic far-field stress
σoct (1.52) Octahedral normal stress
σ ′‖ (9.9) Effective stress parallel to borehole axis

σ ′
p (1.168) Effective external hydrostatic stress
σp (1.99) External hydrostatic stress
σri (7.16) Hollow cylinder inner radial stress

(continued on next page)
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Symbol First use Description

σro (4.38) Radial stress, outer
σ̄s (1.183) Mean grain stress
σv (3.1) Vertical stress
σyield (3.20) Yield stress
σzi (7.14) Hollow cylinder inner axial stress
τ (1.4) Shear stress
τD (1.247) Diffusion time
τc (1.228) Critical shear stress
τij (1.5) Shear stress, i �= j
τo
xy (4.80) Farfield shear stress, i �= j
τmax (2.4) Maximum shear stress
τoct (1.53) Octahedral shear stress
τs (10.47) Characteristic sand erosion time
υ (2.78) Specific volume
ξ (1.227) Crack density
χ (1.249) Viscoelastic coefficient
ξincl (6.29) Density of inclusions
ζ (1.134) Biot’ strain parameter
ζo (5.34) Biot’s strain parameter, amplitude
ω (5.5) Angular frequency

A (1.186) Skempton’s A coefficient
A (1.1) Area
B (1.185) Skempton’s B coefficient
C (1.136) Biot’s C-parameter
C0 (2.21) Uniaxial compressive strength
CD (5.75) Pore pressure diffusion constant
CTWC (10.18) Thick-walled cylinder strength
Cdr (10.61) Dimensionless drag coefficient
Cf (12.53) Fluid compressibility
C
γ
pp (12.49) Pore compressibility w.r.t. pore pressure for a stress

path
Cgas Gas compressibility
C∗
ij

(6.38) Effective elastic coefficient, Voigt notation,
i, j = 1 . . . 6

Cij (6.38) Elastic coefficient, Voigt notation, i, j = 1 . . . 6
Cijkl (1.195) Elastic coefficient, tensor notation, i, j, k, l = 1 . . . 3
Cm (12.9) Coefficient of uniaxial compaction
D (3.1) Depth
E (1.91) Young’s modulus
E (D.89) Incomplete elliptic integral of the First Kind
E′ (1.109) Plane strain modulus
Edyn (5.71) Dynamic Young’s modulus
Eeff (1.227) Effective Young’s modulus
Efr (7.11) Drained Young’s modulus
Es (6.18) Young’s modulus, solid material
Esec (1.224) Secant Young’s modulus
Estat (5.71) Static Young’s modulus
Etan (1.225) Tangential Young’s modulus

(continued on next page)
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Symbol First use Description

F (D.95) Elliptic integral of the Second Kind
F (1.1) Force
Fd (10.61) Drag force
Fg (10.60) Net gravity force
Fh (10.3) Hydrodynamic force on a grain
Fn (1.3) Normal force
Fp (1.4) Parallel force
Fr (10.1) Force needed to remove a grain from the rock
G (1.93) Shear modulus
Gfr (1.147) Shear modulus of the frame
Gs (6.17) Shear modulus, solid material
H (3.19) Uniaxial compaction modulus
Hfr (1.239) Drained uniaxial compaction modulus
I1 (1.39) 1. invariant of stress
I ′1 (2.36) 1. invariant of effective stress
I2 (1.41) 2. invariant of stress
I3 (1.41) 3. invariant of stress
I ′3 (2.36) 3. invariant of effective stress
J1 (1.43) 1. deviatoric invariant of stress
J2 (1.45) 2. deviatoric invariant of stress
J3 (1.45) 3. deviatoric invariant of stress
JCS (6.74) Wall strength
JRC (6.74) Joint roughness coefficient
K (1.99) Bulk modulus
K (D.89) Elliptic integral of the First Kind
K ′ (3.3) Principal stress ratio
KI (6.63) Stress intensity factor, mode I
KIC Fracture toughness
Kbp (1.172) Bulk modulus with respect to pore pressure
Kdyn (5.70) Dynamic bulk modulus
Keff (1.127) Effective bulk modulus
Kf (1.131) Bulk modulus, fluid
Kfr (1.146) Drained bulk modulus
Kg (5.73) Bulk modulus of gas
Ko (3.21) Compaction modulus
Kp (1.177) Inverse pore compressibility w.r.t. confining pressure
Kpp (1.178) Inverse pore compressibility w.r.t. pore pressure
Ks (1.131) Bulk modulus, solid material
Kstat (5.70) Static bulk modulus
Ku (7.10) Undrained bulk modulus
Kw (5.73) Bulk modulus of water
M (1.142) Biot’sM-parameter
MT

sand (10.59) Total mass of produced sand in one event
Mo

sand (10.57) Initial mass of removed sand
Ṁsand (10.51) Sand production rate
Msand (10.51) Total mass of produced sand
Nc (6.23) Coordination number
pc

d (10.7) Critical drawdown pressure
Q (4.177) Flow rate (scalar)

(continued on next page)
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Symbol First use Description

�Q (1.229) Flow rate
Q (5.45) AcousticQ-factor
QG (6.30) Inclusion impact parameter, shear modulus
QK (6.29) Inclusion impact parameter, bulk modulus
Qij (6.38) Inclusion impact parameter
Q (6.39) Inclusion impact matrix
Qo (4.61) Oil flow rate, scalar
R (9.14) Molar gas constant
R (12.44) Reservoir radius
Rc (4.173) Cavity radius
Rco (10.53) Initial cavity radius
Rcr (10.45) Critical radius for sand erosion
Re (4.66) Outer radius for flow
Ri (7.14) Inner radius
Ro (4.38) Outer radius
Rp (4.135) Radius of the plastified zone
Rw (4.43) Well radius
Re (10.62) Reynold’s number
S0 (1.228) Cohesion
S0w (2.82) Cohesion, weak plane
SL (2.37) Lade criterion parameter
Sw (5.73) Water saturation
Swe (2.51) Saturation of wetting fluid
T (5.37) Tortuosity (Biot theory)
T (1.116) Temperature
T0 (1.116) Initial temperature
T0 (2.2) Tensile strength
To (4.70) Farfield temperature
Tw (4.70) Well temperature
Tr (C.18) Trace of a matrix
U (10.61) Fluid velocity
U (D.91) Unit step function
Ut (10.64) Terminal settling velocity
V (1.76) Volume
Vf (1.128) Fluid volume
Vp (1.135) Pore volume
Vprod (12.53) Produced volume
Vs (1.128) Solid volume
Vsp (10.46) Volume of sand producing zone
Vtot (1.128) Total volume
Vw (9.14) Molar volume of water
W (1.111) Strain energy
Wc (6.59) Strain energy due to a crack
Ws (6.60) Surface energy of a crack

a (4.76) Azimuth angle
aw Water activity
aw,df (9.14) Water activity in drilling fluid
aw,sh (9.14) Water activity in shale
dg (10.1) Grain diameter

(continued on next page)
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Symbol First use Description

e (3.16) Euler’s number e = 2.71828 . . .
e (12.25) Aspect ratio
e (2.77) Void ratio
f (5.6) Frequency
fi (1.17) Body force in the i-direction
g (3.1) Acceleration of gravity
g (2.64) Plastic potential
gcpn (10.23) Critical drawdown pressure gradient
gpn (10.22) Normalized drawdown pressure gradient
h (12.4) Reservoir thickness
i (4.76) Inclination angle
j (5.5) Imaginary unit, j = √−1
k (1.229) Permeability
k (4.137) Triaxial strength factor
l̂ (5.13) Direction cosine vector
lD (1.247) Diffusion length
li (1.27) Direction cosine i-axis
mb (2.83) Hoek and Brown constant
msand (10.40) Mass of produced sand from a volume element
p′ (2.54) Mean effective stress
p∗ (2.28) Hydrostatic compressive strength
pc (7.6) Confining pressure
pcp (2.50) Capillary suction
pd (10.4) Drawdown pressure
pfn (3.2) Normal fluid pressure, i.e. corresponding to a water

column
pf (1.135) Fluid pressure
pfo (4.50) Far-field fluid pressure
pfrac

w,max (4.116) Maximum well pressure, fracture initiation

p
fracprop
w,max (9.7) Maximum well pressure, fracture propagation
pnw (2.50) Fluid pressure, non-wetting fluid
pw (4.37) Well pressure
pwe (2.50) Fluid pressure, wetting fluid
pw,min (4.114) Minimum well pressure
q (1.48) Generalized shear stress
q (5.5) Wavenumber
qcr

fl (10.41) Critical fluid flux
qfl (10.41) Fluid flux
r (1.47) Stress invariant
rpp (5.80) pp reflection coefficient
rsp (D.55) ps “reflection” coefficient
t ′ (4.107) Dimensionless time
tT (5.93) Two-way travel time
tpp (5.81) pp transmission coefficient
tsp (D.55) pp “refraction” coefficient
u (1.54) Displacement in the negative x (or r) direction
uF (6.65) Relative shear displacement of fracture surfaces
uf (5.27) Fluid displacement

(continued on next page)
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Symbol First use Description

�uf (1.134) Fluid displacement vector
us (5.27) Solid displacement
�us (1.133) Solid displacement vector
v (5.8) Sound velocity
v (1.55) Displacement in the negative y (or θ ) direction
vgroup (5.10) Group velocity
vp (3.23) P-wave velocity
vpa P-wave velocity of altered medium
vs (5.19) S-wave velocity
vw (5.91) Velocity of borehole fluid
vsa S-wave velocity of altered medium
w (1.56) Displacement in the negative z direction
wF

max (6.66) Fracture opening at maximum closure

wF
o Initial fracture opening

wF (6.65) Relative normal displacement of fracture surfaces
ws (6.60) Surface energy per unit area
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Index

π -plane, 12, 13, 59, 73

absorption, 185
accelerating creep, 50
acoustic

emission, 280
impedance, 201
logging, 289

while drilling, 292
measurements, 261

drill cuttings, 292
small samples, 276

transducer, 262
wave, 179

activity, see chemical activity
Amontons’ law, 61
anelastic strain recovery, 109, 279
angle of incidence, 201
angle of internal friction, 61
angular frequency, 176
anisotropy, 37, 123, 124, 128, 130, 189, 255

intrinsic, 38, 95
lithological, 38
stress induced, 38, 46
structural, 95

arching, 393, 395, 398
coefficient, 395, 397

aspect ratio, 232
associated flow, 83
attenuation, 185
attraction, 62
average modulus

definition of, 267
AVO, 216
axial stress, 265

Backus average, 220
barefoot completion, 342
Baushinger effect, 87
bifurcation, 94, 267

point, 94
Biot coefficient

definition of, 33
Biot flow, 187
Biot theory, 27

stiff frame limit (def.), 31

wave equation, see wave equation Biot theory
weak frame limit (def.), 31

Biot–Gassmann equation, 31, 224, 394
blowout, 370
body force, 5
Bolivar, 392
borehole

collapse, 275, 311
failure criteria, 154
stability, 265, 309
televiewer (BHTV), 298

bounds, 223
Hashin–Shtrikman, 223
Reuss, 223
Voigt, 223

Brazilian test, 282
breakout, 160, 161, 163, 164, 296
Breckels van Eekelen correlation, 106, 305
Brinell hardness, 282
brittle deformation, 56
buckling, 94
bulk modulus, 266, 268

definition of, 21
Burgers substance, 52

caliper log, 297
cantilever, 261
capillary

forces, 198
pressure, 255
suction, 256

capillary effect, 77
carbonate, 118, 122, 123
casing, 328

collapse, 331
damage, 428

cation exchange capacity, 284
causality, 188
chalk, 120, 126, 365

fluid effects, 256
preparation, 255
production, 365

chemical
activity, 78, 284, 324
consolidation, 342
effects, 199
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CHOPS (Cold Heavy Oil Production with Sand),
342

Christoffel
equation, 189
matrix, 189

clastic sediment, 120
clay, 118

minerals, 254
closure pressure, 382
CMP gather, 215
coefficient of consolidation, 272
coefficient of internal friction, 61
cohesion, 61
common midpoint, 215
compaction, 66, 121, 391

band, 94, 125, 354
criterion, 68
delayed, 402
drive, 414
ellipsoidal reservoir, 396
uniaxial, 392
well problems, 427

compatibility conditions, 18
complex moduli, 188
compliance

matrix, 40
compressibility

definition, 21
pore volume, 34
uniaxial, 393

compressional wave, 178, 290
Compton scattering, 296
confining fluid, 259
confining pressure, 265
consolidated-undrained test, 269
consolidation, 46, 122, 259, 320, 401

coefficient of, 48
Constant Mean Stress test, 272
contact angle, 255
continuous failure state test, 273
continuous wave technique, 276, 292
converted waves, 203
coordination number, 226
core

alteration, 252
depth, 257
discing, 253
freezing, 254
handling, 254
orientation, 257
preparation, 255
representativeness, 252
sandstone, 254
shale, 254

size, 252
wrapping, 254

crack density, 44, 232
crack growth, 240
cracks, 252
creep, 46, 50, 104, 188, 259, 322

accelerating, 50
and temperature, 51
primary, 50
secondary, 50
steady state, 50
tertiary, 50
transient, 50

critical angle, 202
critical drawdown, 347

pressure gradient, 352
critical effective pressure, 68
critical porosity, 224
critical state line, 90
cross-dipole, 291
crushing pressure, 68
Cusiana, 331
cuttings, 336

damage surface, 280
Darcy, definition of unit, 47
Darcy’s law, 46, 142
deep water drilling, 333
dehydration, 254
density log, 296
depleting sphere, 394
depletion, 347
depth correction, 330
depth reference, 330
determinant, 448
diagenesis, 122
differential effective medium theory, 238
differential sticking, 311
differential strain curve analysis, 277
differential wave velocity analysis, 280
diffusion

constant, 48
equation, 48
length, 49

dilatancy, 46, 84
dilatancy angle, 86
dip-angle, 109
dipole log, 211
dipole transducer, 291
direction cosines, 8, 146
discrete particle modelling, 228
dispersion, 177

acoustic, 263
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dispersion relation, 182
displacement, 14

control, 258
discontinuity, 235

Dix inversion, 215
dog leg, 312
drag coefficient, 363
drained test, 32, 88, 268
drawdown, 347
drill cuttings, 276, 283, 293
drilling, 309
drilling induced fractures, 298
Drucker–Prager criterion, 71

in the p′q-plane, 80
ductile, 43, 81
ductile deformation, 56
dynamic moduli, 192
dynamic well pressure, 314

ECD (equivalent circulating density), 297, 313
effective medium, 219

self consistent, 236
effective stress, 57, 114

coefficients, 35
generalized, 256
principle

acoustic velocities, 197
effective stress (def.), 32
eigenvalue, 449
Einstein summing convention, 459
Ekofisk, 108, 109, 116, 126, 130, 392, 396, 428
elastic moduli, 289

anisotropy, 38
definition, 20
frame modulus, 29
relations between, 22
secant modulus, 43
suspension, 27
tangent modulus, 43
unloading, 43

elastic wave, 175, 179
elasticity, 1

linear, 1, 20
nonlinear, 42
perfect, 43

elliptical anisotropy, 192
elongation

definition of, 14
ELOT, see extended leak-off test
end cap, 67

in the p′q-plane, 80
equation of equilibrium

Cartesian coordinates, 6

cylindrical coordinates, 137
Euler angles, 146, 453

many different conventions, 453
extended Griffith criterion, 71

in the p′q-plane, 80
extended leak-off test, 301, 370
extension test, 273

failure, 55
envelope, 60, 265, 273
line, 60
surface, 58

failure criteria
compaction, see compaction criterion
Drucker–Prager, see Drucker–Prager criterion
extended Griffith, see extended Griffith criterion
Griffith, see Griffith criterion
Hoek–Brown, see Hoek–Brown criterion
modified Griffith, see modified Griffith criterion
modified Lade, see modified Lade criterion
Mogi–Coulomb, see Mogi–Coulomb criterion
Mohr–Coulomb, see Mohr–Coulomb criterion
Tresca, see Tresca criterion
von Mises, see von Mises criterion

fault, 109
faulting, 399
filter cake, 375
FIT, see formation integrity test
flexural wave, 211
flood directionality, 419
flow rule, 82
fluid properties, 199
Forchheimer equation, 469
formation breakdown, 372
formation integrity test, 304
frac pack, 343, 370
fracture, 243, 252

aperture, 379
closure, 382
closure pressure, 318
confinement, 376, 378
extension pressure, 379
geometry, 380
gradient, 309, 370
growth, 376
initiation, 372
initiation pressure, 299
orientation, 376
pressure, 380
tip, 379
toughness, 241
width, 382

fracture test, 298
wireline tools, 305
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fractured reservoirs, 379
frame modulus, 219

definition of, 29
friction

angle, 118, 121, 123, 125, 126
definition of, 61

coefficient of, 45

gamma ray, 257, 296
gas density coefficient, 356
Gassmann equation, see Biot–Gassmann equation
Geertsma nucleus of strain model, 402
generalized shear stress, 79
Goose Creek, 392
grain

compressibility, 30, 269
mean stress, 35
shape, 118
size, 118

distribution, 257
sorting, 118

gravel packing, 342
Griffith crack, 240
Griffith criterion, 65, 273
Groningen, 392
group velocity, 177
Gullfaks, 116
gumbo shale, 311

hardening rule, 82
hardness tests, 282
Heidrun, 332
Heim’s rule, 104
Hertz–Mindlin theory, 226
Hertzian contact, 225
Hoek cell, 259
Hoek–Brown criterion, 98
hole cleaning, 311
hollow cylinder, 137
hollow cylinder test, 275
Hooke’s law, 20, 393

cylindrical coordinates, 136
hoop stress, 140
horizontal stress, 104, 106, 277

direction, 296
empirical relations, 305
magnitude, 298

HPHT (high pressure, high temperature), 356
Hvorslev surface, 92
hydraulic fracturing, 156, 369

massive, 369
hydrodynamic forces, 345
hydrostat, 59

hydrostatic pressure, 28
hydrostatic test, 268
hysteresis, 43

identity matrix, 447
image log

acoustical, 298
electrical, 298

impermeable borehole wall, 316
in situ stress, see stress in situ
indentation tests, 283
index tests, 280
inherent shear strength, 61
initial modulus

definition of, 267
injection, 399
instantaneous shut-in pressure (ISIP), 383
interface wave, 204
interfacial tension, 255
intermediate principal stress, 60, 68–70, 274
interval transit time, 180
invariant

strain, 17
stress, 11
stress deviation, 11

isotropic
hardening, 87
materials

definition of, 20
ISRM

requirements, 259
standards, 256

jacketed test, 29
joint, 111, 243

Kelvin substance, 52
keyseat, 298, 312
KGD (Khristianovitch–Geertsma–de Klerk)

model, 381, 386
kinematic hardening, 87
Kirsch equations, 145
Kozeny–Carman equation, 419
Kronecker’s delta, 460

laboratory testing, 251
Lamé parameter, 21, 28
Laplace equation, 255
leak-off point, 300, 374
leak-off test, 299, 370
limestone, 120
liquefaction, 94, 366
lithification, 122
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lithostatic stress, 104, 378
load cell, 261
load frame, 258
loading pistons, 259
local flow, 184, 186
localization, 93
Lode angle, 13
longitudinal wave, 178
loss tangent, 185
lost circulation, 309, 312, 369
LOT, see leak-off test
LVDT, 261

matrix
addition, 446
definition, 445
diagonal, 446
diagonalization, 450
eigenvalue, 449
identity, 447
invariants

general, 455
inverse, 447
multiplication, 446
orthogonal, 450
similarity transform, 450
singular, 447
spur, 448
symmetric, 445
trace, 447
transpose, 445

matrix compressibility, 269
Maxwell substance, 52
mechanical properties

drilling data, 295
empirical correlations, 294

methylene blue test, 284
micro-frac test, 305
microcracks, 277
mineralogy, 257, 284
mini-frac test, 304, 370
Mode I loading, 240, 467
Mode II loading, 467
Mode III loading, 468
modified Griffith criterion, 66
modified Lade criterion, 72

in the p′q-plane, 80
Mogi–Coulomb criterion, 327
Mohr–Coulomb criterion, 61, 155, 273
Mohr’s circle, 8

3D, 10
Mohr’s hypothesis, 60
monopole transducer, 291

mud
filtrate, 253
loss, 310
weight, 309

multiple failure state test, 273

natural completion, 342
non-associated plastic flow, 83
non-Darcy flow coefficient, 469
non-laminar flow, 182
normal fault, 111
normal moveout, 215

velocity, 215
normal pore pressure, 106
normalized drawdown pressure gradient, 351
normally consolidated, 89, 270
nucleus of strain model, 402

octahedral plane, 13
octahedral stresses, 13
oedometer

modulus, 21, 271
test, 270

offset, 214
oil-based mud, 304, 323
open hole completion, 342
oriented core, 277
orthogonal matrix, 450
orthogonal transform, 450
osmosis, 116, 323
overconsolidated, 89, 107, 270
overconsolidation ratio, 89

P-wave, 179
modulus, 21, 180
velocity, 262

paleostress, 107
partial saturation, 197
patchy saturation, 198
perforation, 342

oriented, 349
permeability, 46

effective stress for, 422
stress effects on, 418

permeable borehole wall, 320
phase

of elastic wave, 176
phase velocity, 177
PKN (Perkins–Kern–Nordgren) model, 381, 386
plane of weakness model, 95
plane strain, 19, 137
plane strain modulus, 23, 382
plane stress, 19
plane wave modulus, 21, 180
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plastic
potential, 83
strain, 81, 168

plasticity
theory, 81

point load strength, 281
Poisson’s ratio, 266

definition of, 20
dynamic, 289

polarization, 179
pore collapse, 57, 127, 268
pore pressure, 28, 103, 106, 114, 391

drillout-induced, 149
normal, 103

pore volume compressibility, 34
stress path, 415
uniaxial, 415

poroelastic stress coefficient, 141, 157
poroelasticity, 26

analogy to thermoelasticity, 37
porosity, 27

change during depletion, 416
effective stress for, 34, 417
overburden correction, 417
stress dependent, 416

post failure, 259
preconsolidation

stress, 89, 107, 272
pressure

gradient, 329
rebound, 386
solution, 122

pressurization rate, 373
primary creep, 50
primary wave, 178
principal axes

of strain, 18
of stress, 8, 10

principal strain, 18
principal stress space, 58
proper rotation, 451
proppants, 343
pseudo-Rayleigh wave, 207
pump rate, 374
pump-in/flowback test, 302, 385

quality factor (Q-factor), 185
quartz, 124
quasi-waves, 190

radial flow
stationary, 142

Rayleigh scattering, 187

Rayleigh wave, 204
reflection coefficient, 200
refraction, 202
reservoir

compaction, 391
fractured, 400
monitoring

4D seismic, 425
simulation

geomechanics, 424
stress path, see stress path

Reuss bound, 223
Reynolds number, 363
rock mechanical tests, 263
ROP (rate of penetration), 295
Roscoe surface, 91
rotation matrix

Euler angles, 454

S-wave, 179
velocity, 262

salt, 130
sample

diameter, 256
length, 256
size, 256
surface, 257

sand, 118
prediction, 265
production, 343

catastrophic, 343
coefficient, 358
continuous, 343
rate, 360
transient, 343, 351

sandstone, 120, 121, 123, 124
fluid effects, 256
fracturing, 375
preparation, 255
synthetic, 399

scattering loss, 187
Scholte wave, 204
scratch test, 283
screens, 342
secant modulus

definition of, 267
secondary creep, 50
secondary wave, 179
seismic resolution, 216
self consistent, 236
shale, 120, 121, 123, 128, 294, 309

fracturing, 375, 385
permeability, 269
preparation, 255
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saturation, 256
testing of, 265, 269

shallow water flow, 334
shear band, 94
shear failure, 57, 60
shear modulus, 266

definition of, 21
shear wave, 179, 290
shear-enhanced compaction, 67
shut-in/decline test, 301, 383
sign convention

strain, 14
stress, 1

Skempton coefficients, 92, 268
definition of, 35

sleeve, 259
sloughing shale, 311
slow formations, 290
smallest horizontal stress

estimation of, 300, 305, 382
solid friction loss, 186
solids production, 341
sonic pulse technique, 276, 292
Sonic Scanner, 292, 297
sonic tool

full waveform, 290
long-spaced, 291
multipole, 291

sound velocity, 177, 262
effect of temperature, 197

specific surface area, 284
specific volume, 88
spreading ridge, 106
squirt flow, 186
stacking, 215
static moduli, 192
static vs. dynamic moduli, 192, 193, 262, 290, 394
static well pressure, 314
steady state creep, 50
stiff frame limit (def.), 31
stiffness matrix, 40
stimulation, 369
Stokes’ law, 363
Stoneley wave, 204, 206, 290
strain

amplitude, 290
antiplane, 19
cylindrical coordinates, 136
definition of, 15
elongation

definition of, 14
energy, 23, 240
from displacements

cylindrical coordinates, 136

gauge, 261
generalized plane (def.), 19
hardening, 87
invariant, 17
plane, 19, 137
plastic, 168
principal, 18
rate, 259
tensor, 17, 278

nonlinear, 42
volumetric, 17

strength, 55
and creep, 51
anisotropy, 95
inherent shear, 45
parameters, 289, 293

stress
around borehole, 139, 314

general orientation, 147
in principal stress direction, 149
nonlinear, 144
plastic, 165
time effects, 150
varying pore pressure, 141

at borehole wall
temperature effects, 143
varying pore pressure, 141

concentration, 140, 153, 156, 194, 314, 344,
373, 395, 399, 413, 427

cylindrical coordinates, 135, 455
definition of, 1
deviatoric (def.), 11
effective (def.), 32
generalized plane (def.), 19
history, 53, 59, 99, 105, 107, 196, 240, 244, 280
hydrostatic, 28

definition of, 21
in situ, 103, 277, 289, 295, 382

field tests, 295
from laboratory tests, 277

intensity factor, 240, 467
invariant, 11, 463
normal

definition of, 3
path, 58, 79, 90, 272

coefficient, 395
overburden, 410, 411
reservoir, 395

plane (def.), 19
principal (def.), 8
residual, 107
shear (def.), 3
structural, 107
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tectonic, 106, 331
tensor, 4, 455
thermal, see thermoelastic stress
transformation formulas, 146, 455

stress–strain relation
anisotropic, 38
Biot theory, 28
isotropic, 22
isotropic linear elasticity, 21
linear thermoelasticity, 25

strike, 109
strike-slip

fault, 112
stress regime, 299

stuck pipe, 309, 312, 320, 331
subduction zone, 107
subsidence, 391

bowl, 404
delayed, 402
disk shaped reservoir, 405
nucleus of strain model, 402
some examples, 406

summing convention, 459
superposition principle, 142
surface energy, 240, 254
surge and swab, 334
suspension, 26, 184, 197, 223
swelling, 119, 284, 309, 323
system stiffness, 302, 386

tangent modulus
definition of, 267

tectonic forces, 103
tectonic plates, 106
tectonic stress, see stress, tectonic
tensile failure, 57, 59, 369, 370
tensile strength, 59, 125, 129, 131, 156, 281, 372

chalk, 126
tensor, 452
terminal settling velocity, 363
tertiary creep, 50
thermal expansion

coefficient, 24, 388
volumetric, 24

thermally induced fracturing (TIF), 387
thermoelastic stress, 24, 144, 322, 388
thermoelasticity, 24

analogy to poroelasticity, 37
thick-walled cylinder

strength, 350
test, 350

Thomsen parameters, 191
thrust fault, 111
tight hole, 309, 315, 320, 331
time average equation, 180
time-delayed borehole failure, 153, 320
tortuosity, 182, 184, 419
total reflection, 202
transient creep, 50
transmission coefficient, 200
transversal wave, 179
transverse isotropy, 41, 123, 220
Tresca criterion, 61, 69, 85, 164, 350
triaxial

cell, 259
test, 55, 265

trigonometric identities, 457
true triaxial test, 274
tube wave, 207
turbidity current, 120
two-way traveltime (TWT), 214

unconfined
compression test, see uniaxial test
strength, see uniaxial compr. strength

unconfined strength, 131
underbalance, 342
underbalanced drilling, 316, 321
undrained (def.), 28
undrained test, 32, 88, 268
uniaxial

compaction, 392, 393
compressibility, 393
compression, 270

uniaxial compaction modulus, 21, 180, 271, 394
chalk, 126

uniaxial compressive strength, 56, 64, 272
chalk, 126
sandstone, 124
shale, 129

uniaxial test, 55, 267
unjacked test, 30

Valhall, 116, 126, 392, 427, 428
velocity

group, 177
phase, 177
root-mean-square, 215

vertical stress, 103, 296
void ratio, 88
Voigt bound, 223
Voigt notation, 39, 190, 457
von Mises criterion, 70

in the p′q-plane, 80
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washout, 311, 335
waste disposal, 370
water

bound, 254
content, 284
free, 254
weakening, 79

water injection, 370, 387
water-based mud, 254, 304, 323
wave equation, 175, 176

Biot theory, 181
wavelength, 176
wavenumber, 176
weak frame limit (def.), 31
well completion, 342
wellbore, see borehole
Wilmington, 392, 428
wing cracks, 195, 241

work hardening, 87
wormhole, 354

X-ray diffraction, 284
XLOT, see extended leak-off test

yield
criterion, 82
point, 43, 56

Young’s modulus
chalk, 126
correlation with strength, 124
definition of, 20
dynamic, 289

and Brinell hardness, 283
lab. test, 266
salt, 131
stress dependent, 144
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