Oil and Gas Well Completions

Completion Design and Engineering

Multiphase Fluid Flow

Principal multiphase flow regimes recognised in oil and gas wells:

- Bubble flow
- Slug flow
- Transition or churn flow
- Annular or mist flow

Bubble Flow

Bubble flow characterized by:

- Small evenly distributed gas bubbles
- Continuous liquid phase
- Further categorized as:
 - Bubbly flow
 - Dispersed bubble flow

Small gas bubbles evenly distributed throughout liquid phase

Slug flow characterized by:

- Series of gas pockets between slugs of liquid
- Continuous liquid phase
- Taylor bubbles

Bubbles of varying size unevenly distributed throughout liquid phase

Annular/Mist

Annular/mist flow characterized by:

- Continuous gas phase
- Entrained liquid in gas flow (mist)
- Annular liquid film

Transition/Churn Flow

Transition flow characterized by:

- Chaotic flow pattern
- Neither phase is continuous
- Liquid appears to move both up and down the conduit

Evaluating Pressure Losses

Tubing String Specification

Tubing strings specified by the following:

- Size and dimensions
 - -OD
 - Weight and wall thickness
 - Coupling OD
- Material grade
 - Minimum yield strength
- Construction
 - Seamless/electric welded pipe
- Tool joint
 - Nonupset/Upset
 - Premium thread

Tubing Connections - Collar

External Upset Connection

Tubing Connections - Integral

String Design Factors

Criteria for string selection/design include:

- Pressure and tension
 - < 80% of tubing yield strength
 - burst and collapse pressure limitations
- Production rate
 - flowrate should be compatible with flow area
- Wellbore environment
 - fluid properties, e.g., corrosion, wellbore deposits
- Tubular connections and geometry
 - e.g., tool joints and annular clearance
- Force and stress
 - throughout the life of the completion

Tubing Forces

Forces and stresses on the completion can be effected by:

- Temperature
 - temperature changes
- Pressure
 - pressure changes
- Weight of components
- Fluid density and gradients
- Friction
 - especially in deviated wellbores

Tubing Movement- Packers

Buoyancy

Length and Force Changes

Length and forces changes should be assessed to enable:

- Selection of an appropriate packer
- Assessment of potential tubing damage
- Accurate space out and landing of the completion
- Four principal causes of length and force changes:
 - Piston effect
 - Buckling effect
 - Ballooning effect
 - Temperature effect

Buckling Effect

Pressure Buckling

Ballooning Effect

Reverse Ballooning

Temperature Effect

Tubing Stress Calculations

Material Selection

Factors influencing material selection criteria typically include:

- Mechanical properties
 - -e.g., material strength
- Operating environment
 - -e.g., sour or corrosive service
- Ease of manufacture
- Cost
- Availability
 - e.g., in required dimensions

Corrosion

Failure mechanisms associated with corrosion:

- Stress corrosion cracking
 - Hydrogen embrittlement, stress cracking
- Material weight loss
 - $-CO_2$ corrosion, oxidization, treatment fluids
- Pitting or localised loss

Requires three conditions

- Corrosive media, e.g., oxygen
- Electrolyte, e.g., moisture
- Heat or pressure

Elastomers and Plastics

General definition:

An elastomer can be stretched to at least twice its original length and will quickly return to approximately its original length on release. Plastics cannot withstand such strain without permanent damage.

Primary applications:

- Sealing components for:
 - pressure
 - fluids (liquids and gas)
 - heat

Elastomer and Plastic Limitations

Elastomers and plastics should be selected on compatibility with:

- Corrosive fluids or environment
 - -e.g., reservoir or completion fluids
- Chemical compatibility
 - -e.g., stimulation fluids
- Operating temperature
 - including range and fluctuation
- Operating pressure
 - including range and fluctuation
- Dimension

-e.g., ability to function with extrusion gap

Perforating

The process of creating a clear channel of communication between the reservoir and wellbore.

Technique selection depends on:

- Completion type and dimensions
- Reservoir conditions, e.g., stability/consolidation
- Local experience and preference

Perforation History

Perforation Program Design

Principal design considerations include:

- Location of the perforated interval
- Shot density
- Perforation phasing
- Penetration
- Perforating debris
- Gun conveyance method
- Gun recoverability
- Bottom hole perforating pressure

Perforating Gun Components

Principal perforation gun/system components:

Charge carrier

- recoverable, disposable
- Detonator
 - electrical or percussion (dependent on conveyance)
- Detonating cord
 - provides link between charges

Shaped charge

- generates high pressure jet

Perforation Charge

Charge components

Perforation Process

Perforation sequence

Perforating Gun Systems

Perforating gun or system options include:

- Gun conveyance method
 - wireline, TCP or coiled tubing
- Thru-tubing gun systems
 - small OD systems
- Casing gun systems
 - large OD systems
- Tubing conveyed gun systems
 - recovered or dropped
 - suitable for long intervals
 - no verification

Perforation Phasing

Effects of perforation phasing

Perforation Phasing

Perforation phasing describes the angle between shots. Key considerations include:

- Five common configurations 0°, 60°, 90°, 120°, 180°
- phased guns require decentralizing
- Near wellbore flow characteristics effected by phasing
- Oriented phasing may be desirable, e.g., hydraulic fracturing treatments

Penetration, Stand Off and Debris

Penetration - effective length of perforation channel

- Should bypass damaged zone
- Effected by stand-off

Stand Off - distance between gun and casing/liner

- Charge efficiency diminishes with distance
- Effects accentuated at high pressures
- Perforation size effected by stand off

Perforation debris - left in place after perforating

- Some debris inevitable dependent on gun/charge type
- Should be removed by back flush after/during perforating

Bottomhole Perforation Pressure

Two basic bottom hole pressure conditions associated with perforating:

- Overbalanced perforating with kill weight fluid column in wellbore
 - Surge following perforation acts to compact debris
 - Requires less complex equipment and techniques
- Underbalanced
 - Removes perforation debris at time of perforation
 - Reduces likelihood of near-wellbore damage
 - Requires special equipment and techniques

A third Pressure condition is being used in the last years:

• Extreme Overbalanced Perforation (EOB); The wellbore pressure in the wellbore is higher than the Frac Gradient.