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Rasmus Risnes in Memoriam

It is with great regret that we announce the passing of Professor Rasmus Rishes who died
on the 3rd of December 2004 after a prolonged struggle against ill health. He was active in
the field of rock mechanics right up to the end and made a significant contribution to this
second edition which, regretfully, he will never see. Rasmus was a very pleasant individual
whose vast knowledge and pedagogical expertise was a continual source of inspiration to
us all.

He was recognized as one of the pioneers in petroleum-related rock mechanics, both
nationally and internationally, and his early work on sand failure is still regarded as a
classic. In later years he turned his attention to the Chalk and established a highly reputable
research and teaching laboratory at the University of Stavanger (Norway).

Rasmus will be sorely missed by his many colleagues and friends in the rock mechanics
community.

Erling

Rune

Per

Arne Marius
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Preface to the second edition

During the years that have passed since the first edition of this book, petroleum related rock
mechanics has been well established as a significant supplier of premises and boundary
conditions for the petroleum industry. More than ever, it is now recognised that engineers
and geologists in the petroleum industry should possess a certain level of knowledge within
rock mechanics. The need for a textbook like this is therefore even larger now than it was
15 years ago.

Although there are still a lot of uncovered areas within petroleum related rock mechan-
ics, the topic has in many ways developed significantly over the later years. This is a natural
consequence of the increased focus this area has gained. We are also proud to admit that
the general knowledge of petroleum related rock mechanics among the authors of this book
has increased since the first edition was prepared. Consequently, when the need for a new
printing of the book appeared, we felt the need to revise the manuscript in order to account
for this development.

The revision has been quite extensive for some parts of the manuscript. The basic struc-
ture of the book is however kept as it was, and parts of the text have only been subject to
minor revisions. The major guideline for the work has been to update and add information
where we felt it was relevant, while maintaining the concept of the book as an introduction
to petroleum related rock mechanics as an engineering science. A consequence of this dual
objective has been the introduction of a couple of new appendices, where more advanced
mathematics and heavy formulas are presented in a compact form. This way, we hope that
the main text shall remain easily accessible even for newcomers in the field, while at the
same time the more complete formulas shall be available to the readers who need them.

The revision has been made by the same team of authors that wrote the first edition. In
addition, several friends and colleagues have generously provided suggestions, advice and
encouragement for the work. This support is greatly appreciated.

Trondheim, October 2004

Erling Fjeer
Rune M. Holt
Per Horsrud
Arne M. Raaen
Rasmus Risnes
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Foreword to the 1992 edition

About 10 years ago, petroleum related rock mechanics was mostly confined to a few spe-
cific topics like hydraulic fracturing or drilling bit performance. Although a few precursors
had already established the basics of what is now spreading out.

In fact, since that time, the whole petroleum industry has progressively realised that
the state of underground stresses and its modification due to petroleum related operations,
could have a significant impact on performances, in many different aspects of exploration
and production. Therefore all those concepts need now to be presented in a simple but
comprehensive way.

An engineering science, “Petroleum related rock mechanics” is also dependent on the
variable and uncertain character of natural geological materials at depth. The limited avail-
ability of relevant data is also part of the problem. For that reason, it is essential that any
potential user is aware of the high potential of the technique, together with the actual limi-
tations.

This book should totally fulfill these needs. The reader will be provided with fundamen-
tals and basics, but also with the techniques used in data acquisition, and eventually with a
series of typical applications like wellbore stability, sand production or subsidence.

The book is mostly for students, geologists or engineers who want to know more about
rock mechanics, and specifically rock mechanics applied to petroleum industry. It is well
suited for instance, for drilling or mud engineers wanting to know more on the mechanical
aspect of wellbore stability problems, for reservoir engineers who have to deal with stress
related problems in their field, like compaction, stress dependent permeability or fracture
injectivity. Operation geologists dealing with drilling in abnormal pressure zones will also
benefit from this book.

EIf Aquitaine Norge, together with other Norwegian oil companies, has been supporting
IKU for several years in their effort to build a strong group in rock mechanics. IKU has
now a well-established team, whose competence is recognised on the international level.
They have mostly been contributing in the field of acoustic wave propagation in rocks and
sand production appraisal. They are also very active in research and consulting activities
in the different fields of petroleum related rock mechanics.

Stavanger, April 1991

Alain Guenot
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Preface to the 1992 edition

Systematic application of rock mechanics is quite new to the petroleum industry. Accord-
ingly, the need for an introductory textbook for petroleum engineers and scientists has
recently emerged. This need was felt by the authors when we started our research in this
area, and it inspired us to develop the first version of this book as a manuscript for a two
weeks continuing education course for petroleum engineers.

The first 6 chapters deal with the fundamentals of rock mechanics. This includes theories
of elasticity and failure mechanics, borehole stresses, and acoustic wave propagation. In
addition, sedimentary rocks are viewed from the geological side as well as from the side
of idealised mathematical modelling based on microstructure. For readers who wants to
further extend their knowledge on rock mechanics, we suggest the book “Fundamentals of
rock mechanics” by Jaeger and Cook as a continuation. Deeper insight into acoustic wave
propagation in rocks can be achieved from e.g. the book “Acoustics of porous media” by
Bourbie, Coussy and Zinszner or “Underground Sound” by White.

Chapters 7 and 8 are dedicated to the extremely important task of obtaining parame-
ters that are relevant for rock mechanics field application, be it from laboratory tests or
from analysis of field data like borehole logs. The last 4 chapters discuss applications of
rock mechanics in borehole stability, sand production, hydraulic fracturing and reservoir
compaction/surface subsidence analyses.

It has also been our intention to make each chapter more or less selfcontained, especially
the chapters dealing with applications. Hopefully, this will make the book useful also to
those who are interested only in one particular topic. The other chapters can then be used
as support depending on the reader’s previous knowledge. Notice, however, that the book
is intended to be an introduction to petroleum related rock mechanics as an engineering
science, rather than a “tool-box” for petroleum engineers.

We wish to thank EIf Aquitaine Norge and Fina Exploration Norway for the financial
contributions which made it possible for us to write this book. In particular, we appreciate
the positive feedback and encouragement provided by Alain Guenot of EIf. The skilful
and patient support from Siri Lyng at IKU in preparing the manuscript for camera-ready
quality is greatly appreciated. We also thank Eamonn F. Doyle for advice on our use of the
English language.

Trondheim, May 1991

Erling Fjeer
Rune M. Holt
Per Horsrud
Arne M. Raaen
Rasmus Risnes
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Chapter 1

Elasticity

Most materials have an ability to resist and recover from deformations produced by forces.
This ability is called elasticity. It is the foundation for all aspects of rock mechanics. The
simplest type of response is one where there is a linear relation between the external forces
and the corresponding deformations. When changes in the forces are sufficiently small, the
response is (nearly) always linear. Thus the theory of linear elasticity is fundamental for
all discussions on elasticity.

The theory of elasticity rests on the two concepts stress and strain. These are defined
in Sections 1.1 and 1.2. The linear equations relating stresses and strains are discussed
in Section 1.3 for isotropic materials, and in Section 1.7 for anisotropic materials. Linear
thermoelasticity is discussed in Section 1.5.

The region of validity for linear elasticity is often exceeded in practical situations. Some
general features of nonlinear behaviour of rocks are described in Section 1.8.

In petroleum related rock mechanics, much of the interest is furthermore focused on
rocks with a significant porosity as well as permeability. The elastic theory for solid ma-
terials is not able to fully describe the behaviour of such materials, and the concept of
poroelasticity has therefore to be taken into account. The elastic response of a rock mater-
ial may also be time dependent, so that the deformation of the material changes with time,
even when the external conditions are constant. The elastic properties of porous materials
and time-dependent effects are described in Sections 1.6 and 1.9, respectively.

1.1. Stress

Consider the situation shown in Fig. 1.1. A weight is resting on the top of a pillar. Due to
the weight, a force is acting on the pillar, while the pillar reacts with an equal, but reversely
directed force. The pillar itself is supported by the ground. Hence the force acting at the
top of the pillar must be acting through any cross-section of the pillar.

The area of the cross-section at a) is A. If the force acting through the cross-section is
denoted F, then the stress o at the cross-section is defined as:

o= (1.1)

The Sl unit for stress is Pa (= Pascal = N/m?). In the petroleum industry, “oilfield”
units like psi (pounds per square inch) are still extensively used, such that one needs to be
familiar with them. See Appendix B for an overview of some conversion factors.

The sign of the stress o is not uniquely defined by the physics of the situation, and has
therefore to be defined by convention. In rock mechanics the sign convention states that
compressive stresses are positive. The historical reason for this is that the stresses dealt with
in rock mechanics are mostly compressive. The sign convention causes no problems when
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Fig. 1.1. IHllustration of forces and stress.

consistently used, but it is important to remember that the opposite sign convention is the
preferred choice in some other sciences involving elasticity, and that it is also occasionally
used in rock mechanics.

As Eq. (1.1) shows, the stress is defined by a force and a cross-section (or more generally,
a surface), through which the force is acting. Consider the cross-section at b). The force
acting through this cross-section is equal to the force acting through the cross-section at a)
(neglecting the weight of the pillar). The area A’ of the cross-section at b) is, however,
smaller than A. Hence the stress o = F/A’ at b) is larger than the stress at a), i.e. the stress
depends on the position within the stressed sample. Going even further, we may divide the
cross-section at a) into an infinite number of subsections A A, through which an infinitely
small part A F of the total force F is acting (Fig. 1.2). The force AF may vary from one
subsection to another. Consider a subsection i which contains a point P. The stress at the
point P is defined as the limit value of AF; /AA; when AA; goes to zero, i.e.:

. AF
o= lim

AA;—0 AA;

Eq. (1.2) defines the local stress at the point P within the cross-section at a), while Eq. (1.1)
describes the average stress at the cross-section. When talking about the stress state at a
point, we implicitly mean local stresses.

The orientation of the cross-section relative to the direction of the force is also important.
Consider the cross-section at ) in Fig. 1.1, with area A”. Here the force is no longer normal
to the cross-section. We may then decompose the force into one component F; that is
normal to the cross-section, and one component Fy that is parallel to the section (Fig. 1.3).
The quantity

(12)

Fn

o= (13)
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Fig. 1.3. Decomposition of forces.

is called the normal stress, while the quantity

Fp
A
is called the shear stress. Thus, there are two types of stresses which may act through a
surface, and the magnitude of each depends on the orientation of the surface.

T (1.4)

1.1.1. The stress tensor

To give a complete description of the stress state at a point P within a sample, it is necessary
to identify the stresses related to surfaces oriented in three orthogonal directions.

The stresses related to a surface normal to the x-axis may be denoted oy, 7, and z,
representing the normal stress, the shear stress related to a force in y-direction, and the
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shear stress related to a force in the z-direction, respectively. Physically, there will be only
one shear stress associated with this surface. However, the orientation of the shear stress has
to be identified, and this is most conveniently done by identifying its y- and z-components:
T,y and .. Similarly, the stresses related to a surface normal to the y-axis are denoted oy,
Tyx and 7., while the stresses related to a surface normal to the z-axis are denoted o, 7,
and t;,. Thus there are all together nine stress components related to the point P:

Ox Txy Txz
Tyx Oy Tyg (1.5)
Tzx Tzy O

Expression (1.5) is called the stress tensor. It gives a complete description of the stress
state at the point P.

Associating the first index with the face normal and the second with the force direction,
is a matter of choice, similar to the sign convention. As a result, one will see the opposite
convention used in a number of works, e.g. Landau and Lifshitz (1986). Further, due to the
symmetry of the stress tensor (see below), the convention is of no practical importance.

It is sometimes convenient to denote the stress tensor by a single symbol, for instance .
Thus o implicitly means the collection of stress components given by (1.5). The stress
tensor also has a definite physical meaning: if 7 is a unit vector, the expression [o - 7|,
represents the total stress (normal and shear) in the direction of 7.

Not all the nine components of the stress tensor are independent, however. Consider a
small square of the xy-plane, as shown in Fig. 1.4. The stresses acting on the square are
shown on the figure. The square is at rest, hence no net translational or rotational force can

U_‘J

Tyx

Ty
X :

Fig. 1.4. Stress components in two dimensions.
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act on it. While no translational force is already ensured, no rotational force requires that

Tey = Tyx (1.6)
Similarly, it may be shown that

Txz = Tax 1.7
and

Ty = Tzy (1.8)

The relations (1.6) to (1.8) are general, and they reduce the number of independent com-
ponents of the stress tensor (1.5) to six.

Although being practical for many purposes, the notation used in (1.5) is not very con-
venient for theoretical calculations. For such purposes the following notation is frequently
used: both types of stresses (normal and shear) are denoted o;;. The subscripts i and j may
be any of the numbers 1, 2, 3, which represent the x-, y- and z-axis, respectively. The first
subscript (i) identifies the axis normal to the actual surface, while the second subscript ()
identifies the direction of the force. Thus, from Fig. 1.4, we see that 011 = oy, 013 = Ty,
etc. In this notation the stress tensor (1.5) becomes

011 012 013
o=|012 022 023 (1.9
013 023 033

where we have explicitly used the symmetry of the stress tensor. See Appendices C.4-C.7
for a discussion of how the tensor components change as a result of a change of coordinates.

1.1.2. Equations of equilibrium

Apart from forces acting on a surface of a body, there may also be forces acting on every
part of the body itself. Such forces are called body forces. An example of a body force is
gravity. We shall denote by f,, fy, and f, the components of the body forces per unit mass
acting at the point x, y, z of a body. According to the sign convention, f; is positive if it acts
in the negative x-direction, and similarly for f, and f;. As an example, consider a small
part of volume AV of a material with density p. If z is the vertical axis, the body force due
to gravity acting on this small volume is pf, AV = pg AV, where g is the acceleration of
gravity.

Body forces generally give rise to stress gradients. For instance, an element in a forma-
tion is not only subject to the gravity force, it also has to carry the weight of the formation
above. Thus the total stress increases with increasing depth.

For a stressed body to remain at rest, it is required that all forces acting on the body
cancel. This requirement produced a set of symmetry requirements for the stress tensor
(Egs. (1.6) to (1.8)). In addition, it produces a set of equations for the stress gradients.
These equations are called the equations of equilibrium.

Consider the parallelepiped shown in Fig. 1.5. The forces acting on this body in the
x-direction are
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z
X ¥
Fig. 1.5.
Normal forces:
00y
—0x AyAz+ | oy + 8—Ax AyAz (1.10)
X
Shear forces:
0Tyx
Ty AXAZ + | Tyx + 3y Ay |AxAz (1.11)
0T,y
—Tx AYAX + | T + 3z Az JAyAx (1.12)
Body forces:
ofx AxAyAz (1.13)

Adding up Egs. (1.10) to (1.13) and dividing by AxAyAz, we find that the requirement
for the forces in x-direction to cancel is equivalent to

0oy 0Ty, n 0T,y
ax ay 0z

Similarly, for the forces in the y- and z-directions we find

+pfr =0 (1.14)

doy  0Tyy = 0Ty
. - - , =0 1.15
ay ox 0z ol (L15)
do; 0Ty, = 0Ty,
az ax ay

Egs. (1.14) to (1.16) are the equations of equilibrium in terms of stresses. Note that in the
alternative notation (shown in Eq. (1.9) for the stresses, and with x1 = x, x2 = y, x3 = z2),

+pf. =0 (1.16)
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these equations take a particularly simple form:

d0ji
Sy pfi=0 (1.17)
B 8)(]'

1.1.3. Principal stresses in two dimensions

For special orientations of the coordinate system, the stress tensor has a particularly simple
form. To reveal this form, we shall initially study stresses in two dimensions. This is more
than just an academic exercise; many problems of practical interest are effectively two-
dimensional.

Consider the normal (o) and shear (z) stresses at a surface oriented normal to a general
direction 6 in the xy-plane, as shown in Fig. 1.6. The triangle on the figure is at rest, such
that no net forces act on it. Cancellation of forces implies that:

0 = 0, 0082 0 + oy 5in 6 + 27, SiN 6 COS 6 (1.18)
= %(ax +oy) + %(ax — 0y) C0S 20 + T4y, SiN 20 (1.19)
T = 0,86 CosH — o, COSHSING + 7., COSH COSH — Ty, SINOSING  (1.20)
= %(ay — 0y) Sin 260 + 1, C0S 260 (1.22)

By proper choice of 9, it is possible to obtain = = 0. From Eq. (1.21) we see that this
happens when:

2Ty
tan20 = ——° (1.22)
Ox — Oy
Txy
[e2
Ox

Oy
X

Fig. 1.6. Force equilibrium on a triangle. The arrows shows the direction of the forces on the triangle, assuming
that all the stress components are positive.
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Eg. (1.22) has two solutions, 61 and 6,. The two solutions correspond to two directions
for which the shear stress = vanishes. These two directions are called the principal axes of
stress.

The corresponding normal stresses, o1 and o2, are called the principal stresses, and are
found by introducing Eq. (1.22) into Eq. (1.19):

1 1

o1 = E(Gx +oy) + \/T)gy + Z(Ux — ay)z (1.23)
1 1

2= 30+ |2+ Ho oy 20

It is convenient to choose the notation such that o1 > o9. Thus, in the direction 6y,
which identifies a principal axis, the normal stress is o1 and the shear stress is zero. In the
direction 6-, which identifies the other principal axis, the normal stress is o> and the shear
stress is zero. The principal axes are orthogonal.

1.1.4. Mohr’s stress circle

It is often convenient to reorient the coordinate system such that the x-axis is parallel to
the first principal axis and the y-axis parallel to the other. Then the stresses o and ¢ in a
general direction 6 relative to the x-axis become, from Egs. (1.19) and (1.21):
1 1
o= 5(01 + 07) + E(Ol — 09) C0S 20 (1.25)
1 .
T = _5(01 — o7)sin 26 (1.26)

Plotting corresponding values of o and 7 in a diagram (Fig. 1.7a), we obtain a circle called
the Mohr’s circle. The radius of the circle is (o1 — 02)/2 and the centre is at the point
(01 4 02)/2 on the o-axis.

The stresses o and t in any direction 6 (Fig. 1.7b) correspond to a point on the Mohr’s
circle. It is seen from Fig. 1.7a that the largest absolute value for the shear stress is (o1 —
072)/2 and occurs for & = 7 /4 (= 45°) and & = 37 /4 (= 135°). The Mohr’s circle is a
very useful tool in the analysis of conditions for rock failure, as will be seen in Chapter 2.

1.1.5. Principal stresses in three dimensions

Now moving to three dimensions, we first have to decide how to identify a direction in
space. This can be done by the direction cosines (see also Appendix C.6):
[, = COSay (1.27)
I, = cosay (1.28)
I, =cosa, (1.29)
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01

Fig. 1.7. Mohr’s circle.

Fig. 1.8. Direction cosines.

The angles oy, «y, and «, are the angles between our chosen direction and the x-, y- and
z-axes, respectively (Fig. 1.8). The vector 7 = (I, I, [;) is a unit vector in the chosen

direction. Note that we always have

Z++12=1

The principal stresses can be found by solving for o the determinant equation (see

Appendix C, in particular Appendix C.2.12 on page 449):

oy — O Tyy Ty

Tyy oy —0 Ty, | =0

Txz 'L'yz 0O, — 0O

01

b)
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The three solutions of this equation are the principal stresses o1, o2 and o3. The solutions
are conventionally organized such that o1 > o2 > o3. The direction cosines Iy, I1, and /1,
identifying the principal axis corresponding to o1 are found by solving the equations:

lix(ox —01) +l1yTay + 11T = 0 (1.32)
llexy + lly(oy —o1) +11;7y; = 0 (1.33)
l1xTaz +l1yTy; +l1,(0; —01) =0 (1.34)

The principal axes corresponding to o7 and o3 are found similarly by substituting sub-
script 1 by 2 and 3, respectively, in Egs. (1.32)—(1.34).

If the coordinate system is oriented such that the x-axis is parallel to the first, the y-axis
parallel to the second, and the z-axis parallel to the third principal axis, the stress tensor

has the particularly simple form:
opr 0 O
( 0 oo O ) (1.35)

0 0 o3

The stresses o and 7 in a general direction I1, I, I3 relative to this set of coordinate axes
are determined by the equations:

lfal + lgaz + 1503 =0 (1.36)
202 4 1362 4 1302 = 02 4 2 (1.37)

1.1.6. Mohr’s stress circles in three dimensions
Mohr’s construction is, naturally, more complicated in three dimensions than in two di-

mensions, and will not be treated in detail here. The basic features of the construction are
shown in Fig. 1.9. If I, = 0 (direction in the yz-plane), the stresses ¢ and t are located

03 02 gy

Fig. 1.9. Mohr’s construction in three dimensions.
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on the small circle spanning from o3 to o2. If [, = 0 (direction in the xy-plane), o and
t are located on the circle spanning from o> to o1 and, finally, if /, = 0 (direction in the
xz-plane), o and t are located on the large circle spanning from o3 to o7. For all other
directions, o and t are located within the shaded areas.

1.1.7. Stress invariants

The stress tensor is a second order tensor. When changing to a rotated set of coordinate
axes, the components of the stress tensor change. However, as discussed in Appendix C,
some properties of the stress tensor remain unchanged. The simplest of these is the mean
normal stress

6 = (0x +0y+0;)/3 (1.38)

which equals 1/3 of the trace of the matrix (see page 447). The mean normal stress is thus
an invariant of stress.

There also exist other stress combinations that are independent of the coordinate axes.
Any combination of stress invariants will of course be a stress invariant as well. The com-
monly used stress invariants are:

Iy =0y +0y+o; (1.39)
I, = —(0x0y + 0y0; + 0,0,) + rfy + tyzz + tfz (1.40)
I3 = 0,0,0; + 2Ty Ty, Tyy — crxtyzz — aytxzz — ozrfy (1.41)

(See page 455 for some information about invariants.)

1.1.8. Deviatoric stresses

The mean normal stress &, defined in Eq. (1.38), essentially causes uniform compression
or extension. Distortions, on the other hand, are essentially caused by the so-called devi-
atoric stresses. The deviatoric stress (also called stress deviator or stress deviation—the
terminology is not consistent in the literature) is obtained by subtracting the mean normal
stress from the normal stress components:

Sx  Sxy  Sxz oy — 0 Txy Txz
Sxy Sy Sy | = Tay oy —0 Tyg (1.42)
Sxz  Syz Sz Txz Tyz 0, —0
Invariants of stress deviation similar to the invariants of stress defined in Eqgs. (1.39)-
(1.41), are given by:
Ji=s8c+s5y+5,=0 (1.43)
Jo = —(sx8y + 5387 + 575¢) + sfy + s)Z,Z + sfz (1.44)

2 2 2
J3 = 5xSySz + 2SxySyzSxz — SxSy, — SySy, — $28%, (1.45)
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The invariants Jy, J2, J3, and combinations of them, are independent of the choice of
coordinate axes. Invariants of stress deviation appear e.g. in failure criteria, since these
must be independent of the choice of coordinate axes (for isotropic materials).

There are many different ways of writing the invariants of stress deviation. See page 463
for some useful expressions.

One will often encounter various variants of the stress invariants, in particular the para-
meters g and r, which are related to the basic invariants as

g =/3D = \/g[(al —5)2 4 (02— 5)2 + (03 — 5)?] (1.46)
27 27
r=. ?J3=\3/7(01—5)(02—5)(03—5) (1.47)

For a stress state in which two of the principal stresses are equal (o2 = o3) the expres-
sions simplify to

q = |o1 — o3 (1.48)
and

r=o01— 03 (1.49)
g will be used extensively in Chapter 2.

Geometric interpretation of the deviatoric stress invariants
The deviatoric stress invariants have a straightforward geometrical interpretation in prin-
cipal stress space, as illustrated in Fig. 1.10. Eq. (1.46) is the equation of a circle centred

on &, with the normal pointing along the hydrostatic axis o1 = o2 = o3. Thus the distance
from a point (o1, 02, 03) in principal stress space to the hydrostatic axis is

“4=\7% (150)
A(’z

01,02,0
)lx/ﬂl/h/(l 2,03)
PRARN s

”~
03/// \\\0'1
Ve

-

Fig. 1.10. Geometrical interpretation of the deviatoric stress invariants in principal stress space. The dashed lines
are the projections of the principal stress axes onto a deviatoric plane (i.e. a plane normal to the hydrostatic axis
01 = op = o3, also called the w-plane) passing through the point (o1, o7, 03). The angle ¢ is called the Lode
angle.
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It can further be shown that the angle ¢, called the Lode angle, indicated in Fig. 1.10, is
given by the invariants as

3
3V3J.
cos(39) = (5> - f—S/j (151)
q 27,
(Note that since arccos is a multi-valued function, the Lode angle computed from Eq. (1.51)
is not unique. If one chooses the principal branch of arccos, the result will be in the range
0° to 60° even if the actual stress state corresponds to another value.)

1.1.9. The octahedral stresses

A plane normal to the (1, 1, 1) direction in principal stress space is called an octahedral
plane, a r-plane or a deviatoric plane.

The normal stress on and shear stress in this plane are sometimes called the octahedral
normal stress and the octahedral shear stress, and are given by

1 _ 1
Ooct = 5(01+02+03) =0 = 2Ny (1.52)
1 2 V2
Toct = 5\/(02 —0)? + (o3 -0+ (1 —00)? =2k ="q (153

Note that the normal stress in the direction equally inclined to the principal stress axes is
thus equal to the mean stress.

1.2. Strain

Consider a sample as shown in Fig. 1.11. The position of a specific particle within the
sample is initially x, y, z. After the action of an external force, the position of this particle
is shifted. We shall denote the shift in x-direction by u, the shift in y-direction by v, and

(x,5,2)
Initial Shifted
position position

Fig. 1.11. Sample deformation.
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the shift in z-direction by w. The quantities u, v and w are called the displacements of the
particle. In order to make the signs of the displacements compatible with the signs of the
stresses, as defined in Section 1.1, the displacements are taken to be positive when they
are directed in the negative direction of the axes. Hence, the new position of the particle
initially at x, y, z becomes

xX'=x—u (1.54)
y=y—v (1.55)
=z-w (1.56)

If the displacements u, v and w are constants, i.e. they are the same for every particle
within the sample, then the displacement is simply a trandation of a rigid body. Another
simple form of displacements is the rotation of a rigid body. For a small rotation specified
by @, where the magnitude || gives the angle of rotation while the direction of & gives
the axis of rotation, the new position of the particle becomes:

P =F+dx (F— 7o) (1.57)

where ¥ = (x,y,z2), ¥ = (x,y,7/), and x denotes the vector product. The vector 7y is
the centre of rotation, through which the axis of rotation goes.

If the relative position of the particles within the sample are changed, so that the new
positions cannot be obtained simply by a rigid translation and/or rotation of the sample,
the sample is said to be strained. Fig. 1.12 shows an example of a strained sample. The
displacements related to the positions O and P are not equal. The quantity defined as

_L-L AL
T L T L

is called the elongation corresponding to the point O and the direction O P. To comply with
the sign convention for stresses, we require that the elongation is positive for a contraction.

e (1.58)

Y 0
Initial Shifted
positions positions

Fig. 1.12. Deformation
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Initial Shifted
positions positions

Fig. 1.13. Shear deformation.

The elongation is a specific type of quantities known as strains. The other type of strain that
may occur can be expressed by the change ¥ of the angle between two initially orthogonal
directions (Fig. 1.13). The quantity

1
r= 2 tan @ (1.59)

is called the shear strain corresponding to the point O and the direction O P.

For many applications one will only be dealing with infinitessimal strains, which implies
that the strains ¢ and I" are so small that their products and squares can be ignored, and we
will make this approximation in the following. See Section 1.8 for a discussion of nonlinear
effects.

Now consider for a while the strains in two dimensions as shown in Fig. 1.14. The
elongation at x, in the x-direction, is given as

_ x+Ax)—x—[(x+Ax —ulx + Ax)) — (x —u(x))]

&y =
x4+ Ax) —x
_ ulx + Ax) —u(x) (1.60)
Ax
In the limit when Ax — 0, we have
d
gy = 2 (1.61)
0x
Since the strains are small, we find for the shear strain corresponding to the x-direction
1 1.
Iy = Etanllf ~ Esmllf
_ 1 cos( = + v
2 2
1 P-Pj
=_--_-1 2 (1.62)

21Py|- | Py
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y+Ay + P, y+4y
—v(x,y+A4y)
Py
y 1 y—v(x,y)
] | | |
T T T T
x x+Ax x—u(x,y) x+Ax
—u(x+Ax,y)
Initial Shifted
positions positions

Fig. 1.14. Parameterization of shear deformation.

The vectors Py, P{, Py, P}, are found in Fig. 1.14. When Ax — 0, Ay — 0, and squares
and products of the strains are neglected, we find that

1/0u 0y
Iyy=—=|—+— 1.63
* 2<8y + 8x> ( )

It is clear from Eq. (1.63), that the shear strain corresponding to the y-direction, I'y,, is
equal to IT,.

To give a full description of the strain state at a point within a three-dimensional body,
the elongations and shear strains corresponding to all three axes must be specified. In ac-
cordance with Eqgs. (1.61) and (1.63), these strains are defined as:

£ = g—z (1.64)
&y = g—; (1.65)
£ = %—f (1.66)
Iy =Ty = %(% + g—;’) (1.67)
[ =T = %(2—': n %) (1.68)

1/0v oJw
Fyzzrzy=§<a_z+§> (1.69)
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1.2.1. The strain tensor and the strain invariants

Similar to Eq. (1.5), we may organize the strains (1.64)—(1.69) in a strain tensor:

. ex  Tyy Ty
e=|Txy & Ty (1.70)
Iy, Fyz &z
The trace of the strain tensor
Evol = &x + &y + &, (2.71)

is identical to the volumetric strain, i.e. the relative decrease in volume. The volumetric
strain is independent on the choice of coordinate axes, and is thus an invariant of strain.
Similar to the stress invariants of Eqgs. (1.40)—(1.41), it can be shown that the quantities

Jo = —(ex8y + 8y, + £,6x0) + szy + Fyzz + FXZZ (1.72)
and
T3 = exeye; + 2Ty Dy Tz — 8)51"y2Z — 8},FXZZ — SZI"XZy (1.73)

are also invariants of strain.
There also exists a mathematical notation for strains, similar to Eq. (1.9). In this notation

all strains are defined by
1 au,' 8uj
=z 1.74
e 2<ax]‘ + 8xi) ( )
The subscripts i and j may be any of the numbers 1, 2, 3, representing the x-, y-, and
z-axis, respectively. Thus, u1 = u, up = v, and us = w, while x;1 = x, x = y, and
x3 = z. We then have e11 = &, e13 = Iy etc.
In this notation the strain tensor (1.70) becomes

€11 €12 €13
€12 €22 €23 (1.75)

€13 €23 €33

1.2.2. Compatibility conditions

We note from the general definition of strain (Eq. (1.74)) that all strains are derivatives
(in various combinations) of the components of the displacement vector u = (u1, uz, u3).
Some useful expressions may be derived from this fact. For instance, we observe from
Egs. (1.71) and (1.74) that the volumetric strain eyo equals the divergence of 4, i.e.
- dv

el =V il = v (1.76)
The minus sign is due to our sign convention for strains. Other relations can be obtained
by comparing some of the second derivatives of the strains. We find e.g.:



18 ELASTICITY
320e, 3%, zzazrxy _ 33u N 3%v w77)
dy2 dx2 0xdy 0xdy2  dyox?
92e, 0%, :232sz _ a3u N 3w (1.78)

972  9x? dxdz \ 9x3z2  9z9x2
92¢. sty _ 282FZy _ 3w n a3v (1.79)
ay2 972 dzdy \ 0z0y?2 = 9ydz?

These three differential relations, together with three others that express 92e,/(dydz),
azey/(axaz) and 9%¢./(dxdy) in terms of second derivatives of the shear strains, are
known as the compatibility conditions for strain.

1.2.3. Principal strains

In Section 1.1 we saw that for some specific directions the shear stress vanishes, so that for
a specific orientation of the coordinate system (with axis parallel to the principal axes of
stress) the stress tensor becomes particularly simple. The situation is similar for strains.

In two dimensions, it can be shown that the shear strain vanishes in the directions 6
relative to the x-axis, which fulfil the equation:

20,
tan2 = —=
Ex — &y

(1.80)

Thus, in two dimensions, there are two orthogonal directions for which the shear strain
vanishes. These directions are called the principal axes of strain. The elongations in the
directions of the principal axes of strain, are called the principal strains.

In three dimensions there are three principal axes of strain. The principal strains are
found by solution of the determinant equation

Ex — € Iy I,
Iy e—¢ T, |=0 (1.81)
Iy, Iy, &, —¢€

The solutions are denoted e1, &2, £3. The direction cosines 1., l1y, I1; identifying the
principal axis corresponding to &1 are found by solution of the equations

l1x(ex —€1) + llyrxy +h Iy = 0 (182)
lix Ty +1l1y(ey —€1) + 11,17y, =0 (1.83)
lix Ty + 11yl +11,(6, —€1) =0 (1.84)

The principal axes corresponding to e2 and e3 are found similarly by substituting sub-
script 1 by 2 and 3, respectively. Egs. (1.81) and (1.82)—(1.84) are seen to be equivalents
of Egs. (1.31) and (1.32)—(1.34) identifying the principal stresses and the principal axes of
stress.
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1.2.4. Plane strain and plane stress

In several practical applications it is a good approximation to assume that all cross-sections
along a given axis are in the same condition, and that there is no displacement along the
axis. This state of strain is called plane strain.

In the following we shall assume the unique axis to be the z-axis. The strain tensor for
plane strain is then

ny(xa y) Sy(xv y 0 (1.85)

0 0 0
where all strain components are independent of z. The term plane of course refers to the
fact that the strain is confined to a plane.
If we only have displacement along z, and this displacement is independent of z, the
strain state is referred to as antiplane strain. The strain tensor is then

0 0 I (x,y)
( 0 0 Ty (x,y) ) (1.86)
sz(x,y) F\’Z(xvy) 0
where again all components are independent of z.
A general situation in which the displacement along the z-axis is independent of z can be

decomposed into a sum of plane strain and antiplane strain. This state of strain is referred
to as generalized plane strain. The strain tensor is

<8x(x,y) Tiy(x,y) sz(x,y)>

(Sx(x,y) ny(x»))) 0)

ny(x’ y) 8),()6, y) Fyz(x» y) (1.87)
I (x,y) Fyz(xay) 0

Note, however, that the concept of generalized plane strain is not uniquely defined in

the literature. Sometimes the term is used when ¢, rather than the displacement along z is

independent if z. This leads to the strain tensor

ex(x,y) ny(an) T (x,y)
(ny(xs)’) ey(x,y) Fyz(xvy)> (1.88)
Fo(x,y) Ty (x,y)  &(x,y)
See Cheng (1998) for a thorough discussion.
Analogously, if all stress components are independent of z, and o, = 7,;, = 7,;, =0
(still taking z to be the unique axis), we call the situation plane stress. The stress tensor is

then

Toy(x,y)  oy(x,y) 0 (1.89)

0 0 0

Generalized plane stress is used when all stress components are independent z, leading
to the stress tensor

(Ux(xvY) Txy(xvy) O)

Toy(X, ) oy(x,y) Ty (x,y) (1.90)

(ox(x,y) Tey(X, ¥) rxz(x,y)>
Tez (X, Y) Ty (x,y)  or(x,y)
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1.3. Elastic moduli

The theory of linear elasticity deals with situations where there are linear relationships be-
tween applied stresses and resulting strains. While most rocks do behave nonlinearly when
subject to large stresses, their behaviour may normally be described by linear relations
for sufficiently small changes in stress. Consider a sample of length L and cross-sectional
area A = D? (Fig. 1.15). When the force F is applied on its end surfaces, the length of
the sample is reduced to L’. The applied stress is then o, = F/A and the corresponding
elongation is ¢x = (L — L')/L, according to Egs. (1.1) and (1.58). If the sample behaves
linearly, there is a linear relation between o, and ., which we may write
Ex = %ax (1.91)

Eg. (1.91) is known as Hooke'slaw, while the coefficient E is called Young's modulus or
simply the E-modulus. Young’s modulus belongs to a group of coefficients called elastic
moduli. It is a measure of the stiffness of the sample, i.e. the sample’s resistance against
being compressed by a uniaxial stress.

Another consequence of the applied stress o, (Fig. 1.15) is an increase in the width D
of the sample. The lateral elongation is ¢, = ¢, = (D — D")/D. In general D" > D, thus
gy and &, become negative. The ratio defined as

b= (1.92)
Ex
is another elastic parameter, known as Poisson’s ratio. It is a measure of lateral expansion
relative to longitudinal contraction.

Egs. (1.91) and (1.92), which relates one component of stress or strain to another, are
defined by a specific state of stress, namely o, # 0, o, = o, = 0. In general, each
component of strain is a linear function of all components of stress.

| sotropic materials are materials whose response is independent of the orientation of the
applied stress. For such materials the principal axes of stress and the principal axes of strain

i

F

b

Fig. 1.15. Deformation induced by uniaxial stress.



ELASTIC MODULI 21

always coincide. For isotropic materials the general relations between stresses and strains
may be written

ox = (A +2G)ex + Aey + Agg (1.93)
oy = Aéx + (A +2G)ey + Ae, (1.94)
o, = Aex + Aey + (A 4+ 2G)e; (1.95)
Ty, = 2G Ty, (1.96)
Ty, = 2G Ty, 1.97)
Tyy = 2G Ty (1.98)

The coefficients A and G are elastic moduli, known as Lamé’s parameters. G is also known
as the modulus of rigidity, or the shear modulus. G is a measure of the sample’s resistance
against shear deformation.

Another important elastic modulus is the bulk modulus K. It is defined as the ratio of
hydrostatic stress o, relative to the volumetric strain eyo (Eq. (1.71)). For a hydrostatic
stress state we have o, = 0y = 0y = o, while 7,, = 7,, = 7, = 0. From Eqgs. (1.93)-
(1.95) we then find

k=2 5+ (1.99)
Evol 3

K is a measure of the sample’s resistance against hydrostatic compression. The inverse
of K, i.e. 1/K, is known as the compressibility.

In the experiment (Fig. 1.15) defining Young’s modulus and Poisson’s ratio, the stress is
uniaxial, i.e. o0y = 0; = T,y = Tx; = Ty; = 0. From Egs. (1.93)-(1.95) we then find

Oy 3L+ 2G

E = =G— (1.100)
Ex A + G
&y A
== — 1.101
! e 2+G) ( )

From the relations (1.99) to (1.101), it may be seen that when any two of the moduli E,
v, A, G and K are defined, the remaining ones are fixed by these relations. Depending on
which two of the moduli that are known, special combinations of Egs. (1.99)—(1.101) may
be needed. Some of the most useful combinations are listed in Table 1.1.

Table 1.1 also includes some relations involving H = X + 2G, the uniaxial compaction
modulus or oedometer modulus, which is repeatedly used in later Chapters. In the context
of acoustics, H is referred to as the plane wave modulus or the P-wave modulus.

For rocks, Poisson’s ratio is typically 0.15-0.25. For weak, porous rocks v may ap-
proach zero or even become negative. For fluids, the rigidity G vanishes, which according
to Eg. (1.101) implies that v approaches 1/2. Also for unconsolidated sand, v is close
to 1/2. Some physical limits for the elastic moduli are discussed towards the end of Sec-
tion 1.4.

The elastic moduli E, A, G, H and K are measured in the same units as stress, e.g. Pa,
psi or bar. This follows from Egs. (1.91), (1.93) and (1.99), and from Eq. (1.58) which
shows that strain is dimensionless.
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TABLE 1.1 Some relations between elastic moduli

1 A
E=3K(1—2v) K=" LI ¥
3v A+ G
2 1+4+v G
E =2G(1 K==-G — =1-2
d+) 3%1-2 "+ G v
9K G 2 A+ 2G
3K+ G t3 irc A w
31+ 2G GE 3% +2G
E=G——"— K=—"_ by T
e 9G — 3E rG A4ty
A A 2v 3L+ 4G
E=2@1 1-2 == =202 -
,EFnd=2v) G 1-2v "+ G 2=
H=\+2G H K+4G 3K 26
= = —_ Vv =
3 23K + G)
1—v 1—v 1—v
Q+v)1-2v) 1-2v 1+v

Typical values for the elastic moduli of some rocks are given in Appendix A. Note
that the given values may change with the stress state. This will be further discussed in
Section 1.8.

The stress—strain relations (1.93)—(1.98) are the fundamental equations for description
of isotropic, linear elastic materials. In many cases, however, it is convenient to have these
equations on an alternative form, expressing the strains as functions of the stresses. Intro-
ducing the expressions (1.100) and (1.101) for E and v, this alternative form becomes:

Eey =0y —v(oy +0y) (1.102)

Egy =0y — v(ox + 07) (1.103)

Ee; =0, —v(oy +0y) (1.104)
1

Gly; = 50z (1.105)
1

Gly, = 5Tz (1.106)
1

Gl = 2Ty (1.107)

The stress strain relations (1.93)—(1.98) may be written on a more compact form using
the notation introduced in Egs. (1.9) and (1.74) as

0ij = Aévoldij + 2Ge;; (1.108)

where §;; is the Kronecker symbol (see page 460). See Appendix D.1.4 on page 464 for
some other useful ways of writing the formulas.

The concept of plane strain was introduced in Section 1.2.4. Consider again the situation
in Fig. 1.15, but let us now assume that the body is constrained such that there is no strain
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in the z-direction, i.e. it is in a state of plane strain. Introducing ¢, = O and o, = 0 in

Egs. (1.102)—(1.104) we find an equation corresponding to Eq. (1.91):
- ox _ E _ 2G

& 1—v2 1—v

E’ is called the plane strain modulus since it often shows up in plane strain problems. As

an example, see Section 11.4. Note that we have E < E’ < H, which means that the

stiffness of the sample increases as it is increasingly confined in the lateral directions.

(1.109)

1.4. Strain energy

A strained body possesses a potential energy which may be released during unloading.
Consider a small cube of a material, with sides a, loaded uniaxially with the stress o. The
resulting elongation is ¢ = o/ E. The work done by increasing the stress from 0 to o7 is:

work = force - distance
o1 2 3 a1 1
= (ao0)(ade) =a / o—do
0 o FE

2
= %ag% = %asEef = %a%lsl (1.110)
where e1 = o1/E. As the stress state in this case is uniaxial, o1 is a principal stress while
&1 is a principal strain. When the other two principal stresses are non-zero, corresponding
terms will add to the expression for the work. The work per unit volume (= the potential

energy per unit volume) then becomes:

1
W= 5(0181 + 0262 + 03¢€3) (1.111)

W is called the strain energy.

A variety of expressions for the strain energy can be obtained by suitable substitutions
for the principal stresses and/or the principal strains. Using Egs. (1.93)—(1.95) to express
the stresses in terms of the strains, we find that the strain energy (1.111) is equal to:

W =2[(A +2G) (&5 + &3 + €3) + 2A(e162 + £183 + £263) ] (1.112)

Comparing with Egs. (1.71), (1.72) and (1.73) for the strain invariants, we find that the
strain energy may also be expressed as:

1 2
W= E[(/\ +2G)e4y + 4G ]

1
— E[(/\ +2G)(e2 + 85 + &%) + 2A(exey + 8ye; + £6x)

+4G(I3 + T2+ T2)] (1.113)

Useful relations can be established by analysis of the strain energy. Taking the derivative
of Eq. (1.113) with respect to ¢, and using Eq. (1.93), we find that:

ow 1

dey - 2

[Z(A +2G)ex + 2A(ey + SZ)] = oy (1.114)
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Similar expressions connecting o to ¢, etc. can also be established in the same way. We
now observe, by taking the derivative of Eq. (1.114) with respect to &y, that it is possible
to establish a set of expressions of the type:

doy 3w Doy

= = (1.115)

dey dey0ey 0&y
This equation gives rise to a general symmetry restriction on the elastic moduli, which will
be discussed later. (See page 39.)

Going back to Eq. (1.110), we observe that the Young’s modulus E must be nonnegative,
otherwise the system will be unstable (E < 0 implies that e7 — oo will be energetically
favourable). By considering other stress geometries, we may similarly show that also the
shear modulus G and the bulk modulus K must be nonnegative. It follows from Table 1.1
that the Poisson’s ratio v is then restricted to be in the region —1 < v < 1/2. (Note that
these restrictions are derived assuming that the material is isotropic and linearly elastic.)

1.5. Thermoelasticity
1.5.1. Thermal strain

It is well known that (most) materials expand or contract under a temperature change. Let
us consider an elastic rod, which is free to expand. The initial temperature is Tp, and the
temperature is changed to some other value 7. The axial thermal strain resulting from the
temperature change is then given by

ga = —ar (T — Tp) (1.116)

where a7 is the coefficient of linear thermal expansion. The minus sign ensures that a7 is
positive (for the normal cases where a temperature increase gives expansion). Some exam-
ples of the numerical values for thermal properties of rocks may be found in Appendix A.

When comparing the thermal expansion for rocks with that of fluids, it is important to
be aware that for fluids one often specifies the coefficient of volumetric thermal expansion,
oary = 30(7‘.

1.5.2. Thermal stress

If the rod is constrained at the ends, such that it can not change it’s length, a thermal stress
will build up when the temperature increases. The magnitude of the thermal stress may
be inferred by requiring that the thermal stress should give a strain of opposite sign and
equal magnitude to the thermal strain computed from Eq. (1.116). From Eq. (1.91) we see
that the thermal stress resulting from a temperature change T — Ty for a rod which is fully
constrained in one direction is

02 = —Ega = Ear(T — Tp) (1.117)
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1.5.3. Stress strain relation for linear thermoelasticity
In order to take thermal effects into consideration, the stress strain relations must be mod-

ified to take the thermal stress and strain into account.
Using the compact notation employed in Eq. (1.108) we may write

0ij = Aevoldij + 2Ge;j + 3ar K(T — To)é;; (1.118)
In terms of K and v, this becomes
ojj = fli—l;svm&j + 3K111—2:e,-j + 3ar K(T — To)d;j (1.119)
while in terms of E and v we have
Ev E
Oij = mgvol&j + 1t v€ij + 1_ 2VOIT(T - TO)fSij (1-120)

Egs. (1.118)—(1.120) may be derived from each other using the relations in Table 1.1. It is
further straightforward to show that Eq. (1.120) is consistent with Egs. (1.116) and (1.117)
by specifying the appropriate strain and stress conditions. To get Eq. (1.116) one should
assume all stresses to be zero, while for Eq. (1.117) one assumes zero strain and non-zero
stress in one direction, and zero stress and non-zero strains in the other two directions.

1.5.4. Isothermal and adiabatic moduli

It is well known that to compute the sound velocity in a gas it is important to use the
adiabatic rather than the isothermal compressibility of the gas. The difference in velocity
is typically several tens of percent.

In principle there is a similar difference between the adiabatic and the isothermal elastic
moduli in solids, but the magnitude of the difference is so small that it may always be
safely neglected. We shall therefore not discuss this further here, but refer the interested
reader to e.g. Landau and Lifshitz (1986).

1.5.5. Example: Thermal stresses in a constrained square plate

We consider a square plate, rigidly constrained in the x and y directions, but free to expand
in the z direction. We write the stress—strain relation, Eq. (1.118) on differential form, using
the constraints As, = Ags, = Ao, = 0. The result is

Aoy = Aoy = AAe; + 3ar KAT (1.121)
0=(A+2G)A¢; + 37 KAT (1.122)
which may be solved to give

3ar KAT

Ae. = —
b2 *+2G

(1.123)
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and
3r+2G
Aoy =2G————a7 AT 1.124
o " +2G 7 (1.124)
where we have used K = A + 2G/3. In terms of E and v we have
E
Aoy = Aoy = T2 AT (1.125)
° —V

Forar = 15-10"% K1, v = 0.25 and E = 5 GPa (fairly typical values for weakly
consolidated rock) this becomes

A
‘;‘ — 0.1 MPaK™! (1.126)

This shows that thermal stresses may be quite significant, and we shall see in later chapters
that there are several aspects of petroleum rock mechanics where temperature effects play
an important role.

1.6. Poroelasticity

So far, we have treated rocks as if they were homogeneous, solid materials. However, rocks
are generally composite materials, and hence inhomogeneous on a microscopic scale. The
way rocks behave, their elastic response, their failure stresses etc., depend, to a large ex-
tent, on the non-solid part of the materials. In this section we will take into account the void
space, which not only is essential for oil to be produced from a reservoir, but also plays
an important role in rock mechanical behaviour. We will first consider a macroscopic de-
scription of porous and permeable media, which allows us to study both static and dynamic
mechanical properties. This approach is based on the theory of Maurice A. Biot.

In this section we will give a brief and practical introduction the theory. We will limit
ourselves to a description of an idealized porous material which is microscopically homo-
geneous and isotropic. This approximation is sometimes referred to as the Gassmann limit
of the Biot theory.

For those desiring a more thorough exposition, we refer to the book by Wang (2000), the
papers by Detournay and Cheng (1993), Rice and Cleary (1976) and the book by Coussy
(2004). Zimmerman’s (1991) book is also a very useful introduction to the mechanical
properties of porous media.

1.6.1. Suspension of solid particles in a fluid

Let us first take a look at a very simple porous medium; namely one in which the solid
and fluid parts are deformed independently of each other. In practice, we may think of
this medium as a suspension of solid particles in a fluid, or for instance, a water-saturated,
completely unconsolidated sand. If we place this mixture in a container, the volumetric
strain due to an external pressure o), is:

Op

£ 1.127
Kerr (1.127)

Evol =



POROELASTICITY 27

where Keff is the bulk modulus of the mixture. The total deformation must, however, equal
the sum of the deformations of each component, weighted by the volume portion of each
component.

VS Vf
_ s _r 1.128
Evol VtOtSVOI,s + thé‘vol‘f ( )
where subscripts s and f denote solid and fluid, respectively, and Vi is the total volume.
Now, we define porosity ¢ as the volume occupied by the fluid relative to the total volume,
i.e.

Vi
= (1.129)
Viot
Ve
= =1-9¢ (1.130)
Viot

The strains eyol,s and eyl ¢ are given by the bulk moduli of the solid (Ks) and the fluid
(Ky), respectively, according to Eq. (1.99). Then Eq. (1.128) may be written as:

evol = (1 — ¢>‘,’(—” + ¢%”f (1.131)
S

By combining Egs. (1.127) and (1.131) we now find that the effective modulus of the
suspension is given by
1 1-—
1 _1-9 ¢
Ket Ks Ky
This is an example of a particularly simple porous material. We shall now generalize by

taking into account the fact that rocks consist of a solid framework and a pore fluid which
can not be treated independently.

(1.132)

1.6.2. Biot’s poroelastic theory for static properties

We will now consider an isotropic, porous and permeable medium, consisting of two com-
ponents: a solid and a fluid part. The displacement of the solid is denoted is while that of
the fluid is denoted 5. For a volume element attached to the solid, the strains are given as
the derivatives of the components of iis. Using Eq. (1.76) we have for the volumetric strain:

Evol = V. IZS (1133)

For the fluid part, we will define a strain parameter ¢, which describes the volumetric
deformation of the fluid relative to that of the solid:

¢ =¢V - (s — iif) (1.134)

The stress tensor ‘o represents the total external stress on a volume element attached
to the solid framework. The volume element balances this stress partly by stresses in the
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solid framework, and partly by a hydrostatic pressure! in the fluid, the pore pressure ps.
In accordance with the sign convention, all stresses—including the pore pressure—are
positive in compression.

The change in the mass of fluid in a volume element attached to the solid can be divided
into two parts: the change of the pore volume (due to change in the external stresses and/or
the pore pressure), and the compression/decompression of the fluid as the pore pressure
changes. This means that we may write

AVp | p
¢ = < v, + Kf) (1.135)
where V}, is the pore volume, i.e. the volume occupied by the fluid, and Ky is the bulk
modulus of the pore fluid. We see that ¢ is positive when the amount of fluid in the volume
element is decreasing.

The presence of the pore fluid adds extra terms to the strain energy of the material. Hence
the stress—strain relations (Eqgs. (1.93)—(1.98)) will also be modified. Biot (1962) showed
how the linear stress—strain relations for this two-phase system can be expressed in terms
of the strain parameters eyo] and ¢, the stress tensor elements and the pore pressure ps:

0y = Aéyol + 2Gex — CC (1.136)
oy = Aévol +2Gey — C¢ (2.137)
0; = révol + 2Ge; — C¢ (1.138)
Ty, = 2G Ty, (1.139)
Tx; = 2G Ty, (1.140)
Tyy = 2G Ty (1.141)
pf = Cévol — M¢ (1.142)

Written on the abbreviated form as Eq. (1.108), Egs. (1.136)—(1.141) become
oij = Aévoldij +2Geij — CL4ij (1.143)

A and G are the Lamé parameters of the porous material, while C and M are additional
elastic moduli required to describe a two-phase medium. Note that C appears both in the
stress and the pore pressure equations. Biot (1941) showed that this is a consequence of
thermodynamic principles.

By letting ¢ = 0 in Eq. (1.143) we get Eq. (1.108). ¢ = 0 means that there is no fluid
movement in the material, i.e. the material is undrained. Thus the A in Eq. (1.143) is not
the A of the dry porous medium, but the A of the fluid-filled medium when the fluid is not
allowed to move. This is discussed further below.

L The term “hydrostatic pressure” is sometimes used in a restricted sense, meaning the fluid pressure resulting
from an overlying column of water. In this book we use the term in a broader (and probably more widely used)
sense, meaning the pressure in a static fluid irrespective of the source of the pressure. Further, we also use hydro-
static for the stress state in a solid when all the principal stresses are equal, i.e. no shear stresses are present (see
page 21).
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To get some understanding of the physical meaning of M, we may let eyqy = 0 in
Eq. (1.142). Inserting Eq. (1.134) we then find

pi = MoV - iis (1.144)

which shows that M ¢ is a measure of how much the pore pressure increases as the amount
of fluid in a volume element is increased. If the solid was completely rigid, we would thus
have M¢ = K;.
Explicit expressions for C and M in terms of the solid and fluid moduli are given later.
Summation of Egs. (1.136)—(1.138) gives:

& = Keyol — C¢ (1.145)

where ¢ is defined by Eq. (1.38). K = A + 2G/3 is the bulk modulus of the porous rock
in undrained condition, i.e. in a condition where the pore fluid is not allowed to escape.
We shall now investigate how the elastic moduli K, C and M relate to the moduli of the
constituents of the rock. First, imagine that we perform a “jacketed” test (see Fig. 1.16a):
a porous medium is confined within an impermeable jacket, and subjected to an external
hydrostatic pressure o .

The pore fluid is allowed to escape during loading, so that the pore pressure is kept
constant, and hence the stress is entirely carried by the solid framework. From Eqgs. (1.142)
and (1.145), we then obtain

CZ
Ir g (1.146)
Evol M
Since this test characterizes the stiffness of the solid part of the rock, K is called the bulk
modulus of the framework or the frame modulus. Since there are no shear forces associated

with the fluid, we can directly identify the shear modulus of the porous system as the shear

const

P

Op

a) b)

Fig. 1.16. “Jacketed” a) and “unjacketed” b) test situations.



30 ELASTICITY

modulus of the framework, i.e.

G =Gy (1.147)

Next, we proceed to an “unjacketed” test, as illustrated in Fig. 1.16b. The rock sample
under investigation is here embedded in a fluid in such a way that the hydrostatic pres-
sure on the sample is balanced by the pressure in the pores, i.e. pr = o,. Combining
Egs. (1.142) and (1.145) we now find:

o _pt_ _Kn (1.148)

Evol Evol 1-— %

The loading ps = o, means that there is a uniform stress within the sample, which
means that the rock framework deforms uniformly. Thus, the volumetric strain of the total
sample, the pore volume and the solid (grain) volume must be equal:

A‘/tot _ AVp _ AVS
Vot Yo Vs

From ps = 0, = —Ks(AVs/ Vs) where K is the bulk modulus of the solid grains (1/Ks
is often referred to as the grain compressihility) we hence find

(1.149)

AVs AV, AV,
s_2% SVt Pt (1.150)
Vs Vp ‘/tot KS

The stress—strain response is therefore entirely given by the intrinsic elastic properties of
the solid material. Comparing Eq. (1.150) to Eq. (1.148) we infer that

K
Ks= —" (1.151)
1- &
M
From Egs. (1.135) and (1.150) it follows that
1 1
Y 1.152
N aIL (1.152)
On the other hand, the combination of Egs. (1.142) and (1.145) with ps = o, gives
C—-K
=— 1.153
C=9x—cz (1.153)
By combining Egs. (1.152) and (1.153) we obtain the relation
1 1 C—-K
- = 1.154
¢(KS Kf) MK — C? ( )

Although this equation was derived for a specific loading (“unjacketed test”), it is generally
valid.

Egs. (1.151) and (1.154), combined with the definition of Kf (Eq. (1.146)), allow us to
express the elastic constants K, C and M in terms of the elastic moduli of the constituents
of the rock (Ks and Ks), plus the porosity ¢ and the framework modulus K. The results
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are:
Kfr 2
K 1-%D)
K = Ky + ¢f1 rwn - (1.155)
+ i 1—-9— %)
K 1
M==" - (1.156)
b1t R g- K
K
K K 1- %t
C= (1 — l)M -f K (1.157)
Ks ¢>1+¢f(1—¢— K

Eq. (1.155), which is called the Gassmann equation or the Biot—-Gassmann equation, may
alternatively be written as

K _ K n 1 K

KS_K_KS_KfI‘ ¢ Ks —

The relations (1.155)—(1.157) do not give a clear physical meaning to each parameter.

Better insight may be achieved by looking at a couple of limit cases, where the relations

become simpler.

One case is a “hard” rock, where the frame is incompressible compared to the fluid. As

Ks > Ks in general, we have for this “stiff frame” case:

th Gfrs KS >> Kf (1.159)

For porosities that are not too small (specifically ¢ > (Kt/K2)(Ks—K#r)), Eqs. (1.155)-
(1.157) then reduce to:

(1.158)

K ~ Ky
[TTagH - K Kr
DU Rl A 2 (1.160)
rame K;

M =~ r

We see that the bulk modulus K is here identified as the bulk modulus of the rock frame-
work, while the constant M is entirely given by the properties of the pore fluid and the pore
system.

The opposite limit is that of a “weak frame”. For this case we assume

Kir, Gir, Kt < Ks (1.161)
For porosities ¢ > K:/Ks, EQs. (1.155)—(1.157) reduce to:

“Weak | K ~ K+ 2f

frame” C~M= % (1.162)

In this case, the bulk modulus K is influenced not only by the rock stiffness, but also by the
fluid bulk modulus K. In the limiting case when K — 0 (suspension), K = C = M =~
Kz/¢ are all given mainly by fluid properties. Disregarding the condition Ks > K; would
in this case reproduce Eq. (1.132), which was obtained by simple physical arguments.

Note that the “stiff frame” and the “weak frame” limits are rather extreme cases that
are mainly suited for illustrative purposes. For practical calculations the complete expres-
sions (1.155)—(1.157) should be used.
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The theory outlined above contains two “unknown” parameters, which are not identified
in terms of the properties of the rock’s constituents. These are the two elastic moduli of the
framework, K, and Gf. We shall in Chapter 6 see how microscopic theories can be used
to estimate these moduli when further information about the rock structure is available.
Empirically, the frame bulk modulus Ky is found to be significantly smaller than K, and
to decrease sharply with the porosity.

1.6.3. The effective stress concept

In Section 1.6.2, we discussed an experiment where a rock sample was “jacketed” with
the pore fluid free to escape, so that the pore pressure was kept constant during loading
(Fig. 1.16a). Such a test is also called a drained test. The stress—strain response of this test
was given by Eq. (1.146), i.e.

Op = KfI’SVO| (1163)

Imagine now a similar test, but with the pore fluid shut in, so that no fluid flow occurs in or
out of the rock sample. This situation is called undrained. Compression of the sample—
including the pore space—due to an external hydrostatic load, will in this case cause an
increase in the pore pressure. The sample compression and the pore pressure can be calcu-
lated by requiring ¢ = 0in Egs. (1.142) and (1.145), i.e. no relative displacement between
pore fluid and solid during the test. The pore pressure is given by Eq. (1.142):

pi = Ceygl (1.164)

while the stress—strain characteristics is given by Eq. (1.145):

Up = KSVQ| (1165)
Using Egs. (1.146) and (1.164), we can write

C? C ps
K=Kyt +—=Kp + —— 1.166
fr + M fr + M eyl ( )
By introducing this expression for K into Eq. (1.165) and reorganizing the equation, we

obtain:

C
Op — Mpf = Kirévol (1.167)

Eq. (1.167) tells us that the deformation is proportional to the effective stress a;,, defined
as

O']/) =0, — apf (1.168)

rather than the total stress o, and the corresponding modulus is K, i.e. the same as for
the drained test (Eq. (1.163)). Physically, this means that the solid framework carries the
part a; of the total external stress o, while the remaining part, aps, is carried by the fluid.
The remaining pore pressure, (1 — «) ps, is counteracted by internal stresses in the solid.
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The parameter « is called the Biot coefficient:

oz=£=1—ﬁ (1.169)
M K
with the latter identity from Eq. (1.151). As mentioned above, Ky is always smaller than
K. Theoretically, the upper limit for K5 is (1 — ¢)Ks. (See Section 6.2 for more infor-
mation on bounds on elastic moduli of composite materials.) The lower limit for K¢ is, of
course, zero. Thus, « is restricted to the region ¢ < « < 1. In unconsolidated or weak
rocks, « is close to 1.
In general, the effective stress is defined by

O—i/j = 0jj — (Sij()(pf (1170)

where §;; is the Kronecker symbol, see Appendix C.11.2. Observe that only the normal
effective stresses depend on the pore pressure.

One may note that for pf = 0, Egs. (1.142) and (1.169) give @ = ¢/&yol. Then from
Eqg. (1.135) (with ps = 0), and the definition of &, We obtain

AVp/Vp AV
o = =
AViot/ Vit AViot
which shows that « is a measure of the change in pore volume relative to the change in
bulk volume at constant pore pressure.
In addition to the bulk compressibility with respect to confining pressure at constant

pore pressure, 1/ Kz, we may define the bulk compressibility with respect to pore pressure
at constant confining pressure, 1/Ky),. By letting o, = 0 in Eq. (1.167) we may write

(1.171)

M K
Koy =20 — k= = =8 (1.172)
Evol o (24
and thus we have
K
o= (1.173)
Kbp

which shows that Biot coefficient « is the ratio of the bulk modulus at constant pore pres-
sure to the bulk modulus at constant confining pressure.
It is worth noting that using «, Egs. (1.155)—(1.157) may be summarized as
1 o o? ¢ a—¢

M- C K—Ky K K
which may be the simplest form to express the equations.
The effective stress concept was originally introduced in soil mechanics by Terzaghi in
1923 on an empirical basis. Terzaghi argued that

(1.174)

1. increasing the external hydrostatic pressure produces the same volume change of the
material as reducing the pore pressure with the same amount,

2. the shear strength depends only on the difference between the normal stress o and
the pore pressure ps.
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These arguments lead to an effective stress law similar to Eq. (1.168), with « = 1. For
soils, this is a reasonable assumption. For rocks, however, the deviation of « from 1 should
be taken into account.

Terzaghi’s statement ii) above implies that the effective stress, rather than the total stress,
is determining whether the rock fails or not due to the external load. This is further dis-
cussed in Section 2.6.1.

1.6.4. Pore volume compressibility and related topics

The change of the pore volume as a result of the change in the pore pressure or the confining
stress is of obvious interest in petroleum related rock mechanics.

By eliminating eyo) from Eqgs. (1.142) and (1.145), inserting the resulting expression for
¢ in Eqg. (1.135), and inserting for C, M and K from Eqgs. (1.155)—(1.157), we find, after

some algebra
1/1 1 171 1+¢>
AVp/Vo=—\———)op+—| — — f 1.175
o/ Vi ¢(Kfr Ks>p ¢’(Kfr ks )P (1179

1/1 1 K¢
(&) o (et ) @

This allows us to define the pore compressibility with respect to confining stress as

1 1oV, 1/1 1
S R (. (1.177)
Kp Vp aUp ¢ Kfr Ks

and the pore compressibility with respect to pore pressure as

1 19V, 171 1 1 1
_=__P=_<__ +¢’>=___ (1.178)
Kpp  Voopr o¢\Kir K Kp Ks
Note the different sign in the definitions, which ensure that the compressibilities are posi-

tive.
Zimmerman (1991) points out that an expression sometimes given for the pore com-
pressibility, based on the weighted average 1/ K¢ = ¢/Kp + (1 — ¢)/Ks, is incorrect.
We may find a related expression for the porosity by differentiating the definition vV, =
¢ Viot, Which gives

Ap  AVy AVt
¢ Vo Viot
Using the effective stress law Kfrevol = 0 — aps (EQ. (1.167)) and Eq. (1.175), we find

(1.179)

1-¢ 1 )
o=-(t - )en-r (1180)
Finally, we may use the relation (compare to Egs. (1.128)—(1.130))
AV, AV, AV,
O =P 4 (1—p)— (1.181)

Viot Vp Vs
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to derive the following expression for the deformation of the grain material (use e.g.
Egs. (1.175) and (1.167)).
AVs 1
A w0 (1.182)

Note that the grains expand if we increase the pore pressure while the confining stress
is constant. Increasing the pore pressure means that the fluid carries more of the exter-
nal loading, which means that the grains carry correspondingly less, and hence the grains
expand.

Eg. (1.182) shows that the mean stress in the grains is
op — 9pt

1-¢
See Zimmerman (1991) for a simple sketch giving a geometrical justification of this result.

It is worth emphasizing that Egs. (1.176), (1.180) and (1.182) all give an effective stress
coefficient different from Biot’s « defined in Eq. (1.169). This underlines that the effective
stress law will differ depending upon which physical quantity we are studying. There is
thus no a priori reason to expect that for example the effective stress law for rock mechani-
cal failure or permeability should be the same as that derived for basic elastic deformation,
Eqg. (1.168).

(1.183)

Og =

1.6.5. The Skempton coefficients

An important characteristic of a porous medium is how the pore pressure responds to a
change in the mean stress under undrained conditions.

For the elastic case the response can be computed from the poroelastic equations. We
add Eqgs. (1.136)—(1.138), set ¢ = 0, and eliminate &yq using Eq. (1.142). The result is

C
The Skempton B-coefficient is defined as
_Apr € S =0

B=—""=_= (1.185)
AG K L )+ Kl - D

where the right hand expression is found by introducing K and C from Egs. (1.155) and
(1.157). It is clear from the formula that B < 1.
Originally, Skempton (1954) defined the parameters A and B according to

Apf = B[Ao3 + A(Aoy — Ao3)] (1.186)

The form of this equation was chosen to be appropriate for triaxial tests (see Chapter 2).
For a triaxial compression test, the change in mean stress may be written

1 1
Ao = §(A01 + 2A03) = Aos + g(AUl — Ao3) (1.187)
which shows that B in Eq. (1.186) is the same as in Eq. (1.185).
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Fig. 1.17. Examples of the variation of B with Ky, for two porosities. The full lines correspond to K = 2.5 GPa
(“water”) and the dashed lines to K¢ = 1 GPa (*“0il”). In all cases Ks = 37.5 GPa.

Neglecting K relative to K in Eq. (1.185), and introducing Biot’s «, we have

K
B = 7; (1.188)
K¢+, Kfr
In the weak frame limit, where Ks can be neglected relative to K, we have
K
B=— 1 _ (1.189)
K¢+ ¢Ksr

Some examples of the variation of B (as computed from Eq. (1.185)) are shown in
Fig. 1.17. Note how B decreases with increasing porosity and decreasing fluid bulk modu-
lus. Gas as the pore fluid will clearly give a low B except for very unconsolidated rocks.

1.6.6. The correspondence to thermoelasticity

The equations governing poroelasticity are to some extent similar to the equations govern-
ing thermoelasticity. This implies that specific solutions to problems in one field may be
used to solve corresponding problems in the other.

By eliminating ¢ between Egs. (1.142) and (1.143) we get

ii=1A c 8~+2G~+C 8ij (1.190)
Oij = M EvolOij Eij Mpf ij .
Introducing « from Eqg. (1.169) and defining (compare to Eq. (1.146))
C?
A=A — W (1.191)

we obtain

0jj = Mrévoldij + 2Gsij + apsd;; (1.192)
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Eqg. (1.192) should be compared to the corresponding equation from thermoelasticity,
Eq. (1.118)

oij = Adjjevol + 2Ge;j + 3ar K(T — To)d;;
This means that by making the obvious identifications
pr< T —Toy (1.193)

E

T2, (1.194)
solutions of problems in thermoelasticity (where a wide range of problems have been
solved) may be directly applied to poroelasticity. The method is used e.g. by Haimson
and Fairhurst (1967) in a classic paper on hydraulic fracturing.

There is one important point to note. Since stress or strain do not induce significant tem-
perature changes, the temperature field is governed by the (decoupled) diffusion equation.
Pore pressure, on the other hand is of course directly coupled to stress (Eq. (1.142)), leading
to coupled equations. There are however, some important cases where decoupling occurs.
These include all steady state problems, the consolidation problem leading to Eq. (1.241),
and the borehole problem for axisymmetric loading (see e.g. Detournay and Cheng (1988,
1993), Wang (2000)).

o < 3Kar =

1.6.7. Other notation conventions

We have seen that isotropic poroelasticity requires 4 independent moduli. In the initial
Egs. (1.136)—(1.142) we used A, G = G, M and C. We also showed how these are related
to the more physically understandable set consisting of the undrained bulk modulus K, the
drained or frame bulk modulus K+, the solid grain bulk modulus K and the shear modulus
G = Gy.

There are clearly many other possibilitiess—we refer to Detournay and Cheng (1993) for
a thorough discussion.

We mention in particular the alternative used by Rice and Cleary (1976), Detournay
and Cheng (1993) and others. They use the shear modulus, the drained and undrained
Poisson’s ratio, which in the notation used in this book will be denoted v¢ and v. The
fourth parameter is Skempton’s B parameter, or alternatively the Biot parameter «.

Finally, we point out that sometimes the undrained parameters are given the subscript u,
while there is no subscript on the drained parameters (where we have used fr).

1.7. Anisotropy

If the elastic response of a material is not independent of the material’s orientation for a
given stress configuration, the material is said to be anisotropic. Thus the elastic moduli of
an anisotropic material are different for different directions in the material.

Most rocks are anisotropic to some extent. The origin of the anisotropy is always het-
erogeneities on a smaller scale than the volume under investigation, ranging from layered
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Fig. 1.18. Illustration of intrinsic (lithological) and stress induced anisotropy.

sequences of different rock types down to molecular configurations. Sedimentary rocks
are created during a deposition process where the grains normally are not deposited ran-
domly. For instance, in a river environment, there is a preferred direction (the direction
of the streaming water) along which elongated or plane grains will have a tendency to be
oriented. Seasonal variations in the fluid flow rates may result in alternating microlayers
of fine and coarser grain size distributions. The elastic moduli of rocks created under such
conditions will be dependent on the orientation of the material, i.e. they are anisotropic.
Due to its origin, anisotropy of this type is said to be lithological or intrinsic.

Another important type is anisotropy induced by external stresses. The anisotropy is
then normally caused by microcracks, generated by a deviatoric stress and predominantly
oriented normal to the lowest principal stress. The microstructure causing the two types of
anisotropy is illustrated in Fig. 1.18.

In calculations on rock elasticity, anisotropy is often ignored. This simplification may
be necessary rather than just comfortable, because—as we shall see—an anisotropic de-
scription requires much more information about the material—information that may not
be available. However, by ignoring anisotropy, one may in some cases introduce large er-
rors that invalidate the calculations.

For a general anisotropic material, each stress component is linearly related to every
strain component by independent coefficients. In the mathematical notation used in
Egs. (1.9) and (1.75) this may be expressed as

oij = »_ Cijuien (1.195)
k,l

where C;j; are elastic constants. Since the indices i, j, k and I may each take the values 1,
2 or 3, there are all together 81 of the constants C; ;. Some of these vanish and others are
equal by symmetry, however, so that the number of independent constants is considerably
less. From Egs. (1.6)—(1.8), (1.74) and (1.195) it may be deduced that

Cijii = Cjiti = Cijik = Cjiik (1.196)

i.e. interchanging the first index with the second one, or the third with the fourth, does
not change the value of the constant. Furthermore, fulfilment of the equations of the type
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Eq. (1.115), which were derived from energy considerations, requires that:

Cijki = Crij (1.197)

The relations (1.196) and (1.197) reduce the number of independent constants to 21.

1.7.1. Orthorhombic symmetry

Rocks can normally be described reasonably well by assuming that the material has three
mutually perpendicular planes of symmetry. This is one of the orthorhombic symmetries.

Let us assume that the planes of symmetry are perpendicular to the coordinate axes x,
v, z. From Eqgs. (1.195) and (1.196) we have for the normal stress in x-direction:

o11 = C1111811 + C1122622 + C1133€33 + 2C1112612
+ 2C1113813 + 2C1123823 (1.198)

Due to the orthorhombic symmetry, Eq. (1.198) should look exactly the same when
described in a coordinate system defined by x’ = x, y’ = y, z/ = —z. However, in this new
coordinate system two of the strain components have changed sign (see page 455), namely
g1 = —e13 and e9; = —ep3. This implies that

C1113 = C1123 =0 (1.199)

By applying the same arguments on the remaining stress components, and on other ori-
entations of the primed coordinate system, the number of independent constants Cjj; is
reduced to 9. These are C1111, C2222, C3333, C1122, C1133, C2233, C2323, C1313, C1212.

In the compact notation, where o, is used instead of o1 etc., the constants C;;; have
only two indices, I and J. In this so-called Voigt notation the indices i;j are related to I as
follows: 11 — 1,22 — 2,33 — 3,23 — 4,13 — 5and 12 — 6. The Woigt notation is
discussed in more detail in Appendix C, on page 457.

The constants may then be written as

(1.200)

Cin Ci2 Ci3 O 0 0
Cip Cp»p Cy O 0 0
Ci13 Coz C(Cs33 0 0 0

0

0 0 0 Cu 0
0 0 0 0 Cs5 O
0 0 0 0 0 Ces

The zeros represent the constants that vanish by the symmetry arguments of type (1.199).
They are included in order to emphasize the matrix nature of the constants, and also as a
reminder that they do exist: for a material with orthorhombic symmetry they only vanish
when the planes of symmetry are perpendicular to the coordinate axes.
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Denoting the 6 x 6 matrix (1.200) by C, and defining the 6 x 1 matrices o and & according

to
Oy Ex
Gy Sy
oz &z
o = , & = 1201
Tyz 2Iy; ( )
Txz 2l
Txy 2l
the equations of type (1.195) can be written as the matrix product
g=C-¢ (1.202)

Eg. (1.202) is in reality six equations. Written in an explicit form in the Voigt notation,
these equations look as:

ox = Cr1ex + C128y + Ci3s; (1.203)
oy = Cro&x + Cpey + Caze, (1.204)
0; = C136x + Co3ey + Ca3é; (1.205)
Ty, = 2C441y; (1.206)
Ty; = 2Cs51 (1.207)
Tyy = 2Ce6 1 xy (1.208)

These stress—strain relations generally describe most types of rocks.
The matrix C is called the stiffness matrix and its components C); are called elastic
congtants. The inverse of the stiffness matrix, S= C~1, is called the compliance matrix.
It follows from Eq. (1.202) that the compliance matrix relate strains to stresses in the
following way:

e=S-o0 (1.209)

The constants (1.200) describe the elastic properties of any linear elastic material with or-
thorhombic or higher symmetry. Thus they may also describe an isotropic rock. Comparing
Egs. (1.93)—(1.98) to (1.203)—(1.208) we find that for an isotropic material:

Ci1=Cxp=C33=1A+2G (1.210)
Ci2=Ci3=Cpn=2 (1.211)
Ciy=Cs5=Cg6 =G (1.212)

For an isotropic material, the linear elastic properties are completely described when any
two of the elastic moduli A, G, v, E or K are identified. To give a complete description of
an anisotropic rock, all the nine constants of (1.200) must be identified. This is not easily
achieved in practical situations.

The elastic moduli do no longer have unique values for anisotropic materials. Since the
elastic properties are different in different directions, the values for £ (Eq. (1.100)) and
v (Eg. (1.101)) may obviously vary according to the direction of the applied stress. The
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bulk modulus K is an exception, however: as both the hydrostatic pressure o, and the
volumetric strain sy are invariant to the orientation of the material, the bulk modulus is
also invariant.

As an example, consider the uniaxial stress state defining Young’s modulus and Pois-
son’s ratio (Fig. 1.15). In this example, oy, = o; = 0 and 7,y = 7; = 7y, = 0. The
stress—strain relations (1.203)—(1.208) then become:

oy = C118y + C128y + Ci13¢; (1.213)
0 = C126x + Coey + Caze, (1.214)
0 = Ci3ey + Cazey + Ca3e; (1.215)
0=2Crly, (1.216)
0=2Cs5T; (1.217)
0 =2Cep1y (1.218)

Solving Egs. (1.214) and (1.215) for v = —&, /s, we find
C12C33 — C13C
b & CreCss 132 23 (1.219)
Ex C22C33 — C5,
while for v = —¢; /e, we find (by interchanging indices 2 and 3):
&z C13Cn — C12Ca3
€x C22C33 — Ca

Thus the value of Poisson’s ratio depends not only on the direction of the applied stress,
but also on the direction in which lateral expansion is measured.

VvV =

(1.220)

1.7.2. Transverse isotropy

A special type of symmetry, which is relevant for many types of rocks, is full rotational
symmetry around one axis. Rocks possessing such symmetry are said to be transversely
isotropic. It implies that the elastic properties are equal for all directions within a plane,
but different in the other directions. This extra element of symmetry reduces the number
of independent elastic constants to 5.

Assuming that the x- and y-directions are equivalent while the z-direction is the different
one, we may rotate the coordinate system any angle around the z-axis without altering
the elastic constants. For this to be possible it is required that C11 = Ca2, C13 = Cog3,
C12 = C11 — 2Cgg, and Cyqq4 = Css. The stiffness matrix for a transversely isotropic
material having the z-axis as the unique axis is then

Cu Cu1—2Ceg C13 O 0 0
C11 — 2Ces Cu Ciz O 0 0
C13 C13 Cyz O 0 0
0 0 0 Cu 0 O (1.221)
0 0 0 0 Cys 0
0 0 0 0 0 Cegs
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Transverse isotropy is normally considered to be a representative symmetry for horizon-
tally layered sedimentary rocks. Stress induced anisotropy may often be described by
transverse isotropy as well. Thus, for geophysicists, transverse isotropy is probably the
most important type of symmetry next to isotropy.

1.8. Nonlinear elasticity
1.8.1. Stress—strain relations

For a linear elastic material, there is always a constant relationship between the applied
stress and the resulting strain, regardless the magnitude of the stress and the strain. The
stress—strain relation (Eq. (1.91)) for such a material is therefore a straight line, as shown
in Fig. 1.19a. The elastic modulus corresponding to this stress—strain pair is the slope of
the curve.

Any material not obeying a linear stress—strain relation is said to behave nonlinearly. For
a nonlinear elastic material, the stress—strain relation may be written as

0 = E16 + Eog? 4+ Eze® + - -+ (1.222)

Remembering that o and ¢ generally are tensors, it is clear that nonlinear elasticity may be
very complicated mathematically.

Further, we can not ignore the higher order terms in the strain tensor, which were ne-
glected in the derivation on page 15. The full expression for the strain tensor, replacing

o o
. T
/
(4
/ P
7
£ S £
(6]
a) b)
o o
e &
c) d)

Fig. 1.19. Stress-strain relations for: a) linear elastic material. b) perfectly elastic material. c) elastic material,
with hysteresis. d) material suffering permanent deformation.
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Eq. (1.74), is (see e.g. Landau and Lifshitz, 1986):

3
1/{ du; 814]‘ ouy duy
== —_— 1.223
El] 2<3x]' + 3)61‘ + =1 8x,~ 3)Cj) ( )

Nonlinear behaviour may have various causes, and appear in many different ways.
Fig. 1.19b shows one example. This material has a nonlinear stress—strain relation, since
the ratio of stress to strain is not the same for all stresses. The relation is, however, identical
for the loading and unloading process. Such materials are said to be perfectly elastic.

For nonlinear stress—strain relations the elastic modulus is no longer uniquely defined,
not even for a specific stress level. As shown in Fig. 1.19b, the modulus related to the
point P on the curve may either be identified as the slope of the line OP (secant modulus),
or it may be identified as the slope of the tangent PT (tangent modulus).

If the correct definition for the moduli is used, the linear form of the stress strain relations
may be used far beyond the initial linear region. For example, Hooke’s law (Eg. (1.91)) may
be written in its original form:

o = ESGC(E)E (1224)

where Esqc(¢) is the secant value of the Young’s modulus. Alternatively, the relation may
be written in a differential form:

Ao = Etan(&')AE (1225)

where Ao and Ae represent differential increments in stress and strain, respectively.
Etan(e) is the tangent value of the Young’s modulus. Note, however, that both Eian () and
Esec(e) depend on the strain . This complicates the use of the equations. By comparing
Egs. (1.224) and (1.225), we observe that the relation between the secant modulus and the
tangent modulus is:

1 ¢ / /
Esec(e) = E/O Etan(e") de (1.226)

The stress—strain relation shown in Fig. 1.19c is commonly observed in rocks. The unload-
ing path is different from the loading path. This effect is called hysteresis. For materials
behaving like this, the work done during loading is not entirely released during unload-
ing, i.e. a part of the strain energy dissipates in the material. Elastic moduli related to the
unloading path are called unloading moduli.

If, as in Fig. 1.19c, the strain vanishes when the stress returns to zero, the material is
said to be elastic. If not, as in Fig. 1.19d, the material has suffered a permanent deformation
during the loading/unloading cycle. For sufficiently large stresses, many rocks enter a phase
where permanent deformation occurs, yet the material is still able to resist loading (i.e. the
slope of the stress—strain curve is still positive). The material is then said to be ductile. The
point where the transition from elastic to ductile behaviour occurs is called the yield point.

In Eqgs. (1.224)—(1.226) the elastic modulus has been expressed as a function of strain.
Since there is a relation between the applied stress and the resulting strain, we might have
expressed the modulus as a function of stress rather than strain. In general, the elastic
moduli depend on all components of stress (or all components of strain). For example,
Young’s modulus may depend on the confining pressure, as shown in Fig. 2.3.
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1.8.2. The impact of cracks

Cracks occur in all types of rocks, and they generally have a large impact on the elastic
properties of the material. For some materials, like poorly consolidated sedimentary rocks,
it may be difficult to imagine the presence of cracks. However, weak or failing grain con-
tacts have much of the same impact on elastic parameters as cracks have, and may for
modelling purposes often be considered as such.

The occurrence of cracks in rocks produce various types of nonlinear behaviour. We
shall here look at a couple of examples. Consider first the situation shown in Fig. 1.20a.
The stressed sample contains a crack oriented with its face normal to the stress o,. Since
no stress can be transferred across the crack itself, the effective Young’s modulus Eef of
the sample will be reduced:

:—: = Eeft = E(L— £Q) (1.227)
Here E is the Young’s modulus of the material without cracks, & is called the crack density
and is a function of the size and number of cracks, and Q is a coefficient depending on
the shape and orientation of the crack. (Micromechanical models for calculation of Q and
equivalent parameters are described in Section 6.4.) As the stress is increased, the strain
&, also increases. A part of the strain increase is due to closure of the crack. At a certain
stress level o the crack is closed. At stresses above this point & will vanish, and Eetf — E
according to Eq. (1.227). The stress strain relation for this sample is then as shown in
Fig. 1.20b.

For a material containing many cracks of different sizes and closure stresses, the stress—
strain relation may look as Fig. 1.19b. Such closure of cracks as stress increases may
explain the typical feature that elastic constants of rocks normally increase with increasing
hydrostatic pressure.

]

Tx

a) ' b)

Fig. 1.20. Nonlinear stress—strain relation due to crack closure.
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Fig. 1.21. Material with sliding crack.

a) b)

Fig. 1.22. Material with a sliding crack. a) Normal stress versus shear stress across the crack surface.
b) Stress—strain relation for the material.

Now consider a material containing a closed crack with its face oriented at an angle
relative to the stress o, (Fig. 1.21a). Due to friction, the closed crack will be able to transfer
shear stress t up to a certain level z¢, given by

¢ = So + pno (1.228)

Here o is the stress normal to the crack face, Sg is the inherentshear strength of the closed
crack and p is thecoefficient of friction. When the shear stress T across the crack exceeds
¢ the crack surfaces slip and slide relative to each other. Then 7 is reduced, and may either
vanish (local damage), or the crack surfaces may again stick to each other and t increases
from a lower level (point A on Fig. 1.22a). The sliding of the crack surfaces will result in
an additional strain Ae (point A on Fig. 1.22b).
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Upon unloading, t is reduced and may eventually become equal to —¢. A reverse slid-
ing will then take place (point B on Figs. 1.22a and 1.22b). The stress—strain relation for
the entire sample (Fig. 1.22b) is seen to have a hysteresis. Also, the sample is seen to have
suffered a permanent deformation, since the strain does not go to zero when the stress
vanishes.

Real rocks normally contain cracks or crack-like defects of many sizes and different
orientations. The resulting stress—strain relation is typically as shown in Fig. 1.19d.

In Fig. 1.21b the sliding of the crack surfaces is accompanied with the opening of two
other cracks oriented with their faces normal to the direction of the compression stress o.
Opening of cracks with this orientation relative to applied uniaxial stress is a typical fea-
ture occurring at high shear stresses. A consequence of such crack opening is an inelastic
increase in the volume of the stressed material. This phenomenon is known as dilatancy.
Another consequence is a stress induced mechanical anisotropy, as described in the pre-
vious section. The anisotropy may for instance be observed by acoustical techniques (see
Section 5.5).

1.9. Time-dependent effects

So far, we have assumed that any change in applied stress is followed instantaneously by
the corresponding deformation. Quite often, however, it is observed that the deformation
of rocks continues for a long time after a change in the applied stress. The time-dependent
effects can be divided into two groups: consolidation and creep. Consolidation is due to
pore pressure gradients induced by a change in the stress state, and the fact that it takes
time to re-establish pore pressure equilibrium. Creep is related to visco-elastic behaviour
of the solid framework. In the following, consolidation and creep are discussed separately.
In practice, however, it is sometimes difficult to distinguish between genuine creep and
consolidation effects.

1.9.1. Consolidation

Consolidation theory describes the transient process, where pore pressure equilibrium is re-
established after a change in the stress state. This process involves a flow of the pore fluid
through the porous rock. Viscous flow in porous rocks is described by Darcy’s law, which
states that the fluid flow rate Q (fluid volume per unit time flowing through a surface), is
proportional to the pore pressure gradient V ps:

- k
0 =—A—Vp (1.229)
nf

Here A is the surface through which the fluid flows, and »; is the dynamic viscosity of the
fluid. & is the permeability of the rock. Normally, k is measured in the unit Darcy, defined
as the permeability which gives a flowrate of one centimetre per second of a fluid with
viscosity one centipoise for a pressure gradient of one atmosphere per cm. This means that
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we have 1 D = 0.9869-10~12 m? since 1 atmosphere is equal to 101325 Pa.? Permeabilities
of reservoir rocks may vary from the low milliDarcy region up to several Darcies.

Eqg. (1.229) basically describes stationary flow of fluid, in a homogeneous pore pressure
gradient field. However, the equation may be further evaluated to make it applicable for
description of transient processes. The flow rate Q expresses the difference between the
solid and fluid displacement rates, i.e.

dus Ot

5 — Ad’(? _ W) (1.230)

By comparing Eg. (1.230) with the definition (Eq. (1.134)) of the strain parameter ¢, we
find that the divergence of Q is proportional to the time derivative of ¢, i.e.
9

V- Q=A—> 1.231
o) 5 (1.231)

Or, by introducing Eq. (1.229),

= =——V 1.232
” P (1.232)
Eg. (1.232) describes transient fluid flow in a porous rock, and also flow in non-
homogeneous pore pressure gradient fields.
We may eliminate ¢ from Eq. (1.232) by using Eqg. (1.142), to find an equation involving
pi and eyol

k 19 0
V2 — pf Evol

= [0
A VY ot

Alternatively, we may find an equation involving ps and & by combining Egs. (1.232),
(1.142) and (1.145)

(1.233)

—Vpp=m —— — — — 1.234
nf Pf KB 0t Kg 0t ( )

where B was defined in Eq. (1.185).

It is clear that the equations in general involve a coupling between the pore pressure and
the strain or stress of the solid material. Only in special cases will the pore pressure obey
an uncoupled equation. For a thorough discussion, see e.g. Wang (2000) or Detournay and
Cheng (1993).

We shall now consider an example of decoupled consolidation by considering a simple
experiment: a porous material is confined with no lateral movement (v, = u, = 0) ina
vertical column with an impermeable bottom (at z = 0) and a highly permeable piston on
the top (at z = k). The bottom of the sample is fixed, i.e. u, (z = 0) = 0. Initially, at r = 0,

2 In some sciences, including soil mechanics and ground water research, an alternative definition for permeabil-
ity with unit m/s is used. The relation to our definition is

k(hydrosciences) = k(petroleum sciences) yw/nw

where y and ny are the specific weight and viscosity of water, respectively.
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a vertical stress o, = og is applied by the piston. The pore pressure is now a function of
both time ¢ and height z, i.e. pf = ps(¢, z). The boundary conditions are

pr=0 atz=h (1.235)
9
Pr_0 atz=0 (1.236)
0z

The first condition is a result of the piston permeability causing the same pore pressure
on the inside as on the outside. The second condition is due to the requirement of no flow
through the bottom (dus/0t = duz/dt, see Eq. (1.230)).

Remembering that u, = u, = 0, and writing A + 2G = H, we find that Eq. (1.138)
now becomes:

op=He, —C¢ (1.237)
while Eq. (1.142) becomes:
pi=Cs, — M (1.238)

Using Egs. (1.237) and (1.238) to eliminate ¢, we obtain an expression for the vertical
strain ¢,:

Moo — Cps 00—%Pf 00 — apf
. — - - 1.239
‘T HM —C? H-¢ Hy ( )

where Hiy = H — C?/M is defined in analogy with Eq. (1.146).

Eq. (1.239) shows that the vertical strain depends on the pore pressure, hence it will
change during the time it takes for the pore pressure to reach equilibrium. It is straight-
forward to find the initial and final deformation of the column. At the instant the load is
applied, before the pore fluid has time to move, we observe the undrained stiffness of the
material. Letting ¢ = 0 in Eq. (1.237), we see that the immediate strainis e, = oo/ H.

At late times, when the pore pressure has dissipated to zero, we observe the drained stiff-
ness, which from Eq. (1.239) gives ¢, = o/ Hy. The difference, and hence the magnitude
of the consolidation or time dependent strain is

1 1
= _——— 1.240
=) (1.240)

The time dependence of the pore pressure is governed by Egs. (1.232)—(1.234). Dif-
ferentiating Eq. (1.239) and inserting into Eqg. (1.233) we find the following differential
equation for ps:

pr _ k HM —C?9%pr _ . 9°ps

= = 1.241
a  nf H 972 D522 ( )
This equation is a diffusion equation. The diffusion constant Cp is
k HM —C?* k Hy k - 2 -
CD=—7=—MJ_—<£+O[ ¢+ a4 ) (1.242)
. H n H  ne\Kt  Ks  Kg+ 3G

Cp is also called the consolidation coefficient.
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Uz

Fig. 1.23. Settlement caused by consolidation as a function of time. The solid curve represents the settlement of
a column of finite height, while the dashed curve represents the settlement for an infinitely high column. (After
Biot, 1941, with permission from AlP.)

Eq. (1.241) and the boundary conditions (1.235) and (1.236) fully determine the pore
pressure ps(t, z). Biot (1941) discussed the solution of the problem, and found that the
settlement u, can be written in terms of an infinite series. He also provided an approximate
solution, which applies to the settlement of an infinitely high column (A — o0), or to the
initial settlement (+ — 0) of a column of finite height:

2 1 1
)~ — — — — |v/Cpt 1.243
w0~ oo - 37 ]V (1.223)
This result is illustrated in Fig. 1.23.

By assuming Ky, Gir < Ks, we find that the diffusion constant Cp is approximately
given by:

kK K -1
Co ~ _f[l PR S - } (1.244)
neg ¢ (Ker + 3G1r)

In the “stiff frame” limit K, G > Kt/¢, and we find that the fluid flow is governed by
the permeability and the elastic properties of the fluid:

Cp - — =1 (1.245)

On the other hand, if Kg, G < K5/¢, the flow is governed more by the elastic properties
of the framework:

k 4
Cp —> — (Kfr + —Gfr> (1.246)
Ul 3

Physically, Cp is a measure of how far (/p) a pore pressure disturbance can propagate
during a given time (zp). The length Ip is called the diffusion length and relates to tp and
Cp as

13 = Cptp (1.247)
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It is an important result that the characteristics of the fluid flow—nhere represented by the
diffusion constant Cp and the diffusion length /p—generally depend not only on the fluid
parameters, but also on the elastic properties of the rock itself. This is particularly signifi-
cant for weak rocks, as Eq. (1.246) shows.

The consolidation discussed above is based on an elastic theory, which means that the
behaviour is reversible. This is often not the case in a practical situation, in particular not
in sedimentary rocks at high pressure. In such cases, inelasticity of the rock framework
should be taken into account.

1.9.2. Creep

Creep is a time-dependent deformation that may occur in materials under constant stress.
Creep originates from visco-elastic effects in the solid framework, thus creep may—unlike
consolidation—occur in both dry and saturated rocks.

There are three stages of creep following a change in the stress state. First, there is a
region where the rate of the time-dependent deformation decreases with time (Fig. 1.24).
This is called transient (or primary) creep. The process may be associated with a minor
spreading—at a decaying rate—of “stable” microfractures. If the applied stress is reduced
to zero during the primary creep stage, the deformation will eventually decrease to zero
too.

In the next stage, the deformation rate is constant. This is called steady state (or sec-
ondary) creep. If the applied stress is reduced to zero during this stage, the deformation
will not vanish completely. Steady state creep thus implies a permanent deformation of the
material.

Finally, the deformation rate may increase with time. This is called accelerating (or
tertiary) creep. This stage leads rapidly to failure. The process may be associated with a
rapid spreading of “unstable” fractures.

STEADY
STATE

TRANSIENT
ACCELERATING

!

Fig. 1.24. Strain versus time for a creeping material.
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Fig. 1.25. The development of creep for different values of the applied stress.
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Fig. 1.26. Building elements in visco-elastic models. a) Spring element. b) Dashpot element.

The actual creep behaviour of a rock depends on the magnitude of the applied stress.
For low or moderate stresses, the material may virtually stabilize after a period of transient
creep. For high stresses, the material may rapidly run through all three stages of creep and
finally fail.

The intermediate stress regime, where the material fully develops each stage of creep,
may be small and hard to find in practice (Fig. 1.25). The time scale of a creep stage may
vary over a wide range—in some cases it lasts for minutes, in other cases for years. Creep
is a molecular process, and the time scale depends on temperature; the process generally
speeds up with increasing temperature.

The fact that even steady state creep eventually leads to failure, means that a rock which
is loaded to a level somewhat below its ultimate strength, may fail after some time, if the
load is maintained. This effectively reduces the long-term uniaxial strength to typically
50-70% of the ultimate strength (Farmer, 1983).

There are various mathematical models, with varying degree of sophistication, that are
being used to describe creep. One type of models uses combinations of linear elements
obeying Hooke’s law (Eq. (1.91))

o = ke spring element, Fig. 1.26a (1.248)
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Fig. 1.27. The Burgers substance. The Burgers substance can be seen as consisting of two simpler substances,
the Maxwell substance (a spring and a dashpot in series) and the Kelvin substance (a spring and a dashpot in
parallel).
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Fig. 1.28. The response of the Burgers substance. a) Applied stress versus time. b) Strain versus time.
and viscous elements obeying the stress—strain relation

d
o= Xa—j dashpot element, Fig. 1.26b (1.249)

Here « is the spring constant, while x is called the coefficient of viscosity.

One of these models (the “Burgers substance”) is shown in Fig. 1.27. This model takes
into account both instantaneous strain, transient creep, and steady state creep. Consider
for instance a stress path as shown in Fig. 1.28a. For ¢t < 0 the system is unstrained. At
t = 0 the stress is increased to X, while at ¢ = ¢ the stress is released. The resulting strain
(shown in Fig. 1.28b) is found to be

0 fort <0
>,z - )
e={ote@—e"/m)+or for0<r <t (1.250)

) - X
H(efc/’1 —1)e "/ 4+ =t fore >
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Here 11 = x1/x1 is the time constant of the transient creep.

The instantaneous strain is seen to be: X'/«», the steady state creep velocity: X'/ x» and
the permanent strain resulting from the stress path: Xz./x2. Thus the permanent strain is
seen to arise from the steady state creep. Due to this term, the system has a “memory” of
its stress history.

It is generally assumed that creep is proportional to the deviatoric stresses in a material,
while hydrostatic stresses alone will not produce creep effects. Thus creep effectively re-
duces the shear modulus and the Young’s modulus of a material, while the bulk modulus is
not affected by it. It follows from Table 1.1 that Poisson’s ratio increases due to creep. Note
however, that there may be local shear stresses in a sample subject to external hydrostatic
loading, due to inhomogeneities in the material. In that case the material may creep under
hydrostatic external loads. Such creep has been observed in sandstones.
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Chapter 2

Failure mechanics

2.1. Basic concepts

When a piece of rock is subject to sufficiently large stresses, a failure of some kind will
occur. This implies that the rock changes its shape permanently, and possibly also falls
apart. The condition is accompanied with a reduced ability to carry loads. Rock failure is
an important phenomenon also for petroleum related rock mechanics, as it is the origin of
severe problems such as borehole instability and solids production. It is therefore useful to
be able to predict under which conditions a rock is likely to fail.

This chapter discusses the most elementary and well known models for rock failure. One
should keep in mind however, that these are only simplified descriptions of real rock be-
haviour. Rock failure is a complex process which is still not fully understood. Much of the
framework used to handle rock failure is therefore based on convenient mathematical de-
scriptions of observed behaviour, rather than derivations from basic laws of physics. Some
of the concepts used here, including the concept of failure, may thus be poorly defined and
sometimes not very relevant, as will be seen below.

For most of the chapter we shall assume that rocks are homogeneous and isotropic.
Anisotropy is discussed in Section 2.9, while some consequences of inhomogeneities are
briefly discussed in Sections 2.5 and 2.8.

2.1.1. Strength and related concepts

The stress level at which a rock typically fails is commonly called the strength of the rock.
Obviously, as “stress level” is not a uniquely defined parameter, neither is strength. Rock
strength is therefore a meaningful parameter only when the stress geometry—that is: the
type of test, in a laboratory setting—is also specified. We shall soon describe the impact
of stress geometry on rock strength. First, we shall however take a look at a couple of the
most important tests used to measure rock strength, the uniaxial and triaxial tests, in order
to illustrate the complexity of rock failure, and to introduce some basic concepts. Rock
mechanical testing procedures for strength measurements will be described in more detail
in Chapter 7.

Fig. 2.1 illustrates a typical test specimen, a cylinder with length to diameter ratio 2:1.
A pair of pistons applies (axial) stress to the end faces of the cylinder, while a confining oil
bath provides a stress of possibly different magnitude to the circumference. It is normally
assumed that the stress state within the specimen is homogeneous. If the confining stress
is zero, we have a uniaxial stress test (also called unconfined compression test). When the
test is performed with a non-zero confining pressure, a so-called triaxial test is performed.
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Fig. 2.1. Typical test specimen for a uniaxial or triaxial test. A typical sample diameter for petroleum applications
is 38 mm (11/2").
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Fig. 2.2. Principle sketch of stress versus deformation in a uniaxial compression test. In practise, the ductile
region may be very small.

Fig. 2.2 shows a typical result from a uniaxial test. The applied axial stress (denoted o)
is plotted as a function of the axial strain (¢;) of the sample. Several important concepts
are defined in the figure:

Elastic region: The rock deforms elastically. If the stress is released, the specimen will
return to its original state.

Yield point: The point beyond which permanent changes will occur. The sample will no
longer return to is original state upon stress relief.

Uniaxial compressive strength: The peak stress.

Ductileregion: A region in which the sample undergoes permanent deformation without
loosing the ability to support load.

Brittleregion: A region in which the specimen’s ability to withstand stress decreases
rapidly as deformation is increased.
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Fig. 2.3. Triaxial testing: typical influence of the confining pressure on the shape of the differential stress (axial
stress minus confining pressure) versus axial strain curves.

A triaxial test is usually performed by increasing the axial and confining loads simulta-
neously, until a prescribed hydrostatic stress level is reached. Then, the confining pressure
is kept constant while the axial load is increased until failure occurs. The axial loading is
normally applied such that it gives a constant axial deformation rate.

For a triaxial test, it is customary to plot the difference between the axial stress and
the confining pressure (o)) versus the axial deformation. One then obtains a curve that
looks similar to Fig. 2.2. However, the behaviour may be quite different at the higher stress
levels. Fig. 2.3 illustrates results from triaxial tests with various confining pressures. It is
seen that for the higher confining pressures the specimen’s ability to support load is not
lost, although its stiffness is clearly reduced. This is further discussed in Section 2.8.

So far, we have not given a precise definition of failure, mainly because it is rather
difficult to give a general definition. For the uniaxial test shown in Fig. 2.2, a seemingly
unambiguous definition of failure may be given, corresponding to the peak stress point
on the curve. For the higher confining pressures in Fig. 2.3, one may on the other hand
define failure at some point where the slope of the stress—strain curve changes. This may
not seem totally appropriate, however, since the specimen still supports increasing load
after it has failed. Disregarding these problems, we shall in the following sections discuss
failure criteria assuming that a consistent definition of failure exists. Later, in Section 2.8,
on post-failure behaviour described by the theory of plasticity, we shall be a little more
precise, at least for problems that can be described within the framework of that theory.

The most common mode of failure observed in uniaxial and triaxial tests is shear fail-
ure. This failure mode is caused by excessive shear stress. Another failure mode is tensile
failure, which is caused by excessive tensile stress. Finally, pore collapse is a failure mode
that is normally observed in highly porous materials, where the grain skeleton forms a rel-
atively open structure. Pore collapse is usually caused by excessive hydrostatic stress. The
various failure modes are discussed in Sections 2.2-2.4.

The concept of rock failure is associated with the state of the solid framework. Thus, the
stresses that causes failure are the effective stresses felt by the framework. The effective
stress concept was introduced in Section 1.6.3 where we also introduced the notation o’
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to distinguish the effective stress from the total stress o. Note however that the relation
specifying the effective stress in a failure criterion is in general different from the relation
(1.168) which specifies the effective stress for deformation of a linearly elastic material.
This will be further discussed in Section 2.6.1.

2.1.2. The failure surface

From the considerations above, we see that a rock fails when the stress exceeds a certain
limit, while it remains intact (more or less, as we shall see later) as long as the stress is
lower than this limit. We also see that this limit depends on the total stress state, not only
the stress in one direction. A graphical representation of this in an abstract “stress space”
turns out to be quite useful.

Consider a test specimen of an isotropic material, subject to a certain stress state de-
scribed by the three principal stresses o7, o, o3. \We may represent the stress state graph-
ically as a point in the principal stress space, that is, the space spanned by the o7, 0, 03
axes. Imagine that the specimen is taken to failure by increasing the principal stresses in
some manner, and that the point of failure is plotted in the principal stress space. If this
procedure could be repeated an infinite number of times, following different stress paths,
we would get an infinite number of failure points in the stress space. We assume that these
points will form a continuous surface, which we call the failure surface. A schematic illus-
tration of such a surface is shown in Fig. 2.4.

The failure surface may be described by the equation:

f(o1,04,03) =0 (2.1)

In this simplified picture, the assumption is that the rock is intact at stress states inside
the failure surface, while it fails for any stress state outside. This does not imply that any

!
o,

r
O3

Fig. 2.4. Schematic picture of a failure surface in principal stress space. The dash—dot line represents the hy-
drostatic axis. Note that the conventional relation a{ > 02/ > 03/ has been abandoned in this figure, in order to
illustrate that the failure surface is closed: The rock is supposed to fail at some stress level, for any ratios between
the principal stresses.
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stress state outside the failure surface is inaccessible, since the rock may under suitable
conditions be able to support increasing load after failure, as mentioned above.

It is difficult to draw a surface in three dimensions. Therefore, the failure surface is
often presented by cross-sections instead. The most common of such representations are
cross-sections in a -plane. These planes are normal to the hydrostatic axis (also called
hydrostat), that is the axis where o] = o, = o3. Figs. 2.16 and 2.18 are examples of
sr-plane cross-sections of failure surfaces.

The existence of the failure surface is by no means obvious. For instance, its existence
implies that failure is independent of stress gradients and of stress history for stress states
on the inner side of the surface. This approximation is not always fulfilled, as we shall
see later in this chapter. Also, we have already seen that failure does not necessarily occur
abruptly at the failure point, but may be a gradual process that changes rate at the failure
surface.

In the following, we shall first consider the failure surface in two dimensional stress
space, focusing on the impact of the largest and smallest principal stresses. These config-
urations are relatively simple to handle both intuitively and mathematically, and are also
most commonly used for practical applications. Corresponding failure criteria in three di-
mensional stress space is discussed in Section 2.5.

2.2. Tensile failure

Tensile failure occurs when the effective tensile stress across some plane in the sample
exceeds a critical limit. This limit is called the tensile strength, it is given the symbol Ty,
and has the same unit as stress. The tensile strength is a characteristic property of the rock.
Most sedimentary rocks have a rather low tensile strength, typically only a few MPa or
less. In fact, it is a standard approximation for several applications that the tensile strength
is zero.

A sample that suffers tensile failure typically splits along one—or very few—fracture
planes, as illustrated in Fig. 2.5. Thus tensile failure is a highly localized and inhomoge-
neous process. The fracture planes often originate from preexisting cracks, oriented more
or less normal to the direction of the tensile stress. The highest probability for further dam-
age of the rock is at the perimeter of the largest of these cracks, hence the largest crack(s)
will grow increasingly faster than the other, and rapidly split the sample. We shall see later
(in Section 6.4.4) that the tensile strength is very sensitive to the presence of cracks in the
material.

The failure criterion, which specifies the stress condition for which tensile failure will
occur, and identifies the location of the failure surface in principal stress space, is given as:

o' =-Tp (2.2)

For isotropic rocks, the conditions for tensile failure will always be fulfilled first for the
lowest principal stress, so that the tensile failure criterion becomes

Ué = —TO (23)
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Fig. 2.5. Tensile failure. Fig. 2.6. Shear failure.

2.3. Shear failure

Shear failure occurs when the shear stress along some plane in the sample is sufficiently
high. Eventually, a fault zone will develop along the failure plane, and the two sides of the
plane will move relative to each other in a frictional process, as shown in Fig. 2.6.

It is well known that the frictional force that acts against the relative movement of two
bodies in contact depends on the force that presses the bodies together. It is therefore
reasonable to assume that the critical shear stress (zmax) for which shear failure occurs,
depends on the normal stress (o) acting over the failure plane. That is:

|tmax| = f (o) (2.4)

This assumption is called Mohr’s hypothesis.

Inthe T—o "' plane, Eq. (2.4) describes a line that separates a “safe region” from a “failure”
region, and we may consider Eq. (2.4) as a representation of the failure surface in the t—o”’
plane. The line is sometimes referred to as the failure line or the failure envelope. An
example is shown in Fig. 2.7, where we have also indicated the three principal stresses and
the Mohr’s circles connecting them. It was explained in Section 1.1.6 that for a given set
of principal stresses all possible combinations of T and ¢’ lie within the area in between
the three circles (i.e. the shaded area of Fig. 2.7).

The stress state of Fig. 2.7 represents a safe situation, as no plane within the rock has a
combination of z and o that lies above the failure line. Assume now that o7 is increased.
The circle connecting o7 and oy will expand, and eventually touch the failure line. The
failure criterion is then fulfilled for some plane(s) in the sample, and the sample fails. Note
that the value of the intermediate principal stress (o) has no influence on this situation.
Since o, by definition lies within the range (o3, o7), it does not affect the outermost of
Mohr’s circles, and hence it does not affect the failure. Thus, pure shear failure, as defined
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Fig. 2.7. Failure line, as specified by Eq. (2.4), in the shear stress—normal stress diagram. Also shown are the
Mohr circles connecting the principal stresses oy, 03, o5,

by Mohr’s hypothesis, depends only on the minimum and maximum principal stresses and
not on the intermediate stress.

By choosing specific forms of the function f(c’) of Eq. (2.4), various criteria for shear
failure are obtained. The simplest possible choice is a constant. The resulting criterion is
called the Tresca criterion. The criterion simply states that the material will yield when a
critical level of shear stress is reached:

1

So is the inherent shear strength (also called cohesion) of the material. In a Mohr t—o' plot
the Tresca criterion appears simply as a straight horizontal line.

2.3.1. The Mohr—Coulomb criterion

A more general and frequently used criterion is the Mohr—Coulomb criterion, which is
based on the assumption that f(¢’) is a linear function of o’:

|t| = So + po’ (2.6)

Here u is the coefficient of internal friction. The latter term is clearly chosen by anal-
ogy with sliding of a body on a surface, which to the first approximation is described by
Amontons’ law:

T = uo’ 2.7

In Fig. 2.8 we have drawn the Mohr—Coulomb criterion, and a Mohr’s circle that touches
the failure line. The angle ¢ defined in the Figure is called the angle of internal friction (or
friction angle) and is related to the coefficient of internal friction by

tang = i (2.8)
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Fig. 2.8. Mohr—Coulomb criterion in -0’ space. Also shown is the Mohr’s circle corresponding to a critical
stress state.

Note that the Tresca criterion can be considered as a special case of the Mohr—Coulomb
criterion, with ¢ = 0.

The intersection point between the Mohr—Coulomb failure line and the normal stress
axis is of no practical interest in itself, as the point is inaccessible due to tensile failure.
However, for some purposes it is convenient to make use of the parameter A defined as the
distance from the intersection point to the origin (see Fig. 2.8). The parameter is called the
attraction. The attraction is related to the other Mohr—Coulomb parameters by

A= Spcotg (2.9)

Fig. 2.8 also shows the angle 28, which gives the position of the point where the Mohr’s
circle touches the failure line. It can be seen from the figure that the shear stress at this
point of contact is

7l = 3 (0f — ofysin2p (2.10)
while the normal stress is
o' = %(01/ +03) + %(0{ — 03)C0s 2 (2.11)
Also, we see that 8 and ¢ are related by
0+ % —28 2.12)

Since g is the angle for which the failure criterion is fulfilled, 8 gives the orientation of the
failure plane (see Fig. 1.7). From Eq. (2.12) we have that

_r.?
,3_44-2 (2.13)

The allowable range for ¢ is from 0° to 90° (in practice the range will be smaller, and
centred around approximately 30°), hence it is clear that 8 may vary between 45° and 90°.
We may conclude that the failure plane is always inclined at an angle smaller that 45° to
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Fig. 2.9. Orientation of the failure plane relative to the largest principal stress. The thick solid line shows the
failure plane for a friction angle of 30°. The dashed line shows the maximum inclination of the failure plane
relative to ai, according to the Mohr—Coulomb criterion.

the direction of o;. Fig. 2.9 shows schematically how the failure planes may be oriented in
a rock described by the Mohr—Coulomb criterion.

One important point to note is that 8 is given solely by ¢, which is a constant in the
Mohr—Coulomb criterion. Thus the orientation of the failure plane is independent of the
confining stress. This is a special feature for the Mohr—Coulomb criterion. Experiments
often show that the failure angle decreases with increasing confining pressure, in particular
at low confining pressures.

Introducing the expressions (2.10) and (2.11) for ¢’ and 7 into the failure criterion
Eg. (2.6), we find

1 . 1 1
E(o{ —o4)sin2p = So + M[E(Oi +03) + E(al’ — 03) COS Zﬁ] (2.14)
Replacing B and w by ¢, according to Egs. (2.8) and (2.13), we obtain

1 1 1 .
E(O’]/_ —03)C0S@ = S + E(o{ +o3)tang — 5(0{ —oy)tangsing  (2.15)

Multiplying with 2 cos ¢ and rearranging, we find

(0] — 04)(c0s? ¢ 4 sin? ) = 285 COS ¢ + (0] 4 03) sing (2.16)
o1(1 —sing) = 28y cos ¢ + o5(1 + sin ) (2.17)
CoS @ 1+sing
| =28, - 4 - 2.18
o1 01 "sing " 731 —sing (2.18)
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Fig. 2.10. Mohr—Coulomb criterion in the (o7, o3) plane.

Fig. 2.10 is a plot of this relation in the (o7, o) plane. Again we have a linear relation-
ship, with a positive intercept on the o7 -axis, quite similar to the plot in Fig. 2.8. The angle
y inthe (o7, o3) plane is related to ¢ by

1+sing
tany = ———— 2.19
Ye1- sing (219
or
. tany — 1
sing = ——— 2.20
¢ tany +1 (220)

An expression for the uniaxial compressive strength Co is obtained by putting o = 0 in
Eg. (2.18), giving
S

co
Co=25g——

- = 25y tan 2.21
T —sing otan B (2.21)

The last equality here is derived from Eqg. (2.12). It must be emphasized that the above
expression is only valid if the failure mechanism under uniaxial stress is shear failure. This
may not be the case even when shear failure occurs at rather low confining stresses.

Making use of Egs. (2.21) and (2.12), we note that Eqg. (2.18) may be written in the
following simple way:

o] = Co+ojtan® g (2.22)

This formulation of the Mohr—Coulomb criterion will be extensively used later in this book.

One might perhaps consider computing the tensile strength Ty by putting o; = 0 in
Eqg. (2.22). However, this is not a valid approach, since the Mohr—Coulomb criterion de-
scribes shear failure while tensile failure is a different failure mode.
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2.3.2. The Griffith criterion

Griffith (1921) developed a failure criterion based on a study of elliptical microcracks in
a two dimensional model. When the tensile stress at the tip of the crack exceeds a certain
value characteristic of the material, the crack will grow and the failure process is initiated.
The theory is scaled in terms of the uniaxial tensile strength Ty, and the resulting failure
criterion can be written

(07 — 04)? = 8Tp(o] +03) ifo]+304>0 (2.23)
o3=-Ty ifo;+305<0 (2.24)

In a principal stress plot the criterion is represented by a parabola ending in a straight line.
This is illustrated in Fig. 2.11a.
The uniaxial compressive strength Cy is given by Eq. (2.23) as

Co =8Tp (2.25)

It is seen that the ratio between the uniaxial compressive strength and the tensile strength
is here given as a fixed number. This ratio of 8 appears to be reasonable compared to
experimental values, which often are in the range of 10-15. However, it is clear that fitting
the criterion to experimental data may sometimes be difficult, since the criterion only has
one free parameter.

In T—o'-coordinates, the Griffith criterion is given by only one equation:

12 = 4To(o” + To) (2.26)
a1
o] =0}
870
T
2T 7
I

- o} o

a b.

Fig. 2.11. The Griffith criterion. a. Principal stress plot. b. —¢'-plot.
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(See for instance Jaeger and Cook (1979) for the transition from Egs. (2.23) and (2.24) to
Eqg. (2.26).)

Eqg. (2.26) shows that the criterion is a parabola also in a T—o’-plot, as illustrated in
Fig. 2.11b. Unlike the Mohr—Coulomb criterion, the Griffith criterion is seen to have a
steeper slope at low confining pressures. This feature is typical for experimental observa-
tions.

It is often observed that the Griffith criterion may give a reasonably good description
of failure at low confining stresses, while a straight line Mohr—Coulomb criterion gives a
better description at higher confining stresses. This has led to the development of a modi-
fied Griffith criterion (Brace, 1960; McClintock and Walsh, 1962). This criterion is based
on the idea that the microcracks will close at sufficiently high pressure levels, resulting in
a transition towards frictional behaviour corresponding to the Mohr—Coulomb criterion. If
we assume that the stress required to close the cracks is so small that it can be neglected,
the modified Griffith criterion is simply a Griffith criterion for tensile conditions (o’ < 0)
coupled to a Mohr—Coulomb criterion for compressive conditions (¢’ > 0). The critical
shear stress t = 2Ty predicted by the Griffith criterion at ¢’ = 0 (see Eq. (2.26)) is used
for the cohesion Sp in the Mohr—Coulomb part of the criterion. A result from this modified
theory is that the ratio between uniaxial compressive strength and the tensile strength is
given by

4
Co___4 (2.27)

To u2+1—u
where u is the coefficient of internal friction related to the Mohr-Coulomb part of the
criterion.

2.4. Compaction failure

Pore collapse is a failure mode that is normally observed only in high porosity materials,
where the grain skeleton forms a relatively open structure. When the material is com-
pressed, grains may loosen or break and then be pushed or twisted into the open pore
space, resulting in a closer packing of the material. The process is called compaction. This
deformation mode is schematically illustrated in Fig. 2.12.

In sandstones where the size of the pores is of the same order of magnitude as the size
of the grains, pore collapse typically consists in reorientation of the grains to better fill
the void spaces, as indicated in Fig. 2.12. For high porosity chalks, where the size of the
individual grains may be an order of magnitude smaller than the dimensions of the pore
space, the pore collapse mechanism becomes very important.

Pore collapse may occur under pure hydrostatic loading. Microscopically, however, fail-
ure will be due to local excessive shear forces acting through grains and grain contacts.
From this point of view, pore collapse may be regarded as distributed shear failure within
the material.

Another failure mechanism that may occur under hydrostatic loading is grain crushing.
If the stresses are sufficiently high, the grains may be partly crushed at the grain con-
tacts, and splitting of the grains may result. Either way, these local failure mechanisms
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Fig. 2.12. Grain reorientation resulting in a closer packing.

Compaction failure

0y

Tensile
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Fig. 2.13. Location of the various failure modes in principal stress space, as defined by Eq. (2.3) for tensile
failure, by Eq. (2.22) for shear failure, and by Eq. (2.29) (assuming az’ = 03/) for compactive yield. For real
rocks, the transition between the various failure modes is smoother than shown here.

represent permanent damage of the rock framework and causes yielding, with associated
reduction in the stiffness of the rock. This type of failure also occurs to some extent under
non-hydrostatic stress conditions, and may be observed in triaxial tests at high confining
pressure (see Fig. 2.3; high confining pressure). The process is then referred to as shear-
enhanced compaction.

In principal stress space, this type of failure is represented by an “end cap” that closes
the failure surface at high stresses, as seen on Fig. 2.13. An elliptical form is often used for



68 FAILURE MECHANICS

such an end cap (DiMaggio and Sandler, 1971; Wong et al., 1997):

1 &' 2 1/q\?
(1—y>2<E_V> +5‘2<}> =1 (2.28)

where &’ is the mean effective stress (see Eq. (1.38)) and g is a deviatoric stress invariant
(see Eq. (1.46)), while p*, y (=0.5) and § (=~0.5-0.7) are constants. p* is called the critical
effective pressure (or crushing pressure) of the rock. Eq. (2.28) represents a failure criterion
for compaction. Note that the equation predicts failure at ¢’ = p* if the stress is hydrostatic
(g =0).

Compaction leads to a denser structure, and the rock will still be able to carry load. As
the structure becomes increasingly dense, the load carrying capacity may even increase.
Hence Eq. (2.28) represents essentially a compactive yield surface. This differs from tensile
failure and unconfined shear failure, where the load carrying capacity is completely lost
after failure. Compaction is also a more homogeneous failure mode, however localization
may occur even for compaction. This is further discussed in Section 2.8.

Boutéca et al. (2000) argued that the following simple form of Eq. (2.28) (obtained by
choosing y = 0 and § = 1) may be an acceptable approximation for many rocks:

5% 4+ g% = p*? (2.29)

It is to be expected that the critical effective pressure p* decreases with increasing poros-
ity. From theoretical considerations, Zhang et al. (1990) derived the relation

pF o2 (2.30)

Given that the uniaxial compressive strength Cy of a rock also depends on the porosity to
some extent, we may furthermore expect a certain degree of correlation between p* and
Co. Boutéca et al. (2000) estimated p* to be 67 times larger than Cy for a set of sandstones
with porosity in the range 15-25%.

Note that a transition from the principal stress space to the T—o’-plane is not trivial for
the end cap. Any point on the failure line in Fig. 2.13 that lies above the end point o] =
oy = p* onthe o] = oy line, represents a circle in the 7—o”'-plane that extends beyond the
(infinitesimally small) circle corresponding to the collapse point (t = 0, ¢’ = p*). Thus,
there is no line in the T—o’-plane representing a boundary for Mohr circles for collapse
failure in the same way as for shear failure.

2.5. Failure criteria in three dimensions

The stresses in the underground formations and around wells will generally be 3-dimen-
sional in the sense that the principal stresses will have different values. It is therefore
necessary to extend the 2-dimensional failure criteria to deal with the more general case.

This also brings up the question of the role of the intermediate principal stress. With the
development of equipment for true triaxial testing, it has been possible to approach this
question experimentally. The general result from such tests is that under shear conditions
the intermediate stress plays a role, although minor compared to the effect of the other
stresses.
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2.5.1. Criteria independent of the intermediate principal stress

Most of the failure criteria used in rock mechanics were developed before the role of the
intermediate principal stress was clear. As the real influence of the intermediate principal
stress is relatively small (compared to the significance of the other two) such criteria are
still valuable approximations, and will still be used.

From Fig. 2.10 we are able to infer how the Mohr-Coulomb failure surface looks like in
the three dimensional principal stress space (o7, 05, o3). We shall here temporarily abandon
the conventional relation that o > o, > o3, in order to illustrate the entire surface.
First, we consider the situation when o is the intermediate principal stress. The two cases
o, > oz and o] < o can be represented by two lines that are symmetric around the line
oy = oy, as shown in Fig. 2.14. The figure shows the projection onto the (o7, o3) plane of
the part of the surface for which o is intermediate. Similar projections can be made onto
the (o7, 05) plane for the case where oy is intermediate, and onto the (o, o3) plane for the
case where o7 is intermediate. The complete failure surface is indicated in Fig. 2.15. The
figure shows that opposite pairs of surface sections project onto the (o7, 03), (03, 03) and
(01, 03) planes, respectively, along lines as indicated on Fig. 2.14.

The irregular hexagonal pyramid shape of the surface reflects that according to the
Mohr—Coulomb criterion, failure is independent of the intermediate principal stress. The
surface is not differentiable at the corners, a fact that may cause problems in numerical cal-
culations involving the criterion. The cross-section of the Mohr—Coulomb failure surface
in a w-plane (see Section 2.1.2) is shown in Fig. 2.16. It is seen to be an irregular hexagon
with sharp corners and threefold symmetry.

The Tresca criterion also has a six sided cross-section in the sr-plane, but for this crite-
rion the section will be a regular hexagon. As the friction angle is zero, the failure surface
will be parallel to the hydrostatic axis.
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Fig. 2.14. Projections onto the (al’,oé) plane, of the Fig. 2.15. The Mohr-Coulomb failure surface in
parts of the of the failure surface for which cré is the in- principal stress space.

termediate principal stress. Note the symmetry about the

projection of the hydrostatic axis (dashed line).
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Fig. 2.16. Cross-section of the Mohr—Coulomb criterion in a r-plane. The arrows represent projections of the
principal stress axes onto the plane. The friction angle ¢ = 30°.

A 3-dimensional failure surface can be obtained for the Griffith criterion in a similar
way as for the Mohr—Coulomb criterion. The three pairs of planes ending in a sharp corner
for the Mohr-Coulomb criterion (Fig. 2.15) is for the Griffith criterion replaced by three
pairs of singly curved parabolic surfaces ending in a plane section.

The failure surface constructions presented here demonstrate one basic feature of the
failure surface in 3 dimensions, namely the three-fold symmetry of the s-plane cross-
section. However, they suffer from the fact that they ignore the influence of the intermediate
principal stress. Other extensions to 3 dimensions have therefore been proposed, as dis-
cussed below.

2.5.2. Criteria depending on the intermediate principal stress

Mounting experimental evidence has shown that the intermediate principal stress (o) has
a significant—although moderate—impact on the strength of several rock types (see for
instance Colmenares and Zoback (2002), for an overview). Typically, it is found that rocks
are stronger when o > o, > o than for the situations where o, = o or o, = o3.

As mentioned in the previous paragraph, the failure surfaces constructed simply on the
basis of two-dimensional criteria also possess sharp corners that causes problems when the
criteria are used for numerical modelling. Various other failure criteria which include the
intermediate principal stress have therefore been proposed.

One simple solution is to implement rotational symmetry for the r-plane cross-section.
This approach has no physical foundation, however it is mathematically attractive, and is
the basis for some of the most commonly used criteria shown below. (Alternative formula-
tions of these criteria, in terms of invariants, are given in Section 2.7.)

One of these criteria is the von Mises criterion, which can be written

(0] — 03)? 4 (0] — 04)* + (05 — 04)? = C? (2.31)

C is a material parameter related to cohesion. In principal stress space this criterion is
represented by a cylinder centred around the hydrostatic axis, as illustrated in Fig. 2.17.
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Fig. 2.17. The von Mises criterion and the Drucker—Prager criterion in principal stress space.

The criterion is seen to be identical to the Tresca criterion for o, = oy or o, = o3. Like
the Tresca criterion, the von Mises criterion describes a shear failure mechanism where the
failure condition is independent of the stress level in the material. The von Mises criterion
is commonly used to describe yield in metals. It has however very limited applications for
rocks.

The corresponding generalization of the Mohr—Coulomb criterion is the Drucker—Prager
criterion. It can be formulated as

(0] — 03)2 + (0] — 0 + (05 — 05)? = C1(0] + 03 + 05+ C2)®  (2.32)

where C1 and C, are material parameters, related to internal friction and cohesion. In
principal stress space this corresponds to a regular cone, as illustrated in Fig. 2.17.

Murrel (1963) introduced the extended Griffith criterion, which degenerates to the orig-
inal Griffith criterion (Egs. (2.23)—(2.24)) in two dimensions. In principal stress space it is
represented by a paraboloid terminated by a pyramid, expressed as

(01 — 03)” + (0] — 03)* + (05 — 03)* = 24Ty (01 + 03 + 03) (2.33)
ending on the planes
Ul/ = —To, 0'2/ = —To, Gé =—-To (2.34)

The extended Griffith criterion predicts that the relation between uniaxial compressive
strength and tensile strength is given by

Co = 12Ty (2.35)

This value of Cy/ Ty is typical for many rocks. Also for this criterion the cross-section in
the r-plane is given by a circle, except for the conical part at negative stresses.

An empirical failure criterion based on actual observations of the behaviour of soils
was formulated by Lade (1977). A modified version of this criterion was presented by
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Ewy (1999):
— 3=y (2.36)

where I; and I; are modified representations of the first and third stress invariant, defined
as

I] = (01 + SL) + (03 4 SL) + (03 + SL) (2.37)
I3 = (07 + SU)(05 + SL) (05 + SL) (2.38)
SL is a material parameter related to the cohesion and the friction angle of the rock:
S
SL= 2 (2.39)
tan g
while n_ is related only to the internal friction:
9—7sing
=4tan’p——— 2.40
n YT sing (2.40)

In principal stress space the criterion has the form of a convex, triangularly shaped cone.
The parameter 7 determines the shape of the cross-section in the r-plane. As the value of
nL increases, the cross-sectional shape changes from circular to triangular with smoothly
rounded edges. Fig. 2.18 shows a comparison of the modified Lade criterion to other crite-
ria in the -plane.

The modified Lade criterion is a simple criterion which appears to account for the influ-
ence of the intermediate principal stress on shear strength in a realistic way. As such, this is

Drucker-Prager
von Miscs
Murrel

~~ _ Modified Lade

Mohr-Coulomb

Fig. 2.18. Characteristic shape of a r-plane cross-section for some failure criteria. The friction angle ¢ = 22.5°.
The arrows represent projections of the principal stress axes onto the plane. Note that the criteria have been scaled
so that they coincide at the intercepts with the projections of the principal stress axes.
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a useful criterion for practical calculations. The formulation based on 7 and 5 (Eq. (2.36))
may however be somewhat impractical, as it requires solution of a cubic equation. An al-
ternative formulation is given in Egs. (2.41)—(2.44)).

m-plane representation

The Drucker—Prager, von Mises and Murrel criteria are circular in the -plane, while the
modified Lade and Mohr—-Coulomb criteria have a 3-fold symmetry. It is clear that for an
isotropic material, the yield surface must at least have a 3-fold symmetry in the -plane.
This means that in general, the failure surface in principal stress space may be given by
specifying the mean stress, and the radius in the 7 -plane as a periodic function of the angle
3¢ (where ¢ is the Lode angle defined in Eq. (1.51) and Fig. 1.10).

The radial distance to a point on the failure surface is given by Eq. (1.50). Defining two
general functions f1 and f> we may thus write a general failure criterion as

V2 = f1(c0s39) f2(5") (2.41)

where the cosine function ensures the required symmetry in the -plane, and the factor 2
of Eg. (1.50) has been absorbed in f1 and f>. The separation of i and 6’ means that the
shape of the w-plane cross-section is independent of 5.

The choice of the cosine in Eq. (2.41) is convenient, since cos 3¢ can be expressed
in terms of invariants (Eq. (1.51)), and does not represent a limitation since any periodic
function may be expressed by a series in cos 3%

The function f; can not be chosen completely arbitrarily, since both empirical evidence
(see e.g. Lade, 1993) and theoretical considerations (see e.g. Chen and Han, 1988) indicate
that the failure surface should be convex. If we choose f1 to be a constant, Eq. (2.41)
represents the von Mises criterion if f> is also a constant, the Drucker—Prager criterion if
f2 islinear in &7, and the extended Griffith criterion if f; is proportional to the square root
of o',

A representation of the modified Lade criterion can be obtained by expressing /] and 15
in terms of 6/, g and ¥ (see Section 1.1.8), and defining a new variable x = ¢/(S_ + /)
(note that /72 = x(SL + 6')/+/3). Introducing these expressions into Eq. (2.36) gives a
cubic equation in x, which can be solved explicitly to give expression (2.42), or iteratively
to give expression (2.43):

3 1 2L cos? 31 T
= 1-2 = 1—-——— |+ = 2.42
fi 7 c0s 35 ( cos[ 3 arccos( X~ 3 (2.42)

3 cos39 | 3 cos?39 3
_ 3’7L [ 377L N 377|_ N } (2.43)
3+ 9 3%+ 27 3B+
f: L SL+0a" (2.44)
= — o .
2= 0L

The series expression (2.43) for f1 converges rapidly for low and moderate values of ¢ and
may be the most practical form to use for some purposes, since the two solutions (+ and
—) given by Eq. (2.42) have to be patched together to make the solution continuous in .
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A general, simple form for f1 may be convenient for practical purposes. We may for
instance choose
fi=k+ (1 —k)cos3 (2.45)

where k is a number. Choosing k = 1 gives a circular cross-section. Choosing k to make
the uniaxial and biaxial (o, = o7) strengths equal, would require

1 3—sing
k=2(142=5N% 246
2< +3+Sin(p> (2.46)

This relation gives k = 6/7 ~ 0.857 for ¢ = 30° (note that the convexity criterion requires
k > 10/11 ~ 0.909). Egs. (2.45) and (2.46), in combination with

1—sing ’ sing
3 —sing 3 —sing

fo=Co o’ (2.47)
may be used as a rough approximation for the Mohr—Coulomb criterion.

By choosing f1 appropriately, it is possible to formulate the Mohr—Coulomb criterion
exactly in terms of the invariants. The expression

; -1
= «/§<cosﬂ + +/3sin 01+ﬂ> (2.48)
3—sing

in combination with Eq. (2.47) is valid for 0 < 9 < /3. By this formulation, we loose the
explicit 3-fold symmetry of Eq. (2.41) (for which we pay by the limited range of validity
in ¢). This is not a major concern, however, since using arccos in Eq. (1.51) maps all stress
states to a ¢ in the correct range.

For papers using the formulation presented here, see e.g. van Eekelen (1980) or Nordal
et al. (1989). This representation is convenient for generation of rr-plots like Fig. 2.18.

Physical explanations

Wiebols and Cook (1968) proposed a model which offers a physical explanation to the
impact of the intermediate principal stress on rock strength. They considered the shear
strain energy associated with microcracks in the material. Activation of such a crack, in
terms of sliding between the crack surfaces, will occur when a frictional criterion like
the Mohr—Coulomb criterion (Eq. (2.6)) is fulfilled locally for this crack. The shear and
normal stresses controlling this process are given by the relative orientation of the crack and
the principal stresses (see Eq. (1.36)). The situation is illustrated graphically in Fig. 2.19,
showing three different stress states: o; > oy = 03, 07 > 05 > o3, and o] = 0, > 03.
We assume that there exists a large number of such cracks with random orientation in the
material. For simplicity, we also assume that they all have the same activation threshold, so
that the failure line shown in the figure is the same for all cracks. Thus, for every possible
stress state represented by a point on (or within) the Mohr circle(s) in the t—c’-plot there
exist some corresponding cracks that are activated if the point is above the failure line.
The fundamental postulate of Wiebols and Cook is that the material fails when the to-
tal strain energy associated with the activated cracks reaches a limit value, which in our
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Fig. 2.19. 7—o'-plots with Mohr circles and failure line, for three different stress states.

simplified picture implies that the material fails when a sufficient number of cracks have
been activated. When o is increased, the cracks with an orientation corresponding to point
P in each diagram will obviously be activated first. For the two cases o; > o, = o4 and
o) = 0, > oy there is a large number of cracks corresponding to point P and its vicinity,
due to the rotational symmetry of the stress state in both cases. Hence the total strain energy
associated with these cracks will soon reach the limit value when the o;—o3-circle crosses
the failure line. For the case o] > oj > o3, the stress states are distributed in the shaded
area, and most of these cracks are therefore further away from the failure line. Hence the
o,—o4-circle has to expand further before a sufficient number of cracks is activated so that
the rock fails. As a consequence, the rock is stronger for the case o] > o, > o5 than for
the cases o] > 0y = oz and o] = 0, > o3.

An alternative explanation was proposed by Fjer and Ruistuen (2002). They based their
analysis on the classical assumption (see Section 2.3) that the rock will fail when the shear
stress across a potential failure plane fulfils a failure criterion, like for instance the Mohr—
Coulomb criterion. Any imaginary plane through a rock sample is a potential failure plane,
hence any point representing a possible stress state in the t—o'-plot (Fig. 2.19) also repre-
sents at least one possible failure plane.

Fjeer and Ruistuen assumed that there is a variation in the strength of each potential
failure plane, due to the natural heterogeneity of rocks. This implies that there is a finite
probability for a plane to fail even if its corresponding point in the Mohr circle diagram lies
below the failure line, and there is correspondingly a finite probability for the plane not to
fail even if its corresponding point lies above the failure line. For the high symmetry cases
o] > 0y = ozand o] = o, > o5 0f Fig. 2.19, there is a large number of planes correspond-
ing to point P which reaches the failure line first, hence there is a high probability that at
least one of these planes will fail early. For the low symmetry case o] > o, > o3 nearly
all of the points representing these planes have moved away from the failure line, and the
probability for early failure is correspondingly reduced. The net effect of this is that the
rock appears as stronger—statistically—for the low stress symmetry case (o] > o, > 03)
than for the cases of higher stress symmetry (o] > o, = o3 and o] = o, > 0}).

2.6. Fluid effects
2.6.1. Pore pressure

In our discussion of failure criteria the pore pressure has so far appeared only indirectly
through the effective stresses. The effective stresses are thought to represent the forces
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Increasing pore pressure
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Fig. 2.20. Mohr circle and failure lines: the effect of increasing pore pressure.

transmitted through the rock skeleton, which in turn causes the deformation of the material,
while the remaining parts of the total stresses are carried by the pore fluid. As the pore
pressure is equal in all directions, it will affect only the normal stresses. The shear stresses,
that are due to differences in the principal stresses, will be unaffected. In a t—o’-plot the
effect of increasing the pore pressure while the total stresses are kept constant, is to move
the Mohr circles to the left and closer to the shear and tensile failure lines, as illustrated in
Fig. 2.20. Thus, increasing pore pressure may destabilize a rock with respect to shear and
tensile failure.

The effective stress concept as given by Eq. (1.168) in terms of the Biot constant «, was
derived under the assumption that the rock is linearly elastic, and is not directly applicable
for arock at failure. It is, however, generally accepted that Terzaghi’s definition of effective
stress (see Section 1.6.3)

o' =0 — ps (2.49)

appears to be the most relevant definition to be used in failure criteria (Detournay and
Cheng, 1988; Boutéca and Guéguen, 1999).

We may find an argument for this observation by observing that in the vicinity of failure,
the rock is softening (that is, the slope of the stress—strain curve is strongly reduced; see
Fig. 2.2). It is not obvious however, that Eq. (2.49) is the best definition for the effective
yield stress, as the rock is supposed to behave elastically until it yields.

2.6.2. Partial saturation

Even unconsolidated sand may have some degree of consolidation. Any child that has
visited a sandy beach on a sunny day, has experienced the magic of moist sand, which
can be shaped and reshaped to make all kinds of fantastic figures. When the tide comes
and floods the beach, the magic is broken and the figures disintegrate into loose sand. The
“magic” is caused by the fact that moist sand is partially water saturated. This means that
there is a meniscus of water at every grain contact, as shown schematically in Fig. 2.21.
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Fig. 2.21. Schematic illustration of the distribution of fluids at a grain contact.

It is energetically favourable for the grain—water—air system to maintain this constellation,
hence a certain force is needed to rip the grains apart. This acts as a cohesion, giving
the moist sand a finite shear and tensile strength. The strength is fully recovered after
a reorganization of the grains, hence the moist sand can be reshaped indefinitely. When
the sand becomes completely dry or fully water saturated, the meniscus constellation is
destroyed, and the cohesion and strength are gone.

The effects of partial saturation occur whenever the pore space is filled with at least two
immiscible fluids, like for instance oil and water. Normally, it is energetically favourable
that one of the fluids (the wetting fluid) stays in contact with the solid material, while the
other (non-wetting) fluid is shielded from the solid to some degree, giving a constellation as
illustrated in Fig. 2.21. This so-called capillary effect produces a difference in the pressure
for the two fluids, given as

Dcp = Pnw — Pwe (2.50)

where pwe is the pressure in the wetting fluid, pnw is the pressure in the non-wetting fluid,
and pcp is called the capillary suction.

The magnitude of the capillary suction depends on the type of fluids, the condition of the
solid surface (which determines the degree of wettability for the various fluids) and the size
of the pore at the point where the two fluid phases meet. The wetting fluid will always tend
to fill the smallest pores, so that the contact between the fluid phases will move to larger
pores when the degree of saturation for the wetting fluid is increased. Thus pcp varies from
one pore to the next, and falls off rapidly with the degree of saturation for the wetting fluid.

The capillary suction has some effect on the effective stresses in the rock, and we may
define a generalized effective stress (Bishop, 1959)

o' =0 —a(pow — Swe Pcp) (2.51)

Swe is the degree of saturation of the wetting fluid. The term Sye pcp typically has a peak
at a low value for Sye (0.1 or less) and vanishes for Swe = 0 and Swe = 1. It is normally
quite small, however, typically less than 1 MPa even at its peak value, and can in most
cases be ignored with respect to the effective stresses.

The capillary suction also affects material properties that can be related to the intergran-
ular cohesion of the rock (Papamichos et al., 1997). This is a more significant effect that
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Fig. 2.22. Hydrostatic compression tests at different levels of water saturation on Pietra Leccese chalk. In the test
labelled Sywe = 0.013 — 1.0 the sample was saturated at Swe = 0.013 until the stress had reached 40 MPa, then
the saturation was changed to Swe = 1.0 while the stress was kept constant. After Brignoli et al. (1995). Used
with permission.

may have a large impact on both the strength and the stiffness of the rock, as illustrated in
Fig. 2.22.

2.6.3. Chemical effects

Some abundant components in rocks, like salts and some clay and carbonate minerals, are
dissolvable in water. Over geological time, the solid minerals in a rock will establish a
chemical equilibrium with the pore water, which implies that the minerals dissolve and
precipitate at the same rate. If the pore fluid is changed, for instance during drilling or
production, the chemical equilibrium may be disturbed, and a net dissolution or deposition
of minerals may occur. This may have a strong effect on the rock properties, typically a
reduction in strength of 30-100% is seen in many rocks due to deterioration of the cement
(Broch, 1974). For instance, dry or oil saturated Red Wildmoor sandstone has a uniaxial
compressive strength of about 14 MPa, while it essentially turns into loose sand if it is
saturated with fresh water. The reason for this is that this rock consists of quartz grains
cemented together only by clay minerals which dissolve in water.

The solubility of minerals in the pore water may also be affected by the acidity (pH-
value) of the water, as well its temperature and pressure. Thus, it is to be expected that the
strength of some rocks may be sensitive to changes in these parameters too, if the changes
are given sufficient time to act.

Experimental studies by Risnes et al. (2003) have shown that the chemical activity of
the pore water seems to have an impact on the strength of chalk. In a set of K’ = 0.9 tests
(see Section 7.3.9) on Liége chalk, they found the relation

Aoyield i

— —6MPa (2.52)
AClW
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between the yield stress (oyielq) and the water activity (aw). Thus, a low salt concentration
in the pore water (which corresponds to a high water activity) makes the chalk weaker.
Risnes et al. (2003) concluded that the water activity seems to be the key parameter in the
water weakening effect seen in chalk, and that capillary effects play only a minor role.

2.7. Presentation and interpretation of data from failure tests

To determine the mechanical properties of a rock, normally a series of triaxial compression
tests are performed at different confining pressures. From the stress strain diagrams both
elastic properties and failure or yield data are obtained. The strength data resulting from
such a test series will consist of pairs of corresponding yield (or failure) and confining
stresses. This set of failure data can be displayed in different types of diagrams.

It may be confusing that the word failure is often used in a somewhat general sense, not
distinguishing between failure and yield. An argument for this practice is that yield can
be considered as the onset of failure. However, when actual failure data are presented, it
should be checked if the data refer to yield or failure in the strict sense.

Three types of plots are commonly used to present failure data: the principal stress plots
(Fig. 2.10), the T—o" plots (Fig. 2.8), and the g—p’ plots, which will be described below.

In a principal stress plot, the stress path of a given test can be traced as a line, while
failure is represented by the point where the stress path crosses the failure surface. The
principal stress plot is suitable for mapping the entire failure surface, including all types of
failure, as demonstrated in Fig. 2.13.

A 7—o' plot displays effectively how the shear stress and the normal stress across a plane
in a stressed rock varies with the orientation of the plane relative to the orientation of the
principal stress axes. It is therefore well suited for identifying critical shear stresses, and
for illustrating orientational effects, like Fig. 2.19. As explained in Section 2.4, the t—o”’
plot is not well suited for displaying collapse.

The g—p’ plot essentially displays the maximum shear stress versus the mean effective
stress. It is based on the parameter ¢, usually called the generalized shear stress and defined
as (see Eq. (1.46))

1
g= ﬁ\/(ol’ — )2 + (05 — o§? + (0] — 0%)? (2.53)
and the parameter p’ which is identical to the mean effective stress ¢':
/ 1 / /7 /! =/
p = 5(01 +oy+03) =06 (2.54)

Both g and p’ are stress invariants (see Sections 1.1.7 and 1.1.8). Under triaxial conditions
o, = o3, Which implies that g = o] — o3.

As for the principal stress plot, the stress path of a given test can be traced as a line in the
g-p’ plot, and failure occurs where the stress path crosses the failure line. The g—p’ plot
corresponding to Fig. 2.13 is shown in Fig. 2.23. Note that the transition from Fig. 2.13 to
Fig. 2.23 is not unique since both ¢ and p’ depend on o;.
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Fig. 2.23. Location of the various failure modes in the g—p’ plane, as defined by Eq. (2.3) for tensile failure, by
Eqg. (2.22) for shear failure, and by Eq. (2.29) for compactive yield, assuming 02/ = (73/.

Some of the three dimensional failure criteria are simpler to express in terms of ¢ and
p’ than in terms of the principal stresses, for instance,

the von Mises criterion (Eq. (2.31)):

1
g% = Ec2 (2.55)

the Drucker—Prager criterion (Eq. (2.32)):
1
g% = 5C13p + C2)’ (2.56)

the modified Lade criterion (Eq. (2.36))—with f1(, L) given by Eq. (2.42); note the
similarity with Eq. (2.56):

q = f1(®, nL)(SL+ p) (2.57)
— the extended Griffith criterion (Eq. (2.33)):
g% =36Typ’ (2.58)
— and the compactive yield criterion (Eqg. (2.29)):
p'2+q%=p*? (2.59)

The g—p’ plots are standard for plotting of failure surfaces in soil mechanics (see Sec-
tion 2.8.2), and have a growing popularity also in rock mechanics.

2.8. Beyond the yield point

In the previous sections, we have studied various failure criteria and their failure surfaces
in principal stress space without clearly expressing what we mean with failure. This is
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partly due to the fact that failure is not very well defined. Although the failure point can
be defined relatively precisely for the uniaxial test in Fig. 2.2, the situation is much less
clear for the higher confining pressures in Fig. 2.3. Here we have a gradual transition to a
material with decreased stiffness, but still with an increasing capacity to carry load as the
strain increases. Thus the material can not be considered as completely failed, although it
has been significantly altered at this stage. Whether the alteration is critical or not, depends
on the actual situation. For example, the practical criteria for a road tunnel and a wellbore
may be quite different. Whereas no change in profile is acceptable for a road tunnel, one
may well live with a borehole with breakouts in many cases (see e.g. Guenot, 1989).

The remarks above illustrate the need for a post-yield description linked to the defin-
ition of failure and the failure criterion. To properly describe post-yield behaviour, one
would need a description treating the rock as an inhomogeneous medium, penetrated by
interacting faults and cracks.

Compared to a continuum model, such a description would—of course—be very com-
plicated. It is therefore reasonable to look for a continuum theory, that can at least model
some post-yield behaviour with some precision, although the physical interpretation may
be less precise. One possible candidate is the theory of plasticity, which is widely used in
the description of metals. An introduction to plasticity is given in Section 2.8.1.

Beyond the yield point the solid framework of the rock is gradually destroyed, and it
may become increasingly relevant to compare its behaviour to unconsolidated materials.
A model derived for the description of soils is presented in Section 2.8.2.

At some point in the failure process, the description of the rock as homogeneous is
clearly not valid, even on a macroscopic scale, as exemplified by the formation of shear
planes in a triaxial test. This calls for other types of modelling. Models addressing local-
ization effects at failure are briefly discussed in Section 2.8.3.

2.8.1. Plasticity

Plasticity is a concept describing non-elastic deformation of a material. Unlike elastic de-
formation, plastic deformation is not recovered when the load causing the deformation is
released. Rocks stressed beyond the yield point typically suffer such deformations, and it
is often relevant to describe post yield behaviour of rocks by the concepts of plasticity.

The theory of plasticity is designed to model ductile behaviour, that is—behaviour in
which the material can sustain a load comparable to the failure load well beyond failure,
and no attempt should be made to model brittle failure with this theory.

The theory of plasticity is based on four major concepts:

1. Plagtic strain. The total strain increment associated with a stress increment is as-
sumed to consist of an elastic part and a plastic part:
P
de;j = def; + de;; (2.60)

dsiej is related to the stress increment by conventional elasticity theory, and will vanish

when the stress is released. The plastic strain def’j is a permanent deformation, and
will remain when the stress is relieved.
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Fig. 2.24. Stress—strain curve for a linearly elastic — ideally plastic material.

2. Avyidd criterion. In Section 2.1 we defined yield as the point at which irreversible
changes occur in the rock. Thus, the yield point represents the onset of plastic defor-
mation. Clearly, yield can be defined more precisely than failure. A yield criterion is
similar to the failure criteria defined in Sections 2.2-2.4, and defines the surface in
stress space where plasticity is initiated.

3. Aflowrule. The flow rule describes how the plastic strains develop for a given loading
situation.

4. A hardening rule. We mentioned in Section 2.1.1 that a rock under certain condi-
tions may sustain increasing load after the initial failure. This is described by the
hardening rule. The hardening (or, alternatively, the softening) may be interpreted
as a change of the yield surface in principal stress space. This can be described by
changing Eg. (2.1) to

f(o1,03.03,k) =0 (2.61)

where « is a parameter describing the hardening effects.

An ideally plastic material is a material that can endure infinite plastic strain without
change in the stress level. Fig. 2.24 shows schematically the stress—strain diagram for a
linearly elastic — ideally plastic material. After the initial elastic phase, the material de-
forms at constant stress.

Plastic flow

The function of the flow rule is to describe the development of the plastic strain increments.
The basic assumption concerning plastic flow dates back to Saint-Venant in the nineteenth
century. It states

dsf; = dihij (o) (2.62)
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where A is a scalar not specified by the flow rule. It is seen that the #;;’s are functions of
the stress components. There are two main implications of Eq. (2.62). First, it states that
the direction of plastic flow is determined by the stress state, and is not influenced by the
stress increments or by stress gradients. Second, the magnitude of the plastic strain is not
unique. Referring to Fig. 2.24, this is quite trivial for an ideally plastic material, since the
yield stress is maintained for any magnitude of the plastic strain.

The assumption that the plastic strains are independent of stress increments, is intuitively
understandable in the following simple example. Consider an object resting on some sur-
face, and assume that a force nearly overcoming the rest friction between the object and
the surface is applied. Now, a small force increment is applied at some angle to the pri-
mary force. If the increment has a component in the direction of the primary force, the rest
friction will be overcome, and the object will start to slide in the direction of the primary
force, irrespective of the direction of the force increment.

Eq. (2.62) puts some restrictions on the plastic behaviour, however it is far from a com-
plete description which requires a specification of the functions #;;. Some help is found
from the fact that plastic deformation is a dissipative process, which implies that

Za def, > (2.63)

A significant simplification results from the assumption of von Mises (1928), that the #;;’s
can be derived as the gradient of a function g in stress space:

g
Bai’j
The function g is called plastic potential and must of course be chosen such that Eq. (2.63)
is obeyed. Although the assumption of a plastic potential reduces the need for a specifica-
tion of six functions #;; of six variables to one function g of six variables, it is by no means
sufficient to completely specify plastic flow.

One solution to the problem is Drucker’s (1950) definition of a stable, work hardening
material. Such a material is defined by a more strict version of Eq. (2.63):

Zda e, > (2.65)

p
dsij =

(2.64)

Note that while Eq. (2.63) is a thermodynamlc law, Eq. (2.65) is not, and thus the con-
sequences derived from Eq. (2.65) need not be obeyed by all materials. From Eqg. (2.65)
Drucker found that the plastic potential g is identical to the function f describing the yield
surface, that is:

af
Boi’j
Thus, once the yield surface is specified, so is plastic flow—a gratifying result indeed.
However, we shall see that some of the consequences of Eq. (2.66) are not always fulfilled
by rock materials, such that one may need to return to the more general assumption (2.64).

Since, in Eq. (2.66), plastic flow is derived from the yield criterion, it is called an associ-
ated flow rule. The flow rule derived from the more general plastic potential g is conversely
called non-associated flow.

dsf’j =dxr (2.66)
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01

Fig. 2.25. Associated plastic flow for the Coulomb criterion in a principal stress plot.

Associated flow

In this section, we shall discuss associated plastic flow, mainly in conjunction with the
Coulomb criterion. Fig. 2.25 shows a principal stress plot with a Coulomb failure line (see
Fig. 2.10). We assume that this line represents the yield surface. According to Drucker
(1950) it thus also represents the plastic potential, as described above. Consider that a
material is brought to the stress state represented by point A on the figure. Any small
increment of the stresses that brings the stress state above the line will result in a plastic
deformation.

The axes of plastic strain increments coincide with the principal stress axes. According
to Eg. (2.66) the plastic strain increment is parallel to the gradient of the plastic potential.
This implies that the direction of the plastic flow is parallel to the normal of the yield
surface at point A, as indicated by the arrow on the figure. (The gradient of a function is
always normal to the equisurface of that function.) From the figure we see that

de} = drcosy (2.67)
def = —dxrsiny (2.68)

and therefore
deb +deftany =0 (2.69)

The Coulomb criterion does not depend on the intermediate principal stress o, hence the
failure surface is normal to the o, o-plane, and therefore de5 = 0. The volumetric strain

increment def,, = de} + deb + de} is then
deb | = de (1 —tany) (2.70)
For the Coulomb criterion, y is greater than 45°, and therefore
deb, <0 (2.71)

This means that the volume increases (remember our sign convention from Chapter 1). This
effect is called dilatancy. Referring to Fig. 2.24, we note that for an ideally plastic material,
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O,/

Fig. 2.26. Associated flow for the Coulomb criterion in a shear stress—normal stress plot.

this effect occurs while the mean stress is constant. This is different from a linearly elastic
material, for which a change in volume only occurs as a result of a change in the mean
stress.

In the literature, one will encounter plots in which the direction of plastic flow is in-
dicated as a normal to the yield criterion in a t—o’-plot, as shown in Fig. 2.26. Since the
interpretation of this at first glance may be unclear, we will briefly discuss it here. Eq. (2.16)
may be written as:

/

91
2C0S ¢

/
93

1
=S80+ E(Ui +o3)tang (2.72)

Therefore, a plot giving the stress deviation (o] — o3) scaled by 1/(2 cos ¢) versus ((o] +
03)/2) will look exactly like Fig. 2.26. Hence, to find the plastic strains, we may interpret
the y axis of Fig. 2.26 as (¢} — £§)/(2cos ¢), and the x axis as (¢} + €5)/2. 1t can thus
be concluded that the inclination of the arrow in Fig. 2.26 determines the dilatancy of the
material as follows:

1. If the arrow is tilted to the left (¢ > 0), the material is positively dilatant.

2. If the arrow is vertical (¢ = 0), the material does not change volume (incompressible
plastic flow).

3. If the arrow is tilted to the right (¢ < 0), the material is negatively dilatant, or con-
tractant.

Thus, a normal Mohr—Coulomb criterion describes dilatant plastic flow, whereas the Tresca
criterion describes an incompressible plastic flow.

Experimentally, one often observes some dilatation, but rarely to the degree predicted
by the Mohr—Coulomb criterion and associated plastic flow. This is an indication that the
assumptions leading to associated flow do not always hold. Also, the restriction given by
Eg. (2.65) means that the stress—strain curve is a monotonically increasing curve, again a
consequence of associated plastic flow that is by no means always fulfilled.
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Non-associated flow

Non-associated plastic flow may occur if the plastic potential is not identical to the yield
surface. It is a convenient model to use in order to have control on dilatancy without chang-
ing the yield criterion.

For plastic flow associated with the Coulomb criterion, the plastic potential can be writ-
ten as

,1+sing

2.73
% 1—sing 2.73)

f(o{,03) =01 —Co—o3tany =o{ — Cp —

A non-associated yield criterion is found by choosing a different angle in Eq. (2.73), i.e.

,1+siny

034,

1—siny

¥ is called the dilatancy angle, and from the discussion in the previous section, we know

that we will have dilatant, incompressible, or contractant flow—depending on whether ¥ is

larger than, equal to, or smaller than zero. Note that the allowable range for ¥ is restricted,
since Eq. (2.63) has to be fulfilled.

g(o1,03) =01 — Cog—oztan¥ = o] — Co — (2.74)

Hardening

According to Eg. (2.61) hardening can be described by a change in the yield surface as a
function of a parameter « that is, in some way, related to the plastic strains. This is shown
schematically in Fig. 2.27. In the figure we define the initial yield surface, and a current

o .
1 Inaccessible

stress states

Failure surface

N

Current yield surface o3
Initial yield surface

Fig. 2.27. Sketch of hardening in stress space.
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yield surface, i.e. the yield surface after some plastic straining. Also shown is the failure
surface, which is defined as the surface that separates accessible states from inaccessible
states. Note that for an ideally plastic material, the initial yield surface and the failure
surface coincide. The use of only one parameter « to describe hardening is, of course, a
simplification, since there are six plastic strain components.

There are two common ways to relate « to the plastic strain. One way is to assume that «
is a function of the total plastic strain. This is called strain hardening, and can be expressed

as
K= K</S dsfj> (2.75)

where fs symbolizes integration over the stress path. Another way is to relate « to the total

plastic work:
K= K(/; a,-’jdafj) (2.76)
This is called work hardening.

Hardening is commonly decomposed into two main modes, isotropic hardening and
kinematic hardening. Fig. 2.28 illustrates the difference between these concepts. Isotropic
hardening means that the yield surface expands (or shrinks) in a uniform way about the
hydrostatic axis. Kinematic hardening consists of a translation of the failure surface in
stress space. In practice, hardening must be described by a combination of the modes or an
even more complicated behaviour, in which different parts of the yield surface deform in
different ways.

Before concluding, we shall mention one important effect concerning hardening, which
is normally observed experimentally. The Baushinger effect states that if a material is
subjected to a given plastic strain in one direction, given a yield stress o7, the correspond-
ing yield stress found when the specimen is later loaded in the opposite direction will
be smaller than o;. One will see that the Baushinger effect may be obeyed by kinematic
hardening, but not by isotropic hardening.

Isotropic Kinematic

Fig. 2.28. Isotropic and kinematic hardening in principal stress space.
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2.8.2. Soil mechanics

The failure mechanics described so far in this chapter was primarily developed for hard
rocks. Weak sedimentary rocks are however intermediate between hard rocks and soils,
and it has been found that a mechanical model developed for soils may be applied with
success in some weakly cemented sedimentary rocks, such as shale (Nakken et al., 1989;
Marsden et al., 1989) and chalk (Jones and Leddra, 1989). We shall here give an introduc-
tion to the main concepts of this mechanical model called “soil mechanics” (also called
the “Cam Clay model”). For more details and a more comprehensive description, see for
instance Atkinson and Bransby (1978), Head (1984) or Wood (1990).

Soil mechanics has been developed for systems with no or little cement between the
individual grains. Clay is a material that fits into this description. In this section we will take
a look at the behaviour of a clay under isotropic compression, and define some concepts
commonly used in soil mechanics.

\oidsratio e is the volume of voids Viig relative to the volume of the solid grains Vsojig
in the material:

Vivoid
e =
Vsolid
Secific volume v is the total volume (grains + voids) divided by the volume of the solid
grains, that is

(2.77)

o= Vsolid + Vvoid
Vsolid
The specific volume and the voids ratio are related to the porosity ¢ by

=1+e (2.78)

e v—1
¢_1+e_ v (2.79)

In a drained test the fluid pressure in the sample is controlled at a given value, by allow-
ing the fluid to enter or leave the sample (see Section 1.6). An undrained test is a test where
no fluid is allowed to enter or escape from the sample during the test. The fluid pressure in
the sample will change during an undrained test.

Fig. 2.29 shows schematically the result of isotropic loading of a clay under drained
conditions. The plot shows specific volume v versus the logarithm of effective mean stress
p’ = p— ps (= the Terzaghi effective pressure, see Section 1.6.3). Note that we use the soil
mechanics convention of denoting the mean stress by p (= & in Section 1.1.7). The reason
for using logarithmic scale on the pressure axis is that the loading paths are close to straight
lines in this case. As a sample is loaded, the specific volume will decrease along the line
1-2-3-4 in the figure. Assume now that we start with an identical sample and load it up to
the point 2, and then unload it. The unloading path follows the line 2-2, which has a lower
slope. Reloading again from 2/, the path follows the line 2’2 up to the point 2, thereafter it
follows the line of the first sample towards point 3. Unloading again after reaching point 3,
the sample follows the line 3-3’, which has a slope equal to that of 2-2’.

The description above is idealized. In practice the lines will not be exactly straight, there
will be some hysteresis along the lines 2-2" and 3-3’, and the slopes of 2-2’ and 3-3’
will differ somewhat. Still, the description gives a good picture of the overall behaviour of
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Fig. 2.29. Isotropic compression of clay, schematically.

clays. A main point to be learned is the following: the stiffness of a sample which is loaded
above the highest pressure it has been exposed to before, is lower than the stiffness of a
sample which has seen higher pressures than the present state.

A sample which is at the highest stress it has ever experienced is said to be normally
consolidated. The sample described above was normally consolidated whenever it was
on the line 1-4 (Fig. 2.29). A sample which has been subjected to higher stresses before
is said to be overconsolidated. The sample above was overconsolidated when it was on
one of the lines 2-2" or 3-3’ (Fig. 2.29). The highest stress a sample has been exposed
to is commonly called preconsolidation stress. The overconsolidation ratio of a sample is
defined as the highest stress it has been experienced, divided by the current stress.

Triaxial tests on sandstones are usually run on drained samples, and plots showing stress
versus strain (like Figs. 2.2 and 2.3) are used to present the results. Due to the low per-
meability, triaxial tests on a material like clay are usually run on undrained samples. It is
also customary to analyse the test results in terms of the effective mean stress p’ and the
generalized shear stress ¢, defined in Section 2.7.

Fig. 2.30 shows schematically a typical test on a normally consolidated clay. The loading
path curves to the left, which means that the mean effective stress is decreasing. Thus the
pore pressure increases throughout the test. For strongly overconsolidated samples, one
expects the path to curve to the right as the sample approaches failure.

Typical behaviour during undrained triaxial testing, for normally consolidated clays and
strongly overconsolidated clays can be summarized as follows:

Normally consolidated clay:

1. No peak stress in the stress—strain diagram, i.e. the shear stress does not fall below
previous value as the strain increases.

2. The sample contracts throughout the loading.

3. The loading path in a g—p’-plot curves to the left, i.e. the pore pressure increases.
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Fig. 2.30. Loading path for an undrained test on a normally consolidated clay in the g—p’ domain.

Srongly overconsolidated clay:

1. A peak is normally observable in the stress—strain diagram, i.e. at some point the
shear stress falls below previous values as the strain increases.

2. The sample contracts initially, then dilates as failure is approaching.

3. The loading path in a g—p’-plot curves to the right near failure, i.e. the pore pressure
decreases.

The normally consolidated clays and the strongly overconsolidated clays are seen to behave
quite differently. We shall now describe each of them in more detail.

Normally consolidated clays

Fig. 2.31 illustrates the stress paths for three undrained tests on samples of a normally
consolidated clay, starting from three different isotropic compression levels. The arrows
show the paths of the tests from the start of the triaxial phase to the failure state, that is to
the point where the stress—strain curve flattens out and large shear strains may occur at no
increase in the shear stress. The loading paths in the v—p’-plot are horizontal, since there
is no change in specific volume during an undrained test. Note that the ends of the paths
seem to fall on continuous “failure” lines in both plots.

Fig. 2.32 shows the corresponding stress paths for drained tests. Again the end points
are seen to fall on continuous lines. It has been found that the continuous failure lines
defined by the ends of the tests in Figs. 2.31 and 2.32 are indeed the same lines to a fair
approximation. If we plot the test results in a three-dimensional plot, with v—p’—¢ as the
axes, we find that the failure lines in the g—p’ and v—p’ planes are projections of a line
in this three-dimensional space, the critical state line (CSL). The critical state line with
its projections onto the g—p’ and v—p’ planes are shown in Fig. 2.33. The critical state
represents an ultimate state where large shear strains may occur at no change in shear
stress.
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Fig. 2.31. Undrained triaxial compression tests from three different isotropic compression levels, on samples
from a normally consolidated clay. CSL is the critical state line.
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Fig. 2.32. Drained triaxial compression tests from three different isotropic compression levels, on samples from
a normally consolidated clay.

A large number of drained tests on identical samples, starting from different isotropic
compression levels, will define a surface in the v—p’—¢g space. Similarly, undrained tests
also define a surface in this space. Since the two surfaces have the critical state line and the
isotropic consolidation line in common, it seems reasonable to assume that the two surfaces
may actually be the same. This assumption has been confirmed with reasonable precision
from experiments. The surface is called the Roscoe surface. Its location in v—p’—q space
is a characteristic property of the actual material. All tests on a normally consolidated
sample of this material—drained, undrained or intermediate—will follow a path on the
Roscoe surface, and end at the critical state line at failure. The Roscoe surface is shown in
Fig. 2.33.
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Fig. 2.33. The Roscoe surface in v—p’—q space.

Overconsolidated clays

For a normally consolidated clay, there is a unique relationship between the specific vol-
ume and the effective stress, defined by the normal consolidation line in the v—p’ plane.
For an overconsolidated clay, there may be a range of voids ratios for a given effective
stress, depending on the preconsolidation stress from which the material was unloaded.
This means that whereas an undrained test on a normally consolidated material traverses
a unique path in the v—p’—q space if the starting specific volume is given, there will be a
range of possible paths for an overconsolidated material.

We now imagine that we do a series of undrained tests on a clay, for a given specific
volume, but start at different effective hydrostatic stress levels, corresponding to different
overconsolidation ratios. Fig. 2.34 shows the (idealized) results of these tests, projected
onto the g—p’ plane. A slightly overconsolidated material moves more or less vertically
until it reaches the Roscoe surface, and then follows this surface until it reaches the critical
state. (The curve is initially vertical only to the extent that the Skempton B coefficient is
close to 1, otherwise the curve tilts slightly to the right; see Section 1.6.5.) For strongly
overconsolidated specimens the movement is again vertical in the initial phases of the ex-
periment. The path does not reach the Roscoe surface, but changes direction upon reaching
a limiting curve which like the Roscoe surface passes through the critical state. This lim-
iting curve is nearly a straight line. In the figure we have assumed that the sample can not
sustain tensile stresses, and the change on slope at low p’ reflects this.

If similar tests are done for the same material at various specific volumes, one will find
that they map out a surface in the v—p’—q space, the Hvorslev surface. This surface plays
a similar role for overconsolidated samples as the Roscoe surface does for normally (and
slightly over-) consolidated samples. It is a limiting surface for all stress paths, not only
undrained tests. The Hvorslev surface and the Roscoe surface are shown in Fig. 2.35. Note
that they are joined together at the critical state line.

The behaviour of the material at the Hvorslev surface is less predictable than at the
Roscoe surface. If the material behaved uniformly, it would follow the Hvorslev surface up
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Fig. 2.34. Undrained tests on samples with various overconsolidation ratios, for a given specific volume, pro-
jected onto the g—p’ plane. The change in slope for low p’ corresponds to tensile stress states.
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Fig. 2.35. The Hvorslev and Roscoe surfaces in v—p’—g space.

to the critical state line. However, overconsolidated samples often behave in a non-uniform
way, due to localization effects such as the formation of shear bands, as discussed earlier
in this chapter. This means that different parts of the sample take different loads, and thus
the recorded behaviour is not indicative of the intrinsic material properties. As a result,
the sample does not end up at the ultimate critical state as it would have if it had behaved
uniformly.

2.8.3. Localization

Complete failure of a rock sample usually implies that the sample breaks up into several
pieces, and falls apart. This implies that the rock at some point in the failure process ceases
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to behave as a homogeneous material even on the macroscopic scale. It also implies that
failure is complete only within a few restricted areas of the rock sample, like fracture planes
developed under tensile failure, and narrow shear bands developed under shear failure.

The formation and growth of localized failure zones occurs when it is energetically
favourable for cracks or other (preexisting or randomly induced) defects to grow and in-
teract with nearby defects. For tensile failure and unconfined shear failure this is usually
an unstable situation that rapidly leads to macroscopic failure of the sample. However, for
failure under compressive stresses, the situation may lead to non-uniform deformation in a
planar band within the sample, while the deformation outside the band remains homoge-
neous, and the material remains stable.

Rudnicki and Rice (1975) described the conditions for localization of deformation into
planar bands. The formation of such bands can be considered as a constitutive instability,
closely linked to the plastic hardening of the material. It is found that for a material obeying
associated plastic flow (see Section 2.8.1) the formation of shear bands can only occur after
the peak stress point. For materials obeying non-associated plastic flow, such bands may
also be formed prior to the peak stress point, at least for stress configurations close to pure
shear.

At lower stress levels, the rock sample is supposed to follow one unique path of uniform
deformation. When the conditions for the formation of a localized deformation band are
fulfilled, there are at least two possible orientations of the band. Thus, further deformation
of the rock sample will follow one out of several equivalent paths. This spontaneous split-
ting of the deformation path is called bifurcation, and the point where the conditions for
localized deformation are first fulfilled is called the bifurcation point (see Vardoulakis and
Sulem, 1995).

Other forms of non-uniform deformation are also possible, for instance surface buckling
(Biot, 1965; Vardoulakis, 1984) which implies that the material spontaneously changes
its shape when the conditions for such deformation are fulfilled. It has been demonstrated
(Mollema and Antonellini, 1996; Olsson, 1999; Olsson and Holcomb, 2000) that also com-
paction can be localized, in so-called compaction bands. Such bands may act as barriers
for fluid flow, and may therefore be of importance under given conditions, by changing
flow paths or altering pore pressure gradients and thereby also the effective stresses. (See
also Borja and Aydin, 2004; Fossen et al., 2007.)

2.8.4. Liquefaction

Failure of a highly porous rock results in a volume reduction and a corresponding reduction
in the pore space. If the rock fails under undrained conditions, the pore space reduction will
lead to increasing pore pressure. This implies reduced effective stresses and a correspond-
ing reduction in confinement. For a poorly consolidated (or previously damaged) rock, this
is a highly unstable condition that may result in very large deformations driven by the static
shear stresses.

This extreme condition is called liquefaction. It is sometimes observed in connection to
earthquakes, and is highly noticeable due to its sudden appearance and quick development,
and the large distance the liquefied material may move (see for instance Kramer, 1996).
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2.9. Failure of anisotropic and fractured rocks

In the discussion so far, it has been assumed that the material properties are isotropic, so
that the strength is independent of the orientation of the applied stresses. In reality this may
not be the case. Isotropy is often assumed just for simplicity.

We shall here distinguish between intrinsic anisotropy and structural anisotropy. Intrin-
sic anisotropy implies that an otherwise homogeneous material have different mechanical
properties in different directions. Structural anisotropy is associated with localized discon-
tinuities like planes of weakness or fractures.

2.9.1. Intrinsic anisotropy and the failure surface

For isotropic materials the principal axes of strain and the principal axes of stress coin-
cide. For anisotropic materials this is not the case in general. Still it is possible, at least in
principle, to determine a failure surface in stress space, by performing experiments along
different stress paths. However, such a failure surface will depend on the orientation of the
anisotropic material relative to the principal stress axes. There is no longer a unique failure
surface that characterizes the material behaviour. The concept of a failure surface is thus
less convenient for visualizing failure properties.

2.9.2. The plane of weakness model

The plane of weakness model is a simple approach to strength anisotropy. The model as-
sumes that the inherent strength is the same in all directions, except for one set of parallel
planes where the strength is lower. Since the bedding planes in sedimentary rocks may be
planes of weakness, the model has a physical basis, and it is therefore quite important in
spite of its simplicity. Obviously the model also applies to a set of parallel fracture planes.

Assume that we run a series of triaxial tests on a material with a set of parallel planes
of weakness. According to Mohr—Coulomb-type failure criteria, it is clear that the weak
planes have no effect on strength if we choose the axis of the plug normal to or parallel to
the planes, since we have no shear stress on the weak planes in these cases. (Remember
though, that the assumption of shear failure may not be correct—see the discussion of
uniaxial compressive and tensile strength in Section 2.3.2.) It is also clear that for some
intermediate orientations, we expect the weak planes to fail at a lower stress than expected
for the intact material.

Consider a t—o’-plot for this material, as illustrated in Fig. 2.36. The material has two
failure criteria—one ordinary, isotropic criterion and one for the weak planes—and corre-
spondingly two failure lines. The weak plane criterion is given by the cohesion Sy and
the friction angle ¢w. The corresponding failure angle is given as

T Pw
=— 4+ = 2.80
Bw 7 + > ( )
If the stress state in the rock sample is such that the Mohr circle touches the failure line for

the weak planes, as shown in Fig. 2.36, the material will fail only if the sample is oriented
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Fig. 2.36. 7—o’-plot for a material containing a plane of weakness. The illustrated stress configuration represents
the lowest strength possible for any orientation of this material.
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Fig. 2.37. t—o’-plot for a material containing a plane of weakness. The illustrated stress configuration is acces-
sible only for some orientations of the material.

such that the angle 6 between the major principal stress and the normal to the weak planes
is equal to B. If the sample has a different orientation, it can take a higher value for o]
and a correspondingly higher shear stress. The situation is then as shown in Fig. 2.37,
where the Mohr circle intersects the weak plane failure line in two points. At this stress
level, the sample will fail only if & = 81 or & = B,. For any orientation within the range
B1 < 0 < B2 the sample will have failed along the weak planes at a lower stress level.

Finally, if the stress state is such that the Mohr circle touches the failure line for the
isotropic criterion, as shown in Fig. 2.38, the sample will fail for any orientation of the
weak planes—except for orientations where Bmin < 6 < Bmax, in Which case the sample
will already have failed along the weak planes at a lower stress level.

For the stress configuration considered here (o, = o3) we can express the two failure
criteria as follows (see Eqs. (2.14)—(2.17)):
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Fig. 2.38. t—o'-plot for a material containing a plane of weakness. The illustrated stress configuration represents
the highest strength possible for any orientation of this material.
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The criterion that predicts the lowest strength for a given orientation 6 is always the relevant
criterion. Fig. 2.39 illustrates how the strength varies with the orientation of the sample for
such a material.

Note that for a general, three dimensional stress state, the shear and normal stresses
over the weak planes are given by Eqgs. (1.36)—(1.37), and the weak plane failure criterion
becomes much more complicated.

More advanced theories may be developed by allowing cohesion and friction angle to
vary as function of orientation. Such theories will predict a smoother dependence on orien-
tation. A more empirical approach to the problem was given by Hoek and Brown (1980).

2.9.3. Fractured rock

The behaviour of a fractured rock depends both on the properties of the fractures and on
the properties of the intact rock. Generally, fractured rocks will be much weaker than the
corresponding intact rock, as the resistance against shear failure is considerably less for an
already existing fracture.

To predict the behaviour of a fractured rock it may be necessary to apply numerical
simulation methods to the actual fracture system. Alternatively, effective rock properties
may be assigned to a representative volume that is much larger than the fracture spacing.
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Fig. 2.39. Sketch of failure stress as function of the angle 6 between the major principal stress and the normal to
the weak planes.

Hoek and Brown (1980) derived an empirical failure criterion for fractured rocks:

0 = 04+ /mpCoo + sC3 (2.83)

where Cy is the uniaxial compressive strength of intact (unfractured) rock, while myp and
s are constants depending on the rock properties and the fracture system. The uniaxial
compressive strength of the fractured rock is given by

Cot = /sC3 (2.84)

Obviously, s = 1 for intact rock, so that 1 — s represents the degree of fracturing. A com-
parison of the Hoek—Brown criterion to the Mohr—Coulomb criterion (Eq. (2.22)) indicates
that mp has some relation to the internal friction (see Egs. (2.13) and (2.8)), however there
is no direct correspondence between Egs. (2.83) and (2.22).

A typical application of this criterion implies that a value (m;) is determined for mp by
a set of triaxial tests on intact parts of the rock, while s is estimated by visual inspection,
following a specific characterization scheme (Hoek and Brown, 1997). The actual value of
myp is obtained as

mp ~ mis®3 (2.85)
For highly fractured rocks, a generalized version of the Hoek—Brown criterion applies

(Hoek and Brown, 1997):

o] = o} + Co (mbg—z + s) (2.86)

where s — 0 and a — 0.65. Note that Eq. (2.86) is identical to Eq. (2.83) when a = 0.5.
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2.10. Stress history effects

In our discussion of failure we have in this chapter mostly assumed that the rock will fail
when it has been brought to a stress state that fulfils a failure criterion, regardless how it
was brought to this state. We have seen, however, that the yield surface may move as a
result of plastic deformation (Section 2.8.1), and that the presence of fractures—that may
be the result of previous loads—reduces the strength of the rock (Section 2.9.3). It was also
described in Section 1.9.2 that creep may eventually lead to failure. These examples tell us
that not only the current stress state, but also the stress history may have an effect on rock
failure.

2.10.1. Rate effects and delayed failure

It was shown in Section 1.9.2 that a rock may deform continuously under a constant shear
load. The effect is more significant the closer the actual load is to the shear strength of the
rock.

Consider a rock sample that has been tested in a standard triaxial test (Fig. 2.40a). In
a second test on an identical sample, we stop loading at some level (A) before the peak
stress of the standard test is reached, and maintain the stress at this level. When the stress
reached level A, the rock may already have suffered some damage, so that on a microscopic
scale some parts of the rock are intact while other parts are not. While the stress is kept
constant the rock creeps, and the increasing shear deformation implies that the shear load
on the intact parts of the rock increases, and the areas of failure are growing. Thus, parts
of the deformation and corresponding damage that occurred at stress levels above A in the
standard test occurs while the stress is maintained at A in the second test, only delayed.

When the loading is stopped at a relatively low level, like A, the creeping process
declines and eventually stops after a limited amount of delayed deformation. For a sample
that is brought to a sufficiently high stress level (like B, Fig. 2.40a) before the loading is

a) b)

Oz Oz

Reduced rate

€z €z

Fig. 2.40. Schematic illustration of a triaxial test, showing the effects of: a) creep, b) strain rate.
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stopped, the creeping process is unstable and it will after a while accelerate and result in
failure (accelerating creep, see Section 1.9).

The fact that all of the damage that may occur at a given stress level does not occur
immediately, points directly to an effect of loading rate on rock strength. Clearly, if the
rock is loaded at a lower rate, more damage may occur per unit of stress increase, and the
rock will essentially be weaker (Fig. 2.40b).

Note that effects of loading rate may also be seen in hydrostatic loading, even if creep is
primarily thought to be related to shear deformation. This can be ascribed to local fluctua-
tions in the stresses that will occur in a heterogeneous material like a porous rock.

2.10.2. Fatigue

Excessive deformation at a limited stress level, as described in the previous paragraph, may
be provoked and accelerated if the stress is released and reapplied over and over again. For
each unloading-reloading cycle a little more damage is added, and the rock sample deforms
correspondingly. Eventually, the rock may be destroyed by fatigue failure. The number of
cycles required to bring a rock to failure increases dramatically if the peak stress level for
the loading cycles is reduced.

If the peak stress of the loading cycles is kept sufficiently low, the rock may not fail
even after a very large number of cycles. Still, the cyclic loading may have affected the
strength of the rock, so that in a subsequent failure test the rock will fail at a stress level
different from its normal strength. Typically, cyclic loading will reduce the strength of a
rock sample, however increased strength due to cyclic loading is also reported (Ray et al.,
1999).
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Chapter 3

Geological aspects of petroleum related rock mechanics

From a practical rock mechanics view point, the present state of a rock and its present
mechanical properties are of interest. The long and in many cases complicated process
from an initial state as a loose sediment to the present state as a rock will however clearly
affect rock mechanical behaviour.

A sedimentary basin may be exposed to sedimentary subsidence, sea-level changes and
tectonic forces creating repeated cycles of elevation and depression, in addition to erosion,
changes in sedimentary environment, changes in sedimentation rate, solution and precipita-
tion of cementing material etc. All these effects will complicate the geological description
of the sedimentary basin. These geological activities and events will affect not only current
rock mechanical properties, but also current boundary conditions in terms of in situ stresses
and pore pressure.

Therefore, knowledge of geological processes is valuable in rock engineering. Although
on a totally different time scale and length scale, geological processes are often comparable
with events in rock mechanics laboratory testing, which means that such tests may be used
to enhance our understanding of geological phenomena.

The purpose of this chapter is to give an introduction to geological aspects which are of
particular importance in petroleum related rock mechanics.

3.1. Underground stresses

Normally, an underground formation has to carry the weight of the overlying formations.
The vertical stress at the bottom of a homogeneous column of height z is oy = pgz, where
p is the density of the material and g is the acceleration of gravity. If the density varies
with depth, the vertical stress at depth D becomes

D
Gv=/0 p(2)g dz (3.1)

Note that the z-axis is here pointing vertically downwards, with z = 0 corresponding
to the Earth surface. The average density of sediments in the overburden is between 1.8
and 2.2 g/cm?, so as a rough number, the vertical stress increases downwards with about
20 MPa/km (typically 1 psi/ft).

The sedimentary rocks encountered during oil well drilling and production are porous
and hence contain fluids. One refers to the pore pressure at depth D as normal if it is given
by the weight of a fluid column above, i.e. in analogy to Eq. (3.1) the normal pore pressure

Pfn IS

D
i = /0 pr(2)g dz (32)
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The pore fluid density in case of brine with sea water salinity is in the range 1.03—
1.07 g/cm3, so the pore pressure increase with depth is roughly 10 MPa/km (0.45 psi/ft).
The effective vertical stress, oy, is then also increasing with approximately 10 MPa/km.
In many important cases, however, the pore pressure deviates from the normal value p.
We will return to these so-called abnormal pore pressures and their possible origins in
Section 3.2.

The underground stress state consists of the three mutually orthogonal principal stresses,
plus the pore pressure. It is very common (and convenient) in the oil industry to assume
that the vertical stress is a principal stress. This is reasonable at large depth within a homo-
geneous Earth, in areas that have not been exposed to tectonic activity or are relaxed in the
sense that there are no remnant stresses from previous tectonic activity. The vertical stress
is governed by gravity, which has a unique direction, pointing towards the centre of the
Earth. So it is not unreasonable to assume that the vertical is a principal stress direction.
Let us however be aware that there will be cases when this is not fulfilled, such as near
the surface: Because the surface is stress free, the principal stress directions at and near it
will be governed by the surface topography. In the case of a strongly sloping surface, even
at depth, the principal stress directions may be far from the vertical-horizontal directions.
Also, near heterogeneities such as inclusions or faults, near underground openings such as
boreholes (Chapter 4), or near depleting reservoirs (Chapter 12), principal stress directions
will differ from the vertical-horizontal orientation.

Below we will consider the vertical stress as a principal stress. To begin with, assume
a relaxed area where the horizontal stress is induced simply as a result of the vertical
stress. For simplicity, think of a fluid: The overburden causes a vertical stress (pressure) in
the fluid, but at the same time an equal horizontal stress (pressure). In a rock, the ability
to resist shear stresses causes the horizontal stress oy, in general to be different from the
vertical stress. We write (in terms of effective stresses):

o, = K'oy, (3.3)

The ratio K’ between the effective horizontal and effective vertical stress may vary signifi-
cantly. At shallow depths (0-150 m) it may vary from 1 to 10 or even higher, while values
from 0.2 to 1.5 may be found at larger depths. Bjarlykke and Hgeg (1997) pointed out that
chemical compaction increases in importance at depths below 2-3 km, and will contribute
to horizontal stresses by altering the trend seen from pure mechanical compaction above
this level.

It has been suggested that, with time, K’ — 1, so that the stress state becomes hydro-
static, with the magnitude given by the weight of the overburden according to Eq. (3.1).
This is called Heim'srule, after work by the Swiss geologist Albert Heim in the nineteenth
century. Heim suggested that the mechanism causing this development is creep. This state
of stress is referred to as lithostatic.*

L In the literature, the term lithostatic stress is sometimes defined as the vertical stress being given by Eq. (3.1),
without reference to the horizontal stresses. In this book, we follow Jaeger and Cook (1979), Engelder (1993) and
others, and take lithostatic to imply that the stress state is also hydrostatic.
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The transition toward lithostacy is normally a very slow process, and the lithostatic state
of stress is rare in the lithosphere (Engelder, 1993). Some examples of underground stress
illustrating non-lithostatic stress states are shown in Figs. 3.1, 3.12 and 9.10.

The idea that creep brings the stress state towards lithostacy is however considered
sound, and it is therefore not likely to find a general rule for predicting horizontal stress
at depth, unless very sophisticated models taking long-time stress history into account are
developed.

We now consider two very simple models for estimating the in situ stress state. First,
assume that the formation under consideration is laterally constrained; i.e. there is no
horizontal strain under the process of rock formation. Furthermore, we assume that the
rock during this process behaves according to the theory of linear elasticity. Then, from
Egs. (1.102)—(1.103), with &, = &, = 0, one finds:

Vir

= 3.4
1 — Vfr v ( )

o
In this particular case, the coefficient K’ is given the name K. In a fluid, where Poisson’s
ratio is 1/2, Ko, = 1. For a rock with vsy = 1/3, Ko = 1/2.

There are many reasons to apply the relationship above with great care. We assumed
linear elasticity, and we assumed zero lateral movement. In reality we also assumed that
the elastic properties of the rock have been constant throughout the whole process of rock
formation. This is clearly not true. An approach based on a complete stress history analy-
sis was presented by Warpinski (1989), incorporating variations in mechanical properties
over time. Consolidation, diagenesis, changes in pore pressure due to gas generation, tem-
perature gradients, and various tectonic and thermal episodes may be incorporated in this
model. Viscoelasticity appeared, for the cases studied, to be more relevant for stresses in
shale than in sandstone.

Another simple approach is to say that the rock has been, and still is, in a critical state
within the Earth, i.e. it should obey some kind of a failure criterion. Leaning on ideas of
self-organized criticality (see e.g. the book by Bak, 1996), this may be a reasonable as-
sumption, in particular in areas of active tectonics. Choosing the Mohr—Coulomb criterion
Egs. (2.18) or (2.22) as criterion for active faulting, the ratio between the minimum and
the maximum effective stress should be (for the case when the unconfined strength Cy is
negligible)

1 —sin 1
< - (pa{: 501 (3.5)
1+4sing tan< B

If the vertical stress is the maximum principal stress, Eq. (3.5) predicts the following lim-
iting value for K':

o3

, l—sing

=" 3.6
1+4sing (36)

If the friction angle is 30°, then K’ = 1/3. A lower friction angle will result in a higher
value for K.

These are very simple examples of models for horizontal stress estimation. In reality,
as mentioned above, horizontal stresses are difficult to assess from mathematical models.
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Fig. 3.1. Stresses versus depth: Vertical stress (from Eq. (3.1) with density 2.1 g/cm3, full line), horizontal
stress (from Eqgs. (3.7) and (3.8), dashed line), and pore pressure (from Eqg. (3.2) with fluid density 1.05 g/cm3,
dotted line).

The most direct method of obtaining horizontal stress is to measure it, for instance by a
fracturing test of the formation (see Sections 8.3 and 11.5).

Breckels and van Eekelen (1982) used fracturing data from whole regions, and derived
relationships between horizontal stress and depth. They also accounted for possibly ab-
normal pore pressures. For the US Gulf Coast, Breckels and van Eekelen presented the
following relations:

oh = 0.0053DY% + 0.46(pr — prm) (D < 3500m) (3.7)
on = 0.0264D — 31.7 + 0.46(ps — ptn) (D > 3500m) (3.8)

where D is depth in metres, ps is the pore pressure in MPa, psy is the normal pore pressure
(corresponding to a gradient of 10.5 MPa/km) and oy, is the smallest horizontal stress
in MPa. Note that these relations were developed at zero or shallow water depths (see also
Section 8.3).

The predicted horizontal stress from Breckels and van Eekelen’s relationship is shown
in Fig. 3.1 together with trends for vertical stress and normal pore pressure (from Egs. (3.1)
and (3.2), using constant densities for rock and pore fluid).

The Gulf Coast curve (Egs. (3.7) and (3.8)) may be used with a fair degree of confidence
also in other tectonically relaxed areas such as the North Sea.

The principal horizontal stresses are in general not equal, contrary to what has been
anticipated in Eqgs. (3.3)—(3.8). We will in the continuation refer to the maximum horizontal
stress as oy and the minimum horizontal stress as oy,. The main reason for horizontal stress
anisotropy is tectonic stresses. The terms tectonic activity and tectonic stresses relate back
to the theory of tectonophysics. The Earth’s crust consists of a number of discrete tectonic
plates. These are extensive (a few hundred to thousands of kilometres across) but thin (15—
200 km thick) plates that move about the Earth’s surface as rigid bodies. Fig. 3.2 shows
two types of plate boundaries: spreading ridge (two plates moving away from each other)
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Fig. 3.2. Schematic illustration of tectonic plate movement.

and subduction zone (two plates moving toward each other and one plate subducts under
the other).

A third type of plate boundary is a transform fault, where two plates slide past each
other. Extensive deformation (faulting, earthquakes) occurs along plate boundaries where
the plates interact. Tectonic activity refers to all forms of breaking and bending in this outer
layer of the Earth. A tectonic stress component in one direction may also be accompanied
by stress components in other directions. Consider for example a situation where there is
a tectonic stress Ao, in the x-direction. If there is no horizontal displacement in the y-
direction (¢, = 0), and no vertical restriction, the accompanying stresses Ao§ and Ao/
would become (according to linear elastic theory, Egs. (1.102)—(1.104)):

Aoy, = vp Aoy (3.9)
Aol =0 (3.10)

The total stresses in the region are then given by superimposing these stresses on the
stresses given in Egs. (3.1) and (3.4). Previous tectonic activity and associated effects are
thus of major concern when discussing underground stresses, as both magnitudes and prin-
cipal directions are affected.

Fig. 3.3 shows a stress map of the North Sea region, where principal stress orientations
obtained from various techniques (primarily earthquake focal mechanisms and borehole
breakouts; see Section 8.3.2) are indicated. More detailed maps and maps of other geo-
graphical areas can be found at http://www.world-stress-map.org.

As mentioned above, the horizontal stresses may become very large at shallow depths.
This may be because of residual stresses originating in the previous history of the rock or
structural stresses (caused by large scale inhomogeneities).

An example of how residual stresses may originate is illustrated in Fig. 3.4. This figure
shows how relative block movement exposes one block to erosion. The uplifted block will
now, at the same depth as the neighbouring block, have a different stress history. If erosion
takes place relatively rapidly, the higher stresses which existed previously will not decay as
rapidly as the erosion takes place. If the rock behaves as a viscoelastic material, the stresses
will at some stage die away. If the rock yields however, the stresses may not relax back to
normal stresses at that depth.

The maximum stress a rock has ever been exposed to is often referred to as the pa-
leostress. In soil mechanics (Section 2.8.2), the term preconsolidation stress is used. The
uplifted and unloaded block in Fig. 3.4 has previously experienced higher effective stresses.
Such a sediment is in soil mechanics said to be overconsolidated (Section 2.8.2). Examples
of structural stresses are stress fields below slopes or mountains. The structural inhomo-
geneities affect both stress magnitudes and directions.
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Fig. 3.3. Stress map of the North Sea, as given by the World Stress Map Project. (Reinecker et al., 2004, available
online at http://www.world-stress-map.org.)

The Ekofisk field in the North Sea provides a good example of how geological events
can explain the present state of stress. Ekofisk is the largest of several chalk reservoirs in
the southern part of the Norwegian sector of the North Sea. The chalks are of Maastrichtian
(Upper Cretaceous) and Danian (Lower Tertiary) age, and the field has a dome-like struc-
ture of elliptical shape. The chalk has a relatively high porosity (around 30% average), but
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Fig. 3.4. Residual stresses due to uplift and erosion.

a low matrix permeability (around 1 milliDarcy). The reservoir is however highly frac-
tured, providing a much (around two orders of magnitude) higher reservoir permeability.
This fracturing is believed to be a result of stresses induced by the growth of an underly-
ing salt dome (Byrd, 1975). Teufel and Farrell (1990) presented results from in situ stress
measurements in the Ekofisk field. The stress measurements were made using hydraulic
fracturing and anelastic strain recovery (ASR) of oriented cores (more about this technique
in Section 7.4).

Fig. 3.5 shows the azimuth of the maximum horizontal stress determined from ASR.
On the crest the maximum horizontal stress tends to be oriented sub-parallel to the long
axis of the ellipse, while on the flanks the maximum horizontal stress tends to be oriented
perpendicular to the structural contours of the dome. Teufel and Farrell also looked at the
distribution of natural fractures and found that a radial fracture pattern existed, aligned
closely with the direction of the maximum horizontal stress on the flanks of the structure.
Teufel and Farrell assumed the principal stress directions to lie in the horizontal and ver-
tical planes. This is a reasonable assumption, since the areal extent of the dome is large
compared to its curvature.

Since the structure of the field obviously affects the horizontal stress directions, it is
however reasonable to infer that principal stress directions will not be completely horizon-
tal and vertical at all locations. Rather, they will tend to have one principal direction normal
to the dome surface. This implies that on the crest, principal stress directions are likely to
be vertical and horizontal, while they will become tilted on the flanks of the dome.

There is a close relationship between structural geology and rock mechanics. Rock
mechanics laboratory experiments permit us to study processes in small scale which are
similar to those of the large scale of structural geology. For instance, a brittle shear failure
in a laboratory specimen is a miniature analogue of a fault. Faults are by definition shear
fractures with relative displacement along the plane of the fracture. The surface of the frac-
ture is the fault plane, which can be described by its dip and strike; see Fig. 3.6. Strike
is defined by a horizontal line formed by intersection of a horizontal plane and the tilted
layer, and is given in degrees relative to a compass direction. The dip-angle is the angle
between the tilted layer and a horizontal plane. Brittle behaviour leading to fault formation
is characteristic of rocks subjected to low confining pressure, i.e. in some respect close to
the surface of the Earth.
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Fig. 3.5. Structure contour map for the top of the Ekofisk formation showing the azimuth of the maximum
horizontal stress determined from anelastic strain recovery measurements. The crest of the structure is at a depth
of approximately 2.9 km (9500 ft) and contour intervals are 15.2 m (50 ft). (From Teufel and Farrell, 1990; with
permission from the authors.)
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Fig. 3.7. Illustration of fault types.

An extensional, brittle failure in a laboratory test produces a miniature joint. A joint is
characterized by no displacement along (parallel to) the fracture plane. The rock on each
side of the tensile fracture is moved apart, perpendicular to the failure plane.

The various types of faults can be classified (Anderson, 1951; Twiss and Moores, 1992)
according to well-known theories of shear failure (e.g. Mohr-Coulomb). According to
these theories, fracturing will take place in one or both pairs of conjugate planes which
are parallel to the direction of the intermediate principal stress, and are both at equal an-
gles of less than 45° to the direction of the maximum principal stress. Some of the most
common types of faulting are illustrated in Fig. 3.7, assuming that one principal direction
is vertical.

Normal faulting occurs when the maximum principal stress (o1) is vertical, and the dip is
hence larger than 45° (usually around 60°). If the minimum principal stress (o3) is vertical,
the hanging wall is moving upwards, the dip is less than 45° (usually around 30°), and a
thrust fault is formed. Thrust faults with very shallow dips (less than 10°) are also called
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Fig. 3.8. Relation between ¢ and 8.

overthrusts. If the intermediate principal stress (o2) is vertical, vertical failure planes are
created. This is referred to as strike-slip faulting.

With reference to Fig. 3.7, ¥ is the angle between the maximum principal stress and the
failure plane. This angle is then related to the failure angle, 8, such that (see Fig. 3.8):

Y =m/2—B (3.11)

Laboratory testing of sand and sandstone commonly yield values of the failure angle in the
range 55°-70°, corresponding to vy values in the range 35°-20°. According to the Mohr—
Coulomb failure criterion (see Section 2.3.1), shear fracturing will take place when:

o] = Co+ojtan® g (3.12)

where Cy is the unconfined (uniaxial compressive) strength of the rock.

The type of fault is dependent on the relative values of the principal stresses. Whether
faulting will take place, and at what angle, is however also dependent on the failure para-
meters of the rock.

To illustrate this further, let us consider some simple examples, using the Mohr-
Coulomb criterion for shear fracturing.

Consider an unconsolidated sand with zero unconfined strength (typical of shallow
sediments). A typical failure angle of the sand is 60°, corresponding to ¥+ = 30°. The
Mohr—Coulomb criterion in this case (note the use of effective stresses) reduces to:

o1 = 30y (3.13)

We assume principal stresses to be vertical and horizontal, with the total vertical stress
equal to pgz. If the vertical stress is the largest principal stress (see Fig. 3.9a), the effective
horizontal stress must be as low as one third of the effective vertical stress in order for
normal faulting to occur. For thrust faulting, the effective horizontal stress must be 3 times
larger than the effective vertical stress (see Fig. 3.9b). For strike-slip faulting, the vertical is
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Fig. 3.10. Oblique slip, normal fault.

the intermediate principal stress. The two horizontal stresses are limited as follows: If the
maximum horizontal stress is equal to the vertical, then the minimum effective horizontal
stress must be o, = (pgz — ps)/3. If the minimum horizontal stress equals the vertical,
then the maximum effective horizontal stress must be o, = 3(pgz — pf).

There are however also examples of faults which can not directly be identified from the
three types shown in Fig. 3.7. One such example is a so-called oblique slip, where there
is both vertical and horizontal movement; see Fig. 3.10. The most obvious reason for this
fault direction is that the principal stresses are not aligned vertically and horizontally. In
a formation which has not been fractured by previous tectonic activity, the fault direction
is mainly controlled by principal stress directions. The fault direction may however be
disturbed if the rock has been fractured previously. Fault movement can then be partly
controlled by the previous fault direction and partly by present principal stress directions.
Complex fracture systems are generated in this way.

Rocks buried deep in the Earth, at high confining stress and high temperature, tend to
exhibit a more ductile behaviour when exceeding the elastic limit. This plastic flow can
involve both change in shape and in volume. This may result in folding of the rock, see
Fig. 3.11.
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Fig. 3.11. Illustration of compressional folding, cross-section.

Available techniques for measurement and estimation of in situ stress directions and
magnitudes are discussed further in Section 8.3 The most direct measurements are those
involving hydraulic fracturing, where detection of fracture closure pressure yields informa-
tion about stress magnitudes. Borehole imaging and/or borehole shape measurements (by
e.g. a 4-arm caliper) may reveal information about fracture or drilling-induced breakout
directions, and hence stress directions (Section 8.3). There is also a number of core based
techniques (anelastic strain recovery, wave velocity anisotropy, differential strain or wave
velocity analysis, acoustic emission) that can be related to stress magnitudes and direc-
tions (Section 7.4). For large scale stress fields, earthquake focal mechanisms represent a
valuable source of information.

3.2. Pore pressure

Pore pressure is an important parameter in any rock mechanics study of porous, fluid-filled
rock systems. The pore fluid will carry part of the total stresses applied to the system,
thus relieving the rock matrix from part of the load. The effective stress as defined by
Terzaghi is equal to the total stress minus the pore pressure. This effective stress concept
was introduced in soil mechanics in 1923 on an empirical basis. It has later been refined
by Biot; see Section 1.6 for further details.

There is overwhelming evidence that porous, saturated and permeable rocks obey an
effective stress law. Both strain, given by the stress—strain relationship (constitutive equa-
tion), and yield or failure of the rock is controlled by effective rather than total stresses.

Therefore, when studying borehole stability during drilling, rock stability during produc-
tion, and compaction/subsidence, knowledge of the pore pressure in the various formations
is extremely important.

Pore pressure will develop in a saturated formation as sediments are buried. If the pore
fluid can escape and migrate to the surface at about the same rate as the rate of compaction,
a normal pore pressure gradient is maintained, given by the weight of the fluid column
above (Eg. (3.2)).

There are however several cases where the pore pressure within a zone has a value dif-
ferent from the expected normal pore pressure. Usually the pore pressure will in such cases
be higher than the normal, and the zone is referred to as abnormally pressured or overpres-
sured. High pore pressures in a reservoir will of course make the field more prolific. On the
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other hand, overpressured formations are a potential hazard during drilling. Furthermore,
borehole stability problems are often encountered in overpressured shales.

Briefly stated, abnormal pore pressure (overpressure) has three main causes (Osborne
and Swarbrick, 1997; Yassir and Addis, 2002):

1. The rate of sedimentation and compaction being higher than the rate of fluid expul-
sion and migration (disequilibrium compaction; undercompaction).

2. Tectonic loading that leads to undrained shear stress with associated pore pressure
development.

3. Pore fluid generation or expansion by thermal or chemical processes.

Due to the low permeability of compacted clays, shaly zones can easily become overpres-
sured. Shale permeabilities are typically in the nanoDarcy range, but may be even lower
(Swan et al., 1989; Chenevert and Sharma, 1991; Katsube et al., 1991; van Oort et al.,
1996; and others). Actually, laboratory measurements representative of in situ shale per-
meability are very scarce, because of the experimental difficulties involved in measuring
such low permeabilities, and because shale cores when retrieved from depth are altered in
such a way that the permeability is likely to be overestimated from experiment. Anyway,
shale permeability is low enough that a thick shale formation may not be able to expel fluid
at the same rate as it is compacted. Sands which are embedded within such shale bodies
are also likely to become overpressured.

Rapid sedimentation is obviously another possible reason for the development of over-
pressures. Abnormal pressures generated by disequilibrium compaction tend to decline in
the course of geologic time. As pointed out by Osborne and Swarbrick (1997) this may
explain why overpressure is more common in Tertiary than Paleozoic sequences.

As an example, consider a shale with a permeability of 10 picoDarcy (0.01 nanoDarcy),
porosity of 25%, and uniaxial compaction modulus of 3 GPa, saturated with a brine of bulk
modulus 2.5 GPa and viscosity 1 cP. The characteristic diffusion time will be ll%/CD, where
Cp is the diffusion constant given by Eq. (1.244) and Ip is the characteristic diffusion
length, say the thickness of the shale layer. The characteristic time for establishment of
pore pressure equilibrium in a 100 m thick shale layer using these values turns out to be
about 30 million years, which is on the geological time scale. Osborne and Swarbrick
(1997) suggested that disequilibrium compaction is the primary mechanism responsible
for overpressure in shale sequences.

As pointed out by Yassir and Addis (2002), there is a strong correlation between oc-
currence of overpressure and compressional tectonics. According to Eq. (1.186) pore
pressure will increase with increasing shear stress, in a manner proportional to Skemp-
ton’s A-parameter. Consider as an example a situation where the horizontal stress oy is the
major and the vertical stress (given by the weight of the overburden) is the minor principal
stress. Keeping oy constant during tectonic activity, the pore pressure change is

Ap; = ABAoy (3.14)

For normal consolidation processes, A may exceed 1, while B is close to 1, leading to
very high pore pressure, possibly exceeding the vertical stress. In overconsolidated or well
cemented low porosity rock on the other hand, shear loading is associated with dilatancy,



116 GEOLOGICAL ASPECTS OF PETROLEUM RELATED ROCK MECHANICS

leading to pore pressure reduction. This mechanism is therefore expected to cause abnor-
mally high pore pressure preferably in young sediments. Note that tectonic activity (e.g.
salt tectonics) will result in sustained abnormal pore pressure only if the system remains
closed and does not fracture.

Another possible source of overpressure is the uplift-erosion process shown in Fig. 3.4.
If the rock maintains its pore pressure after the uplift, it will be abnormally pressurized
compared with its neighbouring formations at the same depth. Often, however, faulting
is associated both with tectonic and uplift processes, and in such cases the pore pressure
build-up would be only transient.

As mentioned above, generation or expansion of pore fluid may lead to overpressure,
primarily in shale sections. This may be a result of increase in temperature (aquathermal
pressuring). It may be caused by hydrocarbon (kerogen or gas) generation. It may also
be caused by free water released during transformation of montmorillonite to illite. This
transition is temperature dependent, requiring temperatures of 70-90°C, corresponding to
depths of 2-3 km in areas of average geothermal gradient.

When the pore pressure increases due to fluid expansion/generation, there will be an
associated horizontal stress increase. The relation between horizontal stress and pore pres-
sure is hence not unique, but depends on the overpressure mechanism (Yassir and Addis,
2002).

Yet another class of mechanisms is associated with fluid movement caused by e.g. den-
sity differences between liquids and gases, or possibly by osmotic potentials. There is
however no evidence that these mechanisms play any significant role in practice.

Fig. 3.12 presents typical pore pressure gradient curves from two North Sea fields, the
Gullfaks field and the Valhall field. Valhall is a chalk reservoir (Cretaceous) in the Ekofisk
area of the Norwegian sector of the North Sea. Gullfaks is a sandstone reservoir (Jurassic),
located further north. Both parts of Fig. 3.12 include the estimated fracture pressure, taken
from leak-off and mini-frac tests (see Section 8.3). The Valhall field is characterized by a
high initial pore pressure. Close to the top of the reservoir at 2500 m, the pore pressure
is about 44.7 MPa. The overburden gradient is not included for the Valhall field, but at
this depth the total vertical stress is approximately 49 MPa, which makes the difference
between the overburden stress and the pore pressure quite small. Thus, the effective vertical
stress is very low.

In such a situation, the net grain-to-grain stress is small, and unless the strength of the
cement between the grains is significant, particles may easily be mobilized. Production
problems have been experienced in the North Sea chalk fields, materializing both as inflow
of solids and casing collapse (see Chapter 10 for analysis of particle production).

Both fields are characterized by a rapid increase of the pore pressure gradient just above
the reservoir (top of Gullfaks is at approximately 1850 m). This is relatively typical in
many of the North Sea reservoirs. The effective vertical stress in the Gullfaks field is ap-
proximately 6 MPa.

Pore pressures above the reservoir, in the low-permeability zones, are normally esti-
mated from trendlines and deviations from expected trendlines in wireline log readings.
In many cases the accuracy of these methods is not good enough, and stability problems
during drilling may be a consequence (see also Chapter 9). In the reservoir, where the rock
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Fig. 3.12. Pressure and stress gradients, given as equivalent mudweight: a) Gullfaks (Courtesy of Statoil); b) Val-
hall (Courtesy of the Amoco/NOCO-group).

has a higher permeability, more direct and accurate pore pressure measurement methods
can be applied, thus improving the quality of the estimates.

3.3. Sedimentological aspects

The mechanical properties of a rock normally refer to constants in the constitutive equa-
tion which the rock is assumed to obey. A linearly elastic and perfectly brittle isotropic
rock would hence be described by 4 mechanical parameters: two elastic parameters (e.g.
Young’s modulus and Poisson’s ratio; Section 1.3) and three strength parameters (e.g. fric-
tion angle and uniaxial compressive strength when applying the Mohr—Coulomb failure
criterion, plus the tensile strength; Chapter 2).

The present properties of a sedimentary rock are determined by the entire process from
erosion of rock fragments to transportation, deposition, compaction and lithification. Some
knowledge of these processes is therefore valuable when trying to assess the mechanical
properties of a rock.

3.3.1. Grains and minerals

Some definitions related to grains and granular materials are appropriate at this stage:
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TABLE 3.1 Grain-size scale for sediments. In geol-
ogy, the so called phi-scale is commonly used. It is
defined by phi = — log, (grain diameter in mm)

Grain diameter range [mm]  phi-scale  Term

>256 < -8 Boulder
64-256 —6-—-8  Cobble
4-64 —2-—-6 Pebble
2-4 -1--2 Granule
1/16-2 4--1 Sand
1/256-1/16 8-4 Silt
<1/256 >8 Clay

Grain size is a measure of the diameter of the grain, see Table 3.1. According to this
classification scheme, the grain size determines the classes of sedimentary rocks.

Grain shape involves both the roundness (angularity of corners) and sphericity (proximity
to a spherical shape).

Grain sorting is a measure of the range of grain sizes (grain size distribution). A rock
containing a wide range of grain sizes is said to be poorly sorted, whereas well sorted
implies a narrow distribution.

The packing of grains is important since it affects porosity and permeability. The packing
depends both on grain size, shape and sorting. Round grains will have a smaller friction
angle than the more angular grains at the same porosity. A poorly sorted sand will have a
higher friction angle than a well sorted sand.

There are several rock forming mineral groups: silicates (e.g. feldspar, clay, mica), car-
bonates (calcite, dolomite), oxides, sulphides, sulphates and phosphates.

The silicate group is the most important rock forming mineral group, making up more
than 90% of the Earth’s crust. The basic unit of the silicates is the SiO;4 silicon tetrahe-
dron. The various structures are formed by linking tetrahedral units together by sharing
oxygen. Feldspar is the most important single silicate mineral. The three main groups of
feldspars are: potassium feldspars (KAISi3Og), sodium feldspars (NaAlSi3Og) and cal-
cium feldspars (CaAl,SioOg). These are formed by Al substituting for Si, thus allowing
additional or different cations to enter the structure.

Although chemically an oxide, silica (SiO>), is closely related to silicates. Quartz, which
is one of the minerals in the silica group, is the most common mineral in sandstone, ranging
from 65% to practically 100%. The feldspar content in sandstone is typically 10-15%, and
mica and clay minerals may also be found.

The most important minerals in shaly rocks are clay minerals, which are composed
of layers of sheet shaped crystals. Two basic structural units exist: One type of sheet is
built from silica tetrahedra linked together in a hexagonal structure with chemical formula
Si4Oj‘. The second type is an octahedral sheet in which silicon is replaced by cations like
AR (this sheet is named gibbsite, with basic formula Al,(OH)g), Mg?* (named brucite;
Mgz(OH)s), Fe3+ or Fe2t, surrounded by six hydroxide groups. Within a given sheet, ions
different from the dominant ones may be present (isomorphic substitution), giving rise to
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possible charge deficiency. Usually, mainly because of oxygen and hydroxide at the sur-
faces, these have negative excess charge, and will therefore attract cations.

The basic sheets are combined to form layered clay minerals. The most common groups
of clay minerals are kaolinite, illite, and smectite. Kaolinite is a two-layer mineral (often
referred to as a 1:1 layer silicate), consisting of alternate layers of gibbsite and silicon
tetrahedron sheet. A basic unit is 0.7 nm thick, while typical composite crystals may be
70-100 layers, have six-fold symmetry and are flake shaped, up towards the micrometre
range in lateral extent. The successive layers are strongly bonded to each other with a
hydrogen bonding, and therefore water is not permitted to enter in between layers. Mineral
density is 2.6-2.7 g/cm®.

Smectite is a 2:1 layer mineral, composed of a central gibbsite sheet embedded between
two silicon tetrahedron sheet, with a combined thickness of about 1 nm. Isomorphous sub-
stitutions are common both within the central octahedral sheet and in the tetrahedral sheet.
The bonding between two silica sheet connecting the unit layers is very weak (through van
der Waals’ forces). In smectite, this permits water and exchangeable ions to enter between
the platelets, leading to a swelling capacity: At surface conditions, smectite minerals may
absorb up to 10 times their own weight in water (“swelling clays™). Calcium and sodium
are common ions in the interlayer space. Smectite crystals are normally not more than
2-5 nm thick in hydrated state, with an average diameter of about 1 um. Normally, the
basal spacing is found to be near 1.5 nm, indicating that two monolayers of water are ac-
commodated within the mineral. The specific surface area associated with the interlayer
space is 500-700 m?/g. Mineral density varies between 2.0 and 2.6 g/cm?.

Montmorillonite is a name often used synonymously with smectite, or as a common
term for expandable clay minerals. In principle, this is a member of the smectite group
with geographical origin in Montmorillon, France. Another well-known smectitic clay is
Bentonite, from Wyoming in the USA. Vermiculite, which is hydrated muscovite (a mica
mineral), is also classified as smectite, but has much less swelling capacity than the clay
minerals mentioned above.

Ilite is another 2:1 layer clay mineral, formed by weathering of feldspars, degradation
of muscovite, and transformation of smectite to illite at depth. Some of the silicon atoms
in smectite are replaced by aluminium, causing a negative charge which is balanced by
potassium ions that provide bonding between the silica tetrahedron sheet. This bond is
much stronger than in smectite, preventing hydration, but it is considerably weaker than in
kaolinite. The basal layer thickness of illite is 1 nm. Mineral density is 2.6-2.9 g/cm?®.

The water near the surfaces of clay crystals is different from free water. This was sug-
gested by Derjaguin and Churayev (1971). Molecular dynamics simulations (e.g. Skipper
et al., 1991; Karaborni et al., 1996; Park and Sposito, 2002) show that bound water in the
intralayer space and adsorbed water on surfaces have ordered, crystal-like structures.

Chlorite is often also referred to as a clay mineral. It has a 2:1 sandwich structure, but
with an additional brucite-like (where the dominant ion may be magnesium, iron or nickel)
layer embedded between the tetrahedral layers. It has the characteristic flake shape, but
does not have any swelling capacity. Density may be from 2.6 and up to 3.3 g/cmq.

The basic unit of carbonates is (CO3)2~. Common carbonate minerals are calcite
(CaCO0s3), aragonite (which is a polymorph of calcite) and dolomite (CaMg(CO3)2). Calcite
is the main component of carbonate sediments (chalk, limestone).
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3.3.2. Pre-deposition and deposition

Clastic sedimentary rocks originate from some sort of pre-existing rock. The pre-existing
rock is broken into fragments by weathering (mechanical and/or chemical) and erosion.
Then it is transported by water (rivers, tides) or wind to another site where it is deposited.
This accumulation of fragments from pre-existing rocks form what is called a clastic sedi-
ment. The most common types of clastic sediments are conglomerate, sandstone, siltstone
and shale. Other types of sediments are chemical sediments (e.g. precipitation of salt
crystals due to evaporation) and organic sediments (e.g. shells and skeletons from sea or-
ganisms forming a chalk or limestone). Note that for instance a limestone can be both
clastic and organic in origin.

Transport, deposition and sediment accumulation may take place in a variety of deposi-
tional environments. These various environments will give rise to different distributions of
grain size, grain shape etc., which may affect the mechanical properties of the rock millions
of years later. Particles may be transported by air (aeolian), water (fluvial) or ice (glacial
transport). Deposition occurs if the particle flow velocity is lower than a settling velocity,
being proportional to the square of particle size and the density contrast between particle
and suspending fluid, and inversely proportional to fluid viscosity.

When transported by air (aeolian transport), the particles have a very small buoyancy,
and the viscosity of the air is low. Particles transported by winds are therefore typically
more fine-grained than particles transported by water.

In water, such as in a river or a marine environment, particles can be transported in sus-
pension (suspended load) or along the bottom (bed load). Sediments deposited in running
water are termed alluvial (poorly sorted, emerging from a high energy environment) or flu-
vial (well sorted, low energy environment). As long as the concentration of particles in the
suspension is low, the water can be regarded as a Newtonian fluid, obeying ordinary hy-
drodynamic laws. As the concentration increases, the properties of the suspension (density,
viscosity) will start to deviate significantly from those of pure water. Such a suspension can
start to flow as a heavy liquid due to the difference in density between the suspension and
the surrounding water. This is known as a turbidity current. This kind of sediment transport
is believed to be an important mechanism when considering transport of sediments from
deltas and shallow areas, down the continental shelf and into the deep oceans.

Grain flow is another mechanism of sediment transport, resulting from grain collisions
that contribute to keep the grains from concentrating close to the bottom. Grain flow will
have a low content of clay matrix material. As the contents of silt and clay increases, debris
flow and eventually mudflow develops. Debris flow and mudflow sediments are often very
poorly sorted.

In the shallow beach zone, deposition will often result in well sorted coarse-grained
rocks with high porosity. The grains will tend to be well rounded due to the constant action
of waves, currents and tides. Further down, the grain size decreases and the sorting is
poorer. Clastic deposits of terrestrial origin, resulting from stream transport into the sea,
can also be well sorted, but normally contain more clay than the beach deposits. The delta
is the zone where fluvial and marine processes meet. If the marine activity is low, the
fluvial depositions in the delta will be maintained. If the marine activity is high, however,
the deposits will eventually accumulate as a marine sediment. In a delta front deposit,
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fresh water, sea water and pore water from previous sediments meet. Water from these
different sources will be of completely different composition, and form an environment of
active precipitation and dissolution. This can lead to cementation (silica, carbonate) of the
sediment.

Although carbonate rocks can originate from clastic sediments, the primary source of
carbonates is from plants and animals which make use of carbonates in some way. Car-
bonate sediments will be fine-grained (grain size in the micrometre-range), and the final
properties of the carbonate rock will depend very much on the post-depositional processes
(diagenesis), since the carbonates are strongly influenced by pore fluid chemistry and tem-
perature/pressure. Carbonates may also contain larger grains (e.g. fragments of fossils) of
sand particle size or larger. In the same way as for sand deposits, the carbonate is more
likely to be coarse grained and well sorted in high energy, shallow waters.

3.3.3. Post-deposition

After sediment deposition follows a lengthy process of transformation into a rock (sand
to sandstone, clay to shale, silt to siltstone). As the sedimentation process continues, an
overburden of younger sediments is deposited. This extra weight on top of a sediment
causes the sediment to compact. Compaction will result in a closer packing of the grains,
thus reducing both porosity and permeability. The friction angle will increase as a result of
compaction, see Fig. 3.13a. Compaction itself is however not sufficient to create a massive,
cemented rock, as closer packing alone does not affect the cohesion. The sediment will
however act as if it is stronger when the weight of the overburden increases, since the
friction angle is always larger than zero. The increased overburden will result in increased
horizontal stresses when the sediment is confined horizontally. This will have the same
effect as a confining pressure in the laboratory, and the sediment can tolerate larger shear
stresses before it fails. This is illustrated in Fig. 3.13b.

For the transformation to be complete, processes by which grains are cemented together
are required. These physical and chemical postdepositional processes are referred to as dia-
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Fig. 3.13. Effects of compaction on strength properties: a) Increase of friction angle as a result of compaction;
b) Increase of failure stress as a result of confinement.
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genesis. The parts of the diagenetic processes which contribute to harden the rock, are also
referred to as lithification. The term consolidation is often used in a sloppy way by petro-
leum engineers, referring to the degree of cementation. For instance, “poorly consolidated
sandstone” is supposed to mean poorly cemented sandstone. Strictly speaking, however,
consolidation refers to time dependent deformation due to dissipation of pore pressure (see
Biot’s theory of consolidation in Section 1.6). That means; poorly consolidated basically
means poorly compacted. There is however often some correlation between the amount of
diagenetic cementation and the effective stresses developing in a formation due to com-
paction, especially in sand deposits.

Physical changes, in addition to compaction, include changes brought about by tectonic
activity. With respect to diagenetic effects, the chemical changes are however the most
important. Cementation is mainly the result of precipitation of a binding agent. When con-
sidering chemical processes, the interaction between the solid grain minerals (especially
the surface minerals) and the pore fluid is the basic process. As only the pore water is free
to move in the sediment (at least as long as porosity and permeability are maintained), these
processes are closely linked to changes in pore water chemistry. Precipitation of calcite
onto the surface of sand grains is one such example of chemically induced cementation.

Carbonate (especially calcite) and silica are the minerals that account for most of the
cementation of sandstones. If the contact stress between quartz grains gets sufficiently high,
pressure solution may occur. The idea is that dissolution at the grain contact points liberates
SiO, to the pore water. The SiO, is then reprecipitated as quartz overgrowth because the
pressure in the pore water is lower, resulting in silica-cementation. Both calcite and quartz
cementation lead to strong sandstones. If the grains are held together by clay minerals, the
sandstone will be weak.

In carbonate sediments (commonly called carbonates), cementation is mainly precipita-
tion of carbonate minerals. Primary cementation will often consist of aragonite or calcite
with a high (up to 30%) magnesium content. These calcium carbonates are metastable, and
will after some thousands of years transform to the more stable form, low-magnesium-
calcite, through dissolution and precipitation. Dolomitization involves conversion of cal-
cium carbonate and magnesium to dolomite:

2CaCO3 + MgCl, — CaMg(CO3)2 + CaCl;

This process requires a certain ratio of Mg/Ca in order to take place. This required ratio
is reduced as sediments are buried and the temperature increases because the magnesium
ions then become less hydrated.

Dolomitization, as most other processes of precipitation and cementation, will often lead
to reduced porosity as the void space is fully or partially filled up. This increases the rock
strength in most cases, but also reduces the potential of the rock as a reservoir formation.

Cementation processes will however, as we have seen, require increased pressures or
some throughflow of pore water. If these conditions are not met, cementation will come
to a halt. Some of the North Sea reservoirs can exemplify this. Both the sandstone and
chalk reservoirs are characterized by abnormally high pore pressures (see Fig. 3.12). This
has prevented pressure solution, and an efficient cap rock has prevented further circulation
of pore fluid through the reservoir rock. This has helped maintain a very high porosity,
30-50% in the most prolific chalk and around 30% in the sandstone reservoirs. This has
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however also resulted in very low cohesive strengths, and some formations are more or
less uncemented, almost like soil. The cohesive strength in situ is then mainly a result of
capillary forces, and hence very low. This has resulted in significant production problems,
such as production of sand particles and flow of chalk material into wells (see Chapter 10).

As a general statement it can be said that the degree of cementation and hence the
strength of a given rock increases with depth of burial, due to increased compaction, pres-
sure solution etc. This general trend is however often broken, either due to lithological
changes or due to conditions which may retard the diagenetic processes, such as the abnor-
mal pore pressure mentioned above.

By volume, sandstones and carbonates make up around 15% and 10%, respectively, of
sedimentary rocks. The most abundant sedimentary rock is however shale (~75%). Most
of the overburden which has to be drilled through to get down to the reservoir, consists of
shale. These shale sections are often associated with stability problems during drilling (see
Chapter 9) and are therefore of interest in petroleum rock mechanics.

Diagenetic processes in clay are mainly a result of reactions between the clay minerals
and the pore water. Unstable minerals react with the pore water, depositing new and more
stable minerals. For this process to continue, there must be a continuous flow of pore water
through the sediment, if not, the process will stop. In fine-grained sediments like clay, the
permeability is very low (nanoDarcy and below) and equilibrium between pore water and
minerals will be established. Clays will therefore not be much altered, and the diagenetic
processes which take place will be very slow.

One example of diagenesis in clay is the transition of montmorillonite to mixed layer
illite/montmorillonite and illite (see also Section 3.2). This transition requires temperatures
corresponding to depths of 2—3 km to take place, and is accompanied by release of water
to free pore water.

Due to its plate-like structure, an uncompacted and soft clay (as a soil) will normally
have a low friction angle. As compaction and consolidation takes place, and porosity and
fluid content decrease, the shale will develop a higher friction angle. Shale, like any other
sedimentary rock, is however anisotropic by nature. Often transversely isotropic symmetry
is assumed, with the symmetry axis normal to bedding. This will affect permeability, elastic
properties and strength parameters of the shale (Section 3.4).

3.4. Mechanical properties of sedimentary rocks

Here we give a brief overview of the mechanical properties of sedimentary rocks of interest
to the petroleum industry, namely sandstones, chalk, and shales. A main difference between
these rocks is grain (or pore) size, ranging from 0.1-1 mm in sands down to the nanometre
range in shales. This affects petrophysical characteristics, such as the permeability, which
has a profound influence on mechanical behaviour, in particular time dependent phenom-
ena. Also, the relevant laws of physics controlling the force transmission at microscale are
different in the nanometre and millimetre environments. However, in all cases we are deal-
ing with assemblies of bonded particles, and the gross behaviour of the different rocks are
largely seen more similar than different.

We have also included a brief description of rock salt, which impacts amongst other
seismic interpretation and drilling operations in many sedimentary basins.
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Fig. 3.14. Thin section image of Castlegate sandstone (courtesy of Reidar Bge, SINTEF Petroleum Research).

3.4.1. Sandstone

A thin section image of a sandstone is shown in Fig. 3.14. The dominant grain sizes of
sandstone are typically 0.01-1 mm. Pore sizes are the same order of magnitude, but slightly
smaller. This gives permeabilities ranging from microDarcy to several Darcies.

The predominant matrix mineral is quartz. The cement may be quartz as well (in the case
of pressure solution), it may be carbonate (especially calcite), or clay minerals. Quartz has
a bulk modulus of 37.5 GPa and a shear modulus of 41 GPa (see Appendix A).

The texture may vary from isotropic to anisotropic. Intrinsic (lithological) anisotropy is
caused by microlamination (bedding), induced for instance by seasonal variations during
deposition. This typically gives alternating layers of coarse and fine grains. Anisotropy
may also be caused by deposition of flat grains with their long axis parallel to each other.

An unconfined test with a sandstone, or a triaxial test at a low confining pressure, typi-
cally shows nonlinear stress—strain behaviour during initial loading, with stiffening as the
stress is increased. This nonlinearity can be attributed to pre-existing microcracks within
the core, generated by stress release during coring (for cores from depth; see Section 7.1.2)
or caused by weathering (for outcrop or near surface cores). For weak sandstones, where
many grain contacts are not cemented, the grain contact itself is a nonlinear element
(cf. Hertzian contact theory; Chapter 6).

It is not possible to state any number that characterizes the strength or stiffness of a typ-
ical sandstone—a “typical” rock does simply not exist. We find sandstones with porosities
ranging from less than 5% up to 40%. The strength varies with porosity—as illustrated by
Fig. 3.15 (from Plumb, 1994).

Plumb found an empirical correlation for the unconfined strength of very clean sand-
stones:

Co=357(1 — 2.84)2 (¢ < 0.357) (3.15)

with Cyp given in MPa and ¢ as a fraction.

This represents an upper bound to the unconfined strength. For sandstones containing
clay, the strength falls well below the trend suggested by this equation. Note the similarity
between Eqg. (3.15) and the critical porosity model discussed in Section 6.2.

Young’s modulus shows a strong correlation with strength. Deere and Miller (1966)
investigated 82 sandstones from 18 different locations in USA. They found the static
Young’s modulus to be proportional to the unconfined strength (Cp), but with significant
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Fig. 3.15. Strength of sandstones. After Plumb (1994).
© 1994 Taylor & Francis Group. Used with permission.

scatter. Most data presented by Deere and Miller, and elsewhere, give a proportionality
ratio (E/ Cp) between 100 and 400.

Tensile strength (Tp) is not often measured directly on sandstone cores. Values are nor-
mally derived from indirect measurements, such as Brazilian tests (see Section 7.5). The
general impression is that (Co/ To) is between 5 and 20 for sandstones. Note however that
unconfined data are often not very reliable, because of pre-existing cracks or flaws in the
rocks tested.

When a sandstone starts to yield at low confining pressure, the behaviour is often found
dilatant. There is a brittle-ductile transition: Above a certain confining pressure, the rock
fails in a ductile manner, and plasticity theory is required to describe the constitutive ma-
terial behaviour. The failure envelope is often matched to a linear criterion, although it is
usually found to be nonlinear, with a decreasing friction angle at high confining stresses.
The typical friction angle is near 30°, but may vary typically between 20° and 40°. The
higher friction angles are found for low porosities and low clay contents.

Sandstones are found to exhibit an end cap in their failure envelope (i.e. material failure
under high isotropic stresses). This is often associated with grain crushing, but may also
result from collapse of the pore structure by grain reorganization. Localized “compaction
bands” of crushed material have been observed in triaxial tests with high porosity sandstone
at high confining pressure (Olsson and Holcomb, 2000). The stress threshold for grain
crushing depends on particle size distribution and particle shape, and on the degree of
cementation. Data on sandstones between 15 and 25% porosity by Wong et al. (1997)
show (Boutéca et al., 2000) that the hydrostatic yield stress is 6—7 times the unconfined
strength.
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Fig. 3.16. SEM image of Liege outcrop chalk (from Risnes, 2001; with permission from the publisher).

3.4.2. Chalk

A microscope image of chalk is shown in Fig. 3.16. Chalk particles originate as skeletons
of algae that are called coccospheres, with a typical initial size of 30 um. During burial the
coccospheres are crushed, and most particles (and pores) of present chalk are in the range
of a few (1-10) um, with associated matrix permeabilities between micro- and milliDarcy.
The predominant mineral is calcite, which has a bulk modulus of 74 GPa and a shear
modulus of 27.5 GPa (see Appendix A). In addition to calcite, chalks contain silica and
clay minerals.

Chalk porosity may be as high as 70%. In normally pressured areas, chalk porosity is
typically less than 10% at depths larger than 2000 m. In North Sea reservoirs however,
chalk porosities of 15-50% are found at depths of 2500-3500 m because of overpressure.
These reservoirs are also naturally fractured, leading to high reservoir scale permeabilities
in the 100 milliDarcy range.

North Sea chalk has been widely studied because of the prominent chalk reservoirs
(Ekofisk, Eldfisk, Valhall, Tommeliten and others). Andersen (1995) gives a comprehen-
sive summary of these studies. Havmgller and Foged (1996) compiled a large amount of
North Sea reservoir and outcrop chalk data to establish correlations between mechanical
properties and porosity (see also Engstram, 1992). The overall trends they found (for North
Sea chalk), can be summarized in the following equations:

Co =174~ 757% (3.16)
C
72 ~8 (3.17)
E =225e 112 (3.18)
H =13.6e%2% (3.19)

where Cg and Tp are given in MPa, E and H (uniaxial compaction modulus) are given in
GPa and ¢ is given as a fraction.

As for sandstone, chalk has a failure surface with a brittle shear failure at low confining
pressures, and also with an end cap at high stresses. Friction angles are typically between
10° and 30°, with a decreasing trend as a function of increasing porosity. Risnes (2001)
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Fig. 3.17. Typical stress—strain curve for chalk under hydrostatic compression.

pointed out that compressive, tensile and end cap failure modes appear to be governed by
one failure surface. The end cap is associated with pore collapse, a phenomenon which may
significantly reduce the pore space in high porosity chalks. An example of a typical stress—
strain curve for chalk under hydrostatic compression (as for example given by Dahou et al.,
1995) is shown in Fig. 3.17. The stress reaches a plateau after an initial elastic phase. This
plateau represents pore collapse. After pore collapse, the material regains some stiffness if
it is continued to be strained.

From Havmgller and Foged (1996) the onset of yielding (pore collapse) in hydrostatic
tests is given as

Oyield = 435 831¢ (3.20)

where oyield is given in MPa and ¢ is given as a fraction. In uniaxial compaction the yield
stress is

Ko ~7.36
oyigy = 36377 (3.21)
The uniaxial compaction modulus in the plastic regime is
Hp = 47.6e7121¢ (3.22)

Because of its significance as a reservoir rock in the North Sea, chalk has been widely
studied and characterized. Less comprehensive laboratory studies have been performed
with more competent carbonate rocks (e.g. Yasar and Erdogan, 2004; and references
therein). Yasar and Erdogan studied limestone, dolomite and (metamorphous) marble, and
established correlations between P-wave velocity (see Section 5.2) versus strength and
Young’s modulus:

Co = 31.5v, — 63.7 (3.23)
E =10.7v, — 18.7 (3.24)

where Cy is given in MPa, E is given in GPa and vy is given in km/s.
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Fig. 3.18. SEM image of Kimmeridge shale (from Swan et al., 1989; with permission from the publisher).

3.4.3. Shale

A Scanning Electron Image of a shale is shown in Fig. 3.18. Shales consist to a large extent
of clay minerals. From the rock mechanical viewpoint, it is natural to define a shale as a
rock in which clay minerals constitute a load-bearing framework. In practice this means
that clay content needs to be higher than about 40%. As demonstrated in Fig. 3.18, shale
texture is strongly anisotropic. This is often seen through a plane of weakness along which
the shale easily splits. It means that all non-scalar physical quantities will be anisotropic, a
fact which is often neglected in practical rock mechanical analysis, due to lack of data.

Because of the abundance of clay minerals, pore sizes in shale are very small; typically
between 5 and 25 nm. In addition, the clay minerals contain structurally bound water. This
means that it is difficult to measure as well as to define the elastic properties of the solid
material contained in shales.

Various approaches have been used, including theoretical models (Alexandrov and
Ryzhova, 1961; Katahara, 1996), extrapolation of wave velocity measurements on shales
(Tosaya, 1982; Han, 1986; Castagna et al., 1995; and others summarized in Mavko et
al., 1998) or clay powders (Vanario et al., 2003) to zero porosity, and theoretical inver-
sion of velocity measurements on epoxy impregnated shale samples (Wang et al., 1998).
Values scatter widely—the extrapolation techniques give bulk modulus between 5 and
25 GPa, and shear modulus ranging from 4 to 10 GPa. These numbers clearly depend
on which type of clay mineral (kaolinite, smectite, illite) is dominant, and in particular
on the adsorbed or bound water present within minerals and on mineral surfaces. When
sufficiently large crystals are available, such as in the case of muscovite, one may mea-
sure directly the stiffness of the solid material in a dry state (no bound water). Such
data give for this particular mineral (Carmichael, 1984; Alexandrov and Ryzhova, 1961;
Katahara, 1996) a bulk modulus of 51 GPa and a shear modulus of 32 GPa. Note however
that this mineral is strongly anisotropic, with moduli in the crystal symmetry plane being
4-6 times larger than moduli representing normal to plane stiffnesses.

Shales have, because of the narrow pore space, very large specific surface areas. These
surfaces are negatively charged, and attract cations from the pore water. Hydrated ions are
often attached to the mineral surfaces. Shale porosity may vary from very small (a few %)
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to quite high (up to 70%). Even with the highest porosities, permeability remains very
small. The nanometre size pores lead to laboratory measured permeabilities in the nano-
Darcy range (see references given under Section 3.2). Even lower values may be expected
for shale under in situ conditions.

The very low permeability makes shale a very special rock material to study. It means
that rock mechanical tests become extremely time-consuming, since pore pressure equili-
bration is slow. It also means that cores when taken out of the Earth, always will have a
tendency to be damaged by tensile failure occurring during core retrieval: The core would
have to be retrieved at an extremely low rate in order to prevent overpressure inside. This
means that shale cores may be incompletely saturated. Such a damaged core is clearly not
representative of the shale in situ. Resaturation of a shale core can not be done as in stan-
dard petrophysics analysis. Capillary forces may lead to further damage of the shale. The
authors’ experience is that the best results are obtained when a pore pressure is enforced
(or measured, as a response to applied stress).

The difficulties in testing and specimen preparation are discussed further in Chapter 7. It
means however that good laboratory test results are scarce, and have to be judged carefully
in light of the laboratory procedures applied. Also, because shale is not a reservoir rock
and has only indirect economic interest, it has not been studied to the same extent as other
sedimentary rocks.

Lashkaripour and Dusseault (1993) collected a large set of shale data from published
literature and in-house studies. The majority of shales tested had porosity below 20%. They
found unconfined strength to increase with decreasing porosity, and proposed a relation of
the form

Co =193p 114 (3.25)

where Cy is given in MPa and ¢ is given in %.

Their data set also showed strength and stiffness to be related. The ratio between
Young’s modulus and unconfined strength (E/Cy) is typically around 200. The compres-
sive strength is typically 10-15 times higher than the tensile strength.

Horsrud (2001) studied North Sea shales, most of them with higher porosities (30-55%).
He confirmed a proportionality between the Young’s modulus and unconfined strength,
with a proportionality constant of ~150. These data show good correlation of strength with
porosity, but the correlations are different from those found for lower porosity shales by
Lashkaripour and Dusseault. Both works demonstrated that P-wave velocity measurements
show a good correlation to shale strength, which is a valuable result if one wants to relate
shale strength to sonic measurements on drill cuttings or from log/seismic data. Horsrud
(2001) found the relation

Co=0.77v5% (3.26)

where Cy is given in MPa and vy, is given in km/s.

Due to its plate-like structure, an uncompacted and soft clay (like soil) will normally
have a low friction angle. As compaction and consolidation takes place, and porosity
and fluid content decrease, the shale will develop a higher friction angle. Horsrud also
showed that the friction angle in most tests with high porosity shale was very low, typi-
cally 10°-20°,
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Fig. 3.19. Samples loaded to failure: a) Maximum load normal to bedding; b) Maximum load parallel with
bedding.

As mentioned above, the plate-like structure of shale also leads to anisotropy. Fig. 3.19
shows two samples loaded to failure, one with the largest principal stress direction normal
to the bedding (a) and one parallel to the bedding (b). Samples with the maximum load
parallel to the bedding will often have a higher failure angle than samples with maximum
load normal to the bedding. With equal confining pressures, the sample with maximum
load normal to the bedding will require a higher maximum stress in order to fail. This gen-
eral trend is reasonable to expect, since the bedding planes will represent possible planes of
weakness. The strength anisotropy is also likely to influence borehole failure, in particular
for deviated holes. The degree of anisotropy may however vary significantly, depending on
both depositional environment and post-depositional processes. Tectonic activities result-
ing in fracturing of the rock may enhance or disturb this general trend, depending on the
direction of the induced fractures.

3.4.4. Rock salt

Rock salt is precipitated from sea water and may occur in the Earth as extensive salt beds
or interstratified with e.g. sedimentary rocks. The mineralogical composition of natural
rock salts varies from very homogeneous (99% halite; NaCl) to heterogeneous mineral
associations. In many areas salt domes are found, such as beneath the Ekofisk field in the
North Sea, where the underlying salt has a strong impact on the reservoir stresses (see
Section 3.1). Salt may also be found above reservoirs, such as in the Gulf of Mexico area.
Quite often salt is found to impose drilling problems. Salt has very low permeability and is
therefore of interest for long term storage of hazardous waste.
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Salt grains (or crystals) can be between 1 and 50 mm in size. Virgin rock salt is usually
characterized by very low porosity (<0.5-1.0%) which in some cases may be less than
0.1%. A significant portion of the pore volume may occur as closed voids containing gas,
brine or both. Pore sizes are in the nanometre to micrometre range. Permeability of virgin
rock salt in the Earth is probably in the nanoDarcy range or lower (Cosenza and Ghorey-
chi, 1996). Ultra low permeability of natural intact rock salt enables one to hold this rock
impermeable in many practical situations. The negligible permeability of rock salt is also
attributed to healing processes and creep taking place under in situ conditions (Horseman,
1988).

A practical problem of measuring porosity and permeability is the solubility of rock salt
in the liquids usually used in laboratory routine work. Therefore, organic fluids or inert
gas is often used for permeability tests. Laboratory measured permeabilities and porosities
may be much larger than those representative for field conditions.

The value of Young’s modulus in rock salt as obtained in a conventional static test is rate-
sensitive. To reduce the effect of rate sensitivity, Young’s modulus is usually measured
during unloading-reloading paths, yielding E-values of 10-30 GPa for various types of
rock salt. Poisson’s ratio ranges between 0.15 and 0.4 being 0.2-0.3 on the average (Hansen
etal., 1984).

Some rock salt types have tight cementation and are quite competent while others are
loosely cemented and can be crushed by hand pressure. Uniaxial compressive strength
Cy typically ranges from about 15 MPa to 35 MPa. Tensile strength Ty varies from less
than 1 MPa to 2-3 MPa. Low resistance against tensile stresses is one of the characteristic
features of rock salt. The ratio of Cq/ Ty can be above 20 (Silberschmidt and Silberschmidt,
2000). The angle of internal friction ranges from 40° to 65°. Confining pressure remarkably
increases the ductility of rock salt. Axial strain measured at failure in the confined regime
can reach 10-25% (Lux and Rokahr, 1984).

The plastic behaviour of rock salt is linked to very significant creep behaviour. This
phenomenon can be explained microscopically by a dislocation glide mechanism (Munson
and Wawersik, 1993; Fokker and Kenter, 1994), and can be modelled macroscopically in
analogy with time dependent metal plasticity. The amount of creep strain increases with
increasing deviatoric stress, and increases strongly with increasing temperature.
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Chapter 4

Stresses around boreholes. Borehole failure criteria

Underground formations are always in a stressed state, mostly due to overburden and
tectonic stresses (see Chapter 3). When a well is drilled into a formation, stressed solid
material is removed. The borehole wall is then supported only by the fluid pressure in the
hole. As this fluid pressure generally does not match the in situ formation stresses, there
will be a stress redistribution around the well. This may lead to deviatoric stresses greater
than the formation can support, and failure may result. Knowledge of the stresses around a
well is therefore essential for discussions of well problems.

4.1. Stresses and strains in cylindrical coordinates

To examine the stresses in the rock surrounding a borehole, we need to express the stresses
and strains in cylindrical coordinates. The stresses at a point P identified by the coordinates
r, 6, z, are denoted o, 0y, o, Tr9, Tr, and ty,. The stresses in a plane perpendicular to the
z-axis are indicated in Fig. 4.1(a). The relations between the stresses in cylindrical and
Cartesian coordinates are as follows (compare to Egs. (1.18)—(1.21), see also page 455):

1 1 .
o, = E(O’x +oy)+ E(OX — 0y) €08 20 + T, SiN 26 (4.1)
1 .
oy = E(Ux +oy) — E(ax — 0y) C0S 20 — Ty, SIN26 (4.2)
o, =0y (4.3
a) b)
y ' ¥
o

E/ el
) Trd !7\ v

X X

Tar
-
/’,
-
/’J

Fig. 4.1. Stresses and displacements in cylindrical coordinates.
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1 .
Trg = E(oy — 0y) SiN260 + 14, C0S 260 (4.9)
Trz = Tx; COSO + Ty, SING (4.5)
Tg; = Ty; COSH — T, SING (4.6)

The corresponding relations between the strains are obtained by replacing the stress para-
meters by corresponding strains.

1 1 .
& = E(EX +ey)+ E(Sx — £y) €08 20 + Iy sin20 4.7
1 1 .
&g = E(ax +&y) — 5(8" — €y) 0820 — I, sin20 (4.8)
&, =&, (4.9
1 .
I = E(ay —&y)8in20 + I'y, cOs 20 (4.10)
I =Ty, c080 + Iy sind (4.11)
Iy, =TIy, €080 — I, sinf (4.12)

The symbols u, v, w are often used for displacements also in cylindrical coordinates,
but now redefined as u being the displacement in the radial direction, v the displacement
in the tangential direction and w in the axial direction. This redefinition is illustrated in
Fig. 4.1(b). The relations between strains and displacements are

ou

& = — (4.13)
ar
u 1lodv
=4 -— 4.14
&0 r + r 060 ( )
0
g, = 2 (4.15)
0z
1 /ou 1dv
Lyg=—|—— — 4.1
o 2r<89 v>+28r (4.16)
1/0w OJu
I, =-—+— 4.17
r” 2<Br + 8z) ( )
1/10w ov
. =-(=-22 427 4.18
b 2<r89+8Z> (4.18)

Hooke’s law (see Egs. (1.93)—(1.98)) has the same form in cylindrical as in Cartesian co-
ordinates. For a porous and permeable formation, effective stresses should be used.

r/ = (Mr + 2Gtr)er + Afreg + Afre; (4.19)
oy = Mrer + (hir + 2Gtr)eo + Afre; (4.20)
Gz/ = Arer + Argo + (Ar + 2Gr)e; (4.21)
79 = 2Gir g (4.22)
T, = 2G 1y, (4.23)

To; = ZGfrFQZ (4.24)
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The equations of equilibrium (1.14)—(1.16) may also be expressed in cylindrical coordi-
nates:

dor 1019, 01, Or —oOp

= =0 4.25

or Tr e oz ol (4.25)
1 309 81}9 8‘1719 21’,9

-7 =0 4.26

r 060 + or 0z r +ofe ( )
do, 0T, 1019, 71,7

T T IS =0 4.27

oz T or Troe T TPf “27)

Note that these equations apply to the total stresses.

4.2. Stresses in a hollow cylinder

The hollow cylinder model, as sketched in Fig. 4.2, is a simple example of a borehole in
a stressed formation. The model is important in itself, as laboratory tests concerning well
stability often are carried out on such samples. The hollow cylinder model also provides a
model for vertical wells through formations where the horizontal stresses are equal.

4.2.1. The equilibrium equations

The infinite hollow cylinder has full rotational symmetry about the axis of the cylinder, as
well as full translational symmetry along the axis. We assume as a starting point that the
cylinder is loaded with an axial stress oy, and we shall derive expressions for the stresses
in the cylinder as it is loaded with an internal pressure p, and an external stress o,¢.
The external stresses on the cylinder are at all times normal, and independent of 6 and z.
Therefore the cylindrical coordinate axes, (with the z-axis along the cylinder axis) also
represent the principal stress directions.

It is then clear that the only deformation will be in the radial direction, and that there will
be no variation along the axis. Thus the model will be in plane strain (see Section 1.2.4),

()—ru

R w Ru

Fig. 4.2. Section of the hollow cylinder model.
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and g, = 0. (If we consider a finite height cylinder (e.g. in a lab test), the plain strain will
apply only if the top and bottom platens are fixed, and if end effects can be ignored.)

Ignoring body forces, the equations of equilibrium (4.25)-(4.27) are simplified to a sin-
gle equation

do, o, —o09p

=0 (4.28)

dr r

We now replace the stress with the radial displacement u using Egs. (4.19)—(4.20) (Hooke’s
law), the definition of effective stress (Eq. (1.170)), and the strains in terms of u from
Egs. (4.13) and (4.14). The result is

d?u L ldu u n o dpr

dr2  rdr 2 A +2Gg dr
When this equation is solved, the radial and tangential strain can be determined, and hence
the stresses can be found using Hooke’s law.

(4.29)

4.2.2. Stress distributions with constant pore pressure

For constant pore pressure the displacement equation (4.29) reduces to

2
Cu, Ld 1=g<du+u> d<1d<r“)):o (4.30)

dr2 " rdr 2 dr\dr  r) dr\r dr
The sum in the parenthesis in the middle can be recognized as the sum of radial and tan-
gential strain, which thus is seen to be constant. Together with the plane strain condition,
g, = 0, this means that for the present case, the elastic rearrangement of the stresses
around a wellbore does not result in any volumetric changes. Further, from Hooke’s law
(Eq. (1.99)) it follows that the mean stress is constant.
The expression

c
u=Cir+ -2 (4.31)
r

is the general solution of the displacement equation (4.30), with C1 and C» as integration
constants.
The radial and tangential strains are given by

du Cy
r=—=0—— 4.32
T 1752 (4.32)
C
&p = v C1+ —22 (4.33)
r r
Substitution of the strain expressions (4.32)—(4.33) into Eq. (4.19) gives
C2
or —aps = 2 +2G)C1 — 2Gfrr—2 (4.34)

where ps is the constant pore fluid pressure.
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Before matching the boundary conditions, it is convenient to assemble all the r-inde-
pendent terms in one constant and the »—2 terms in another:

Cz

o, =Cj + 2 (4.35)

This small mathematical trick simplifies subsequent calculations, and also makes it imme-

diately clear that ps and the elastic constants will not appear in the final answer.
Similarly, we find for the tangential stress

_ %

=Ci -4 (4.36)

The two integration constants may now be found from the boundary conditions for the
radial stress

or = pw forr =Ry (4.37)
o, =0, fOrr=R, (4.38)

where we write py and o, for the radial stresses at the inner and outer boundary, respec-
tively (see Fig. 4.2).

The result is
c) = w (4.39)
Cy = %(mo pw) (4.40)
The radial and tangential stresses in a hollow porous cylinder can then be written
o = jo;g_ I’:;"W - ks o Rzz (70 — pw) (4.41)

Note that the sum of the radial and tangential stresses is a constant, independent of . Since
the mean stress is constant (see the discussion following Eq. (4.30)), this means that the
axial stress is constant.

When these hollow cylinder expressions are applied to well conditions, we may assume
that Ry > Ry. Assuming a vertical borehole, we write oy, (the horizontal stress) instead of
00, and find

R2 R2 R2
or = on— (o — pu) 2 (1 - r—)oh i B, (4.43)
RZ RZ R2
09 = oh + (oh — pw)— 2 (1 + —) oh — r—;’pw (4.44)
o, = const (4.45)

Fig. 4.3 shows an illustration of the stress distribution around a borehole as predicted by
the hollow cylinder model. Note that the tangential stress (commonly referred to as the
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Ry r

Fig. 4.3. Stresses around a borehole in a linear elastic formation.

hoop stress) is significantly increased in the near borehole region. The effect that the stress
in the vicinity of an inhomogeneity (in our case the hole) rises above the far-field stress is
commonly referred to as stress concentration.

The radial displacement « can be determined by calculating C; and C; from €7 and CJ,
and inserting into Eq. (4.31). Assuming R, > Ry, the result is

L oh—apr oh — pw R,
2xr + 2Gr 2Ggr
Note that u as given in Eq. (4.46) is the displacement relative to the state where oy, = pyw =
0. This expression is relevant for a hollow cylinder test in the laboratory.
In a field situation it is convenient to use the in situ stress state as the reference. The
displacement due to the drillout is then seen to be given by:

(4.46)

Oh — Pw R_\%/
2Gg 1
Eq. (4.47) shows that a reduction in well pressure results in a positive radial displacement,

which corresponds to a reduction of the borehole radius, as expected.

Uug = (4.47)

4.2.3. Stress distributions with varying pore pressure
The displacement equilibrium equation, Eq. (4.29) is readily integrated to give

——(ru) + pf=2C1 (4.48)
r dr

o
Ar + 2G
where 2C1 is an integration constant. (The factor 2 will disappear in the next steps.)
The solution of this equation is

Cr o 1/,
—Cr+ 2o % = dr’ 4.49
u i+ = Afr+2Gfrr/Rerfr (4.49)
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where C3 is a second integration constant.
The stresses are found by proceeding in the same way as for the constant pressure case,
i.e. by computing the strains, using Hooke’s law and matching boundary conditions.
Defining
Api(r) = pi(r) — pro (4.50)
the result can be written

R2(r? — R2)0,0 + RZ(R% — r?) pw

o= r2(RZ — R2)
2n (/r / / / r2 — R\?v Ro / / /
+ — r'Aps(r’)ydr’ — 7/ r'Aps(r’) dr (4.51)
r2 Rw Rg - R\%V Rw
oy — RO+ RA)ovo = R4(RS + ) pu

r2(R2 — RZ)

2’7 r r2 + R2 Ry
- </ ' Aps(r) dr’ — r2 Apg(r) + ——% / r' Aps(r') dr’) (4.52)

r Rw RO - RW Rw

RZ

W
o, = oy + 2v; (00 — Pw)ﬁ + 2nAps(r)
R§ — Ry,

Vfr Ro , N At
- 4'7m /Rw r'Aps(r') dr (4.53)
where we have introduced the poroelastic stress coefficient n given by

Ger 1—2vg

n= o= o 4.54
Mr 4+ 2Gr 2(1 = vr) (4.54)
It is clear from the definition that 0 < n < 0.5 (assuming v > 0).
Assuming R, >> Rw, and o, = oy, the equations simplify to
R2 R2 2n (7
or = <1 — —;V)Uh + _;va + _Z/ r' Aps(r') dr’ (4.55)
r r r Rw

(1. R R, 2 fro
og =1+ 2 Joh T PwT 3 r'Api(r') dr’ + 2nAps(r) (4.56)
Rw

oz = oy + 2nAps(r) (4.57)
The stresses at the borehole wall are seen to be
Or = pw (458)
o9 = 20n — pw — 20(pfo — pt(Rw)) (4.59)
0; = 0Oy — 277(Pf0 - Pf(RW)) (4.60)

where ps(Ry) is the reservoir fluid pressure at the wellbore wall. If there is open commu-
nication between the well fluid and the formation, ps(Ry) is equal to the well pressure py.
If there is a mud cake, ps(Ry) is the fluid pressure behind the mud cake.
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From a physical point of view this result can be explained as follows: If the well pressure
is higher than the reservoir fluid pressure, fluids are injected and the pore fluid pressure
is increased around the well. This will give a tendency for the material to expand and
the stresses increase. If on the other hand the well is on production, the well pressure is
lower than the reservoir pressure. The lower fluid pressure around the well will make the
formation shrink, and hence the corresponding reduction in the tangential and axial stress.

Note that the wall stresses are independent of the details of the radial variation in ps(r),
only the difference between the farfield value and the value at the borehole wall appears in
the equations.

The superposition principle

Since the governing equations are linear, the final expressions can be seen as a sum of
different basic loads, which are uncoupled. For the hollow cylinder, these basic loads are
the external radial stress, the borehole pressure and the pore pressure.

As an illustration, the well pressure term pWR\%,/rz is the same in Eqs. (4.43) and (4.55).
Further, we expect the well pressure term to be the same if we introduce a more compli-
cated far-field stress, e.g. corresponding to a deviated hole in an anisotropic stress field.
(See Eq. (4.83).)

Radial flow

A special case is obtained if the pressure variation is given by stationary radial flow into
the well. We will first study the case of a hollow cylinder with outer radius R, and look
for a stationary solution, i.e. we assume that all transients have died away.

The fluid pressure can then be calculated from Darcy’s law (see Section 1.9.1)

Qo _ kdpr
2wrh s dr

where Q, is the constant flow rate, 4 is the height of the cylinder, k is the permeability and
ns is the fluid viscosity. Note that Q, is here defined to be positive for flow in the inwards
direction.

Solving the equation above, assuming a constant pressure ps, at the outer radius Ry, the

pressure is given by the well-known equation
fo — r fo — r
pr=put+ DO 0y L P Puy T (4.62)
In ¥ n %

Inserting this result into Egs. (4.51)—(4.53), the equations published by Risnes et al. (1982)

are found:
RZ Ro\?
= — W 1 _ _ -
Oy O'h+(0'h pW)Rg_R\%I[ (}")

R? Ro\*1, In(Ro/r)
~ (o —p W)”{ RZ — RZ, [l_ <7> }’L In(Ro/RW)} (4.63)

(4.61)
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RZ, Ro
09 = oh + (oh — Pw)—R2 1+ p

R2 Ro\°T1 In(Ro/r) —1

— — — 14+ — + 4.64

(o pW)”{ R - RVZV[ ( r ) IN(Ro/Ru) (469

2
RZ

21)er3\, 2|n(R0/r) — Vfr}
R2 — RZ, IN(Ro/Rw)
A common assumption in reservoir engineering is that the reservoir pressure ps, is constant
at all times at a drainage radius Re. (We underline however, that in reality, true stationary
flow will never be reached in an infinite formation.)

If the drainage radius Re can be taken to be much larger than the well radius, the equa-
tions are simplified to

Rw Ry In(R
or = oh — (on —Pw)< . ) + (pfo —pw)n[< . ) %} (4.66)

R \? R In(R
Ue=0h+(0h—pw)<7w> — (pfo — pw)n[( rw) +M} (4.67)

IN(Re/Rw)
2In(Re/r) — vir
IN(Re/Rw)

These equations can be used as an approximation to a producing well. Eq. (4.68) depends
on the plane strain condition, which is valid for an infinitely long borehole. In a real case,
the flow will be in a reservoir of limited height, and hence a solution based on generalized
plane stress (see Section 1.2.4) would be valid when the depleted zone extends far into the
reservoir, and the full vertical stress is transmitted to the reservoir. In practise, there will be
some arching of the overburden preventing the maintenance of the full vertical stress, and
hence the true solution will be somewhere in between.

o, = oy + 2vgr(oh — Pw)

— (pfo — pw)n{ (4.65)

o, = oy — (Pfo — pw)n (4.68)

4.2.4. Stress distributions with heat flow

When a well is drilled, the drilling mud will alter the temperature of the surrounding for-
mation. When the temperature changes, the formation expands or shrinks, and the stresses
will change. (See Section 1.5 for the basic formulas of thermoelasticity.)

From the correspondence between poroelasticity and thermoelasticity, see Section 1.6.6
and Eqgs. (4.58)—(4.60), we may immediately write the expressions for the stresses at the
wellbore wall:

Or = Pw (4.69)

E
09 = 20n — pw + f:)f ar(Tw — To) (4.70)
T

1—
Ef

0; =oy+ ar(Tw — To) (4.71)
r
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T is the temperature in the well and Ty is the reservoir temperature. The thermally induced
changes in stress affect both the tangential and the axial stress. The radial stress is of course
equal to the well pressure regardless of any temperature changes.

4.2.5. Stress distributions in nonlinear formations

The results in Section 4.2.2 as displayed in Fig. 4.3 showed that there is a rapid increase in
the stress deviation towards the borehole wall. These results were based on the assumption
of linear elasticity, i.e. that the elastic moduli of the rock are independent of the stress
state. However, elastic moduli of rocks are normally stress dependent to some extent (see
Section 1.8). Thus, it is reasonable to assume that the elastic moduli close to the wellbore
wall will differ from those of the virgin formation, due to the stress alteration in the vicinity
of the borehole.

Santarelli et al. (1986, 1987) modelled this effect by assuming that Young’s modulus
depends on the minor principal stress o, as E(o,) = Ego,’. Here Eg and a are empirical
constants; normally 0 < a < 1, and Ep may be interpreted as the value of Young’s mod-
ulus as measured in uniaxial compression tests. Based on this assumption, they found the
following expressions for o, and oy corresponding to Eqs. (4.43)—(4.44).

o)A A e

a
oy = N oh<ﬁ> + Mo, (4.73)
1—a Oh
where
N = [(l —2vi)(L —a) + 1] (4.74)
1 — Vfr
l—-a)-1
M= vir( a) (4.75)

1-vid —a)

The implications for the stress distribution around the borehole are significant. Fig. 4.4
shows the variation of stresses as functions of radial distance as calculated by Eqgs. (4.72)-
(4.75) using a = 0.5 and vfy = 0.2. Also the vertical stress is reduced close to the wellbore,
as o, is linked to o, and oy through Hooke’s law (although it is no longer linear).

An important consequence of the nonconstant E-modulus is the relative reduction of
oy near the wellbore wall. This effect is most pronounced for low borehole pressures for
which it may even happen that the difference oy — o, is larger at some distance into the
formation than at the borehole wall. Thus, the commonly observed effect that Young’s
modulus increases with increasing confining pressure, has the consequence that the stress
deviation near the borehole wall at low borehole pressures is reduced compared to the
linear elastic solution.
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Fig. 4.4. Stresses around a borehole in a formation with pressure dependent elastic properties.

4.3. Elastic stresses around wells—the general solution

In the previous sections we studied the simple example of a vertical borehole in a forma-
tion with isotropic horizontal stress. We shall now proceed to describe the general elastic
situation: the borehole is deviated, and the horizontal stress is anisotropic.

We shall assume that the principal stresses are the vertical stress oy, and the major and
minor horizontal stresses oy and oy,. (The generalization to a case where the vertical stress
is not a principal stress is trivial.)

As an introduction, a brief historical overview may be appropriate: The stress distribu-
tion around a circular hole in an infinite plate in one-dimensional tension was published by
Kirsch in 1898.1 The Kirsch formulas generalize easily to a vertical borehole with unequal
farfield stress, such that this solution is also often referred to as the Kirsch equations.

The “standard”, easily available reference in petroleum rock mechanics literature for
the full solution is Bradley (1979), who quoted a report by Fairhurst (1968). However,
according to PeSka and Zoback (1995), the equations were first published by Hiramatsu
and Oka (1962).

There appears to be a sign error in part of the 7,9 expression in Bradley’s paper. This
error has propagated in the literature, for instance in the first edition of this book, and
several other works. An easily available reference that appears to be correct is Hiramatsu
and Oka (1968).

1 The famous paper of Ernst Gustav Kirsch (1841-1901) is an example of a classic paper that is probably more
often cited than read. As a result, many variants of the title and citation details exist in the literature, some of
which suggest that the writer does not understand the German language. It is therefore a pleasure to bring the
correct citation here. By the way, the original paper does not reveal Kirsch® first name or initials. The Kirsch
paper is not a good starting point for those wishing to the study the derivation of the Kirsch equations, as the
paper relies on detailed references to a contemporary German textbook. We suggest that the interested reader
should instead study Chapter 10 of Jaeger and Cook (1979) or Chapter 5 of Charlez (1991).
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Fig. 4.5. Coordinate system for a deviated borehole.

4.3.1. Transformation formulas

The in situ principal stresses define a coordinate system which we denote (x’, ¥/, z'), as
indicated in Fig. 4.5. We take oy to be parallel to 7/, oy to be parallel to x” and o, to be
parallel to y’.

We introduce a second coordinate system (x, y, z) such that the z-axis points along the
axis of the hole, the x-axis points towards the lowermost radial direction of the hole, and
the y-axis is horizontal (see Fig. 4.5).

A transform from (x/, y', z’) to (x, y, z) can be obtained in two operations (see Fig. 4.6):

1. arotation a around the z’-axis,
2. arotation i around the y-axis.

The transformation can be described mathematically by the direction cosines, where [; -
is the cosine of the angle between the i-axis and the j’-axis. With reference to Fig. 4.6 it is
straightforward to derive the following expressions

Iy, =c0sacosi, Iy, =sinacosi, [,y = —sini
lyy = —sina, lyy =cosa, lyy =0 (4.76)
l,yy =cosasini, [,y =sinasini, [, =cosi
(An alternate formulation, using the Euler angles, is discussed in Appendix C, see
page 453.)
Expressed in the (x, y, z) coordinate system, the formation stresses oy, op and oy be-
come:

ol =12 00+ 12,00+ 12,0y 4.77)
U}(,) = Z}Z,X/O—H + liy/ah + liZ,O'V (478)

crzo = lzzx/crH + lzzy/ah + lzzz/av (4.79)
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oy = Liwlywon 4 Leylyyon + Lily oy (4.80)
‘L';)Z = lyylyon + Lyylyyon + Lyl 0y (4.81)
tzox = llpon + lyleyon +1loy (4.82)

The superscript o on the stresses denote that these are the virgin formation stresses.

4.3.2. The general elastic solution

The solutions corresponding to Eqs. (4.43)—(4.45) are found assuming plane strain normal
to the borehole axis.

Again, it is convenient to express the stresses in terms of cylindrical polar coordinates
r, 6 and z, where r represents the distance from the borehole axis, 6 the azimuth angle
relative to the x-axis, and z is the position along the borehole axis (see Fig. 4.6). The stress
solutions can be written:

0%+ o? R2 0% — o0 R4 R2
o, = ><1_ W)+¥<1+3_W—4—‘£V)00529
r

2 2 2 r4
R}  RZ R2
) w W\ o w
+'L'xy<1+3r—4 _4r_2> Sin 26+pwr—2 (483)
z!
ré
i
.
J
’
\\ /I/ y
N /
a \\\ l/
\ 7
A
________ _\L{’
|
' 0
X
X

Fig. 4.6. The transformation geometry.
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0%+ 09 2 UO—U 4
oy = — 3<1+R—;V)— al <1+3Rw>c0529

2 r 2
R\ . R2
-7 (1 + 3—?) sin20 — pW—;V (4.84)
R2 R2
o, =02 — l)fr|:2(0' — a°)— c0s 26 + 4t° —;" sin 29] (4.85)
02 —of RS R2
T = — 5 <1 34 +2 W)sin29
R4 R2
+ 75 (1 -3 +2 W) c0s 20 (4.86)
R2
79, = (=7, 8in6 + r cos@)(l + —) (4.87)
R2
T, = (r cosf + 7.' . sin 0)(1 - —2> (4.88)
r

The borehole influence is given by terms in »=2 and »—4, which vanish rapidly with in-
creasing r. Thus, for large r the borehole influence vanishes, and the equations degenerate
to Egs. (4.41)—(4.46).

The solutions depend on the angle 6 (see Fig. 4.5) indicating that the stresses vary with
position around the wellbore. Generally the shear stresses are non-zero. Thus o, oy and
o, are not principal stresses for arbitrary orientations of the well.

At the wellbore wall, the equations are simplified to

= Pw (4.89)
op = 0. + o —2(0? — O'O) cos 20 — 472 ySiN20 — pw (4.90)
o, = 0 — Ufr[Z(a - oo) c0s 26 + 41?0 Sln 29] (4.91)
7,9 =0 (4.92)
9, = 2(—1,, Sin6 + r;?z cosh) (4.93)
7, =0 (4.94)

These are the equations which are used in linear elastic analysis of borehole stability.

The stress solutions as given by Eqgs. (4.83)—(4.88) and Eqs. (4.89)—(4.94) are the stress
solutions for nonporous materials or for porous material with constant pore pressure. Due
to the superposition principle, pore pressure effects may simply be added. Thus, if we
assume a radially symmetric pressure distribution around the borehole, the pore pressure
terms from Eqgs. (4.55)—(4.57) or Egs. (4.66)—(4.68) may be used directly.

4.3.3. Borehole along a principal stress direction

For a hole along a principal stress direction, the general equations (4.83)—(4.88) simplify
considerably. We here give the resulting equations for a vertical borehole, but the expres-
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sions for a horizontal borehole along a principal stress are easily obtained by interchanging
the far-field stresses.

R2 _ RA R2 R;
o = GH+Uh< __;v)_'_UH %h (1+3 W 4—;\/)C0329+pw_w (4.95)
r r

2 2 = r2
OH + oh R&, OH — Oh Rﬁ, R&v
ogp=——\14+—= ) — 14+3—)cos20 — py—- (4.96)
2 r2 2 r4 r2
RZ
0, = oy — 2vir(oy — ah)—\év c0s 20 (4.97)
r
OH — Oh Rﬁ, R&, .
T = — 1-3—F +2— )sin20 (4.98)
2 r r
T =71:=0 (4.99)

Note that it is clear from the general definitions that 6 is in this case measured relative to
the direction of the major horizontal stress.
At the borehole wall the equations simplify to

or = pw (4.100)
09 = 04 + on — 2(oH — o) COS 260 — pw (4.101)
0, = oy — 2vgr (o — op) COS 26 (4.102)
T9=Tp; = Tr; =0 (4.103)

The sum of the normal stresses is

R2
or + 09+ 0, =0y +0oq+on—2(1+ vi)(oy — O’h)r—;v €0s 20 (4.104)

which shows that unlike the situation for equal horizontal stresses (see the discussion fol-
lowing Eq. (4.42)), the drillout leads to a change in the mean stress. The average change
(along a circular path concentric with the hole) is zero, but consists of an increase in mean
stress in the direction of the minor horizontal stress, and a decrease in the major horizontal
stress direction. See Fig. 4.7 for an illustration. Thus, immediately after drillout, we ex-
pect a pore pressure increase along the op-direction and a pore pressure decrease along the
on-direction (since a change in mean stress leads to a volumetric strain).

Eqg. (4.101) shows that the tangential stress at the borehole wall varies between the max-
imum value

09,max = 30H — Oh — pw (4.105)

and the minimum value

09,min = 30h — OH — pw (4.106)

where the maximum value occurs in the direction of o, and the minimum value in the direc-
tion of oy. The variation in tangential stress around the borehole is illustrated in Fig. 4.8.
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4

]

Fig. 4.7. Change in mean stress due to the drillout of a borehole in anisotropic far field stresses. White is increase
in mean stress, black is decrease in mean stress. The dotted lines shows the contours of no change.

4

L}

Fig. 4.8. Change in tangential stress due to the drillout of a borehole in anisotropic far field stresses. White is
increase in tangential stress, black is decrease in tangential stress. The dotted lines shows the contours of no
change.

4.4. Poroelastic time dependent effects

In a nonporous, linear elastic material, the stress redistribution upon drilling or well pres-
sure change is immediate. In a porous and permeable medium, however, there are time
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effects due to the fact that the pore pressure propagates with a limited rate. (See Sec-
tion 1.9.1.)
There are two main sources of the poroelastic time effects:

1. Pore pressure change due to production or the invasion of the wellbore fluid.

2. Pore pressure change because the redistribution of the formation stresses gives a vol-
umetric strain, see e.g. Eq. (4.104).

While the first mechanism requires a non-sealing wellbore wall, the second will occur
even if the wellbore wall is completely sealed.

Detournay and Cheng (1988) discuss in detail the case of a vertical hole with unequal
far-field stresses. We reproduce some of their results here, but strongly recommend the
original paper for a complete discussion. See also Chapter 2 of Charlez (1997).

4.4.1. Wellbore pressure invasion

We consider first case 1, in which the pore pressure is changed by communication with
the wellbore pressure. Let us assume that initially pw = pso, that we have a permeable
borehole wall and that at time zero the well pressure is changed by Apy. Assuming an
axisymmetric pressure profile, the pore pressure is decoupled from the deformation, and
the pressure inside the formation will develop according to a decoupled diffusion equation
similar to Eq. (1.241). The pressure development as a function of time and radial distance
into the formation is shown in Fig. 4.9. The parameter ¢’ labelling the curves is a dimen-
sionless time, defined by

,_,Co
R

(4.107)

Apg
Apy,

Fig. 4.9. Well pressure penetration. The curves are labelled by the dimensionless time " (see Eq. (4.107)). After
Detournay and Cheng (1988), with permission from Elsevier Science Publishers.
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where the diffusion constant Cp is given by Eq. (1.242). For an 8” hole, ¢’ = 1 corresponds
to milliseconds or less for a high-permeable sand, and up to several days for a tight shale.

Once the pore pressure profile is known, the tangential stress may be computed by
Eg. (4.56). If we assume that as time tends to infinity the well pressure change has pen-
etrated deeply into the formation, we see from Eq. (4.56) that the contribution to the
tangential stress from the pore pressure change is

R2
Aoy (t — 00) = nApwy (1 + —;V> (4.108)
r

This is of course in addition to the elastic contribution as given by the first two terms of
Eq. (4.56) (or by Eq. (4.44)).

Note that the assumptions leading to Eq. (4.108) are different from those leading to
Eq. (4.67). The latter assumes a steady flow for large times, while the former assumes that
the pore pressure far into the formation has become equal to the well pressure for large
time. Both cases are approximations that are not fulfilled in practise.

We also see from Eq. (4.59) that at the borehole wall, the change in tangential stress is

Aoy = 2nApw (4.109)

at all times.

There are no explicit analytical solutions of the diffusion equation for the current prob-
lem, and hence it must be solved by numerical methods.

In Fig. 4.10 we show the time development of the pore pressure induced contribution
to the tangential stress. Let us assume that we are considering production, i.e. Apy is
negative. We see that at the borehole wall, the tangential stress is reduced relative to the
elastic case at all times. However, for short times, we have an increase in the tangential
stress in the near wellbore region. The region of increased stress propagates outwards with
time.

Fig. 4.10. Tangential stress due to well pressure penetration. The curves are labelled by the dimensionless time ¢'.
After Detournay and Cheng (1988), with permission from Elsevier Science Publishers.



POROELASTIC TIME DEPENDENT EFFECTS 153

The origin of this increase in tangential stress may be understood by considering that
the reduced tangential stress near the borehole must be compensated by an increase of
tangential stress further away. The position of the region of increased radial stress follows
the position the pressure front. Hence it propagates outwards and broadens with time.

4.4.2. Drillout induced pore pressure changes

We saw (e.g. in Eq. (4.104)) that when the farfield horizontal stresses are unequal, the
drillout leads to a volumetric strain and hence to a change in pressure, which will dissipate
with time due to fluid flow. This will lead to time-dependence of the near wellbore stresses,
also when the wellbore wall is completely sealing.

The pore pressure change depends both on the radial position and on the azimuth. Hence
there will be both radial and tangential fluid flow as a result of the drillout. Since the
diffusion distance is shortest close to the borehole, pore pressure will reach equilibrium
fastest here. A partly or fully open wellbore wall will contribute further to this.

As a result, the near wellbore behaviour will be drained, whereas the response deeper
into the formation will be undrained for short times. Since the drained moduli are smaller
than the undrained, the stress concentration in the near wellbore region will initially be
shielded relative to its full elastic value. This is similar to the shielding seen for nonlinear
formation, or plastic formations, see Sections 4.2.5 and 4.6. Obviously, the effect will be
strongest when there is a significant difference between drained and undrained parameters,
i.e. for soft materials.

As the pore pressure imbalance dissipates, the shielding disappears, and the elastic stress
concentration is reestablished. Detournay and Cheng (1988) suggested that this may be a
mechanism of delayed failure for boreholes in tight formations.

Fig. 4.11 shows the variation in tangential stress as a function of radius in the minimum
stress direction for various dimensionless times (Eq. (4.107)). The plot has been generated
forv = 0.4, vy = 0.2 and Skempton’s B = 0.8. (An example of a set of parameters
in our notation that gives these values are ¢ = 0.15, Kfy = 4 GPa, Gy = 4 GPa and
Ks =37.5GPa.)

We underline that the figure shows only the tangential stress due to the deviatoric load-
ing, i.e. the stress corresponding to the cos 260 term in Eq. (4.96).

Fig. 4.12 shows the variation in tangential stress at the wellbore wall as a function of
time, again in the direction of the minimum horizontal stress. The initial reduction in stress
concentration is evident.

For a numerical example, assume py = 20 MPa, oy = 40 MPa, o, = 30 MPa. Then
Fig. 4.12 shows that oy ~ 15 MPa initially and oy ~ 20 MPa at large times. The total
tangential stress is found by adding the contribution from the mean farfield stress, oy =
oH + on — pw = 50 MPa. Thus, the tangential stress at the borehole wall (in the direction
of the minor stress) increases from 65 MPa at early times to 70 MPa at large times.

In addition to the poroelastic time effects, there are also time effects due to temperature
change and chemical processes. See Chapter 9 for further discussion.
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Fig. 4.11. Time development of tangential stress (induced by anisotropic horizontal stresses) in the direction
of minimum horizontal stress. The different curves correspond to different +' as shown by the legend. After
Detournay and Cheng (1988), with permission from Elsevier Science Publishers.
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Fig. 4.12. Time development of tangential stress (induced by anisotropic horizontal stresses) at the borehole
wall, in the direction of the minimum horizontal stress. After Detournay and Cheng (1988), with permission from
Elsevier Science Publishers.

4.5. Borehole failure criteria

As shown in the previous sections, there may be large stress deviations in the formation
close to the borehole, when the borehole pressure differs from the formation pressure. If
the stress deviation somewhere exceeds the failure criterion for the rock, the rock fails.
This situation is what we shall associate with the term “borehole failure” in this section.
Conversely, “borehole failure criterion” means the boundary conditions for which borehole
failure occurs.

The consequences of borehole failure according to this definition are normally bore-
hole deformations of some kind. Note, however, that such deformations are not necessarily
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dramatic from an operational point of view (see Chapter 9). Thus, “borehole failure” as
defined here should by no means be taken as a synonym for a lost well. Development of
borehole failure beyond failure initiation is discussed in Section 4.6.

4.5.1. Vertical hole, isotropic horizontal stresses and impermeable borehole wall

For a material that behaves linearly elastic, the largest stress differences occur at the bore-
hole wall, hence rock failure is expected to initiate there.

We start with the simplest case, a vertical borehole with constant pore pressure and
isotropic farfield horizontal stresses. We assume that the wellbore is lined with a perfect
mud cake, which means that the pore pressure is not influenced by the well pressure.

Within this assumptions, the principal stresses at the borehole wall are, according to
Egs. (4.43)—(4.45)

or = pw (4.110)

0y = 20nh — pw (4.111)

0, = oy 4.112)
z (

There are several conditions for which the borehole may fail, depending on the relative
magnitudes of the principal stresses. Let us first assume that we are lowering py such that
or = pw becomes the smallest principal stress. We see from Eqgs. (4.111) and (4.112) that
depending on the relative magnitude of o, and oy, either oy or o, will become the largest
principal stress at the borehole wall.

Consider first the situation where oy > o, > o, at the borehole wall. According to the
Mohr—Coulomb criterion (Eq. (2.22)), failure will occur when

o) = Co + o/ tan’ B (4.113)

Using an effective stress coefficient equal to 1 for failure (see Section 2.6.1) we find that
the failure criterion for the borehole becomes
20 + pi(tan®  — 1) — Co 2(on — pp) = Co
in = = _ 4.114
P, min 1+ tan?g P T Tan? B (4.114)
Thus, if the well pressure falls below the value given by Eq. (4.114), shear failure will
occur at the borehole wall.
Next, assume that oy, is smaller relative to oy, such that oy is the largest principal stress
at failure. Proceeding as above, the failure criterion becomes

_oy+pitan?B—1)—Co oy — pt — Co
Pw = tan2 B - P tan2 B
In practice, one needs to calculate both cases, and pick the criterion that gives the largest
borehole pressure at failure.
In order to map the region of mechanical stability for a borehole, all six permutations
of the three principal stresses o, oy and o, need to be considered. The resulting equations

(4.115)
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TABLE 4.1 Conditions for shear failure in vertical boreholes with isotropic far-field horizontal stresses
and impermeable borehole wall

Case o1 = 0 = 03 Borehole failure occurs if
2(onh — pr) — Co
a oy = 0; = Oy ngpf“rw
ov— pi — Co
b o, =09 >0 <pp4 —~
4 % r pW pf tanzﬂ
ov— pi — Co
C 0, = 0r 2 09 PW?Pf"‘z(Uh—Pf)—W
2(oh — pr)tan? B + Co
d o 2 07 2 0p Pw =P

1+tan2 B
o; pw = pi+ (ov — pr)tan? B + Co

e o >
pw < i+ 2(oh — pg) — (ov — pr)tan? B — Co

o9

[of (of

~

f oy

I8

In practise, cases d, e and f are only of academic interest.

are summarized in Table 4.1. The various conditions for borehole failure are shown graph-
ically in Fig. 4.13. Cases d, e and f are mainly of academic interest however, since they
imply a wellbore pressure higher than the overburden stress, a condition that is usually
unacceptable in drilling. See discussion below.

The conditions constitute a polygon enframing a region where the borehole is stable
with respect to shear failure; if subject to stress states outside the polygon, the borehole
will fail.

In addition to the shear failure criteria, we must consider that o, at the borehole wall
becomes negative if the well pressure is sufficiently large, according to Eq. (4.111). If
o, < —To, where Ty is the tensile strength of the material, tensile failure will occur at the
borehole wall. This adds an additional criterion for borehole failure to the list:

pirec = 20n — pi + To (4.116)

According to this criterion, tensile failure will occur at the borehole wall if the well pressure
is increased above the value given by Eq. (4.116). Borehole failure of this kind is called
hydraulic fracturing, which is a topic we will return to in Chapters 8, 9 and 11.

Note that the criterion in Eq. (4.116) applies if the full stress concentration around the
borehole as predicted by Eq. (4.111) exists. This requires a perfectly circular hole, and a
linear elastic material. In practice, both these criteria will be only partly fulfilled, and hence
the real limit for hydraulic fracturing will occur at a lower value for py.

When the fracture has propagated away from the borehole, it may continue to propagate
if pw is higher than approximately oy, + Tp. (See further discussion in Section 11.3.) This
corresponds to the diagonal line labelled o, = oy in Fig. 4.13 (for the case Tp = 0).

Fig. 4.13 is a graphical representation of the failure criteria discussed, assuming Co = 0,
pf = 0.40y and tan? B = 3. The shaded region is bounded by the shear failure criteria,
while the oblique line labelled “Vertical fracture init.” represents hydraulic fracturing.
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Fig. 4.13. Graphical representation of conditions for borehole failure. The Mohr-Coulomb failure criterion with
Co = 0, pf = 0.4oy and tan? B = 3is assumed. The polygon will grow in all directions if Cy is nonzero. In
particular, if Tg = 0, the line ¢ will coincide with the vertical fracturing line if Co = oy — ps. (After Guenot,
1987; with permission from A.A. Balkema.)

The horizontal line labelled “Horizontal fracturing” represents another failure criterion,
which needs to be taken into account: If there is any preexisting fracture or flaw in the
borehole wall, the wall pressure will act with a vertical component on the formation there.
A horizontal fracture will then grow if oy — pyw is less than —Ty, i.e. if pw > oy + Tp.

4.5.2. Vertical hole, isotropic horizontal stresses and permeable borehole wall

If the borehole wall is permeable, the pore pressure at the borehole wall is equal to the well
pressure. This means that we must use py rather than ps when computing the effective
stresses. In addition, we must take into account the change in the total stresses induced by
the varying pore pressure, as given by Egs. (4.58)—(4.60)).

The stresses at the wellbore wall are thus

or = Pw (4.117)
09 = 20h — pw + 2n(pw — pro) (4.118)
o, = oy + 2n(pw — pfo) (4.119)

where 5 is the poroelastic stress coefficient (see Eq. (4.54)) and ps, is the farfield pore
pressure. Remember that the last equation follows from the plane strain assumption, and is
hence strictly valid only for an infinitely long borehole.
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Inserting these expressions into the Mohr-Coulomb criterion, using py when computing
the effective stress, we then find for oy > o, > o,

 20n—2ypo— Co 200 —a A pro — Co (4.120)
Pw,min = 2_2 - 2_a11—__2v”ffr .

Note that the equation contains Biot’s « because of the elastic redistribution of the stresses
due to the pore pressure profile, however we still use an effective stress coefficient equal to
unity in the failure criterion. Also, observe that since the minor effective stress is zero, the
failure angle does not appear in Eq. (4.120).

Similarly, for o, > 0y > o, we find

1-2v
oy — 2npfo —Co _ Ov — a—l,vf:r pro — Co

_ 1—2vy
1-2y l-«o o

(4.121)

Pw,min =

Since o] is always equal to zero, it is of little interest to study the cases corresponding to c,
d, e, fin Table 4.1. The remaining criteria to be considered are thus the hydraulic fracturing
criteria, o, = —Tp and o, = —Tp. We find for vertical fracturing

1-2
e _ 20n — 2npro+ To 20n —a 1—vuf:r pio+ 1o (4.122)
w,max — — - 1-2y, ’
and for horizontal fracturing
1-2
P 20po+To _ v =@y, Pho+ T (4.123)
W, max 1— 277 11—« 11_72\;?

Again, this last equation assumes plane strain conditions, and can not be directly applied to
pressurization of a limited section of a borehole. Hence, the equation has limited practical
applicability, and is mainly of academic interest.

4.5.3. Borehole along a principal stress direction

The stresses at the wall of a vertical hole with unequal far-field stresses, and constant pore
pressure, were given in Egs. (4.100)-(4.103). Since all shear stresses vanish in this case,
or, og and o are the principal stresses and may be used directly in the failure criterion.

From Eq. (4.101) and Fig. 4.8 it is clear that the maximum tangential stress occurs in
the direction of the minimum horizontal stress, and hence shear failure at the borehole wall
will initiate in the direction of the minimum horizontal stress, see Fig. 4.14.

Comparing to Eq. (4.111) we see that the critical well pressure when oy > o, > o,
(case a of Table 4.1) may be found by substituting 2oy, with 3oy — oy, in Eq. (4.114):

3oy —on — 2ps — Co

4.124
1+tan2 B (4-124)

Pw,min = pf+
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Fig. 4.14. Location of shear failure initiation at the wall of a vertical hole with anisotropic horizontal stresses.

Similarly, by comparing Eq. (4.102) to Eq. (4.112) we see that for o, > 0p > o, (Case b
of Table 4.1) we have

ov + 2|vir|(oH — on) — ps — Co
+ 2
tan? g

Pw,min = Pf (4.125)
Note that we need to take the absolute value of the Poisson’s ratio. This is because the
largest value of o, in Eq. (4.102) occurs for 6 = 0° for negative vf and for 6 = 90° for
positive vy.

The tensile failure criterion Eq. (4.116) is also modified if the horizontal stress is
anisotropic. In this case, failure will occur at the positions where oy is smallest, and hence
fracturing will occur in the direction of maximum horizontal stress (see Fig. 4.8). The
criterion becomes

PR o = 30n — o1 — pr + To (4.126)
Here we see that an increase in the largest horizontal stress reduces the upper stability
limit for the well pressure. Thus anisotropy in the formation around a borehole reduces the
region where the borehole is stable.

Observe that if oy is sufficiently large, the pressure given by Eq. (4.126) may be smaller
than the criterion for fracture growth outside the influence of the borehole, which is py ~
oh + To. Eq. (4.126) may thus be the criterion for initiation of a fracture that does not
propagate beyond the stress concentration around the borehole. See Section 11.2 for a
more detailed discussion.

The above equations were derived for a vertical borehole. It is however trivial to adept
them to a horizontal borehole along a principal stress direction by appropriately inter-
changing the far-field stresses. As an example, for a horizontal hole along oy, we must
interchange oy and oy (assuming oy > op).

4.5.4. Borehole in a general direction

In the general case it is not possible to obtain closed-form expressions for the critical well
pressure, and one must resort to numerical solution methods.
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In brief, the procedure for establishing the lowest possible well pressure is as follows:

1. From the known far-field stresses, compute the stresses in the borehole coordinate
system according to Egs. (4.77)—(4.82).

2. Compute the stresses at the borehole wall according to Egs. (4.89)—(4.94).

3. Subdivide the interval 0 < 6 < & into a number of sub-intervals (depending on the
accuracy required). For each sub-interval perform the following:

o Diagonalize the stress tensor at the borehole wall to find the principal stresses.

o Find the critical well pressure by inserting the principal stresses into the failure
criterion.

4. The lowest admissible py is the largest critical well pressure found from the iteration
in the step above.

4.6. Beyond failure initiation

Borehole failure is commonly observed as breakouts in the borehole wall. Fig. 4.15 shows
a typical example of a failure mode denoted “borehole elongation”, due to the extension of
the borehole cross-section in one direction. The stress conditions causing this cavity to fail
corresponded to case a in Table 4.1. The diagram in Fig. 4.13 is split in various sectors by
the dashed border lines where two principal stresses are equal. Each sector is associated
with a failure condition in Table 4.1. A typical mode of rupture is associated with each
sector. These are described in Table 4.2 and Figs. 4.16-4.18 for the most relevant cases.
The orientation of breakouts due to failure of type a are related to the orientation of the
horizontal stresses, as discussed in Section 4.5.3. This connection is used in the field for
determining the direction of the stresses, see further discussion in Section 8.3.2.

Fig. 4.15. Cross-section of a cylindrical cavity after failure.
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TABLE 4.2 Rupture modes for the failure of boreholes (Maury and Sauzay, 1987)

Case Rupture mode Figure

Shear, a Rupture occurs in shear surfaces intersecting parallel to the axial stress Fig. 4.16
Shear, b Rupture occurs in fragments of toroidal shape Fig. 4.17
Shear, ¢ Rupture occurs in multishear surfaces intersecting parallel to the radius Fig. 4.18
Tensile Hydraulic fracturing; isolated fractures parallel to the borehole axis Fig. 11.1

0z

)

09

(@) (b)

Fig. 4.16. Failure planes caused by the tangential (ai) and the radial (rré) stresses. (a) Stresses on an element at
the wellbore wall. (b) Breakouts.

i >

N
(a) (b)

O¢

Fig. 4.17. Failure planes generated by the vertical (al’) and the radial (03’) stresses. Breakouts will have toroidal
shapes. (a) Stresses on an element at the wellbore wall. (b) Breakouts.

Anisotropy in the material parameters of the rock also affects the orientation of break-
outs. When the horizontal stress is isotropic, the breakouts tend to be oriented normal to the
joints of bedding in the material (Kaiser et al., 1985). Note, however, that breakouts of the
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Oz

(a) (b)

Fig. 4.18. Failure planes generated by the vertical ((r]’_) and the tangential (03’) stresses. Radial fractures may
develop following a helical path along the well. (a) Stresses on an element at the wellbore wall. (b) Breakouts.

form shown in Fig. 4.15 may occur even if both the stress field and the material parameters
are isotropic.

The criteria for the initiation of borehole failure discussed in Section 4.5 only define
the initiation of borehole failure, and do not reveal the consequences of failure initiation,
which is of course of equal interest.

An idea of the development of borehole failure can be obtained by tracing a potential
failure plane from the borehole wall into the formation. We here choose the simplest case
of a linearly elastic formation and isotropic formation stresses, and assume pw < oy. The
orientation of a potential failure plane at a distance r from the borehole centre is given by
the orientation of the largest and smallest principal stress (oy and o, respectively), and the
failure angle B (which is related to the coefficient of internal friction, see Section 2.3.1).
The situation is shown schematically in Fig. 4.19. The plane proceeds in the direction

y
Ar
{ /Ur
rAG
2\ B
g
AB =
L
R
S \ og
6

Fig. 4.19.
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(/2 — B) relative to the direction of oy. According to Fig. 4.19, we have

Ar dr T
Eq. (4.127) is a differential equation, with the solutions
r=Cpe*?? (4.128)

where b is given by

b:tan(%—ﬁ) =i +1-nu (4.129)

and Cy is a constant. (The coefficient of internal friction x was defined in Eq. (2.6).) The
+-sign in Eg. (4.128) arises because we have an alternate failure plane which is the mirror
image about the o,-direction of the one indicated in the figure.

Fig. 4.20 shows a set of curves as given by Eq. (4.128). There are clear similarities in
the crack patterns of Figs. 4.15 and 4.20. In Fig. 4.20, the number of failure planes and the
positions of the failure plane initiations (determined by the constant C1) were deliberately
chosen such as to make the figure resemble the observation. In a more extended analysis,
Zoback et al. (1985) connect these parameters to horizontal stress anisotropy. They also
suggest that the formation of such breakouts takes place in successive stages, where new
generations of failure planes develop outside the initial ones.

This suggestion is founded on an important aspect of the problem: the formation of a
failure plane causes a redistribution of the stresses around the borehole. Thus the conditions
for failure of the still intact parts of the borehole wall are being altered. Unfortunately, this
alteration also implies a reduction in the symmetry of the problem so that calculation of
the stresses becomes more complicated.

Redistribution of stresses and a reduction of stress state symmetry may even occur prior
to the formation of shear failure planes, if the symmetric deformation becomes unstable

Pils

Fig. 4.20. Potential failure planes surrounding a borehole.
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relative to a surface buckling (Vardoulakis et al., 1988). Due to the reduced symmetry, the
complexity of the problem rises quickly, and numerical techniques are normally needed
for further modelling.

The failure process also involves opening of cracks oriented parallel to the major princi-
pal stress (or—more precisely—oriented with their normals parallel to the minor principal
stress), as discussed in Section 6.4.4. In a situation corresponding to case a, Table 4.1,
these cracks will be oriented parallel to the borehole wall. The opening and growth of
these cracks is by some authors considered as the fundamental fracture mechanism for
breakout formation in boreholes (Zheng et al., 1988; Ewy and Cook, 1989).

Theoretical simulations based on this consideration also resulted in elongated boreholes
similar to Fig. 4.15. The simulations further gave the important result that the elongated
borehole becomes stable when it has reached a specific shape. This shape depends on the
actual combination of stresses and strength, and also on the stress path.

In these simulations, a breakout is initiated as a slab of rock covering a certain angle
of the borehole wall is spalled off. This causes further stress concentrations in front of the
spalled region, and further spalling takes place within this sector of the borehole. Thus,
once a breakout is initiated within a sector, it will not become wider, but will deepen until
it reaches its stable shape.

4.6.1. A simple plasticity model

Stabilization of the borehole after failure initiation can also be described analytically, given
some simplifying assumptions. We shall here discuss a simple model, in which the rock is
assumed to behave according to the linear elastic/ideally plastic model described in Sec-
tion 2.8.1 (Fig. 2.24). Rock failure is in this model associated with the transition from
elastic to plastic behaviour. This transition does not involve the development of failure
planes, hence the symmetry of the stress state is preserved after failure.

Consider the situation discussed in Section 4.5.1, with a low well pressure. If the stress
state at the borehole wall fulfils the failure criterion, there will be a zone surrounding the
borehole where the rock acts as a plastic material. Outside this region the material remains
elastic. In the outer, elastic region the general solutions Egs. (4.35) and (4.36) are still
valid (although the coefficients of integration will change). In the inner, “plastic zone”, the
equation of equilibrium (4.28) is valid, but the principal stresses must also satisfy a yield
criterion.

The Tresca criterion

To illustrate the main principles with as simple mathematics as possible, we first use the
Tresca criterion (Eq. (2.5)). We assume that oy and o, will be the largest and smallest
principal stresses in the plastic zone. The Tresca criterion then requires

og — o, = Co (4.130)
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in the plastic zone. Introducing Eqg. (4.130) into Eq. (4.28) we have

do, _ Co (4.131)

dr r
The solution of Eq. (4.131) taking into account the boundary condition o, (Ry) = pw is

oy = pw -+ Coln RL (4.132)

w

The tangential stress then follows immediately from the failure criterion (Eg. (4.130)):

06 = pw + c0<|n Ty 1) (4.133)
Rw
Egs. (4.132) and (4.133) apply in the plastic zone, Rw < r < Rp, where Ry is the radius
of the plastic zone.

Outside the plastic zone, r > Rp, the elastic solutions given by Eqgs. (4.35) and
Eqgs. (4.36) apply. C; is determined by the requirement that the stresses should be equal
to on as r approaches infinity, while C; is determined by requiring that oy — o, fulfils the
failure criterion (Eq. (4.130)) at r = Rp. The result is

1 (Rp\?

oy = op — -c0<—p) (4.134)
2 r
1 (Rp\?

0p = oh + 5C0(7p> (4.135)

The plastic zone radius is determined from the requirement that the radial stress should be
continuous at » = Ry. From Egs. (4.132) and (4.134) we then find

(4.136)

The stress distribution around the borehole is shown in Fig. 4.21. Although this solution
has been obtained through a series of simplifying assumptions, it illustrates the general
features of the plastic zone concept. It will, however, become clear below that the Tresca
based solution above is not even approximately accurate in frictional materials.

The Mohr—Coulomb criterion

The calculation steps are essentially the same for the Mohr—Coulomb criterion, although
the formulas become more complex. As above, we assume that o, is the minimum stress
and oy the maximum stress. For simplicity, we assume ps = 0. The generalization to a con-
stant pore pressure is however simple. We write the Mohr—Coulomb criterion (Eq. (2.22))
in the elastic zone on the form

o} = Co+ ko (4.137)

where k = tan? g and g is the failure angle.
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Fig. 4.21. Stresses around a borehole with a plastic zone, according to the Tresca model. Parameters are
Co = 0.501,, pw = 0.250p.

For the plastified zone we allow the possibility of altered parameters
oy =Cy+Kko/ (4.138)

Eliminating oy from the failure criterion in the plastified zone, Eq. (4.138), and inserting
into the force balance equation, Eq. (4.28), we obtain

do, n o,(1 -k _ C_(/)

(4.139)
ar r r
Solving Eqg. (4.139) using the boundary condition o, (Rw) = pw gives the solution within
the plastified region
Ch r\T

= — - 4.140
or <Pw+k/—1>(1ew) K —1 (4.140)

The tangential stress follows from the failure criterion, Eqg. (4.138):

oA r A\t ¢

o/’ =C6+k’o'r=k/<pw—|—k,_1><R—W> T _1 (4.141)

From the requirement that oy = op as r becomes very large it follows that the elastic
zone stresses (Egs. (4.35) and (4.36)) can be written

1

or = 0Oh + Cé_z (4.142)
r
1

0y = Oh — Cér—z (4.143)

Adding these equations gives the well-known relation

09 = 20h — 0, (4.144)



BEYOND FAILURE INITIATION 167

At the radius of the plastic zone, the intact material yield criterion must be fulfilled, hence
by inserting Eq. (4.144) into Eq. (4.137) we have:

20n — Cp
Equating this expression to the inner zone expression for o, Eq. (4.140), gives an equation
to determine the plastic zone radius, which is found to be

Ry |:2Uh ~Co+ (k+1)k,%°l}k/ll

ol (4.146)
R (Pw + 7))k +1)
The coefficient C; is determined from Eq. (4.142)
C = R (on — 0+ (Rp)) (4.147)
which using Eq. (4.145) gives
2
oy = r2 %= k)ih1+ o [ = Cot b+ Dy ] ' (4.148)

(pw+ 7= 1)(k +1
In terms of the attraction, A = Co/(k — 1) (see Eq. (2.9)), Eq. (4.146) may be written

as
1
R _ |:20h +Q-bA+A+hA ]k 1 (4.149)
Rw (pw + Ak +1)
If A" = A this simplifies to
1
L7 4.150
Rw [(PW+A)(/<+1) ( )

The stress distribution around the borehole, assuming a friction angle of 30° is shown in
Fig. 4.22. Note that the extent of the plastic zone is considerably smaller than for the Tresca
case. Fig. 4.23 illustrates how the radius of the plastic zone depends on the well pressure.
Observe that the extent of the plastic zone is reduced as the friction angle increases.

The axial stress o, is more tricky to determine. More sophisticated models indicate that
the plastic region consists of two zones; in the inner zone the axial stress is equal to the
tangential stress, while in the outer zone all three principal stresses may differ.

The models presented above are simplifications, since both are based on ideal plas-
ticity, and do not take properly into account how the plastic strain changes the yield
criterion. More realistic models need to incorporate a description of plastic flow and hard-
ening/softening, and necessarily become significantly more complicated than the simple
models sketched here. Although the Mohr-Coulomb based equations above may be used
for quick overview calculations, more advanced models, normally implemented in Finite
Element codes, are necessary for precise calculations.
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Fig. 4.22. Stresses around a borehole with a plastic zone, assuming the same failure criterion in the intact and
plastic zones. Parameters are Cog = 0.1op, pw = 0.20p, ¢ = 30°.
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Fig. 4.23. Radius of the plastic zone versus well pressure, for friction angles 10° and 30°. Full lines correspond
to Cg = 0.50p, while dashed lines are for Co = 0.1op.

Deformation and plastic strain

The deformation and plastic strain may be computed by the general methods outlined in
Section 2.8.1. To simplify equations we restrict ourselves to the Tresca criterion, Eq. (2.5).
We rewrite the criterion in the general form of Eq. (2.61)

f(o1,09,03) = f(o/,04) =05 —0,—Cog=0 (4.151)
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and find the plastic strains according to the associated flow rule, Eg. (2.66)

9
e = d,\paf = —dip (4.152)
Oy
3
e — dxp% — diyp (4.153)
3
e = dxpé)?f =0 (4.154)
Z

The total strains are given by the deformations (Egs. (4.13)—(4.15)), while the plastic strains
can be found from Eqg. (2.60). Inserting the resulting expressions into Eq. (4.19) we find

?
o) = (i + 2Gf) (a_brt + dxp> + /\er - dxp> (4.155)

Proceeding in the same way for o, and using the yield criterion, Eq. (4.151), gives

lu 10u Co

p=-——z—-—

2r 20r 4Gy

Inserting the expression for dip into Eq. (4.155), and using the force balance equation
(4.28) then gives the displacement equation

2
Gu tdw _w G 1, o dir_, (4.157)
dr2  rdr r2 Ag+Gxr g+ Gg dr

In the following we restrict ourselves to the case where ps is constant, or where the deriva-

tive of ps with respect to r is proportional to 1/r. The latter case corresponds to stationary

radial flow, see Eq. (4.62).

The displacement equation can then be rewritten as

(4.156)

d?u  1du u P
b W 4.158
dr2 " rdr r2  r ( )
where (using Eq. (4.62))
p__C o«  po—pw (4.159)
Mr+ Gsr Ar + G In(Re/Rw)
The second term is replaced by zero for the constant ps case.
The general solution of Eq. (4.158) is
C P
u:Clr—l——z—I—Erlnr (4.160)
r
Entering this solution into Eq. (4.156) gives
C, P Co
dip= —& — — — 4.161
P72 4 4Gy (4.161)

The integration constant C is now determined by requiring that di, should be zero at

r = Rp, giving
dip==(=—+P — ] -1 4.162
=il )l(7) ) 4192
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We have used the Tresca criterion, because it allows the main points to be demonstrated
with simple mathematics. Using a more realistic criterion, like the Mohr—Coulomb crite-
rion, adds significantly to the complexity of the calculations. See Risnes et al. (1982).

4.7. Spherical coordinates

In petroleum related rock mechanics stress and strain solutions in spherical coordinates are
of much less importance than solutions in cylindrical coordinates. While the cylindrical
geometry is often a good approximation for a borehole, spherical cavities are to a less
extent a good approximation to real cases.

Still, solutions in spherical coordinates have been employed as a crude approximation
to producing cavities (see Section 10.2.3), and are also useful in some methods for the
estimation of surface subsidence (see Chapter 12).

We therefore give a short presentation of some basic equations here.

4.7.1. Basic equations

We use the standard convention, and denote the spherical coordinates by (r, 8, ¢), and limit
ourselves to a situation with full spherical symmetry. The only deformation is then in the
radial direction, and the non-zero strains are given by (see Appendix D.1.2 for the complete
expressions for strain in spherical coordinates)

g =24 (4.163)
or
£y = e = ; (4.164)

The force equilibrium equation for the r-direction, corresponding to Eq. (4.28), becomes
do,
dr

while, due to the symmetry assumed, the force equilibrium equation for the 6-direction
requires

1
+ =20, —0p —0y) =0 (4.165)
,

0p = 0¢ (4.166)
Eqg. (4.165) is then simplified to

do,
dr
Hooke’s law is reduced to (using 4 = &)

226 o =0 (4.167)
-

or —aps = (Mr + 2Gfr)er + 2Afreg (4.168)
09 — apf = ey + 2(Ar + Gfr) &g (4.169)
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Inserting the expressions for the strains, Egs. (4.163) and (4.164), into Hooke’s law, and
using the force equilibrium equation (4.167) gives the displacement equation

d?u  2du 2 o dps .

T L L 4.170
dr2+rdr r2u+kfr+2Gfr dr ( )

4.7.2. Stress distribution around a spherical cavity with no fluid flow

With no fluid flow the pore pressure will remain constant, equal to pfo, and the displace-
ment equation becomes

d?u  2du Z_d du 2u_d 1d
T dr\r2dr

dr Ty

e 2w

The general solution is

rzu)> =0  (4171)

C
u=Cir+ _22 (4.172)
,
where the integration constants are to be determined from the boundary conditions
or = pw forr =R (4.173)
or =09 forr— oo (4.174)

R is the radius of the spherical cavity.
Proceeding as in Section 4.2.2, using Hooke’s law (Egs. (4.168)—-(4.169)), the stress
distribution around a spherical cavity is found to be given by

r

R\®
o = 0g — (0g — PW)( ) (4.175)

3

0g = 0p + %(Uo - Pw)(%) (4.176)
These stress solutions are sketched in Fig. 4.24. The thin dashed lines show the corre-
sponding distribution for a cylindrical hole (see Fig. 4.3). If we assume o, to be equal to
oh, the stress difference between the tangential and the radial stress at the cavity wall will
be 2(on — pw) in the cylindrical hole case but only (3/2)(or, — pw) in the spherical cav-
ity case. It follows that a spherical cavity tends to be more stable than an open hole with
respect to shear failure.

4.7.3. Stress distribution with fluid flow

Darcy’s law (see Eq. (1.229)) for symmetric spherical flow into a cavity can be written

0 _ kdpr
Arr2 oy dr

(4.177)
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oy

Pr

R, r
Fig. 4.24. Stress distribution around a spherical cavity with no fluid flow. The thin dashed lines show the corre-

sponding distribution for a cylinder, see Fig. 4.3.

where 4772 is the area of a sphere of radius r. All the other parameters are the same as in
Eqg. (4.61). If we assume that the flow rate is independent of r, the fluid pressure distribution
is given by
Rc
pf = pio — (Pfo — pW)T (4.178)
Solving the displacement equation, the steady state solutions for fluid flow into the cavity
can then be written:

R:\® R
o, = 00 — [00 — pw — 21(pfo — pw)] (f) — 2n(pfo — pw)TC (4.179)

1 Re\? R¢
0p = 0o + E[GO — pw — 2n(pfo — Pw)] ) n(pfo — pW)T (4.180)

At the cavity wall we have
Or = pw (4.181)
1
0 = 0o + 5(00 = pw) — 2n(pfo — pw) (4.182)

As for the cylindrical hole the stresses at the free surface are the same as in the no-flow
case, except that the tangential stress has an additional term due to pressure drawdown.
This term is exactly the same as derived for the cylindrical vertical well.
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Chapter 5

Elastic wave propagation in rocks

Elastic waves are mechanical disturbances that propagate through a material. Such waves
are able to travel over very long distances through the Earth, and thus bring us information
about parts of the formations that are otherwise inaccessible. In seismic surveys, elastic
waves are generated at the surface, and the echoes from various layers in the formations
below are used to map the structure of the underground. Earthquakes are generated by
abrupt failure processes and propagate as elastic waves.

Elastic waves in air and water are usually called acoustic waves, or sound waves. These
terms are often used about elastic waves in rocks too. Elastic waves in rocks propagate with
a velocity that is given by elastic stiffnesses and the density of the rock. These parameters
depend on other parameters such as porosity. Thus elastic waves also provide a method by
which specific formation parameters can be estimated in the field.

As we proceed, we shall see that this evaluation is not straightforward—for example,
the stiffness probed by an elastic wave is generally different from the static stiffness. How-
ever, the fact that elastic waves are mechanical disturbances means that there has to be a
fundamental connection between rock acoustics and rock mechanics.

In this chapter we first present the fundamentals of elastic wave propagation in porous
media (Sections 5.1-5.5). Section 5.6 addresses the main focus of this chapter: the con-
nection between rock acoustics and rock mechanics. Finally, we give some background to
understand sonic wave propagation in boreholes and seismic waves through the subsurface
(Sections 5.7-5.9).

5.1. The wave equation

When an elastic wave passes through a material, each part of the material is forced into
oscillating motion. Consider a volume element within the material. The element is pushed
by the adjacent element behind it, and accelerates. The movement causes the volume el-
ement to push on the next element in front of it. This way the movement is propagating
from volume element to volume element through the material as a wave.

Wave propagation is described mathematically by the wave equation. This equation fol-
lows directly from Newton’s second law of motion: Force = mass - acceleration. The force
(per unit volume) acting on a volume element due to the stress the adjacent elements exert
was derived in Chapter 1. The force F, in the x-direction is given as (see Eq. (1.14)):

00y 0Tyy 0Ty
F, = 2

ax dy 0z

For simplicity, we shall first consider a plane, unidirectional mode of deformation in the

x-direction. We shall further assume that the material is a fluid, so that no shear forces can
exist, that is 7oy, = 7,; = 0. The mass (per unit volume) is given as the material’s density

(5.1)
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0, and the acceleration is given as the second derivative (with respect to time ¢) of the
displacement « of the volume element. Newton’s second law of motion thus requires that
u  doy
- 5.2
P92 = Tox 6:2)
The stress o, can be expressed in terms of the displacement u« according to Hooke’s law
(Egs. (1.93)—(1.98)), which under the conditions assumed here (plane wave in x-direction,
which implies that 8/dy = 3/dz = 0; and fluid, which implies that G = 0) becomes
=1r— 5.3
Ox ax ( )
Note that for a fluid the Lamé coefficient A is equal to the bulk modulus. Combining
Egs. (5.2) and (5.3), we obtain
9%u _a 92u
32 T 9x2
This is the wave equation for a plane wave propagating in the x-direction in a fluid. The
solution of the wave equation has the form

e (5.4)

U =u,e @99 (5.5)

where j represents the imaginary unit. The real part of this expression describes a periodic
displacement in the x-direction, with amplitude u,. The complex formulation has been
chosen here because it is mathematically simpler to work with.

The periodic displacement is a wave which propagates in the x-direction, with angular
frequency w, and wavenumber ¢. The angular frequency w is related to the frequency f as

w=2rf (5.6)

The wave described by Eq. (5.5) extends from —oo to +oo both in space and time. A dis-
placement pulse, which is limited in space and time, is described as a sum of waves like
Eg. (5.5), each with different angular frequency and different amplitude, such that the net
displacement vanishes for large values of |x| and |z].

The displacement u(x, t) represents the displacement of a volume element at position x
and time ¢, as the wave passes by. In this context, the volume element has been considered
as a particle, attached with “springs” to its neighbouring elements. The displacement is
therefore often called particle displacement. The displacement wave described by Eq. (5.5)
can also be considered as a pressure wave, through the relation between displacement and
stress given by Eqg. (5.3).

Any two points x; and x2, which are separated by a distance such that gx; = gx1 + 27,
will at all times have equal displacement according to Eq. (5.5). The distance between two
such points, xo — x1, is called the wavelength (Aw). The wavelength is thus related to the
wavenumber as

27
=
The term (wt — gx) in the exponent of expression (5.5) is called the phase of the wave. If
we follow the wave, locked on to a fixed displacement like a surfer on a sea wave, we move

q (5.7
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with a velocity v = x /¢ such that the phase (wt — gx) remains constant. This velocity is
called the phase velocity, and is related to the angular frequency, the wavenumber and the
wavelength as

v=2 s (5.8)
q

Inserting Eq. (5.5) into Eq. (5.4) and solving for w/q, we find that the phase velocity is
given by the elastic stiffness and the density as

v= | — (5.9)

Thus, we have derived the general result that the phase velocity of an elastic wave is propor-
tional to the square root of an elastic modulus, and inversely proportional to the square root
of the density. This result provides our basis for using elastic waves to explore mechanical
properties of rocks.

The phase velocity is the velocity at which the phase of an elastic wave travels. Elastic
waves in fluids and gases are usually called sound waves, or acoustic waves, and the phase
velocity is usually called the sound velocity. For fresh water, the elastic modulus A =
Ks ~ 2.25 GPa and the density p ~ 1.0 g/cm® (where both depend on temperature
and pressure), hence the sound velocity is 1500 m/s, according to Eq. (5.9). For dry air
under normal atmospheric conditions, A ~ 0.14 MPa (adiabatic value; see Section 1.5)
and p ~ 0.0012 g/cm?, thus the sound velocity is 343 m/s.

As shown above, the definition of the phase velocity is associated with a wave which
extends to infinity in space and time. In practice, we usually work with acoustic signals in
the form of pulses of finite duration. The velocity of a pulse, or equivalently, the velocity
of the wave energy, is called the group velocity, and is given as

dw
= — 5.10
Ugroup 3q ( )
By comparing Egs. (5.8) and (5.10) we see that if the phase velocity varies with the
frequency—a phenomenon called dispersion—the group and phase velocities will be dif-
ferent.

5.2. P- and S-waves

We now proceed to a more general case, and allow the material to possess a shear stiffness
so that shear forces may exist. That is, we shall look at elastic wave propagation in an
isotropic solid. Starting with Newton’s second law of motion, and the general expression
(5.1) for the force, we find the wave equation for displacement « in the x-direction

Pu  doy | ITry | 0Ta:
a2 dx dy 0z

P (5.11)
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Introducing Hooke’s law (Egs. (1.93)-(1.98)) we find

Pu v Pw %u  %u  9%u

—t — —t — + — 5.12
a2 T dxdy + 8x8z> <8x2 + dy? + 8z2) (.12

(Note that the symbol v here represents displacement in y-direction.) A general solution of
this equation is

u _ (L +G)
Pz =

U = u, el@—alD (5.13)

The vector 7 has the components x, y and z, while [ is a unit vector parallel to the di-
rection of wave propagation. The components /., I, and I, will be the direction cosines
(see Eqs. (1.27)—(1.29)) of the propagation vector. Equations similar to Eq. (5.12) can be
derived for particle displacement in the y- and z-directions. In general, these are coupled
equations in u, v and w, however there are two relatively straightforward solutions which
can be derived from Eq. (5.12). First we search for a solution where the wave propagation
is parallel to the displacement u (thatis, Iy = 1;1, =I; = v=w = 0):

U = u, @99 (5.14)

Such a wave is called a longitudinal wave, or alternatively a compressional wave, as it
involves a periodic compression of the material. It is also often termed a primary wave, a
name which originates from studies of earthquakes.

Since we are now considering a plane wave propagating parallel to the x-axis, we have
d/dy = d/dz = 0, and Eq. (5.12) reduces to

pw? = g% + 2G) (5.15)

126G
== 2T (5.16)
q 1Y

The subscript p denotes that this is a primary wave.

Eg. (5.12) also has other solutions. For instance, it is possible to establish a mode of
motion in which the particles are displaced only in the x-direction (that is, u # 0, v =
w = 0), while the wave is propagating as a plane wave in the y-direction (which implies
d/0x = 9/9z = 0). The solution is then

The phase velocity is

u = u,el@=a (5.17)
Inserting this into Eq. (5.12), we find

pw’ = ¢*G (5.18)

=2 € (5.19)
q 1Y

The phase velocity is
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Fig. 5.1. Particle motion in P-wave and S-wave propagation.

The subscript s denotes that this is the velocity of a secondary wave. Such a wave is also
called a transversal wave, or alternatively a shear wave, since it involves a periodic shear-
ing of the material. The motion of the volume elements (or “particles”) in a material during
propagation of compressional and shear waves is illustrated in Fig. 5.1. By comparing
Egs. (5.16) and (5.19), and remembering that v > —1 (see Section 1.4), we see that vp is
always larger than vs in an isotropic, linearly elastic solid.

The two solutions we found to Eq. (5.12), the compressional wave and the shear wave,
are the only types of waves that exist for an isotropic, homogeneous solid. For convenience,
these are often denoted P-wave and S-wave, representing the primary and secondary waves,
respectively. Also in this area there is a divergence in the use of names: In physics and rock
mechanics “acoustic waves” as well as “elastic waves” means both P- and S-waves. In
seismics, “acoustic waves” means only P-waves, while “elastic waves” means both P- and
S-waves.

The direction of particle motion is called the polarization of the wave. For any given
direction of wave propagation, there only exists one type of waves with polarization par-
allel to the direction of propagation (the P-wave), and one type of waves with polarization
normal to the direction of propagation (the S-wave). (Strictly speaking, two independent
S-waves exist for a given direction of propagation, since the polarization can be in any di-
rection in the plane normal to the direction of propagation. In an isotropic solid, however,
these S-waves are equivalent in all respects except for the polarization.)

By inverting Egs. (5.16) and (5.19), we can express the elastic coefficients in terms of
the phase velocities:

G = pv? (5.20)
A= pvs — 2pv52 (5.21)

Using Table 1.1, we find the corresponding expressions for the bulk modulus, Young’s
modulus and Poisson’s ratio:

4

K = ,01)2 — §pv52 (5.22)
3v — 4?2
E=poi—r—r (5.23)
Vg — Vg
2 _ 21)2
B e (5.24)

2(v — vS)
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Further relations can be established by use of Table 1.1. Note that

4
,\+2G=H=K+§G=pv§ (5.25)

where H is the uniaxial compaction modulus (also referred to as plane wave modulus,
or P-wave modulus; see Section 1.3) Egs. (5.20)—(5.25) were derived for a linearly elas-
tic, isotropic and homogeneous material, and show how values for elastic moduli can be
obtained from measurements of acoustic velocities in such a material. Rocks are usually
neither isotropic nor homogeneous, nor are they linearly elastic, and we shall see later
(Section 5.6) that this complicates the relations between static elastic moduli and acoustic
velocities.

5.3. Elastic waves in porous materials

The elastic response of a porous material may be significantly affected by the presence of
a pore fluid. In poorly consolidated sediments, the P-wave velocity for a water saturated
material can be several times larger than it is when the material is dry. Qualitatively, we
can explain this as a consequence of the added resistance against compression provided by
the pore fluid. For more competent materials, or materials under high confining pressure,
the frame stiffness is higher and the contribution of the pore fluid is relatively less, hence
the effect of saturation is much smaller. As saturation also implies an increase in density, it
may even result in a reduction of the P-wave velocity for a stiff rock. Saturation is assumed
not to affect the shear modulus for a permeable rock (see Section 1.6.2), hence it usually
results in a small decrease in velocity for S-waves.

Clearly, the impact of the pore fluid on the velocities is strongly related to the porosity
of the rock. A simple assumption, that has been frequently used for interpretation of well
logs, is that the interval transit time (which is the inverse of the P-wave velocity) is related
linearly to the porosity, according to the time average equation (Wyllie et al., 1958):

1_¢ 1-¢

Up Vfluid Usolid
vfluid and vslig denote the P-wave velocities of the pore fluid and the solid grain mater-
ial, respectively. The equation has an empirical basis (it is theoretically valid in the high
frequency limit for a material consisting of layers of fluid and non-porous solid), and it
works with reasonable accuracy for several practical purposes. If the lithology (and hence
vsolid) 1S Known, it can be used to estimate the porosity, or alternatively—it can be used for
identification of the lithology if the porosity can be estimated by other means. The equa-
tion is not applicable for predicting the effect of saturation, however, nor can it be used for
S-waves.

(5.26)

5.3.1. Biot’s theory of elastic wave propagation

In Chapter 1 we applied Biot’s theory of poroelasticity to describe the effect of the pore
fluid on the elastic properties of porous materials. The same formalism may also be used
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to describe elastic wave propagation in saturated rocks (Biot, 1962; Stoll, 1974). The pro-
cedure for establishing the wave equation and deriving the velocities is analogues to that of
Sections 5.1 and 5.2, however we now have to account for the pore pressure ps in addition
to the external stress. Also, we have to take into account that the displacement of the fluid
(us) may be different from the displacement of the solid material (us).

Considering longitudinal motion parallel to the x-axis, and following the same approach
as in Section 5.1 we find that Newton’s second law of motion requires that

92us 82us 00y
—+ 1 - — = 5.27
opf 572 + A —=9)ps 572 o (5.27)
We now differentiate with respect to x on both sides of the equation, introduce the strain
parameters ¢,, ¢ (from Eq. (1.134)) and H (from Eq. (1.237)). As we are considering only
wave motion in the x-direction, we have 3/0y = 9/dz = 0. Expressing the stress oy in

terms of the strains according to Eq. (1.136) we find that Eq. (5.27) may be written as

92 92
ﬁ(—PfC + pey) = W(ng - C?) (5.28)

Here p, defined as

p=¢pt+ (1 —¢)ps (5.29)

is the bulk density of the porous medium. Eq. (5.28) is a wave equation, similar to Eq. (5.4),
although we here use strain rather than displacement as the variable. However, Eqg. (5.28)
has two variables (¢ and &), hence we need one more equation. Turning to the movement
of the fluid, we find according to Eqgs. (1.229) and (1.230) that the net effective force (per
unit area) acting on the fluid part of a volume element is

N ou ou
Fpr— ﬁ¢<£ _ L) (5.30)

Considering only wave motion in the x-direction, and denoting the x-components of s
and iis as us and us, respectively, Newton’s second law of motion gives

92 dus  dus

apt  nf
i _ Ot ne (our Oits 5.31
pr2 P10 = 50 = ¢< or o1 ) (®31)

We now differentiate this equation with respect to x, make use of Eq. (1.142) to eliminate
pi and Eq. (1.136) to introduce ¢, and find the second wave equation:

92 Of 32 nfd¢
— — =) =—Cex—M - 5.32
at2</0f8x ¢§> o2 (Cex O+ o (5.32)
The two wave equations (5.28) and (5.32) have the solutions
Ex = £y e)@7T0) (5.33)
¢ = Lol (5.34)

Two modifications were introduced by Biot:
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1. The pore fluid does not flow strictly in the direction of the pore pressure gradient, but
is constrained to follow the pore channel network. To compensate for this, the second
term on the left hand side of Eq. (5.32) is multiplied by a parameter T, called the
tortuosity. The tortuosity is a measure of the twistedness of the pore channels. Given
a porous sample with thickness L, the pore fluid has to travel a distance Le > L to
penetrate the sample. The tortuosity is defined as 7 = (Le/L)2. Thus T > 1. For
sandstone, T is typically in the range 2-3.

2. The fluid flow at higher frequencies is not laminar. This is compensated for by mod-
ifying the viscosity ns — n¢F (), where

k= ap /“’n_’:f (5.35)

and ap is equal to the radius of an average pore. F (k) = 1 at w = 0, while F(x)
/o when o — oo. A specific expression for F («) is given in Appendix D.2.1.

Introducing the expressions (5.33) and (5.34) into the wave equations (5.28) and (5.32),
including Biot’s modifications above, and making use of the relation vy = w/q, we obtain
the two equations for the amplitudes ¢, and ¢:

(H — pv})ero — (C = prog)to =0 (5.36)
2
I N T o U neF )
(C ;Ofvp)gxo ( —¢ Up +] w A Zo=0 (537)

This homogeneous system of equations has non-trivial solutions if the determinant van-
ishes (see Appendix C.2.11), that is if

(H — pv) —(C — prv})

2
(C = prof)  —(M — Pof +JE10L0)
Eq. (5.38) is an equation for vp. Since it specifies how the velocity changes with frequency,
it is a so called dispersion relation. Attenuation is also implicitly included, through the

imaginary parts of the solution (see Section 5.4). In the low frequency limit, the term
including w1 goes to infinity and the only solution to Eq. (5.38) is

H K + %G
0= |—=,/— 32— 5.39
vp( = 0) P dpt + (1 — @) ps 539

Here we have introduced the expression (5.29) for the density p, while the modulus H =
A+ 2Gs = K + 3Gg and K is given by Eq. (1.155).

Introducing the velocity given by Eq. (5.39) into Eq. (5.36) we find that ¢, = 0 in the
low frequency limit. Thus the solid and the fluid are moving in phase (that is: together)
during the oscillatory movements caused by the elastic wave.

An equation similar to Eq. (5.38) can be established for the shear wave velocity:

=0 (5.38)

(G — pvd) prv?

(02 =0 (5.40)
—prv? —(_%USZ 4 b,
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Fig. 5.2. P-and S-wave velocities versus porosity for dry and saturated rocks, based on Biot’s theory in the low
frequency limit. The frame moduli are given by the critical porosity relations (6.16)—(6.17) with a critical porosity
of 0.39. Dashed lines: dry rock; Solid lines: saturated rock.

In the low frequency limit, the solution of this equation is

Gfr Gfr
O=/—=|—F+—"— 5.41
vs(w — 0) p oo+ (L —d)ps ( )

Egs. (5.39) and (5.41) describe the effect of saturation on elastic wave velocities, in the low
frequency limit.

To illustrate the predictions of the equations, we shall look at an example. In a water-
saturated sandstone, we have K ~ 2.2 GPa, pf ~ 1.0 g/cm® and ps ~ 2.7 g/cm?, while
for adry rock we may assume Kr = pf = 0. The frame moduli K and G are not specified
by the Biot theory, however these will vary with the porosity and the degree of cementation
(see Chapter 6). Various empirical relations between the frame moduli and porosity have
been presented. For this example, we choose to use the critical porosity relations. Fig. 5.2
illustrates how fluid saturation affects the elastic velocities in the low frequency limit for
sandstones with various porosities, according to Egs. (5.39), (5.41), (6.16) and (6.17). We
can see that saturation will lead to an increase in v, for soft (high porosity) rocks, while it
may lead to a slight decrease in vy, for stiff rocks. We also see that saturation always leads to
a reduction in vs. The effect of saturation depends on the ratio between the frame stiffness
and the fluid modulus, and an increase in v, may thus be seen also for low porosity rocks
if the frame stiffness is sufficiently low.

2
The frequency dependence of vp and vs is controlled by the term j%” '”’}:& in Egs. (5.38)
and (5.40). In the high frequency limit this term vanishes. For the shear wave, this gives
the solution

Gr G
( )= = 5.42
e \/p—% \/<1—%>¢pf+(1—¢)ps 642
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By comparing Eq. (5.41) and (5.42) we see that the shear wave velocity will increase with
frequency. The effect is quite small—typically less than 3% from the low frequency limit
to the high frequency limit for tortuosity 7 = 3. The velocity increase is a result of the
coupling to the pore fluid motion. It may be shown that ¢, # 0 in the high frequency
limit, thus the pore fluid is moving out of phase with the solid framework. The actual mass
involved in the wave motion is therefore reduced, and the velocity increases, as Eq. (5.42)
shows. This flow of fluid relative to the solid framework is often called “Biot flow”.

For the P-wave, the solution is more complicated for higher frequencies. First of all,
Eq. (5.38) is a second degree equation in v2 for > 0, and thus it has two solutions. The
largest root is the solution (5.39) in the low frequency limit. This is the “normal” P-wave
that is observed in seismic surveys and well logging. The expression for this solution in the
high frequency limit is somewhat complicated, however it can be shown that there is only
a marginal increase (typically less than 1 per cent) in velocity from the low frequency limit
to the high frequency limit in most cases. However, for very soft rocks (in the suspension
limit), the dispersion can be significantly higher. In general, the dispersion is larger for
higher porosity and lower tortuosity.

The other solution is a so-called “slow wave” which is highly attenuated. At low fre-
guencies the wave does not exist as a propagating wave, however it is rather a diffusive
mode approaching ordinary (Darcy) flow through the porous rock in the limit w — 0. Al-
though the slow wave is usually not observed as a propagating wave, its existence has been
proven in laboratory experiments (first time by Plona, 1980) which provides justification
of the basis of the Biot theory.

5.3.2. Dispersion due to local flow

In reality, the actual P-wave dispersion is higher than predicted by Biot’s theory. It is
assumed that this is related to thin cracks in the solid framework (at grain contacts, for
instance). At low frequencies, the fluid pressure within these thin cracks will be equal to
the pore pressure outside the cracks, and the cracks will thus be a part of the pore space in
Biot’s model. At high frequencies, the fluid pressure within the thin cracks will not be able
to follow the rapid oscillations of the pore pressure outside. The cracks will then effectively
be sealed off and no longer be a part of the pore space in Biot’s model (which requires that
the entire pore space is connected). As thin, sealed, fluid-filled cracks are almost incom-
pliant (see Section 6.4), the effective stiffness of the solid framework will thus increase at
higher frequencies.

The thin cracks tend to be closed at high external stresses. Thus, we may expect to find
a relation between the bulk and shear moduli of the framework in the high frequency limit
and the effective bulk modulus of the dry rock at high external pressure (Mavko and Jizba,
1991). The dispersion effect caused by the local flow is usually comparable to or larger
than the effect predicted by the Biot theory alone.

5.4. Attenuation

The waves described in Sections 5.1 and 5.2 are waves propagating with plane wavefronts
without any loss of energy, so that the amplitude remains constant. In reality, the amplitude
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of an elastic wave that travels through a rock will be reduced as the wave propagates. We
say that the wave is attenuated. This will partly be due to geometrical spreading caused
by a non-planar wavefront, partly due to scattering of wave energy in other directions, and
partly due to transformation of wave energy into other forms of energy (absorption).

The amplitude reduction is a certain fraction of the amplitude itself, hence the amplitude
will fall off exponentially with travelled distance. For a plane wave propagating in the
positive x-direction, the amplitude will thus fall off as

u=uge (5.43)

where « is a measure of the attenuation. The unit for « is inverse length [m~1], but it is
often referred to in decibel per metre [dB/m]:

o [dB/m] = (20log;o €)a [m~1] ~ 8.686c [m~1] (5.44)

The quality factor Q (often called the Q-factor, for short) is another parameter that is
frequently used as a measure for attenuation. The Q-factor is inversely proportional to «,
hence a high Q-factor implies low attenuation and vice versa. It is defined as

0=-" (5.45)
20v
Another measure for attenuation is the loss tangent 8, defined as
T
§=— (5.46)
0

While o represents the loss per unit length, the loss tangent is a measure for the loss per
wavelength. Measured Q-factors vary strongly with conditions and type of rock. Fig. 5.3
shows typical laboratory data (ultrasonic frequencies) for sandstone. Reliable data for at-
tenuation is usually hard to obtain, and the amount of data reported in the literature is
limited.
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Fig. 5.3. Q-factor for P- and S-waves vs. external pressure in dry and fluid-saturated sandstone. (After Johnston
etal., 1979; with permission from SEG.)
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Geometrical spreading is associated with the radius of curvature for the wavefront. For
a wave propagating spherically from a point source, the radius of curvature is equal to the
radius (r) of the sphere that the wavefront constitutes at the time of investigation. The am-
plitude then falls off inversely proportional to . For a plane wave, the radius of curvature
is infinite. If the radius of curvature R is so large that it can be considered as a constant
over the distance we are considering, the amplitude falls off with travelled distance x as

i = upe/R (5.47)

Thus geometrical spreading causes an apparent attenuation. Notice that the radius of cur-
vature for a wavefront may be altered when the wave crosses an interface and enters into
a different material where the phase velocity is different. This is a consequence of refrac-
tion, which will be discussed in Section 5.7. The radius of curvature will also be affected
by anisotropy. Under special conditions (usually caused by reflection at a curved interface)
the radius of curvature may become negative. This corresponds to a spherical wave trav-
elling inwards, towards the sphere centre. As Eq. (5.47) shows, the amplitude will then
increase as the wave propagates.

Geometrical spreading is mostly independent of the material the wave propagates
through. More interesting to us is attenuation which depends explicitly on the rock prop-
erties. Several mechanisms are of importance—which ones are most important depend on
the conditions: lithology, saturation, frequency, strain amplitude etc. The most important
mechanisms are:

1. Solid friction (Walsh, 1966; Johnston et al., 1979). Elastic waves induce displace-
ments between grains or crack faces. Due to friction, this implies that a part of the
mechanical energy of the acoustic wave is absorbed and transformed into heat, and
the wave is attenuated. Absorption due to friction gives a Q-factor which is indepen-
dent of frequency, that is:

Osrk = const.;  asF & @ (5.48)

Since the static friction increases with increasing normal stress, the solid friction
losses decrease with increasing external stress on a rock. Solid friction has tradition-
ally been considered to be the dominating attenuation mechanism in rocks, however
recent studies indicate that fluid mobility is a more significant mechanism (Batzle et
al., 2006).

2. Local (squirt) flow (Mavko and Nur, 1979; Murphy et al., 1984; Jones, 1986;
Mavko and Jizba, 1991). These losses only occur in partially or fully saturated rocks.
The periodic contraction and expansion in a rock when an acoustic wave passes by
also involves contraction and expansion of the pore space. Due to local variations
in shape, the volumetric strain of the pore space will differ considerably over short
distances. For instance, a flat crack may suffer large volumetric deformations while
a spherical pore close by only experiences minor volumetric strains. This gives rise
to local variations in pore pressure, which will make the pore fluid flow back and
forth following the oscillating deformations. The energy required for the fluid flow
oscillations are taken from the acoustic wave, thus elastic energy is absorbed and
transformed into other forms of energy and the wave is attenuated.



ATTENUATION 187

A Log(Stiffness)

y Loss
/ ‘\ tangent
/ Y
/ \
4 \
i ~o
Log(Frequency)

Fig. 5.4. Sketch of stiffness (solid line) and Loss tangent (dashed line) versus frequency for a liquid saturated
grain to grain contact. (After Murphy et al., 1984; with permission from AIP.)

The attenuation effect is most pronounced in a frequency range where the period
of the oscillations matches the characteristic relaxation time for the local fluid flow.
At lower frequencies, the fluid has sufficient time to flow so that the pore pressure
is almost equalized at any time. At high frequencies, the oscillations are so quick
that the fluid has no time to move. Deformations of the most compliant parts of
the pore space will then be counteracted by local pore pressure build-ups. The rock
will effectively be stiffer, so that the velocity of the elastic wave will be higher, as
described in Section 5.3.2. Fig. 5.4 shows schematically how attenuation and velocity
change with frequency due to local flow at a grain to grain contact. The transition
frequency is inversely proportional to the fluid viscosity. For water-saturated rocks
the transition frequency is typically a few kHz.

3. Macroscopic (Biot) flow (Biot, 1956a, 1956b; 1962). An elastic wave may also in-
duce fluid flow on a macroscopic scale, as described in Section 5.3.1. Like the local
(squirt) flow, the fluid flow oscillations will suck energy out of the acoustic wave,
which is thus attenuated. There will also be a velocity dispersion and a peak in at-
tenuation associated with the macroscopic flow. An expression for the attenuation
can be derived from the imaginary part of the solution of Eq. (5.38), and the relation
outlined below (Eq. (5.50)). The transition frequency is proportional to the fluid vis-
cosity, and inversely proportional to the permeability of the rock. At low frequencies
a o« w?, while & o /w at high frequencies. For water-saturated rocks, the transition
frequency is typically about 100 kHz. The effect is however rather small: The peak
attenuation has a minimum Q-value of about 100.

4. Scattering. Heterogeneities in velocity or density within a rock will result in Rayleigh
scattering when an elastic wave passes by. The scattered energy is not absorbed and
transformed into other forms of energy, however the primary pulse loses energy and
is thus attenuated. The effect is stronger the larger the impedance contrast of the
heterogeneity is, thus pores are strong scatterers, also for P-waves if the pores are
empty (that is: the material is dry). Cracks and fractures may also be strong scat-
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terers, unless both the direction of propagation and the polarization are parallel to
the crack/fracture. Scattering is strong when the wavelength (\,) is comparable or
smaller than the size (a) of the heterogeneity. For longer wavelengths, attenuation
falls off quickly with decreasing frequency:

Oscatt. X Ll)/Qscatt_ X Cl3a)4 fOI‘ )"W >d (549)

In sandstones, scattering on grains and pores is dominating in the MHz range, and
effectively prohibits wave propagation over distances longer than a few centimetres at
these (and higher) frequencies. At lower frequencies, scattering on grains and pores
can be neglected, however scattering on cracks and fractures may still be significant.
Scattering loss usually decreases with increasing external stress, since confinement
tends to close cracks and fractures in the rock. Scattering also reduces the velocity.
This is further discussed in Chapter 6.

Comparing Egs. (5.43) and (5.5) we find that the attenuation coefficient « can be asso-
ciated with the imaginary part of the wavenumber ¢, that is:

o = —Im[q] (5.50)

According to the wave equation, the wavenumber is complex if the corresponding elas-
tic modulus is complex. Thus the phase velocity is related to the real part of the elastic
modulus and attenuation to the imaginary part. Denoting by C the relevant elastic modulus
(which may for instance be (A + 2G) as in Eq. (5.15), or G as in Eq. (5.18), etc.), the
general relations are

pv? ~ Re[C] (5.51)
1 Im[C] (552
0~ Re[C] '

provided that the attenuation is sufficiently small, so that 0—2 « 1. Note that this link
between the imaginary part of the elastic modulus and the attenuation is not valid for
apparent attenuation due to geometrical spreading.

The real and imaginary parts of the elastic constants are related to each other, accord-
ing to the physical principle called causality (the principle that a reaction can never occur
before its cause). A specific result of this is that—within the frames of linearity—the ve-
locity can only be independent of frequency if the corresponding attenuation is zero. That
is: no velocity dispersion implies no attenuation. Fig. 5.4 shows a typical relation between
attenuation and velocity dispersion in accordance with causality.

Finally, consider a simple mechanical system consisting of a spring in parallel with a
viscous dash pot element coupled in series to another spring (Fig. 1.27, except for the
right-hand dash pot element). This could represent a rock which responds to stress changes
with some degree of transient creep. An elastic modulus C of this rock can be expressed
as (see Egs. (1.91), (1.248), (1.249) and (5.33))

1 1 Kk1(k1 + k2) + 0?x? + jox ko

1
o
C=—={—"—"-+— =K
3 (Kl +Jox K2> 2 (k1 + Kk2)2 + w?x?

(5.53)
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Thus, the elastic modulus of this rock is complex and the elastic wave corresponding to
C will be attenuated. For sufficiently low frequencies, such that v < (k1 + x2)/x, the
imaginary part of C will be proportional to » and consequently 1/Q o » according to
Eqg. (5.52). For higher frequencies we find that 1/Q o 1/w. On the other hand the real part
of C is seen to approach «1k2/(k1+k2) when w — 0 while it approaches «x» when w — oo.
Thus the model describes dispersion and a corresponding peak in attenuation, similar to
Fig. 5.4. This example also illustrates the relationship between creep and attenuation.

5.5. Anisotropy

Most sedimentary rocks are to some extent anisotropic. This was discussed in Section 1.7,
regarding directional dependence of rock stiffness. This directional dependence does of
course also affect the acoustic properties of the rock. To account for this, we need to es-
tablish a generalized version of the wave equation and its solutions. We shall here present
an outline of the procedure and the results. For a detailed discussion, see for instance Auld
(1990).

5.5.1. The Christoffel equation

As described in Section 5.1, the wave equation can be established by looking at the sta-
bility of a volume element. For this general case, we choose not to simplify in terms of
longitudinal or transversal wave motion from the start. Using the generalized form for the
stress (Eq. (1.195)), we see that Newton’s second law requires:

azui 30',']‘
LA 5.54

We assume that the solutions are of the type (ref. Eq. (5.13)):
i = uf @ L) (5.55)

Combining Egs. (5.54) and (5.55) with (1.195), using the expressions (1.74) and (5.8), we
find (after some algebra) the so-called Christoffel equation

Z(Cijklljlz — pv®8iug =0 (5.56)

jil
i is Kronecker’s § (see Appendix C.11.2). Eq. (5.56) is in fact 3 equations with 3 un-
knowns: u, u$ and u5. The equations can be written on matrix form, as

MO

(1

M (u;j) =0 (5.57)
ug

where M€ is called the Christoffel matrix. The elements of the matrix are defined as

MS{ = Z Cijklljll — ,Ovz(sik (5.58)
Jil
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Non-trivial solutions of Eq. (5.57) exist if the determinant of the Christoffel matrix is zero,
that is if:

> Cijuljli — pv®si| =0 (5.59)
il

This is a compact way of writing a rather lengthy equation. The expanded expression for
the determinant of a 3 x 3 matrix is shown in Appendix C.2.10. It turns out that Eq. (5.59)
is a cubic equation for v2. Thus, we shall in general expect to find 3 independent so-
lutions for the wave velocity. One of these represents a P-wave (or, in the most general
case, a quasi-P-wave, meaning a wave with polarization nearly parallel to the direction
of propagation). The other two represent S-waves with mutually orthogonal polarizations
(or quasi-S-waves, meaning waves with polarizations nearly normal to the direction of
propagation).

To demonstrate how velocities and polarizations can be found from these equations,
we shall consider the special case of transversal isotropy (see Section 1.7.2). Switching
to the Voigt notation (see Appendix C.10), and choosing the z-axis as the unique axis,
the stiffness matrix is given by expression (1.221). The Christoffel equation (5.56) then
becomes, in expanded form:

Cnlf + Cselg + C44l§ - pv? (C11 — Cep)l1l2 (C13 + Caa)l1l3 ug
(C11 — Ceg)lal2 Cesl? + C1112 + Caall — pv? (C13 + Can)lols uj | =0
(C13 + Can)lal3 (C13 + Caa)lal3 C44(lf + 15) + CSSI;:Z, - pv? uf

(5.60)
The direction cosines /1, I, and I3 defines the direction of wave propagation, and the par-
ticle displacement vector #° defines the polarization. The next step is to choose a direction
of wave propagation that we want to study. For simplicity, we first choose the x-direction,
for which I3 = 1, I = I3 = 0. The Christoffel equation (5.60) then simplifies to:

Ci1 — pv? 0 0 ug
( 0 Ces — pv° 0 ) (wg) =0 (5.61)
0 0 Cyq — ,0U2 ug
and the requirement that the determinant of this matrix shall be zero becomes
(C11 — pv*)(Ces — pv?)(Cag — pv°) =0 (5.62)

This is a cubic equation for v2, as it should be, hence it has three solutions. One solution is
v2 = C11/p. Introducing this result for v into Eq. (5.61) shows that we have to have ug =
ug = 0, with uf # 0 as the only non-trivial solution for the particle displacement. Thus,
for this particular solution, both the direction of wave propagation and the polarization is
in the x-direction. This wave is therefore a P-wave.

Another solution of Eq. (5.62) is v2 = Ceg/p. Introducing this result into Eq. (5.61)
we find u{ = u§ = 0, with u§ # 0 as the only non-trivial solution. For this solution, the
polarization is thus in the y-direction, that is normal to the direction of wave propagation,
hence this is an S-wave. The last of the three solutions is v> = Ca4/p. Eq. (5.61) tells
us that this is also an S-wave, polarized in the z-direction. Thus, there are three different
waves that can travel in the x-direction in this medium, one P-wave and two S-waves.
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Considering next wave propagation in the z-direction, the Christoffel equation becomes:

Cas — pv? 0 0 ug
( 0 Cas — pv? 0 ) (uz) =0 (5.63)
0 0 C33 — pv2 ug

Following the same procedure as above, we find one P-wave solution with v?> = Csz/p
and two S-wave solutions, both with v2 = Cys/p. Introducing the S-wave solution for v,
Eq. (5.63) only tells us that u$ has to be equal to 0, while both «{ and u5 may be non-zero.
Thus, for an S-wave travelling parallel to the unique axis, the velocity is independent of
the polarization.

For wave propagation in a general direction, the off-diagonal terms of the Christoffel
matrix no longer vanish and the solutions become more complicated mathematically. Typ-
ical for the transversely isotropic medium is that for any direction of wave propagation,
there exists one pure S-wave with polarization normal to the unique axis, plus one P-wave
and another S-wave. Except for wave propagation parallel or normal to the unique axis,
the last two waves will not have polarization exactly parallel or normal to the direction of
propagation, hence they will in general be a quasi P-wave and a quasi S-wave, respectively.

A full treatment of wave propagation in anisotropic media is beyond the scope of this
book. We refer the interested reader to for instance Auld (1990).

5.5.2. Weak anisotropy

Thomsen (1986) simplified the description of anisotropy considering transversely isotropic
rocks with weak anisotropy. His description is relevant for oilfield rocks and the data avail-
able in field situations, and has become widely applied. Thomsen introduced a new set of
parameters:

_ Cun1—Cg3

=== 7= 5.64

&Th T (5.64)
Ces — Ca4

= 5.65

YTh 2Can (5.65)

_ (C13+ Cas)? — (Ca3 — Caa)?
2C33(C33 — Caa)
The wave velocities in a general direction in a transversely anisotropic material can be

derived from Eq. (5.59). When linearized in terms of the Thomsen parameters (5.64)—
(5.66), the expressions for the velocities take the relatively simple forms:

8Th

(5.66)

vp(0) ~ ath(L + 87 sin? 6 cos? 6 + eTh sin* 6) (5.67)
2
o .
vev(0) ~ Brh (1 1 ,B—Eh(eTh — &1n) sin? 6 cos? 6) (5.68)
Th

vsh(8) ~ Brn(L + yrh sin® 0) (5.69)



192 ELASTIC WAVE PROPAGATION IN ROCKS

where ath = /Ca3/p, Bth = +/Casa/p, and 8 is the angle between the unique axis and
the direction of wave propagation. vg, is the velocity of the S-wave polarized normal to the
unique axis, and vy is the velocity of the other S-wave (see Section 5.5.1).

&Th can be interpreted as the P-wave anisotropy and yt as the S-wave anisotropy. How-
ever, for P-waves propagating at small angles to the unique axis the anisotropy will be
dominated by 8ty,. The special case where 8y, = e1p is known as “elliptical anisotropy”.

It can be shown (Tsvankin, 1997; Mensch and Rasolofosaon, 1997) that, by making the
Thomsen parameters depend on the azimuth, these equations can also be applied for ma-
terials with even lower symmetry than transversely isotropy—provided that the anisotropy
is weak.

5.6. Rock mechanics and rock acoustics

At the beginning of this chapter, we argued that elastic waves may provide means to esti-
mate mechanical parameters of rocks. We shall here take a closer look at the links between
the parameters describing elastic waves, and the parameters describing rock mechanical
properties.

5.6.1. Static and dynamic moduli

Sound velocities depend explicitly on elastic moduli. This was shown in Section 5.2
(Egs. (5.20)—(5.24). These relations imply that we for instance should obtain the same value
for E if we measure the acoustic velocities and the density and make use of Eq. (5.23), or
we measure stress and strain in a uniaxial compression test and make use of Eq. (1.91).
With knowledge about the P- and S-wave velocities and the density, for instance from well
logs or seismics, it should thus in principle be a simple job to obtain the elastic moduli
even if we do not have the possibility to perform rock mechanical tests.

In reality, this is not quite so simple. There is a wide range of experimental evidence
showing that the elastic moduli obtained from stress and strain measurements in a rock
mechanical test (“static moduli”) differ significantly from those obtained from acoustic
velocities and density (“dynamic moduli”). Normally, the dynamic moduli are larger than
the corresponding static ones. The difference is largest for weak rocks, and is reduced with
increasing confinement (King, 1970). In the relatively well cemented Berea sandstone, the
difference at a stress level corresponding to depth in the kilometre range is 20-30%. In a
weak sandstone, however, the difference can be an order of magnitude or more, depending
on the stress state. Fig. 5.5 shows as an example how the static and dynamic moduli changes
with the stress state in a relatively weak rock. These measurements were performed on a
dry sample.

The pore fluid is a potential cause for the difference between static and dynamic mod-
uli in rocks. In a velocity measurement the deformation of the rock is undrained, which
implies that the pore fluid contributes to the velocity (see Section 5.3.1). Thus the moduli
derived from velocity measurements on a saturated rock are likely to be higher than the
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Fig. 5.5. Static and dynamic bulk moduli as measured during a hydrostatic test (left), and static and dynamic
Young’s moduli as measured during a triaxial test (right), on dry Red Wildmoor sandstone.

corresponding static moduli measured in a drained test. This effect does however not ex-
plain the large differences between static and dynamic moduli observed in soft dry rocks,
and we have to look for other causes.

As discussed above, velocity dispersion in fluid-saturated rocks typically amount to a
few per cent from seismic to ultrasonic frequencies. Thus, this is neither a likely mecha-
nism to explain significant differences between static and dynamic moduli.

In a velocity measurement, the strain rate varies from about 1 s~* (at ultrasonic frequen-
cies) to about 10~4 s~ (at seismic frequencies), while the strain amplitude is typically
10~5-10~". For a measurement of static moduli the strain rate is 10~2 s~ or lower, while
the strain amplitude is typically 10~2-10~23. Thus the major difference between static and
dynamic measurements is—despite the name—the strain amplitude, not the strain rate. Sta-
tic moduli, measured as slopes of stress—strain curves, differ from small strain amplitude
dynamic (elastic) moduli because of plasticity or nonlinear effects.

Unloading-reloading cycles in a static test (Fig. 5.6) are somewhat intermediate be-
tween a normal static test and a velocity measurement, as the material will experience
similar stress cycles (with low amplitudes) when an acoustic wave passes by. In a set of
measurements on dry Castlegate sandstone, Plona and Cook (1995) demonstrated that the
elastic modulus derived from the slope of the stress—strain curve during such cycles ap-
proaches the corresponding elastic modulus derived from velocity measurements when the
amplitude of the cycles approaches zero. Thus the difference in strain amplitude explains
to some extent the difference between dynamic moduli and the static moduli measured
in unloading-reloading cycles. However, the material is usually much stiffer during an
unloading-reloading cycle than during initial loading (see Fig. 5.6), and it is the behaviour
during initial loading that is normally studied in standard rock mechanical tests.
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Fig. 5.6. Unloading-reloading cycle in a rock mechanical test.

To further understand the origin of the static-dynamic discrepancy, it is interesting to
notice that the static and dynamic moduli are equal for a homogeneous, elastic material
like steel (Ledbetter, 1993). Thus the physical origin of this discrepancy is likely to be
related to the heterogeneous microstructure of the rocks. It is furthermore to be expected
that much of the effect originates at the grain contacts, since the stress concentrations in the
contact areas may exceed the elasticity limit of the material even at low external stresses.

A quantitative model for the relations between static and dynamic moduli was formu-
lated by Fjeer (1999), based on observations on weak sandstones:

Kdyn
Kstat = 5.70
o= T+ 2P, Kagn (5.70)
Edyn
Egqg= ———7"——(A—-F 5.71
st = 77 P, Edyn( ) (5.71)

Here Kgyn and Egyn are the bulk modulus and Young’s modulus, respectively, obtained
from velocity measurements, while Kyt and Esa: are the corresponding moduli obtained
from the slope of the relevant stress—strain curve during initial loading. The expressions
are related to a standard triaxial test, and the subscripts z and r refer to the axial and radial
directions of the test geometry. The difference between the static and dynamic moduli is
contained in the parameters P; and F. Analyses of tests like the one shown in Fig. 5.5
have shown that P; is largest at lower stress levels, while F increases with increasing
shear deformation. (Note that for F = 1 we have Es = 0 according to Eq. (5.71). This
represents the peak point in the stress—strain curve.)

It is suggested that P; is predominantly a measure of a process which involves crushing
of asperities at the grain contacts, while F is associated with friction controlled sliding
along contact points or closed micro-cracks in the material during shear loading. Thus
the discrepancy between static and dynamic moduli in weak rocks is interpreted as being
caused by a series of local failure processes on a microscopic scale occurring during the
entire loading sequence.
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Fig. 5.7. Ultrasonic velocities as functions of stress state as measured on dry Red Wildmoor sandstone.

5.6.2. Stress state and stress history

Sound velacities in rocks also depend on the state of stress. To some extent, this effect can
be ascribed to stress induced changes in porosity. However, this is not sufficient to explain
the stress sensitivity of velocities in most rocks. Fig. 5.7 shows the typical behaviour for
a sandstone. The behaviour can be understood in terms of micro-cracks (much smaller
than the wavelength) that are opened or closed by the action of the stress. An open crack
strongly reduces the velocity of a wave if the crack is oriented normal to the direction of
propagation or polarization of the wave, while its effect on the velocity is only marginal
otherwise (see Section 6.4).

During hydrostatic loading the velocities increase uniformly, with a gradually diminish-
ing rate. This is to be expected due to closure of cracks which make the rock stiffer, or
similar processes which broadens or multiply grain contacts. These effects are discussed in
detail in Sections 6.3 and 6.4. During uniaxial loading, the velocities of waves with polar-
ization and/or direction of propagation parallel to the increasing load are seen to increase
initially, due to the same type of processes that causes increases in velocities during hy-
drostatic loading. Upon further loading, the velocities of waves with polarization and/or
direction of propagation normal to the minimum principal stress are seen to be reduced.
This is associated with the formation of tensile cracks (often illustrated as “wing cracks”
formed during frictional sliding of closed cracks, as shown in Section 6.4.4, Fig. 6.11).
Thus stress anisotropy induces acoustic anisotropy. The relevance of interpreting stress
induced velocity changes in sandstones in terms of changes in the occurrence of disconti-
nuities such as cracks, has been nicely demonstrated by Sayers (2002).

The impact of micro-cracks on acoustic wave propagation is also reflected in the atten-
uation, as the scattering losses due to such cracks can be significant. Thus attenuation is
typically reduced with increasing confining pressure, as can be seen from Fig. 5.3.
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Using observed acoustic anisotropy as a measure for stress anisotropy is however not
straightforward. This is partly due to the fact that also other effects—Ilike fine layering or
grain orientation—can cause anisotropy, and partly to the fact that rocks are usually formed
and cemented under stress. Stress induced anisotropy in uncemented sediments is a conse-
guence of static loading making the grain contacts stiffer (see Section 6.3). Different stress
in different directions thus induce different stiffness in different directions, which results in
acoustic anisotropy. The cementation process provides added stiffness to all grain contacts,
so the relative stiffening is largest for the weakly loaded ones. The characteristic signature
of the stress state is thus masked. Subsequent stress induced anisotropy is characteristic
for the stress changes occurring after cementation, rather than the current stress state. Thus
the stress history of a rock may have a significant impact on the stress dependency of the
velocities.

For a core taken from a deep well, the major recent stress history is the unloading process
taking place during and after coring. The cement which was formed free from effective
stress at the grain contacts will be subjected to tensile stress as the grain contacts deform
when the load disappear. This will generate cracks which reduce the elastic stiffness and
thus also the acoustic velocities. When sufficient stress is applied to the core in a laboratory
test, these cracks will close and the velocities will increase correspondingly. A significant
part of the stress dependency of acoustic velocities observed in laboratory tests may there-
fore be related to core damage effects, and not be representative for the in situ behaviour.
This has been demonstrated through tests on synthetic sandstones cemented under stress
(Nes et al., 2002). The effect is illustrated in Fig. 5.8. Note that the velocity is quite insen-
sitive to small changes in the stress while the rock is still in the vicinity of its cementation
state, and that it drops significantly upon extensive unloading. Upon reloading, as for a core
tested in the laboratory, the velocity increases with a rate that is lower than the decreasing

1.0 1

0.8 1

Velocity [relative]

0.6 1

Effective stress

Fig. 5.8. Schematic illustration of velocity versus stress for a rock, following two different stress paths from
the cementation state (marked with a circle). The upper right curve could represent in situ loading (caused by
depletion), the upper left curve in situ unloading (caused by injection or coring), and the lower curve a laboratory
test on a core plug.
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rate at the end of the unloading path, yet significantly higher than the initial (“in situ”) rate
in the vicinity of the cementation stress (see also Chapter 7).

It was shown in Section 1.6.3 that the deformation of a porous, linear elastic rock is
controlled entirely by an effective stress (Eq. (1.168)) that accounts for the combined action
of the external stress and the pore pressure. It is tempting to assume that this principle is
also valid for acoustic velocities, however this is not the case in general. Often, but not
always, the velocities may depend on an effective stress

o' =0 —npt (5.72)

within a limited range of stress and pore pressure. The coefficient n depends on the type of
wave as well as the type of fluid, and may be larger as well as smaller than 1. In some cases
this principle is not applicable at all. One simple example is a linearly elastic material, for
which the frame moduli are stress independent (as will be the case for instance for a well
cemented rock not suffering from core damage). Since the P-wave velocity also depends
on the bulk modulus and density of the fluid, which in turn depend on the fluid pressure, it
is clear that the effects of changes in o and ps are fundamentally different, and Eq. (5.72)
is not valid in this case.

5.6.3. Additional effects

Elastic wave propagation in rocks is also affected by other parameters, which we shall only
mention briefly here.

Temperature

There is normally a slight reduction in velocities with increasing temperature. This ef-
fect is usually less than 5% for a 100 °C increase in temperature (Bourbie et al., 1987,
Christensen, 1982). The effect may be significantly larger if one or more of the rock con-
stituents undergoes a phase transition within the actual temperature range, for instance if
the pore fluid is freezing or melting. Attenuation is also reduced with increasing tempera-
ture. This effect appears to be somewhat larger than the temperature effect on the velocities
(Jones and Nur, 1983).

Partial saturation

Partial saturation may have a significant effect on both velocities and attenuation. Consider
a rock saturated with water and gas. At low frequencies, the pore fluid may be considered
as a suspension of gas bubbles in a liquid (at least if the water saturation S, is larger than
about 20%). We may then assume that the gas pressure follows that of the water at any time,
and the effective fluid bulk modulus K is then given by an equation similar to Eq. (1.132):

1 Sw 1S

Ki  Kuw Kqg

(5.73)
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Fig. 5.9. P- and S-wave velocities versus saturation in a gas/water saturated rock, as predicted by
Egs. (5.73)-(5.74), (5.39), (5.41) and (1.155) (solid lines), for a dataset representing a relatively weak rock at
low pressures and low frequency. The dashed line indicates the P-wave velocity for patchy saturation, while the

gray area indicates the range of possible values for the P-wave velocity for various fluid distributions at higher
frequencies.

K and K are the bulk moduli of water and gas, respectively. Typically, Ky <« Ky, and
we thus have that K¢ <« Ky unless S is very close to 1. The bulk density

p = ps(L— @) + ¢(Swow + (1 — Sw)pg) (5.74)

is much less sensitive to Sy, hence the net effect is that the P-wave velocity (Eq. (5.39))
drops dramatically when Sy, falls below 1, and only picks up slowly as S,, continues to
decrease (Fig. 5.9). The S-wave depends only on p in addition to Gy, (which is not affected
by the degree of saturation, at least not for permeable materials at low frequencies), hence
the S-wave velocity is only marginally dependent on the saturation. For very low satura-
tion, capillary forces (see Section 2.6.2) may provide an additional stiffness that makes the
velocities increase.

At higher frequencies, the distribution of the water and gas in the pore space becomes
significant. For instance, water trapped in thin cracks may effectively respond to compres-
sion with a stiffness close to K, and the velocities will be correspondingly higher (see also
Section 6.4). The distribution of water and gas is a result of the wetting properties of the
rock and the way the actual saturation was reached. Consequently, there is not a one-to-one
relationship between P-wave velocity and water saturation (Endres and Knight, 1989), but
rather a range of possible values for the velocity at each saturation level, as indicated by
the gray area on Fig. 5.9.

The water and the gas may also be separated on a larger scale, such that some areas are
fully water saturated while others are not (patchy saturation). The fully saturated areas will
behave as saturated, undrained rock if the pore pressure diffusion length is less than the
typical size (1) of the fully saturated areas, that is—if

\/? <1 (5.75)
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TABLE 5.1 Some examples of pore fluid properties (based on Batzle and Wang, 1992)

Fluid Conditions Density Bulk modulus
[9/cmq] [GPa]

Brine 50°C, 15 MPa 1.02 2.60
Brine 100°C, 30 MPa 1.00 2.65
Dead oil 50°C, 15 MPa 0.70-0.80 0.90-1.30
Dead oil 100 °C, 30 MPa 0.65-0.75 0.75-1.10
Live oil 50°C, 15 MPa 0.60-0.70 0.55-0.85
Live oil 100°C, 30 MPa 0.60-0.70 0.45-0.70
Gas 50°C, 15 MPa 0.20-0.40 0.03-0.10
Gas 100 °C, 30 MPa 0.25-0.40 0.10-0.20

where Cp is the pore pressure diffusion constant (see page 48), and f is the frequency. The
dashed line in Fig. 5.9 indicates how the P-wave velocity changes with saturation for such
cases.

Similar behaviour may be seen for partially oil saturated rocks. Note however that oil
may contain significant amounts of dissolved gas (“live oil””), which reduce the density as
well as the bulk modulus of the oil, and hence reduce the contrast between the oil and the
gas. Note also that for gases, both the bulk modulus and the density increases significantly
with increasing pressure, hence the effect of partial saturation decreases with increasing
fluid pressure.

The considerations above may also be used to estimate the behaviour of rock saturated
with water and oil. The effects of partial saturation are significantly less in this case, how-
ever, since the differences in bulk modulus and density are much less for water and oil than
for water and gas.

Table 5.1 shows some typical values for pore fluid properties, for a couple of pres-
sure/temperature combinations corresponding roughly to about 1500 m depth and 3000 m
depth, respectively. Note however that there are significant variations in the properties of
oil and gas, depending on their chemical composition, as well as variations in pressure and
temperature conditions at a given depth. Also the properties of brine vary somewhat with
salinity and amount of dissolved gas. The brine properties listed in Table 5.1 represent a
salinity typical for sea water.

Chemical effects

The minerals of the rock framework may react chemically with the pore fluid. In particu-
lar, chalk and clay minerals become soft or even dissolve in water (if the water is not in
chemical equilibrium with the minerals). This implies that fluid substitution may actually
change the framework moduli (K% and Gy ), due to chemical effects. Hence the elastic
wave velocities, as well as the static elastic moduli, may be strongly sensitive to the type
of saturating fluid (see also Section 2.6.3).
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5.7. Reflections and refractions

When an elastic wave hits a boundary of the medium it is travelling through, the wave may
be reflected—Ilike light in a mirror, or refracted—Ilike light at a water surface, or converted
into other types of elastic waves. Such boundaries, or interfaces between different parts of a
medium, are important for most aspects of rock acoustics. In particular, reflections at inter-
faces are the foundation of surface seismics, while sonic logging tools rely on refractions
for obtaining a wave path through the rock along the hole.

Consider first the simple situation where a plane P-wave like (5.14) approaches a bound-
ary normal to the direction of propagation. The laws of physics require that

o the displacement normal to the boundary is continuous at the boundary,
o the stress normal to the boundary is continuous at the boundary.

To fulfil these requirements when the wave hits the boundary, two new waves are created
at the boundary: one reflected wave and one transmitted wave. We shall now see how these
physical continuity requirements can be used to identify the amplitude and phase of both
the reflected wave and the transmitted wave, relative to the amplitude and phase of the
initial wave. We denote by subscript 1 the parameters of the medium through which the
wave is initially travelling, and by subscript 2 the parameters of the medium on the other
side of the boundary. The three waves interacting at the boundary are then

Ui = 1o @@ 1Y nitial wave
ur = g, €@V Reflected wave
Uy = o @@ 29 Transmitted wave

The initial wave is travelling in medium 1 towards the boundary, the reflected wave is
travelling in medium 1 away from the boundary, and the transmitted wave is travelling in
medium 2 away from the boundary. Note that the frequency w is the same in both media.
The two physical continuity requirements can now be expressed as

uj + ur = ut (5.76)
ouj our duy
M+2G)[—+— | =R +2G)— (5.77)
0x 0x 0x

Positioning for simplicity the x-axis such that the interface is located at x = 0, introducing
the expressions for uj, ur and ut, and dividing by e/*’, we find

Ugj+ Uor = Ut (5.78)
(A1 + 2G 1) (—iquuoi + Jqiuor) = (A2 + 2G2)(—jgouo 1) (5.79)

These are two equations with two unknowns, namely uo r and uo . These equations are
complex, thus the equations give us both the amplitude and the phase of the reflected and
transmitted wave. Rather than presenting these expressions explicitly, we now introduce the
reflection coefficient rpp, which expresses the stress amplitude of the reflected wave, and
the transmission coefficient r,p, which expresses the stress amplitude of the transmitted
wave, both relative to the stress amplitude of the initial wave.
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Expressed in terms of particle displacement amplitudes, these coefficients are defined as

Uo,r
V)
tpp = 22002 lot (5.81)
P1Vp1 Uo,i

Expressions for rpy and 7pp can be found from Egs. (5.78) and (5.79). Introducing further
Egs. (5.8) and (5.16) the expressions take the following form:

__ P2Vp2 — P1Upl
p2Vp2 + p1Vp1
top = _ 2pavp2 (5.83)
P2Vp2 + P1Up1
The product pvyp is called the acoustic impedance of the medium. Thus the reflection and
transmission coefficients depend on the impedance contrast between the two media. Note
that rpp and fpp may be defined in different ways, depending on the choice of coordinate
system and wave describing parameters. The definition used here implies that a compres-
sion is reflected as a compression if rpp > 0, while for rp, < 0 the reflection involves phase
inversion.

The amplitude of the reflected wave depends on the density and velocity of the sec-
ond medium, although the incoming and reflected waves have only propagated through
medium 1. This may be used in analyses of seismic data, as we shall see in Section 5.9.

This example was particularly simple, since the displacement as well as the stress only
had one component, normal to the interface between the two media. Consider next a
P-wave which hits an interface at an angle of incidence 6; relative to the normal of the
interface. It is now convenient to consider the wave as a ray, as we here wish to focus on
the direction of propagation. A part of the wave will be reflected at an angle 6, = 6; (see
Fig. 5.10). Another part of the wave will be transmitted at an angle 6;. The relation between

"op (5.82)

Up2 > Upl

| 6,

Fig. 5.10. Reflection and refraction of an acoustic ray at the interface between two media.
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the angle of incidence 6; and the transmission angle 6; is given by Snell’s law:

sinfx  sino;

(5.84)
vp2 vp1

Thus the transmitted wave will proceed in a direction somewhat different from the incom-

ing wave, provided that vpy # vpy. This effect is called refraction.

Note that we may have a situation where (vp2/vp1) sin6; > 1, which would imply that
sing; > 1 according to Eq. (5.84). This is mathematically and physically unacceptable,
hence 6; is not defined in this situation. This implies that the refracted wave does not exist,
and we have total reflection at the interface. The condition for total reflection of the P-wave
is thus

singj > sinfgr = Ut (5.85)
vpz
The angle 0, is called the critical angle for total reflection.

P- and S-waves are different modes of propagating elastic energy, and are not coupled
in an ordinary medium due to symmetry. When a wave hits an interface at a skew angle
relative to the direction of propagation, the symmetry is broken and the waves may become
coupled at the interface. In our example here, the incoming P-wave has a particle motion
which is not fully orthogonal to the particle motion of an S-wave “reflected” from the in-
terface at an angle 6,5 (Fig. 5.11), with polarization in the same plane as the incoming wave
and the normal to the interface. Thus such an S-wave may be generated at the interface.
The angle 65 is given by the equation

sin 6 Sin 6;
L. ! (5.86)
Usl Upl
Incoming P-wave “Reflected’” S-wave

Reflected P-wave

Refracted P-wave

¢Refracted’| S-wave

Fig. 5.11. Polarization (indicated by double arrows) of reflected, refracted and converted waves at an interface,
due to an incoming P-wave.



REFLECTIONS AND REFRACTIONS 203

1

V52 =2000 m/s
_ 08l ---- Up=1750m/s
@ ......... Vg2 =1500 m/s
Q
£ 06
<}
Q
g
= 0.4
5]
famn}
[}
M2

Angle of incidence

Fig. 5.12. Reflection coefficient for a P-wave reflected at an interface between two media. Parameter values used
in this example: vpy = 2500 m/s, vs; = 1450 m/s, p1 = 2.1 g/cm?, vpp = 3000 m/s, pp = 2.2 g/cmS.

The incoming P-wave will also be coupled to a “refracted” S-wave, propagating in medium
2 at an angle 6 given by

Sin s _ sin 6 (5.87)

Us2 Upl

This wave also has its polarization in the same plane as the incoming wave and the normal
to the interface. The two S-waves are said to be converted waves, since they originated
from a wave of a different type. Similarly, if the incoming wave is an S-wave with polar-
ization in this plane, two converted P-waves may be generated at the interface in addition
to the reflected and refracted S-waves. Note that an S-wave with polarization parallel to the
interface is not coupled to any P-wave at the interface, hence no such wave is created from
an incoming P-wave, nor will such a wave generate converted P-waves.

The degree of coupling between the incoming wave and the reflected, transmitted and
converted waves will vary with the angle 6;. The expressions for the reflection, trans-
mission and conversion coefficients are rather complicated, and are therefore given in
Appendix D.2.2.

Fig. 5.12 shows an example where the reflection coefficient for the incoming P-wave
has been calculated for various angles of incidence. The figure shows that the reflection
coefficient increases abruptly just below the critical angle (Eq. (5.85)) for total reflection.
The reflection coefficient is furthermore seen to depend on the shear wave velocity vs, of
the second medium.

5.7.1. Interface waves

In addition to the P- and S-waves, which can propagate through a material, there also
exist some elastic waves that only propagate along the interface between two media. One
familiar example is sea waves, which only exist at the surface of the water. An interface
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wave along the surface of a solid material is called a Rayleigh wave. This is the wave
normally observed as a result of an earthquake. Since the wave is confined to the surface,
it has a lower loss due to geometrical spreading than a body wave, and therefore may
propagate over larger distances. The velocity of a Rayleigh wave (vR) is given by the shear
wave velocity of the solid and the Poisson’s ratio (see for example Viktorov, 1979):

087+ 1.12v
~ 1+v

Waves along a planar solid—fluid interface are called Scholte waves, while waves along
a solid-solid interface are called Soneley waves. There is a tradition within the petro-
leum industry, however, that both types of waves are called Stoneley waves. Such interface
waves can be excited at the sea floor when a seismic wave passes through, or at the bore-
hole wall during sonic logging operations, and thus be observable during normal field data
acquisition.

The direction of propagation of any interface wave is obviously along the interface. For
the Rayleigh wave the particle motion is an elliptical movement in the plane normal to the
interface and parallel to the direction of propagation. The amplitude of this motion falls off
exponentially into the solid material. Characteristic features of interface waves in borehole
geometry are discussed in Section 5.8.

UR Us (5.88)

5.8. Borehole acoustics

Sonic well logging is an important application of elastic waves in the petroleum industry.
The purpose of such logging is to measure the sonic velocity of the formation surrounding
the well. The basic elements of a sonic logging tool are shown in Fig. 5.13. The tool
consists of a transmitter and a receiver separated by a distance L. When the transmitter
emits a pulse, it generates a P-wave which travels through the mud and hits the borehole
wall at different angles along the hole, where it may be reflected, refracted or converted

-

g —

|
|
Ve Uw !
P |
!
|
-
|

Fig. 5.13. Schematic illustration of an acoustic logging tool with one transmitter and one receiver, situated in a
borehole with radius R.
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Fig. 5.14. Refractions of waves transmitted from an acoustic logging tool. The dashed line represents a ray
incident at sub-critical angle. The solid line is a critical refraction, that continuously emits acoustic energy into
the borehole.

into different modes. Eventually, a series of pulses arrive at the receiver: the direct P-wave
travelling through the mud, a refracted P-wave, a converted S-wave, and a set of borehole
eigenmodes.

Fig. 5.14 illustrates refractions in the borehole geometry. Rays that hit the borehole wall
at a sub-critical angle, will be refracted into the formation, and the energy can never return
to the borehole. However, the ray that hits the wall at an angle such that the transmission
angle 6, = 90° will propagate parallel to the wall. This wave will continuously radiate
energy into the borehole. We say that this wave is critically refracted. Some of this energy
will reach the receiver. Since the critically refracted wave continuously loses energy;, it will
be attenuated even in the absence of absorption.

Using the notation of Figs. 5.13 and 5.14, we can find an expression for the expected
arrival time of the critical refraction as a function of transmitter—receiver separation. The
length travelled in the fluid is

R
=2 5.89
W COS B¢r ( )
while the length travelled in the formation is

Introducing sin 6y = vw/v (see Eq. (5.85)) where v is the velocity of the refracted wave
and vy is the velocity of the borehole fluid, we find the arrival time to be

LW L/ L ( 1 Vw )
=—+ —=—+2R —
Vw v v (w2 2 — (w2
vy /1 — (W2 2 [1— ()
L 1 1

—+2R |5 — = 5.91
ot v2 V2 (.91)
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Fig. 5.15. Arrival time of the critical refraction as a function of transmitter/receiver separation (solid line). Also
shown is the arrival time of a direct wave with the velocity of the fluid (dashed line). The following parameters
were used: v = 3500 m/s, vy = 1500 m/s, R = 10 cm.

Thus, the arrival time is a constant, plus a term that is equal to the separation between
the transmitter and the receiver divided by the velocity of the formation. This means that
the difference in arrival time between two receivers at different separations from the trans-
mitter directly measures the velocity of the formation. Fig. 5.15 illustrates Eq. (5.91), and
compares it with a direct wave travelling with the velocity of the borehole fluid. As can be
seen, the refracted wave will be the first arrival, as long as the source-receiver separation is
above a limiting minimum.

In the above discussion, we have not specified whether v is the shear or compressional
velocity of the formation. The arguments work equally well for both cases, which means
that we may have both a critically refracted compressional wave and a critically refracted
(converted) shear wave. This conclusion is, of course, subject to the condition that the
formation velocities are higher than the fluid velocity. For the compressional wave this
will nearly always be fulfilled, but for the shear wave this is not so. Indeed, formations are
characterized as slow or soft when the shear wave velocity is slower than the fluid velocity,
and as fast or hard otherwise.

5.8.1. Borehole modes

In addition to the refractions, the full wavetrain also consists of borehole modes. These
are modes that are localized to the borehole, and do not radiate into the formation (at least
for some parameter ranges). This means that they are often the dominating components
of the full wavetrain as far as amplitude is concerned. The borehole modes also contain
information about the formation parameters, albeit in a more complicated manner than the
refractions.

The most important eigenmode is the Stoneley wave, which is an interface wave. (The
name “Stoneley wave” actually deviates from the strict definition of the type of interface
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Fig. 5.16. The low frequency limit of the Stoneley velocity as a function of shear velocity for p/pow = 1.0 and
p/pw = 2.5.

wave we are considering here; see page 204.) Its velocity is always smaller than that of the
fluid in the borehole. The wave has relatively low dispersion. In the low frequency limit
the wave is known as the tube wave and its velocity vs; is

Vst = (5.92)

1+ %
PVS

where vy and py are the velocity and density, respectively, of the fluid in the borehole,
while vs and p are the shear velocity and density, respectively, of the formation. This rela-
tion is plotted in Fig. 5.16 for two different density ratios. Note that for sufficiently small
shear velocities, the Stoneley wave becomes attenuated in the low frequency limit. This is
due to the fact that it will radiate energy in the form of ordinary shear waves when vs; is
higher than the solid’s shear velocity.

Eq. (5.92) indicates the possibility of using the Stoneley velocity to determine the shear
wave velocity of a formation. Quite conveniently, the sensitivity to the shear wave veloc-
ity is highest when this velocity is small and no shear refraction exists. Some remarks of
caution are however necessary. The high Stoneley wave attenuation in slow formations, as
mentioned above and illustrated in Fig. 5.16, is a main limiting factor. Further, Eq. (5.92)
is a low frequency approximation, and should for practical applications be replaced by
a numerical inversion in the frequency band of the source. More important, the Stoneley
wave velocity is quite sensitive to the formation permeability, especially at low frequencies
(see e.g. Schmitt, 1988a). Finally, the Stoneley wave and the refracted (converted) S-wave
are sensitive to different components of the stiffness tensor, which may be significant in
anisotropic formations. In principle, this offers the possibility of assessing the acoustic
anisotropy of a fast formation, but in practice this is very difficult since the Stoneley veloc-
ity has a low sensitivity to the shear velocity when the shear velocity is high.

The shear eigenmodes or pseudo-Rayleigh waves have phase velocities that are higher
than the fluid velocity, and slower than the shear velocity of the formation. Consequently,
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Fig. 5.17. Example of dispersion of the Stoneley mode and the three lowest pseudo-Rayleigh modes in a fast
formation. Solid lines are phase velocity, broken lines are group velocity. vp = 3500 m/s, vs = 2000 m/s,
vw = 1500 m/s, p = 2.3 g/cmd, pw = 1.2 g/cm3, R = 10 cm.

they only exist as undamped modes in fast formations. The pseudo-Rayleigh modes have a
cut-off frequency that increases with mode number (in principle, infinitely many pseudo-
Rayleigh modes exist). The cut-off frequency can be roughly estimated by requiring that
an integer number of half wavelengths should fit into the borehole. For a borehole with
diameter of 20 cm, this means that the order of magnitude of the cut-off frequency for the
lowest mode is 10 kHz. Note that the presence of the logging tool in the borehole reduces
the effective radius of the hole.

Fig. 5.17 shows examples of dispersion relations for the Stoneley mode and the lowest
pseudo-Rayleigh modes. Fig. 5.18 shows examples of (computed) full wavetrains in a fast
formation for three different source spectra. All wavetrains are shown in the same scale.
In the lower left, the early part of the wavetrains are shown amplified by a factor 10.
The figure illustrates that the full waveform depends strongly on the source spectrum. The
arrows indicate the expected arrivals of the P- and S-refractions and the Stoneley wave
based on ray theory.

Considering the high frequency source in the lower frame, the wavetrain is dominated by
the P-refraction and the pseudo-Rayleigh waves. No Stoneley wave is seen. In the middle
frame, the onset of the P- and S-refractions coincide well with the expectations from ray
theory. The Stoneley overlays the pseudo-Rayleigh waves, and is seen as a marked change
in amplitude.

For the low frequency case in the upper frame, there are no pseudo-Rayleigh waves,
and the waveform is dominated by the Stoneley wave. Note that the Stoneley wave breaks
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Fig. 5.18. Example of (computed) full acoustic wavetrains in a fast formation. Same parameters as in Fig. 5.17.
L = 2.44 m. Source centre frequencies are 20 kHz, 10 kHz and 2 kHz for the lower, middle and upper frames,
respectively. The early parts of the wavetrains are also shown with 10 times amplification. The amplitude scale is

the same in all three frames.

before the time expected from the low frequency velocity. This is due to dispersion. It is
not possible to determine clear P- and S-refractions in this case.
The wavetrains in a slow formation, as Fig. 5.19 show examples of, are considerably
simpler, due to the absence of the shear refraction and the pseudo-Rayleigh modes. In
certain cases, damped pseudo-Rayleigh modes may however be seen in slow formations.
In the high frequency case in the lower frame of Fig. 5.19, the only clear feature is the
P-refraction. Looking at the middle frame of Fig. 5.19, we find two clear events: the P-
refraction and the Stoneley wave. Note the relatively low frequency of the Stoneley wave.
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Fig. 5.19. Example of (computed) full acoustic wavetrains in a slow formation. vp = 2100 m/s, vs = 1200 m/s,
vw = 1500 m/s, p = 2.1 g/cm3, ow = 1.2 g/cm3, L = 2.44 m. R = 10 cm. Source centre frequencies are
20 kHz, 10 kHz and 2 kHz for the lower, middle and upper frames, respectively. The amplitude scale is the same
in all three frames. The low frequency wavetrain is also shown with the amplitude reduced by a factor 20 (dashed
line).

This is due to the fact that the Stoneley wave is excited most strongly at low frequencies,
such that it favours the low frequencies of the excitation pulse. It is also evident that the
early part of the Stoneley wave is lower in frequency than the later part. This is due to
the dispersion of the Stoneley mode in slow formations, where the low frequency parts
propagate fastest. (In a fast formation, however, the high frequency parts are the fastest.)
The slow onset of the Stoneley mode in a slow formation of course makes picking of
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Fig. 5.20. Schematic illustration of flexural borehole motion induced by a dipole transducer.

the arrival time rather difficult for real data, where noise is a complicating factor. This is
another reason why the application of Eq. (5.92) for estimation of v is difficult.

For the low frequency source in the upper frame, the amplitude of the Stoneley wave
is strongly increased, due to higher contents of low frequencies in the source. Note that
the frequency of the Stoneley wave is more or less the same as in the middle frame. The
P-refraction breaks where it is predicted from the ray theory.

In fast formations, one may in principle get the shear wave velocity from the shear refrac-
tions, but in practice the shear wave may be embedded in the ringing of the compressional
wave and noise, such that its extraction is at least non-trivial. In slow formations, one may
obtain the shear velocity from the Stoneley wave. However, as discussed, this method is
subject to several restrictions making it a far from ideal method.

For estimation of mechanical properties, one is most interested in the shear velocity
in slow formations, since a low shear velocity indicate low strength, and hence potential
stability problems. Dipole and quadrupole acoustic logging tools, which enable direct mea-
surements of the shear wave velocity in both slow and fast formations, are very useful tools
for this purpose.

The basic concept of the “Hula” log was suggested by White (1967). A dipole transmitter
can in principle be pictured as two close monopole transmitters driven with opposite phase.
The result may be thought of as a force oriented normal to the borehole wall which induces
a flexural motion of the borehole (see Fig. 5.20).

At sufficiently low frequencies, such that the wavelength is much longer than the bore-
hole diameter, the flexural mode is little affected by the borehole and propagates with the
shear velocity of the formation. At higher frequencies, the propagation velocity becomes
lower. In fact, the dispersion of the flexural mode is quite similar to the Stoneley mode,
with the exception that it is less affected by the permeability of the formation. An example
of the flexural mode dispersion is shown in Fig. 5.21. A quadrupole tool excites a mode
called the screw mode, which also propagates at the shear velocity at low frequencies and
has a similar dispersion.
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Fig. 5.21. Dispersion of the flexural mode and the screw mode, compared to the Stoneley wave in a slow forma-
tion. (After Schmitt, 1988b; with permission from AIP.)
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Fig. 5.22. Principle sketch of an axisymmetric altered zone. The index a denotes altered parameter values.

5.8.2. Borehole alteration

We have seen that the full waveform is quite complicated even in the simple model used
above. We will here discuss briefly a slightly more complicated situation, in which there
is a concentric altered zone around the wellbore. The alteration may be due to mud filtrate
invasion, or stress induced damage (see Section 4.5). We assume that the zone is homoge-
neous and isotropic. Fig. 5.22 sketches the situation.

From the ray-theory point of view, it is now clear that we may have refractions both from
the borehole wall and from the interface between the two formation zones (assuming that
the velocity of the altered zone is lower than that of the virgin formation).

Fig. 5.23 shows the expected arrival times as a function of distance. The first refracted
arrival will be the shallow refraction for short transmitter receiver distances, and the deep
refraction for longer separations. This effect has been used by Hornby and Chang (1985),
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Fig. 5.23. Arrival times for the model of Fig. 5.22. Virgin formation as in Fig. 5.15. The altered velocity is
reduced by 20%. The altered zone thickness is 20 cm.
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Fig. 5.24. Synthetic wavetrains in an altered slow formation. Soft means that the altered layer is 10% slower
than the virgin zone, hard means that it is 10% faster. The unaltered case is the same as in the middle frame of
Fig. 5.19. The altered zone thickness is 10 cm.

who—using data from several runs of an experimental logging tool with variable trans-
mitter receiver spacing—computed the altered zone thickness and velocity as a function
of depth. Such calculations should, of course, be considered with some caution, since the
model used is very simple. The assumption of an axisymmetric altered zone is dubious,
and the abrupt transition from altered to unaltered formations is only a first approximation.

Fig. 5.24 shows examples of synthetic wavetrains in an altered soft formation. The al-
tered zone velocities are 10% higher/lower than those of the virgin formation. It is clear



214 ELASTIC WAVE PROPAGATION IN ROCKS

from the figure that alteration affects significantly the character of the wavetrain. The am-
plitude of the P-refraction is changed considerably, and the dispersion characteristics of
the Stoneley wave are also changed. This is due to the fact that the Stoneley wave samples
some average of the altered and virgin shear velocities at low frequencies, but sees only the
altered zone at high frequencies.

5.9. Seismics

A seismic survey is the only tool available for mapping and characterization of large sub-
surface structures. The major objectives for surface seismic surveys are to identify and
localize the subsurface structures. From a rock mechanical point of view, the fact that
P- and S-wave velocities, density and to some extent anisotropy may be determined from
seismic data, provides a basis for large scale applications.

The basic element in a seismic survey is a seismic shot, as shown in Fig. 5.25. The
distance (x) between the source and the receiver is called the offset. When a shot is fired by
the source, a semi-spherical wave is propagating down through the rock masses. At each
interface between the various layers in the formation, a part of the wave is reflected and
propagates back towards the surface, and is eventually detected at the receiver. The elapsed
time (¢1) from the shot is fired until the reflection is detected at the receiver is called the
Two-Way Traveltime (TWT).

Consider a situation as shown in Fig. 5.25, where the wave propagates with velocity v
through a uniform formation until it is reflected at a plane, horizontal interface at depth D.
By a simple geometric analysis, we find that the TWT for a given offset can be expressed
by the hyperbolic equation

2 2 x?
t7(x) = 17(0) + ") (5.93)

where 7(0) = 2(D/v).
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Fig. 5.25. A seismic shot.
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Consider now a set of shots with different offsets around the same midpoint. Corre-
sponding values of TWT and offset should then fall on a straight line in a plot of t-|2-(x)
versus x2. From this plot it is possible to identify both ¢r(0) (from the intercept at x = 0)
and v (from the slope). Thus it is possible to identify both the depth D and the velocity v
from the seismic data.

A collection of shots around a common midpoint is called a CMP gather. In order to
enhance the useful information (i.e. the reflected pulse) and suppress noise, it is standard
procedure to add up all recorded traces in a CMP gather, after having scaled the time axis
of each trace as

2

rr(x) — t%(x) - i—z (5.94)
This scaling ensures that the reflection occurs at the same place for all traces. Such a sum
of traces is called a CMP stack. Note that stacking disturbs information about amplitude
and phase in the signals.

If the formation consists of several layers, the wave is refracted at each interface both
before it reaches the actual interface we are considering and on its way back to the surface.
The expression for TWT is then rather complicated, however in the hyperbolic approxima-
tion we have (Dix, 1955)

2 2 x?
F(x) ~ 1F(0) + — (5.95)
URMsS
where the so called “root-mean-square velocity” vgrums is given as

N
2
2
v = — Liv; 5.96
RMs tT(O); ) (5.96)
L; and v; are the thickness and velocity of layer j, respectively, and N is the number of
layers, while the TWT at zero offset is given as

) =2y ﬂ (5.97)

As we are able to obtain both vris and #7(0) from the CMP gather for the reflection from
each layer, we have the 2N equations needed to determine the 2N unknowns L ;, v;. This
procedure, called Dix inversion, allows us to determine both velocity and thickness of each
layer.
An alternative form of the traveltime equation (5.95) is found by Taylor expansion of
the traveltime in x:
2

tr(x) = t7(0) + (5.98)

211(0)v2 M0
The function Afr(x) = t1(x)—t7(0) is called the normal moveout (NMO), and the velocity
vnmo s called the normal moveout velocity. In general, vnmo differs from vrums, however
for plane, horizontal, homogeneous layers, we have vymo = vrms-
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In practice, the processing of seismic data is complicated by several factors, such as
dipping layers (which imply that the reflection point differs from the common midpoint),
lateral velocity variations and anisotropy (which both implies that the velocity is different
for different offsets), and spurious reflections originating from refracted waves, converted
waves, interface waves and multiple reflections. Data derived from seismic processing may
thus suffer from large uncertainties.

We have shown earlier that the amplitude of a reflection generated at an interface de-
pends on the acoustic impedance. Since the acoustic impedance depends on both velocity
and density, the amplitude of a seismic reflection also carries information about the rock
density. In general, the reflection coefficient depends on the angle of incidence, the P-wave
velocities and densities of both layers, as well as the shear wave velocity vsp of the lower
layer (see example in Fig. 5.12). Thus, the variation in amplitude versus offset (correspond-
ing to the angle of incidence) for a P-wave reflected at the interface between two layers
carries information about both the P- and S-wave velocity of the layer below the interface.
In marine seismic surveys, both the source and the receivers are floating in water, hence all
information to be extracted about the formations below the sea floor has to be carried by
P-waves. Application of the method outlined above is a possible way to extract also shear
wave velocities from marine seismic data. The method is known as AVO (Amplitude Ver-
sus Offset). In land- or ocean bottom-based seismic surveys, where both P- and S-waves
are generated and detected, an extended method called Multicomponent AVO may be ap-
plied to improve the confidence of the estimated shear wave velocity. This method also
includes analyses of amplitudes of reflected S-waves, by a similar set of equations as those
described in Appendix D.2.2.

A velocity derived from a seismic data set is a kind of “average” velocity over a distance
given roughly by the wavelength. If the rock is heterogeneous on a scale shorter than this
distance, the observed velocity will not be fully representative for the velocity on a shorter
length scale. Examples of how the “average” velocity relates to the short scale velocities
and the geometrical structure of the heterogeneities are given in Section 6.1.

The resolution of seismic data—that is, the typical size of the smallest objects that can
be seen as reflections—is usually assumed to be about a quarter of the wavelength. As a
seismic wave contains a band of frequencies (typically 10-100 Hz), the resolution limit is
usually defined as the wavelength of the component that has the highest frequency. The fre-
guency content in a seismic signal is mainly given by the attenuation (which is a constant-Q
type with Q in the order of 30-100 for underground formations), the distance travelled by
the wave, and the type of wave. For a P-wave reflected at about 1000 m depth, the typical
wavelength is about 100 m, while the resolution limit is about 20 m, depending of course
on the local conditions. The loss of the highest frequencies with increasing travel-time
(which is a consequence of constant-Q attenuation) implies that the resolution is poorer for
deeper reflections. For a P-wave reflected at about 4000 m depth, the typical wavelength
is about 200 m, and the resolution limit about 50 m. Improved recording technology may
improve the resolution somewhat, maybe as much as a factor of 2. Still the resolution is
quite poor, and this limits the applicability of seismic data for determination of formation
properties. Further improvements in the resolution require different processing techniques
which may be more sensitive to noise.
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Chapter 6

Rock models

In the previous chapters, we have discussed the mechanical behaviour of rocks in terms
of continuum mechanics. That is, we have treated the rocks as homogeneous materials.
However, sedimentary rocks are made up of small particles, and are largely heterogeneous
materials on a length scale comparable to the particle size (Fig. 1.18). Furthermore, inho-
mogeneous distribution of particle types and particle sizes in the form of layers or clusters,
as well as fractures, produce heterogeneities on larger length scales. The mechanical prop-
erties of the rock will differ largely from one part to another if measured on a length scale
which is small or comparable to the size of the heterogeneities. The continuum approach
can be applied with confidence only as an average, and on a length scale which is large
compared to the size of the heterogeneities.

For many practical applications the continuum approach is valid. However, it is intu-
itively clear that the mechanical properties of the rock even on a large scale must depend in
some way on the microscopical nature of the rock. We have already touched this problem
when we introduced the poroelastic formalism (Section 1.6). The theory of poroelasticity
is based on the assumption that the rock consists of both a solid part and a fluid part, which
are separated on a microscopic scale, but coexist on a macroscopic scale. One of the state-
ments of this theory is that the rock’s framework has its own moduli, separate from those
of the solid material and the pore fluid.

The poroelastic formalism of Biot introduced earlier (Chapter 1) is capable of predict-
ing the elastic properties of a porous material provided that parameters like the frame bulk
(K#r) and the shear (G) moduli are known. These are macroscopic parameters, describing
the properties of the rock on a length scale much larger than the grains and pores. The Biot
theory is called a macroscopic theory since it only deals with macroscopic quantities. It is
an ultimate goal to be able to express the macroscopic parameters like K and G in terms
of the properties of the constituents the rock is made of and the microstructure of the rock
fabric. Having obtained values for the macroscopic parameters from the microscopic the-
ories, we may consider these parameters to represent a material which is homogeneous on
a macroscopic scale. This virtual, homogeneous material is commonly called an effective
medium.

The elastic properties of a composite material like a sedimentary rock depend primarily
on the following three factors:

1. the relative amount of each component present
2. the elastic properties of each component
3. the geometrical distribution of each component.

It is not possible to obtain accurate data for all three factors for a given rock, hence any
model of the rock will necessarily be based on simplifying assumptions. A model is there-
fore valid as a representation for the real rock only to the extent that the features governing
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the observed behaviour of the rock are accounted for in the model. This also implies that a
model may be a good representation for the rock in a given situation, while it is not at all
describing the actual behaviour of the rock in other situations.

A large number of rock models have been derived over the years, describing various
properties of various rocks under various conditions. A comprehensive collection of such
models was given by Mavko et al. (1998). Here, we shall first take a look at a model for
a simple heterogeneous material, in order to illustrate how the physical properties may
depend on the length scale on which the material is being observed (Section 6.1). Some
models for porous rocks involve only porosity, with no explicit reference to the shape
of the pore space. Such models are presented in Section 6.2. Other models are based on
the forming process of sedimentary rocks, and describe essentially packs of grains. Such
models are described in Section 6.3. Models describing cracked and fractured rocks are
described in Sections 6.4 and 6.5.

6.1. Layered media

Consider a material made up of parallel, isotropic layers. This is one of the simplest exam-
ples one can find of a non-homogeneous material. We shall use this as an example to see
how a material can be considered as heterogeneous on one scale, and effectively homoge-
neous on another.

Given a sample of a layered material. We denote the thickness of layer number i as L;,
so that the total thickness L of the sample is the sum of all L;. If an external load o, is
applied in the direction normal to the layers, all layers have to carry the same load. The
strain of layer i will be ¢, ; = o,/E;, where E; denotes the Young’s modulus of layer i.
The sample will thus deform according to

1 1 1 o 1 L; 1
&, = —z : ALZ = Z ZSZ'iLi = z : EZlLl = UZZ Z Eﬁ = O'Z<E> (61)
1 L

We use (x) to denote the average of the quantity x weighted by the volumetric proportion
of each layer (often called Backus average). The effective Young’s modulus E* of the
layered material is according to Egs. (1.91) and (6.1) given as

oo (1)’ i

Note that the layered material has transversely isotropic symmetry, so that the effective
Young’s modulus will vary with orientation of the applied stress. The total effective stiff-
ness tensor of this layered material is given as (Backus, 1962; Helbig, 1994):

4G(\ + G) 1\ o\
Cll_c22_< A+ 2G >+<A+2G> <A+2G> 63)

1 !
Cas = <A + 2G> ©4)
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1
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For an elastic wave with sufficiently low frequency, such that the wavelength Ay, is much
larger than the thickness of any of the layers, the layered material will effectively appear
as a homogeneous and anisotropic material with stiffness given by Egs. (6.3)—(6.8). The
velocity of a P-wave travelling normal to the layers is then, according to Eq. (6.4) and
Section 5.5, given as

C33

vpOaw > L) = (6.9)

A + ZG
* is the average density, given as p*

For an elastic wave with high frequency, such that the wavelength is much shorter than
the thickness of the layers, the material will appear as a sequence of layers with different
velocities. The time A¢ needed for a P-wave to travel through the sample (normal to the
layers) is given as the sum of the time needed to travel through each of the layers, that is

L Li | pi
vp()»w < L) IZ Up Z ! ri + 2G; ( )

where vy is the velocity of layer i. The average velocity is given as (see Eq. (5.26)):

-1
vp(hw < Lj) =< x+p2(;> (6.11)
The difference between Eq. (6.11) and Eq. (6.9) represents the different properties dis-
played by a heterogeneous material when it is studied on two different length scales.
Eqg. (6.11) represents a situation where the relevant length scale of the observation (i.e.
the wavelength of the elastic wave) is much smaller than the length scale of the hetero-
geneities (i.e. the layer thickness), hence the material appears as heterogeneous. Eq. (6.9)
represents on the other hand a situation where the length scale of the observation is much
larger than the length scale of the heterogeneities, and the material appears effectively as
homogeneous.

The transition between these two cases was nicely demonstrated in a laboratory experi-
ment by Marion and Coudin (1992), where acoustic waves with different wavelengths were
transmitted through a stack of plates of alternating steel and plexiglass. A simulation of a
similar experiment, using a discrete element code, is shown in Fig. 6.1. Note that the ve-
locity of the wave is significantly lower when the thickness of the layers is much smaller
than the wavelength, as compared to the situation when the layer thickness is larger than
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Fig. 6.1. Recorded signals of P-waves transmitted through 7 different samples, as simulated by a discrete element
code. The excitation is a one-cycle sine pulse. Each sample is a stack of hard and soft layers of equal thickness.
Only the layer thickness L is different for each sample. The hard-layer:soft-layer ratios for stiffness and density
are 20:1 and 8:1, respectively.

the wavelength. Note also the strong attenuation for the intermediate cases, indicating that
the wave is almost unable to propagate under such conditions. Hovem (1995) showed by
analytical modelling that wave propagation is dispersive with no loss for frequencies below
a critical limit, while waves with higher frequencies are evanescent, suffering loss at each
interface. The critical frequency limit depends on the periodicity of the layered material
and the impedance contrast between the layers.

This example demonstrates clearly that the properties of a heterogeneous material may
be very different when observed on different length scales. An effective medium repre-
senting the material has the properties of the material when it is observed on a length scale
much larger than that of the heterogeneities.

6.2. Models involving porosity only

For a simple porous rock consisting only of one type of solid material and being saturated
with only one type of fluid, the relative amount of the components is specified by the
porosity ¢, while the elastic properties of the components are given by the bulk modulus of
the fluid Ky, and the bulk (K;) and shear (Gs) moduli of the grain material. Many available
expressions for the elastic properties of rocks are based only on these parameters, as details
about the geometrical distribution of each component is normally not known.

Precise estimates for the elastic moduli of a rock can not be obtained without the vital
information about the geometrical distribution of each component, however there are upper
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and lower limits for their values. Such limits—or bounds as they are usually called—can
be established by considering extreme geometrical distributions of the constituents.

Assuming a distribution such that both the grain material and the fluid experiences the
same strain due to an external hydrostatic stress, the bulk modulus (Kv/) of the rock is given
as

Kv =¢Ki+ (1 - ¢)Ks (6.12)

Ky is an upper bound for the bulk modulus of a real rock, and is called the Voigt bound.
Similarly, if we assume that the stress is the same in both the grains and the fluid, we find
that the bulk modulus (KR) of the rock is given as (see Eq. (1.132))
1 1-
¢ n ¢

KR Ki  Ks

KR is a lower bound for the bulk modulus, called the Reuss bound. Similar bounds can
be found for the shear modulus simply by replacing the bulk moduli in Egs. (6.12) and
(6.13) by the corresponding shear moduli. Note that the Reuss bound for the shear modulus
Gr = 0 forany ¢ > 0 (since Gt = 0), while the Voigt bound Gy > 0 forany ¢ < 1.

Physically, the Reuss bound represents a suspension, e.g. solid particles in a liquid. It
may also describe gas bubbles in a liquid (in which case the bulk modulus K¢ of the gas
has to replace K in Eq. (6.13)). The Voigt bound represents an alloy of constituents, and
is most appropriate for a rock at low porosity.

The Voigt and Reuss bounds are very wide, and of limited value for modelling of rock
properties. A narrower range is given by the Hashin—Shtrikman bounds. In a general form,
these are given as (Hashin and Shtrikman, 1963)

(6.13)

v2

KM — g+ T o (6.14)
K2—K1 K;H—%Gl
HS+ _ v2
G =061+ — 201(K1+2G1) (6.15)

G2—G1 ' 5Gy(K1+3G)

Subscripts 1 and » denote component 1 and 2, respectively, while v represents the vol-
ume fraction of the actual component. The upper (K ™S+, GHS+) and lower (KH5—, GH5)
bounds are found by interchanging material 1 and 2 (the upper bound is found when mate-
rial 1 is the stiffest one). Physically, the Hashin—Shtrikman bounds represent the moduli of
an assembly of spheres of material 2, each of which is surrounded by a shell of material 1.
Note that for the simple grain-fluid model of a rock described above, the lower Hashin—
Shtrikman bound is identical to the Reuss bound for both the bulk and the shear modulus.
This is also the exact solution for a suspension of grains in a fluid (see Section 1.6).

The arithmetic average of the Voigt and Reuss bounds are sometimes used to ob-
tain estimates of the moduli, rather than just the allowable range. These averages, K =
(Kv + KR)/2 and similar for the shear modulus, are usually called the Voigt—Reuss—Hill
average moduli (Hill, 1952). The Voigt—-Reuss—Hill average moduli represent no well de-
fined model of the rock microstructure, however it may be seen as a specific mixture of the
extreme structures represented by the Voigt and Reuss bounds.
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An alternative approach would be to look for the most probable microstructure in a
porous rock and try to estimate the moduli for such a structure. Considering for instance a
collection of sand grains, it is clear that there exists a maximum porosity, above which the
grains will no longer be in contact with each other and the frame moduli will vanish. For
an ordered simple cubic packing of equally sized spheres, this critical porosity ¢, is 0.476,
for a random packing it is about 0.36, while for a typical clean sand it is about 0.40. Based
on this simple argument, combined with the expectation that the moduli should be equal
to the moduli of the grain material if the porosity is zero, we find as the simplest possible

expression
Pe
Gqr = G5<1 — %) (6.17)

The critical porosity concept (Nur et al., 1991, 1995) is not really a micromechanical
model, and the critical porosity is an empirical constant which will differ from one rock
type to another, however the concept provides an explanation for the characteristic behav-
iour of the frame moduli of sedimentary rocks. Fig. 6.2 shows the undrained bulk modulus
versus porosity for a rock, as given by Eq. (6.16) with ¢. = 0.39. The figure also shows
the Voigt, Reuss and Hashin-Shtrikman bounds for a dry rock, and the Voigt—Reuss—Hill
average. For comparison, the empirical results of Murphy et al. (1993) for clean sands are
also included.

0.2t Reuss = HS> Voigt-Reuss—Hil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Porosity

Fig. 6.2. Undrained bulk modulus versus porosity for water saturated rocks, according to various models. The
dotted line is based on the empirical curve of Murphy et al. (1993) for clean sandstones. The fluid contribution
has been accounted for by use of the Biot—-Gassmann equation (1.155) for both the empirical curve and the critical
porosity curve.



GRAIN PACK MODELS 225

The critical porosity concept also provides some understanding of the properties of
sand—clay mixtures (Marion and Nur, 1991). Small amounts of clay in a sandstone usu-
ally appear as pore fill, and the mechanical properties of the rock are mainly determined by
the framework of sand grains. The stiffness of the rock is however still largely determined
by the sand grain framework, as the sand grains are stiffer than the clay. On the other hand,
clay mixed with only a small amount of sand will behave as a kind of suspension, where the
mechanical properties will be dominated by those of the clay. The transition between the
two types of behaviour will occur when the relative volume of sand is about 1 — ¢, that is
when the sand volume is just large enough for the grains to make a continuous framework.

6.3. Grain pack models

Sedimentary rocks are formed by small pieces of solid material that are compacted and to
some extent cemented. Models describing the elastic properties of grain packs may thus
provide interesting information about such materials.

Consider two spherical grains that are pressed together with a normal force F acting
along the line through the centres of the spheres (Fig. 6.3). Due to the force, the grains
will be deformed in the vicinity of the contact spot. The contact area will be a circle with
radius b, depending on the force F as

,_[30- v))aF 3
N AFq

This equation was originally derived by Hertz (1882), assuming linearly elastic grain
material and that the contact radius is small (b < a). vs and Es are the Poisson’s ratio and
Young’s modulus of the grain material, respectively. The distance between the centres of
the grains is reduced with s due to the external force:

(6.18)

9(1 — v2)2F27Y/3
o | 2A v F” (6.19)
2E2a
The normal stress o within the grain contact area is given as
3F r2\1/?
— 1— — 6.20
7= 22 ( bZ) (6.20)

where r is the lateral distance from the centre line between the two spheres. A force con-
stant D,, relating the longitudinal deformation As to an increment AF can be derived
from Eqgs. (6.18) and (6.19), utilizing the relationship between Es and the shear modulus
Gs (Table 1.1):

Dy = (6.21)

AF _[ 3E2aF ]1/3 _ 2Gsh

As  L4Q—12)2] T 1-s

The response to an incremental shear force A F’ over a grain contact that is already under
the same external load F as above, can be found by a similar consideration of the forces in
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Fig. 6.3. Normal stress distribution at the grain contact in a normally loaded contact between two equally sized,
spherical grains. (After White, 1983; with permission from Elsevier Science Publishers.)

the grain contact area (see Fig. 6.4). A shear force constant

AF'  [6E2aF(1—v)?1Y®  AGsh
As' 2—v)(l+vs) 22—

relates the shear force between the grains to the lateral displacement (A F’ and As’ defined
in Fig. 6.4). This theory was first developed by Mindlin (1949), so the grain pack theory as
it stands is usually called the “Hertz—Mindlin”-theory.

The relationship between the force F and the external pressure o, causing the force, as
well as the relationship between the displacement s and macroscopic strain eyol, depend on
the packing of the grains.

For a random packing of identical spheres, eyo] = 3s/(2a) while

D = (6.22)

. 47m20p
Ne(1 - o)

N is the average number of contacts per sphere, also called the coordination number.

Note that the porosity is given essentially by the packing, and is not a free variable in these

F (6.23)
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Fig. 6.4. Tangential stress distribution at the grain contact in a contact between two equally sized, spherical
grains, which is initially hydrostatically loaded, followed by an incremental shear load. (After White, 1983; with
permission from Elsevier Science Publishers.)

equations. The bulk modulus for the random packing of identical spherical grains under
isotropic external stress is thus given as

K =
0&vol 6ra

do,  Ne(l—¢) = [N§(1—¢)2E§ap]1/3

7272(1 — v2)? (6.24)

The shear modulus G of a random pack of identical spherical grains is given as (Dighy,
1981):

Ne(1— ¢) 3 5—4vs [3N2(1— ¢)2E20,7Y3
G=—\|D -D; ) = 6.25

107ra nt gt 102 —ve) | 721 —12)? (625

These equations are valid when there is no slip between the spheres. Walton (1987) also
considered possible slip at the contact surfaces, which implies that the friction coefficient
at the contact area has an impact on the elastic moduli. For perfectly smooth spheres (the
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friction coefficient is zero; perfect slip), Walton found

1[3N2(1 — )0, "°
K== w (6.26)
6 T4 B2
1 [3N2(1 - ¢)%0,7% 3
G —_ i S p = —K 627
10 [ 74 B2 } 5 (6.27)
where
3 (1 — 21)3)(1 — Vs)
== 6.28
ZJT Es ( )
Egs. (6.24) and (6.25) can be used to estimate how acoustic velocities depend on an
external hydrostatic stress o, for a dry rock. Since both K and G depend on a;/ 3, we

immediately see that both v, and vs depend on the stress as aj/ 6, Experiments on loose

sands (Domenico, 1977; Bachrach et al., 1998; Han and Batzle, 2006) have shown vy and vs
depending on the stress as o', where n is in the range 1/4 to 1/5. There are several possible
reasons for this discrepancy (Makse et al., 2001). The analytical grain pack models do not
account properly for partial slip and associated grain rotation and rearrangement. The load
is further assumed to be carried equally by all grain contacts, while in reality, it is carried by
localized force chains through the grain assembly. This may be described by an effective,
stress-dependent coordination number. With realistic grain shapes, the surface roughness
of the grains may also lead to grain contact stiffnesses described by an exponent different
from 1/3 (as in Egs. (6.21) and (6.22)). An example of such behaviour is the “bed of nails”
model by Carlson and Gangi (1985), which is described under Section 6.5.1. Note that the
theory also predicts that the ratio between v, and vs does not depend on the external stress.

The Hertz—Mindlin contact theory has also been derived for various ordered packings
of grains (see f.i. Wang and Nur, 1992, for a review). Extensions to the model have been
made to take into account the effects of a saturating fluid (White, 1983; Brandt, 1955),
and to describe cemented rather than pressure generated grain contacts (Digby, 1981;
Schwartz, 1984; Dvorkin et al., 1991). For cemented contacts the force constants D,, and
D, become unknown parameters. and the stress dependency of the acoustic waves tends
to be less pronounced. The Hertz—Mindlin theory is no longer valid at high stress levels,
when plastification of the grain contacts may occur. The stiffness will then increase with
stress at a rate lower than indicated by the exponent 1/6.

The general case of variously sized, cemented particles in a random dense pack has not
been solved analytically yet. However, such systems can be studied numerically. Discrete
particle modelling has developed rapidly over the last few years, with the continuous de-
velopment of faster and more powerful computers. One such approach is the PFC (Particle
Flow Codel), which is based on the pioneering work of Cundall and Strack (1979).

In PFC, which may be formulated both in 2D and 3D, circular or spherical particles of ar-
bitrary size distribution are packed into a granular assembly under a specific applied stress.
Each disk or sphere is treated as a rigid body, with translational and rotational degrees of

1 Trademark of Itasca Consulting Group, Minneapolis, USA.
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freedom. When two particles come in contact, forces are generated as a result of relative
(normal and shear) displacements at the contact. Using a so-called soft contact approach,
the particles are permitted numerically to overlap each other, and the degree of overlap
controls the contact forces through a contact law. The contact law may be Hertzian, or lin-
ear, or user-defined. By applying boundaries representative for the problem to be studied
(e.g. flat walls to mimic pistons, in case a laboratory test is simulated), the stress conditions
can be changed and the contact forces and associated particle movements calculated, until
equilibrium is reached and a new load increment can be applied. This procedure is cycled
over and over again until a numerical experiment is completed.

The particle contacts may be unbonded or bonded. When simulated cement bonds are
inserted, they have bond stiffnesses that are in general different from those of the unce-
mented contacts. In addition, the bonds have shear and tensile strength. When a shear or
tensile failure criterion is exceeded locally, the bond fails, and it then retains the properties
of the uncemented contact. With the features described above, the discrete model permits
calculation of the complete stress—strain behaviour of an uncemented or cemented granular
medium (Potyondy and Cundall, 2004). It thus serves as a tool for studying rock failure
mechanics on the particle scale.

Several features may be added to permit direct comparison between laboratory measure-
ments and discrete element computations, such as fluid coupling to simulate stress effects
on permeability. For instance, wave propagation may be simulated directly in PFC, since
the model is inherently dynamic (Li and Holt, 2002). Also, acoustic emissions may be
simulated by calculating the energy associated with bond ruptures (Hazzard and Young,
2000).

Discrete particle modelling may be used to gain understanding and insight, in particular
in comparison with laboratory experiments. It may also be used to solve engineering prob-
lems, in competition with continuum methods. The main benefit (Cundall, 2001) is that no

Fig. 6.5. Distribution of contact forces in a 2D specimen created by PFC2D, loaded in the vertical direction. The
width of the lines is proportional to the force magnitude, and the direction indicates the orientation. The figure
shows only a section of the specimen.
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Fig. 6.6. Grain contact failures at a given stress level in the 2D specimen shown in Fig. 6.5. The black lines show
failures that are predominantly tensile, while the grey lines show shear failures.

pre-assumed constitutive material law is needed: complex behaviour, including develop-
ment of localized fractures and cracks is a natural output of the modelling.

From a fundamental viewpoint, one may ask to what extent the assumptions behind the
simple effective medium theories sketched above are valid. As an illustration of that, a
distribution of contact forces in a 2D network is shown in Fig. 6.5. The distribution is
clearly heterogeneous, with a small number of contacts carrying a large part of the load
(see also Radjai et al., 1996; Williams and Rege, 1997). This allows a.o. for studies of
various stress geometries, stress history and degrees of cementation. Note that the network
of force lines is heterogeneous on a larger scale than the grain size.

The numerical calculations also allow for “snap-shots” of grain contact failures at given
points in time, as shown in Fig. 6.6. Such figures may help to better understand deformation
mechanisms and failure processes in sedimentary rocks.

6.4. Models for cracks and other inclusions

The grain pack models discussed above describe the porous material as a collection of
grains with varying degree of contact between the grains. This may seem to be a logical
path to follow when studying sedimentary rocks, since they are indeed formed this way.
However, we may also consider a porous material as a solid with lots of holes in it, like a
“Swiss cheese”. For some purposes it appears that this approach may be equally relevant,
especially for well cemented rocks. More generally, we talk about such models as inclusion
models, as they consider the effect of including an object in a host material.

To establish a model for such a material, we need descriptions for how holes of various
shapes affect the elastic properties of the solid. In a static approach (Eshelby, 1957; Walsh,
1965a, 1965b), it is assumed that a static external load is imposed on a sample consisting of
a host material with embedded inclusions. The elastic properties of the effective medium
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are obtained by requiring that the effective medium shall suffer the same deformation as
the real sample when subjected to the same external load. In a dynamic approach (Kuster
and Toksoz, 1974), it is assumed that a region consisting of inclusions embedded in a
host material is embedded in the effective medium. The elastic properties of the effective
medium are defined such that the scattering of elastic waves from the embedded region is
eliminated. The wavelength of the elastic wave is assumed to be much larger than the size
of the region.

The two approaches converge when the concentration of inclusions is low. In Sec-
tions 6.4.1 and 6.4.2 we shall take a look at models valid for low concentrations of
inclusions. Models intended to account for higher concentrations of inclusions are dis-
cussed in Section 6.4.3.

6.4.1. Linear, isotropic models

Assuming that the concentration of inclusions is so low that interactions can be neglected,
we may express the impact of the inclusion on the elastic stiffness of the material as a
perturbation, proportional to the concentration of the inclusions. Assuming also that the
host material is isotropic, the effective bulk modulus K* and the effective shear modulus
G* of a material containing inclusions, can be written as

K* = Ks(l - QKéfincI) (6-29)
G* = Gs(1— QGSincI) (6-30)

Ks and G are the bulk modulus and shear modulus, respectively, of the solid material
without inclusions. &jncl is an appropriate measure of the concentration of the inclusions,
depending on their shape (as will be seen below). Ok and Q¢ are measures of the impact
these inclusions have on the respective moduli of the material. Qx and Q¢ are functions
of the moduli of the host material and the material within the inclusions. Other moduli can
be represented by similar expressions.

Consider first the case where the inclusions are spherical, fluid-filled holes. The poros-
ity ¢, which is here given as the sum of the volumes of the holes relative to the total volume,
is a suitable measure for the concentration of inclusions, thus &j,c; = ¢. The expressions
for the effective moduli can for instance be derived from Egs. (6.14) and (6.15), by defining
KHSt = k* GHSt = G* vy =1 —v1 = ¢, K1 = Ks, K2 = K, G1 = Gs, G = 0 (the
upper Hashin-Shtrikman bound then represents a solid surrounding a spherical, fluid-filled
inclusion), and linearizing the expressions in ¢. The results are (see also Mackenzie, 1950;
Eshelby, 1957; Walsh, 1965a):

3(1—vs)(1 — Kt
K* = Ks<l __Sdewdo k) - ) (6.31)
2(1-2v) + 1 + Vs)f:
* _ 1-— Vs
G* = Gs<l 15— 5vs¢) (6.32)

Here vs is the Poisson’s ratio of the solid material, without inclusions. By comparing
Eqg. (6.31) to Eq. (1.155) we find (after some algebra) that K* is in agreement with Biot’s
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theory (Section 1.6.2). Note also that G* does not depend on Kz, thus G* is the same
whether the material is dry or saturated, again in agreement with Biot’s theory. This is not
the case in general for inclusion models, as we shall see below.

We shall now consider the case where the inclusions are thin, flat cracks. For such inclu-
sions, it turns out that the most suitable measure for the concentration of inclusions is the

crack density &, defined as
2
&= 2—n<A—> (6.33)

T \P

A is the area and P the perimeter of a crack, and # is the number of cracks per unit vol-
ume. The brackets ( ) denote an average over all cracks. For circular cracks with radius a,
Eq. (6.33) becomes

£ =n(ad (6.34)

Assuming that the cracks are randomly oriented, we have (Walsh, 1965a, 1965b; Garbin
and Knopoff, 1973, 1975; Budiansky and O’Connell, 1976; see also Watt et al., 1976):

. 16 1— 12

K* = K5<1— 5T o, Dg) (6.35)
. 32 3

G _Gs(l—E(l—vs)[D+ 2—1)5]5) (6.36)

The parameter D is given as

1_,. 4 1-vZ K¢

(6.37)
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where y is the aspect (thickness-to-diameter) ratio of the cracks. Note that for a dry mater-
ial, for which K = 0 and consequently D = 1, the only crack-related parameter affecting
the effective moduli is the crack density &. For very thin, fluid-filled cracks, for which
y « K¢/Ks, we have that D — 0 which implies that the cracks are almost incompliant.
Again, only the crack density affects the effective moduli. Thus, details regarding the shape
of thin cracks have no impact on the effective moduli (Budiansky and O’Connell, 1976;
Mavko and Nur, 1978).

Eq. (6.36) states that G* is affected by saturation, hence it is clear that these equations
are not consistent with Biot’s theory (Section 1.6.2). The reason for this discrepancy is that
some of the cracks will necessarily have an orientation such that they will be compressed
(or opened up) due to an applied shear stress. This change in volume of the crack implies
that the fluid occupying the crack will be compressed (or expanded), to an extent that is
partly given by K. Biot’s theory, which has no assumptions about the shape of the pore
space and hence should be valid also for thin, flat (crack-shaped) pores, is based on the
fundamental assumption that the material is permeable. Hence the compression of one
crack due to an applied shear stress will only lead to flow of fluid from this crack into
another crack whose orientation implies that it expands due to the same stress state. Thus
there is no local build-up (or reduction) of fluid pressure, and the fluid bulk modulus does
not affect the effective shear modulus.



MODELS FOR CRACKS AND OTHER INCLUSIONS 233

It is possible to make an inclusion model consistent with Biot’s theory by defining that
G* is not affected by saturation. This is a way of implementing hydraulic connections
between the elements of the pore space (i.e. making the material permeable; see Thomsen,
1985). Alternatively, one may use the inclusion model only for the material in a dry state
(for which D = 1), thus modelling the frame moduli, and add the effects of saturation by
Biot’s theory. The actual situation we are trying to model determines which alternative is
the most representative. For instance, for high frequency elastic waves (see Chapter 5), the
fluid may not have time to flow into and out of the cracks, hence the cracks will effectively
be closed, and expressions like Egs. (6.35)—(6.37) may give a good representation of the
moduli. At low frequencies, the fluid pressure will have time to equalize, and a better
representation of the moduli is found by using the inclusion model to estimate the frame
moduli, and the Biot model to add the fluid effects.

6.4.2. Anisotropic models

Cracks in rocks are not always randomly oriented. More typically, cracks grow as a result
of anisotropic changes in the stress state, which leads to a preferred crack orientation with
respect to the stress state (see also Section 1.8). The elastic constants of a material with
parallel cracks can be expressed, similar to Eqgs. (6.29) and (6.30), as:

Ci; = C(1— Qij6) (6.38)

C? is the stiffness tensor of the host material (without cracks), and Q;; is the impact of the
cracks on C;‘I. (note that the Einstein summing convention, page 459, is not applied here). If
the cracks are oriented normal to the z-axis, the coefficients Q;; are given as the respective
components of the matrix Q (see for instance Hudson, 1981):

- 2

v s (1) (1-v)?
1—521)5D vl—Z\i D 1—51)5 D 0 0 0
s (1—vs) v2 (1—v)?
Ul—Z:s D 1—52vsD 1—12)1)5 D 0 0 0
16 | @a-w)? (A-v)? (1-v)?
0="7 D TP t%cD 0 0 0 (6.39)
1-vs
0 0 0 7w 0 0
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Egs. (6.38) and (6.39) show that C3; < C7;, hence arock containing a set of parallel cracks
is softer when loaded perpendicular to the cracks than parallel to them. Thus the parallel
cracks induce elastic anisotropy in the rock. Stress dependence of acoustic velocities in
sedimentary rocks, as well as stress induced acoustic anisotropy, can to a large extent be
described in terms of cracks. This was also discussed in Chapter 5. This is a consequence
of the fact that shear stresses tend to create cracks with a preferred orientation.

The impact of a crack set with a different orientation can be found by proper rotation
of the matrix Q. For a rock that has several crack sets, with densities ¢, €@ ... and
corresponding matrices 01, 0@, ..., respectively, the effective elastic stiffness tensor is
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given as
Ch=Cl(1- 0™ — 0@ ) (6.40)
assuming no mechanical interaction between the cracks.

We remember that D — 0 for thin, fluid-filled cracks (Section 6.4.1). This can be ex-
plained as follows: Even a small normal stress tends to impose a very large volumetric
strain on an empty crack. If the crack is filled with a fluid, the volumetric strain will imme-
diately be counteracted by a large alteration of the fluid pressure. Consequently, the crack
is almost non-deformable due to normal stresses.

These considerations imply that cracks induce only a small P-wave anisotropy in a satu-
rated rock, according to Egs. (6.39) and (5.59). Thomsen (1995) pointed out that this model
does not necessarily give a realistic description of a porous rock, since the pore fluid may
flow between the cracks and the pores that deform differently under stress. For a low fre-
guency wave, the fluid pressure in the cracks and the pores will be nearly equalized at any
time, which implies that the presence of the pore fluid can not prevent the cracks from
deforming—at least not to such an extent as for isolated cracks. Assuming perfect pore
pressure equalization, Thomsen derived a modified expression (D¢p) for the D-parameter
that accounts for the hydraulic interaction between flat cracks and spherical pores.

Assuming that Ks <« Ks so that higher order terms of (K/Ks) can be neglected, and
neglecting mechanical interaction between the inclusions, we find from Thomsen’s work
that the D-parameter can be expressed as

1 31— 4 1-—H?2 K
_=1+[_ s fp 4 1o <1_@)}_f (6.41)
Dep 21—2vs ¢  3my 1l—2vs ¢ ) 1Ks

(Note that Eq. (6.41) is slightly different from Thomsen’s definition of Dcp, in order to
keep the expressions (6.41) and (6.37) consistent.) ¢p is the porosity due to the pores only.
The porosity due to the cracks is given as

4
¢ —dp = Zrv (6.42)

hence (1 — (¢p/¢))/y does not depend on y, and Dpc will not vanish regardless how thin
the cracks are, provided that ¢ > 0. The realism in Thomsen’s model was confirmed in a
model experiment by Rathore et al. (1995).

The expression (6.41) is valid for static or low frequency oscillations of the external
stress. At high frequencies, the pore fluid will not have time to flow between the cracks and
the pores, and the cracks will effectively appear to be sealed. For this situation, Eq. (6.37)
is the relevant expression for the D-parameter.

For completeness, the direct impact of the pores should also be taken into account.
Within the approximations used here, this can be done by adding an extra term to the
expression (6.38) for the effective elastic stiffness tensor:

Cl = Cf(L— Qij§ — OFdp) (6.43)

The matrix ij can be derived from Egs. (6.31) and (6.32). Assuming that K; < K it can
be expressed by

1 1+VS 1_2VS
0% = 0% = 0% = 5 )

Dy + 10 6.44
1—2vs bt 7 — 5 (644)
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1—vs/1+4v 1-—2v
0%, = 00, =05 = s( > Dp — 10 S) (6.45)
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At low frequencies Dp = Dgp (given by Eq. (6.41)), while at high frequencies where the
pores and the cracks are hydraulically isolated, Dy is given by

i =1 + E 1- Vs ﬁ
Dy 21—2vs Ks

Eq. (6.43) in combination with Egs. (6.39), (6.41), and (6.44)—(6.47) describe a mate-
rial with spherical pores and a set of flat, parallel cracks, where the hydraulic connection
between the cracks and the pores are accounted for. Mechanical interaction between the
inclusions have not been accounted for, however. Such mechanical interactions, and the
question whether they should be included or not, are discussed in Section 6.4.3.

Sayers and Kachanov (1995) introduced a model where cracks are considered more
generally as discontinuities, and their impact on the rock properties are described in terms
of the displacement discontinuities they induce. In this model, the compliance S, of a
rock containing a set of cracks is expressed as

Qs = Qs = Qg = 15 (6.46)

(6.47)

1
Sijkt = St + 7 Giketji + dinctji + 8 juctit + 8j1ctix) + Bijua (6.48)

where S7,, is the compliance of the rock without cracks, and the second rank tensor a;;
and the fourth-rank tensor g;;;; are defined as

1
r

1
B =1 > (By — Bpnjninin} s, (6.50)
r

BY, and B are the normal and shear compliances of the rth discontinuity, »; is the ith
component of the normal to the discontinuity, S, is the area of the discontinuity, and V' is
the rock volume. For open, penny-shaped cracks By /By = 1 — vs/2 which is close to
1, hence B;jx is small and can be ignored, while it can be shown that «;; is proportional
to the crack density. In general, however, By and Br may be considered as independent,
and the model thus allows for a description of more general discontinuities than open
cracks. The fact that this model describes the impact of the discontinuities as additions to
the compliance, rather than deductions from the stiffness (as in Eq. (6.38)), is of minor
importance as long as the concentration of discontinuities is small.

6.4.3. Models accounting for interactions
Egs. (6.29) and (6.30) are based on the assumption that the concentration of inclusions is

so small that interactions between the inclusions can be neglected. When several inclusions
are present, they will interact in the sense that the impact of one inclusion on the material’s
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stiffness is affected by the presence of the others. This implies that Qx and Q¢ to some
extent depend on &jner. Alternatively, we can express this by adding higher order terms in
&incl to Egs. (6.29) and (6.30).

A number of models have been derived, where interactions between the inclusions are
accounted for in one way or another in order to make the model valid also for high densities
of inclusions. Several of these models are based on the concept of self consistency. This
implies that the inclusions are assumed to be surrounded by the effective medium, rather
than the host material. Thus, we can make Egs. (6.29) and (6.30) self consistent by redefin-
ing the coefficients of the impact terms (KsQx and GsQg, respectively) by replacing the
elastic moduli Ks and G of the solid host material with the resulting moduli K* and G*
of the effective medium.

This approach was used by Budiansky and O’Connell (1976) when they introduced self
consistent expressions for the elastic moduli of a cracked material, except that they started
by introducing the impact of the cracks as a perturbation to the compliance rather than the
stiffness. That is, their initial equations were of the type

1 1 Ok (vs)

K~ K + K. § (6.51)

11, 060

G* Gs Gs
rather than Egs. (6.29) and (6.30). For low concentrations of cracks, this makes no dif-
ference since the corresponding expressions converge for small values of &. The relevant
expressions for Qg and Q¢ can be derived from Egs. (6.35) and (6.36), respectively.
Egs. (6.51) and (6.52) are made self consistent by making the impact terms functions of
the effective medium parameters, that is:

1 1 0k
_ S — +
K*  Ks K*

1 1 0Qc(v)
_—— — +
G* Gs G*

£ (6.52)

£ (6.53)

3 (6.54)

Making in addition use of the relation between K, G and v from Table 1.1, we find that for
adry rock (D = 1) containing isotropically distributed flat cracks with crack density & the
effective moduli K*, G* and v* may be expressed by the equations

. 16 1 — v*2
. A —vHE-—vH
G* = Gs(l R R s) (6.56)
_ 45 (vs — V") (2 — v*)

3

= — 6.57
16 (1 — v*2)(10vs — v* — 3v*ug) (6.57)

The effective Young’s modulus may be derived by combination of these equations, using
suitable relations from Table 1.1. After linearization in &, in order to make the expression
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Fig. 6.7. Effective elastic moduli for a material with flat, dry cracks. (After Budiansky and O’Connell, 1976; with
permission from Pergamon Press PLC.)

consistent with the others, we find

x2 Q%
E* — Es<1— 16 (1 —v*)(10—-3v )§> (6.58)

45 2 —v*

The effective moduli derived from this model are shown in Fig. 6.7.

Berryman (1980) introduced self consistency into the dynamic theory of Kuster and Tok-
s0z (1974), and derived a set of implicit equations for the effective moduli. The equations
are given in Appendix D.3.2. These solutions approach the linear solutions given in Sec-
tion 6.4.1 for low concentrations of inclusions. Berryman also showed that if the material
contains non-solid inclusions, the effective shear modulus vanishes at a critical concentra-
tion of that inclusion. The critical concentration depends on the shape of the inclusions.

The concept of self consistency is a simple and yet efficient way to account for in-
teractions between inclusions. However, the approach does not give unique solutions.
Berryman’s model, as well as the model of Budiansky and O’Connell which express the
impact of inclusions as a perturbation to the compliance, predict that the shear modulus
vanish when the concentration of non-solid inclusions reaches a critical limit. On the other
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hand, a self-consistent version of Egs. (6.29) and (6.30) predicts that the shear modulus
never vanish completely.

One attempt to get around this apparent problem was the Differential Effective Medium
theory, initially introduced by Salganik (1973), and later studied in detail by Zimmerman
(1991). This model considers the effect of introducing an infinitesimal amount of inclu-
sions into a material. The equations describing the impact of the inclusions (like Egs. (6.29)
and (6.30)) can then be written on differential form, in which case it does not matter
whether the inclusions are considered as perturbations to the compliance or the stiffness.
The effective moduli for a finite concentration of inclusions can be found by integration.

The Differential Effective Medium model appears to eliminate the problem of non-
uniqueness, however this does not imply that this model is in general more correct than
the others. Which of the models that gives the most accurate description of the interactions
between inclusions in a material depends on the actual positions of the inclusions relative
to each other. This is closely related to the statement we made at the beginning of this
chapter, that the elastic properties of a composite material also depend on the geometrical
distribution of each component.

None of the models described above include any explicit information about the positions
of the inclusions relative to each other, however the fact that the models predict different
results implies that they represent different configurations. Unfortunately, most papers pre-
senting such models do not specify which configuration the model represents. Thus it may
be difficult to decide whether a given model is a suitable representation for a given mate-
rial or not. We may get an indication however, by looking at an example that shows how
different positions of inclusions affect the interactions between them.

Consider the simple, 2-dimensional sample shown in Fig. 6.8a. By applying a force on
the sample (indicated by the arrows on the figure) and measuring the deformation, we
obtain a measure of the stiffness of the material. The thin slit in the middle of the sample
represents an inclusion similar to a crack. The presence of the crack reduces the stiffness
of the sample, as shown in Fig. 6.9.

The presence of the crack also makes the stress distribution in the sample nonuniform. In
the areas at the side of the crack the stress level will be larger than it would have been if the
crack was not present. If new cracks are introduced in these areas, as shown in Fig. 6.8b,
the stiffness of the sample will be more reduced than a simple linear extrapolation of the

0 1 1
a U b U c U

Fig. 6.8. Two-dimensional material with cracks.
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Negative interaction

Linear model

Stiffness (relative)
o
»

0.41 - Positive interaction

1 L L |

0 2 4 6 8 10
Number of "cracks"”

o

Fig. 6.9. Stiffness of a two-dimensional sample (Fig. 6.8) versus number of cracks. “Positive interaction”—the
cracks are positioned such that they enhance the effect of each other, as in Fig. 6.8b. “Negative interaction”—the
cracks are positioned such that they reduce the effect of each other, as in Fig. 6.8c. The solid line shows the
prediction of a linear (non-interacting) model. The markers show results obtained by finite element calculations
for the geometries shown in Fig. 6.8.

impact of one crack would predict (positive interaction; see Fig. 6.9). If we keep adding
cracks in these areas, the sample will eventually split in two, and the stiffness will vanish.

On the other hand, the areas above and below the initial crack will be less exposed to
the applied stress because of the presence of the crack. Adding more cracks in these areas
as shown in Fig. 6.8c, will only have a marginal effect on the sample stiffness, which
will asymptotically approach the value for two separate pillars (negative interaction; see
Fig. 6.9). Thus, the reduction in stiffness due to the presence of a large number of cracks
may be very different for different positions of the cracks relative to each other. In some
cases the actual stiffness may be larger than predicted by a simple linear model, in other
cases it may be less.

We may deduce from this example that a self-consistent model based on a perturbation
of stiffness represents a material similar to the one shown in Fig. 6.8c, where the inclusions
are positioned such that they tend to shield each other from the external load. On the other
hand, a self-consistent model based on a perturbation of compliance represents a material
similar to the one shown in Fig. 6.8b, where the inclusions are positioned in areas that are
particularly exposed to the external load because of the presence of other inclusions.

To pick which model that is best suited as a representation for a specific material, we thus
need to know something about the distribution of inclusions in the material. Knowledge
about the process that created the inclusions may be of some help. For instance, cracks in-
duced by a tensile stress tend to appear in particularly exposed areas, like Fig. 6.8b. A linear
model like Egs. (6.29) and (6.30) represents a kind of average over both types of geome-
tries, and may be a good starting point if we know nothing about the actual distribution of
inclusions.
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6.4.4. Crack development in stressed rocks

Changes in the stress state of a rock may cause cracks to initiate and grow, or maybe
to close, depending on the orientation and sign of the principal stresses relative to the
orientation of the cracks. Thus, the number, size and predominant orientation of the cracks
in a rock specimen largely reflects the stress state and stress history of the specimen.

A compressive stress acting in a direction more or less normal to a crack tends to close
the crack. The closure process depends on the shape of the crack (Mavko and Nur, 1978).
Mismatch between the crack faces implies that the closure process extends over a large
range of stress values (see Section 6.5.1).

It is intuitively clear that a crack may grow if the crack faces are pulled apart with a
sufficiently large force. Following Griffith (1921), we shall consider crack growth induced
by tensile stress in a planar (2-dimensional) system. The specimen under consideration
is a plate of thickness ¢, and the crack is a flat, elliptical slit of length 2a penetrating
the plate. A tensile stress o (<0) acting normal to the crack causes the plate to deform
(Fig. 6.10). The strain energy due to the crack, W, defined as the strain energy of the
specimen containing the crack minus the strain energy a similar specimen without a crack
would have if it was exposed to the same stress, is given as

na’t ,
We=——0

E
where E is the Young’s modulus of the material the plate is made of. A free surface is
supposed to possess a surface energy ws per unit area (associated with broken atomic
bonds), thus the surface energy Ws of the crack is

(6.59)

Ws = 4wsat (660)

The surface energy required to increase the crack size by a small amount 2Aa is
(0Ws/0a)Aa while the strain energy available for this increase is (dW;/da)Aa. Thus,
the crack is unstable and will start to grow if
aWe > aWs
da da
By combining Eqgs. (6.59)—(6.61), we find that the crack will start to grow if the tensile
stress exceeds the threshold value

(6.61)

2w3E
wa

Crack growth implies that a increases, and consequently the threshold value decreases, ac-
cording to Eq. (6.62). The situation is thus unstable, and the crack will continue to grow
until the specimen fails. Therefore, Ty represents the tensile strength of the specimen con-
taining the crack. This demonstrates that pre-existing cracks have a pronounced effect on
the tensile strength of a rock.

Crack growth is often analysed in terms of stress intensity factors, which define the
stress state at the tip of a crack. For a crack that is experiencing tensile stress as described
above (also called Mode | loading) the stress field in the vicinity of the crack tip can be
expressed as

To = (6.62)
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Fig. 6.10. Crack tip coordinates.

_ Kk
Oij = mf,»j ) (6.63)

The coordinates r and 6 are defined in Fig. 6.10. fij.')(e) are known functions of the angle 6
(see for instance Anderson, 1995; see also Appendix D.3.1). K| is called the stress intensity
factor for Mode I loading, and is a measure for the stress singularity at the crack tip. Itis a
function of the farfield stress o and the crack length 2a:

K\ = —yo/ma (6.64)

where y is a dimensionless constant depending on geometry. For a slit in a plate as de-
scribed above, y = 1. For a penny-shaped crack (with radius «) in an infinite medium,
y=2/m.

If K| exceeds a critical limit K¢ called the fracture toughness, the crack will start to
grow.

Crack growth may also occur under compressive stresses. If the stress state is
anisotropic, the stress conditions at the tip of a crack oriented at a skew angle relative
to the largest principal stress may become tensile, and the crack will grow if this tensile
stress exceeds a critical value. Based on such considerations, Griffith extended his theory
to general stress conditions. The resulting failure criterion is given in Section 2.3.2. As the
crack growth is assumed to be caused by local tensile stress, the tensile strength is a key
parameter also for the compressive failure criterion.

The situation is illustrated in Fig. 6.11a (also discussed in Section 1.8). Even though the
initial crack may be closed because of the compressive stress o, the crack faces may start
to slide relative to each other due to the shear stress  if the static friction is overcome. The
orientation of the local stresses at the tip of the crack is such that the crack growth will
occur parallel to o1, and normal to o3, thus the so-called wing cracks will develop.

The relation between crack growth and global failure of a sample is in general more
complicated for compressive stresses. In unconfined situations (o3 = 0), failure typically
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b

Fig. 6.11. a. Sliding grain boundary crack thought to be of central importance for rock failure under triaxial stress
conditions. b. Local failure (shear: grey lines, and tensile: black lines) caused by external loading on a 2D sample,
as simulated by PFC. (This figure is a subset of Fig. 6.6.)

occurs by axial splitting, starting with opening of axial cracks from the tip of the largest
pre-existing crack or flaw in the specimen. Under confinement, like in a standard triaxial
test, the wing cracks related to a suitably oriented crack will grow when the conditions are
fulfilled, however these cracks will not be able to grow critically and cause macroscopic
failure on their own. Global failure is thus related to interaction and coalescence of several
cracks forming an array along the plane that eventually becomes the global failure plane.

A mathematical model was developed by Horii and Nemat-Nasser (1985), incorporating
both shear failure and axial splitting. The input parameters to their model were:

1. The length and the orientation of the largest pre-existing crack.

2. The cohesive yield stress and average friction coefficient of the crack interface.
3. Fracture toughness for crack opening in the matrix material.

4. The confining pressure.

Clearly, such detailed knowledge of material properties may be hard to obtain in a general
situation. The model is however useful in the sense that it can explain from microscopic
principles the shape of the observed failure envelopes: the nonlinearity of the failure enve-
lope, which is often observed in practice, is here explained by the transition from failure
initiated at the largest pre-existing flaws (at low confining pressures) to failure initiated at
critically oriented flaws (at high confining pressures). Horii and Nemat-Nasser obtained
a good fit between model prediction and experimental observations for the variation of
ultimate strength with confining pressure in Westerly Granite.

Cracks of the type shown in Fig. 6.11a are not normally observed in rocks. However,
local damage induced by shear stress typically involves both shear and tensile failure, as
illustrated on Fig. 6.11b. The construction shown in Fig. 6.11a represents a model that
provides a coupling between shear and tensile failure, and is as such intuitively useful.
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The fact that the irregular microstructure of a granular material makes this coupling more
complex is not surprising.

6.5. Fractured rocks

Most rocks that we see in nature appear to be fractured masses rather than intact, solid
materials. We may also expect fracture systems to penetrate the formations in the under-
ground. This may be the case on many length scales, from major faults on a scale larger
than reservoirs, to microfractures seen in a core plug. An example is the fractured chalk
reservoir of the Ekofisk field in the North Sea. Here the fractures are responsible for the
main part of the permeability. It is therefore of importance to be able to identify as early as
possible the existence of such fracture systems in reservoirs, and to find the directions of the
fractures. It may also be important (with reference to e.g. the Ekofisk case and prediction of
reservoir compaction during depletion) to know how much the fractures contribute to the
overall mechanical behaviour of a rock mass. In this section, we shall discuss how fractured
(or jointed) rocks behave mechanically, starting with the mechanical behaviour of a single
fracture (or joint). The terms fracture and joint will be used synonymously throughout this
section, although there is a difference from the geological viewpoint (see Chapter 3). With
the mathematical idealizations presented here, they can however be treated within the same
framework.

6.5.1. Single fractures

Previously in this chapter we considered the effect of cracks on rock mechanical and
acoustical properties. By a crack we meant an open void of a given, idealized shape (spher-
oid, penny-shaped) which acts as a local discontinuity. In practice however, a crack in a
porous rock does not have an ideal geometry. Fracture surfaces are rough, and they may
touch each other at some points.

In general, the complete stress—strain behaviour of a fracture relates normal displace-
ment (SwF) to normal stress (8o) on the fracture, and shear displacement (5uF) to shear
stress (§7) along the fracture interface. We may define sw" such that sw" = wf — wF,
where wf is the initial fracture opening and w" the actual fracture opening. The frac-
ture is closed when swF = wf — wf,,, where wf.., is the fracture opening at maxi-

mum closure. The stress-displacement relation can be written as (see e.g. Bandis, 1990;

Saeb and Amadei, 1992):
80\ (Ko Knt) [Sw"
<5T> - (Km Ktt) <5MF) (669

where the indices in the fracture stiffness tensor (K;;) denote »n for normal and ¢ for tan-
gential. Observed deformational behaviour is highly nonlinear for increasing compressive
load, while unloading causes large hysteresis and inelastic behaviour. Under tension, the
associated fracture stiffness is close to zero. Under shearing, the stress—strain relation may
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exhibit “plastic” as well as “brittle” behaviour, depending on the fracture size. On an empir-
ical basis, the following type of expression for K,,, has been proposed for joints (Goodman,
1974):

K+ T (6.66)

o .nF
K f Whax

Knn = Kr?n[

K¢, is the initial normal stiffness of the joint. The appearance of K¢, and w,,, in Eq. (6.66)
implies that stress history dependence may be accounted for in the joint stiffness.
The shear stress dependence of Ky has been described by a relationship of the type

2

Ki = K¢ [1 — 1} (6.67)
Ts

K¢ is the initial shear stiffness and s is the asymptotic value for t at large shear displace-

ments. The off-diagonal terms in the stiffness tensor (Eq. (6.65)) account for coupling

between shear and normal behaviour due to dilatancy. A mathematical model incorporat-

ing these terms has been presented by Saeb and Amadei (1992).

Given the fracture stiffness parameters (Eq. (6.65)), one may calculate the frequency
dependent time delay, and the sound transmission and reflection coefficients caused by a
single fracture (Pyrak-Nolte et al., 1990). The calculations show an increased damping of
high frequencies in a transmitted acoustic signal when the fracture stiffness is reduced. The
effect of viscosity in a fluid filling the fracture was also analysed, showing increased high
frequency damping with decreasing viscosity.

From a microscopic viewpoint, closure of a fracture can be described mathematically
by parameters depending on the roughness characteristics of the fracture surfaces. Brown
and Scholz (1986) derived a relationship where they accounted for the following fracture
surface parameters: a distribution function for asperity heights, the number of local maxima
per unit area, the effective radius of curvature of the asperities, the fracture width at zero
stress, and a correction factor for tangential stress contributions. For a particular choice of
the asperity height distribution function, the strain vs. stress relationship can be written

8" = A+ BlInso (6.68)

where 87 = swF/wF is the fracture strain. A and B are functions of the fracture surface
parameters described above. The joint closure is thus a highly nonlinear function of the
normal stress.

Carlson and Gangi (1985) modelled a fracture using a “bed of nails” concept (see
Fig. 6.12). A set of cylindrical rods of different lengths L; are attached to the crack walls,
simulating a distribution of asperities. The rods are assumed to act as springs. As the nor-
mal stress is increased across the fracture, the walls of the fracture move closer and more
and more rods come in contact with the opposite wall. Therefore, the stiffness is increased
as the strain increases, similar to Eq. (6.68). For a through-going fracture, the fracture strain

can be expressed as:
8 m
seF = <_”> (6.69)

Oc
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S oy

Fig. 6.12. A natural fracture (above) and the mechanically and hydraulically equivalent “bed of nails” fracture
model, introduced by Carlson and Gangi (1985).

where o¢ is the stress required to close the crack. The exponent m (<1) is given by the
distribution of rod lengths. The fraction n of rods in contact is:

n = (8eh)d—mi/m (6.70)

m is thought to be constant throughout a given experiment. The value m = 1 corresponds
to a closed crack with perfectly smooth surfaces, while m = 0 corresponds to and open
crack with smooth surfaces.

Carlson and Gangi modified the expression (6.69) for the case of an isolated crack in a
solid matrix, giving

m
5eF = (M) 6.70)

Oc

Here o, is equivalent to an initial stress (associated with the tensile strength of the ma-
terial). The expressions can be used quantitatively to evaluate the stress dependence of
P-wave velocities in cracked media, leading to a relationship of the following form which
is applicable for high porosity sedimentary rocks:

o\ d=m/2
vp = vy (1 + J—) (6.72)

o

In Section 6.3 we found for a model consisting of spheres in contact (where the contacts
behave according to Hertzian theory) that the sound velocity would increase with stress
according to a power law behaviour, with exponent 1/6. This corresponds to m = 2/3
(and o, — 0) in Carlson and Gangi’s theory. In many rocks, exponents <1/6 have been
observed, indicating that m is closer to 1 (Carlson and Gangi, 1985).
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The shear strength of a joint or fracture is often expressed in terms of a Mohr—Coulomb
criterion with zero cohesion (see Section 2.3.1):

T=otang (6.73)

Based on laboratory experiments with more than 200 artificial tensile fractures, Barton and
Bandis (1990) found that the friction angle ¢ can be expressed as

JCs
¢ =JRClog — + ¢, (6.74)
o

JRC is called the joint roughness coefficient, while JCSis the wall strength, identified as
the unconfined compressive strength of the intact rock. ¢, is the residual angle of friction
(~30°, see Chapter 2). JRC can be found from simple shear tests, and has typically a value
around 20 for a rough joint without steps. It is a scale dependent factor, and a scaling
relation has been established (see Barton and Bandis, 1990), giving JRC as a function of
roughness amplitude over profile length.

6.5.2. Rocks with many fractures

A rock mass normally contains a system of fractures. Such a system is specified in terms
of fracture orientation, fracture width, length and spacing. While the orientation is mainly
determined by the stress state at the time the fracture was formed, the remaining parameters
are primarily given by the lithology. These parameters are necessary in order to quantify the
flow of fluids in a fractured reservoir. In nature, there is of course a distribution of fracture
parameters. Many investigators have claimed that fracture size distributions observed in
outcrops tend to be scale invariant (fractal).

Several Finite Element and Finite Difference codes have been developed in order to
analyse the mechanical behaviour of discontinuous media. Standard input parameters are
a set of fracture stiffnesses and the elastic moduli of the intact material. We shall not de-
scribe any of these methods here, but rather discuss one analytical model for the elastic
behaviour of fractured rocks. This theory was developed by White (1983). Consider a
cube (Fig. 6.13) consisting of fractured blocks. Each block is spot-welded to the neigh-
bouring blocks (Fig. 6.14). The average dimensions of a block are L,, L, and L, and
the number of contact points per unit area Ny, N, and N, respectively. The spot-welded
contacts are assumed to be circles of average diameters D, D, and D,. The elastic prop-
erties of the fractured cube is derived based on the Hertz—Mindlin approach introduced
in Section 6.3. For the effective contact radius b (Eq. (6.18)) we here use the parameter
Xb = (DxNLy,L;)/2 for a surface normal to x, and corresponding expressions for y
and z. The compressive strain ¢, due to a force o, has two contributions:

Firstly, the deformation at the fracture planes normal to x causes a strain (see Eq. (6.21))

f 1- Vs LyLz
& = =
2GsX b L,
Secondly, the deformation of the solid blocks gives a strain
s 1
&, =
(As +2Gs)(1 —ay)

oy (6.75)

oy (6.76)
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Fig. 6.13. Elementary cube of fractured rock.

X

Fig. 6.14. Average sized block of fractured rock and contact areas. (After White, 1983; with permission from
Elsevier Science Publishers.)

where a, accounts for the effect of the fracture planes normal to y and z. The total strain is
f S 1
ey =6, +6& = —0x (6.77)
Cn

These equations allow us to find the elastic stiffness Cy3. It is convenient to introduce the
parameters Ry, R, and R; given by expressions of the form

Ry = N.D,L, (6.78)
The resulting expression for Cy3 is
rs +2Gs

1 2(1-v9)? 1
1—ay + 1-2vs Ry

Cu1 = (6.79)
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Similar expressions can be obtained for C2; and Cs3, with Ry, a,, and R_, a., respectively,
substituted for R, a,. The derivation of a, is rather tedious and is not included here. The
result is

W 202 41 —vs) + Ry + R, (6.80)
rT —e)2 — )2 Av2(1—ve)2 .
B Ry B R+ 20 -
The shear moduli are given by
G
Cas S (6.81)

1+ 55 + 1)

and similar expressions for Css and Cgg. Note that R, = R, = R; — oo means that the
material effectively contains no fractures, i.e. the elastic moduli are those of the solid. As a
plausible example, consider an average distance between fractures L, = L, =L, =1m,
with Ny = N, =5 m~—2 contacts per unit area and an average contact spot diameter of
Dy = D, = 0.1m. Thus, R, = R, = 0.5. Fig. 6.15 shows how the shear velocities
associated with C44 (SV) and Cgg (SH) vary as functions of R, in this case (assuming
vs = 0.25). The figure also shows the case of a planar fracture system (R, = R, — o0).
Both shear moduli are strongly reduced by the presence of fractures. This also underlines
the existence of a size effect: if a sample is smaller than the smallest fracture block, one
will measure the solid properties rather than the properties of the rock mass. White’s model
can also be used to reveal the effects of a directional distribution of fracture planes, which

SH(R, =R, =0.5)|

SV(Ry=R, = 0)

SV(R, =R, =0.5)

Relative Shear Wave Velocities
o
]

1/R,

Fig. 6.15. Shear wave velocities in a fractured rock relative to velocities in a solid block, calculated by White’s
theory. Ry, Ry and R; are defined in the text.
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give rise to a significant anisotropy. Observations of seismic/VSP anisotropy can thus be
used to characterize fractured reservoirs.
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Chapter 7

Mechanical properties and stress data from laboratory
analysis

Evaluation of in situ rock mechanical behaviour requires relevant input data: What is the
stress state and the pore pressure at the depth of interest? What are the elastic moduli and
the strength parameters? Can we expect creep or other types of non-elastic behaviour to
take place?

Our main data sources in order to answer these questions are core material and data
recorded in the field (measurements while drilling, wireline logs, seismic data and vari-
ous well tests). The logs provide data recorded continuously vs. depth, but do not measure
directly the parameters that are needed for a rock mechanical analysis. For instance, rock
strength can not be measured from wireline logs. Strength estimates may, however, be
given if a proper interpretation procedure is applied. Field measurements of rock mechan-
ical parameters are discussed in Chapter 8.

In this chapter we shall discuss rock mechanical core analysis. Cores provide a possibil-
ity for direct measurement of e.g. rock strength parameters and static elastic properties. We
shall start by looking at the rocks to be tested: the cores in the laboratory may not be fully
representative of the formation we intend to study. They may also have been altered during
coring and subsequent handling. Some of these problems can not be solved, others can
be overcome by proper sample preparation methods, test procedures and correction proce-
dures. On the other hand, if proper preparation procedures are not applied, severe errors
in the test results may be introduced. These factors will be discussed in more detail below
(Section 7.1). We shall then discuss the laboratory equipment and measurement techniques
(Section 7.2) applied in rock mechanical testing, including also acoustic measurements.

A rock mechanical core analysis has to be designed according to the purpose of the in-
vestigation. If the objective is to predict reservoir compaction, then the tests and testing
procedures may not be the same as for instance in a borehole stability study. Consideration
also has to be given to the rock type which is going to be tested. Shales require both spe-
cial preparation procedures and special test procedures. In Section 7.3 we shall describe
relevant test procedures which are applied in rock mechanical testing and give some rec-
ommendations for test interpretation.

The literature reports numerous attempts to determine in situ stresses from laboratory
testing of core samples. The most relevant test methods will be discussed in Section 7.4.

In some cases it may be useful to perform a set of simpler measurements which can
be used as indicators of rock strength and stiffness. This can provide information at less
cost and at less material consumption. The latter is particularly relevant if the core is in
a poor state and larger test plugs can not be prepared. If performed at the rig-site, results
may be available closer to real-time. Some of these so-called index tests are described in
Section 7.5.



252 MECHANICAL PROPERTIES AND STRESS DATA FROM LABORATORY ANALYSIS
7.1. Core samples for rock mechanical laboratory analysis
7.1.1. Core representativeness and size effects

As we stated above, cores are our only possibility of obtaining direct measurements of
rock strength and static mechanical parameters. Cores are, however, only available from
discrete levels, and may only be representative of the formations in or near the borehole
itself. The limited availability of core material may cause large uncertainty in the results.
Normally, cores are taken mainly or only in the reservoir, while the mechanical behaviour
of the overlying strata may be of large importance for drilling problems, subsidence and
repeated seismic interpretation during reservoir depletion.

A core plug used in standard mechanical testing has a diameter of 1-2.5”. Only in spe-
cial cases will larger (4-5") or smaller (0.1-1") samples be used. This means that the
tested cores may, in case of inhomogeneities, not be representative of the interval under
investigation. For instance, in a fractured zone, the rocks to be tested are normally taken
from the intact parts. One has to recall that the elastic behaviour of the fractured rock mass
can be very different from that of the intact rock (Chapter 6). This means that if the prop-
erties which are important are those of the rock mass, then the analysis will be biased. The
samples should then, if possible, be taken so that fractures are contained in them. If, on the
other hand, the data will be applied in e.g. sand prediction analysis, then the fractures may
not be relevant, and the samples should be taken from the intact parts of the rock.

The discussion above shows that the size of the sample may be important. If the fractures
occur on a scale of several metres, then it is very unlikely that tests on small samples will
provide reliable data. Fractures and cracks may, however, occur on several length scales,
down to and below the sample size. Statistically, a larger sample is expected to contain
larger cracks than a small sample. Qualitatively, this would lead to an increased strength
with decreasing sample size, since the strength decreases with the size of the largest crack.
This hypothesis is often valid in experiments (see e.g. Vutukuri et al., 1974), but is not
generally confirmed. In fact, experiments with sedimentary rocks some times may show an
opposite trend (strength increases with sample size). Even though the size effect problem
has been focused since the advent of material property testing in the 18th century (see the
interesting historical overview in Hudson et al., 1972), it still remains unsolved.

Clearly, in granular rocks, there is a lower limit to the sample size given by the require-
ment that the sample should contain a large number of grains. In the procedures suggested
by the ISRM (International Society for Rock Mechanics) (Brown (Ed.), 1981), it is stated
that the diameter of a specimen prepared for rock mechanical testing should be at least ten
times the diameter of the largest grain in the rock.

7.1.2. Core alteration

A rock specimen is most likely altered when taken from in situ to laboratory conditions.
In situ it may have been at a depth of one or more kilometres, at an ambient temperature
of say 50-150 °C, and in chemical equilibrium with its own pore fluid. When cored, it is
brought to atmospheric conditions in terms of stress, pore pressure and temperature. It is
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Fig. 7.1. Schematic illustration of the effective stress field alteration experienced during coring of a vertical core
in a normally stressed rock. (After Holt et al., 2000; with permission from Elsevier.)

also in contact with some chemically active/inactive drilling mud, and mud filtrate may
penetrate the core. Thus the main core alteration mechanisms are stress release, pore pres-
sure release (especially in low-permeability rocks), thermal effects and chemical effects
due to fluid exposure. The cores may be further damaged by the action of the drill bit, and
by subsequent improper handling and storage (see Section 7.1.3).

Stress release probably has the most severe effect on rock mechanical properties. Fig. 7.1
shows schematically the effective stress field alterations experienced by a core during the
coring process. This is under the assumption of a vertical well drilled in an initial stress field
with a vertical stress and isotropic horizontal stresses. As the core is drilled, the vertical
stress is reduced first, while the horizontal stress is reduced as the core enters the core
barrel. Thus there is a period where the horizontal stress may be significantly larger than
the vertical stress. This may result in yielding and/or failure of the core. The amount of
core recovery and the size of the recovered pieces are thus qualitative measures of the rock
strength. The weaker the rock, the less intact core material will be recovered. Macroscopic
failure may also occur as tensile failure (core discing). This has been used to evaluate in
particular the ratio between horizontal and vertical principal stress components (Maury et
al., 1988).

Laboratory testing of rock alteration due to stress release has shown an effect on the
mechanical properties of sandstone (Holt et al., 2000), resulting in a reduced uniaxial
compressive strength, reduced stiffness, reduced acoustic velocities and increased stress
sensitivity.

Shale may have nanoDarcy or lower permeability (Section 3.4.3) which means that pore
pressure equilibrium will not be maintained when the core is retrieved from depth. Thus,
tensile failure is very likely to occur, either macroscopically, or on a microscopic level.
This process, as well as volumetric expansion during coring and retrieval, causes the shale
core to be incompletely saturated when reaching the surface. As discussed further below



254 MECHANICAL PROPERTIES AND STRESS DATA FROM LABORATORY ANALYSIS

(see Section 7.1.4), this may affect shale properties significantly, and needs to be accounted
for in sample preparation and conditioning.

7.1.3. Core handling

We have seen above that cores may be disturbed by the coring process itself. Further treat-
ment on the rig, during transport, during storage and prior to testing in the laboratory may
also be critically important to the outcome of the rock mechanical analysis. There are two
major problems which are relevant for sedimentary rocks: one is the fact that they can be
mechanically weak, and in some cases completely unconsolidated. The other is that they
may be sensitive to the exposure to or loss of fluids.

For poorly consolidated sandstones, samples may not be kept intact unless they are
frozen immediately after coring, and kept so until mounted in the triaxial cell. Freezing
should, however, be avoided if possible, since it may induce permanent changes in the
rock. This is in particular the case if water is present. Since clay minerals contain bound
water, freezing may cause disintegration and redistribution of these minerals. If the clay
minerals act as cement, this will clearly affect the mechanical properties.

For sandstones (in particular clay-rich sandstones) the rock mechanical properties are
also found to depend on moisture content. The general observation is that (see e.g. Colback
and Wiid, 1965) uniaxial compressive strength decreases with increasing moisture content.
Colback and Wiid relate this to a change in the surface energy.

It has been observed by the authors of this book that a sandstone stored in normal labo-
ratory atmosphere for one year after sampling increased its strength by a factor of two due
to drying. This was an effect of smectite in the sandstone which